
hotlinks.hyper

hotlinks.hyper ii

COLLABORATORS

TITLE :

hotlinks.hyper

ACTION NAME DATE SIGNATURE

WRITTEN BY February 6, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

hotlinks.hyper iii

Contents

1 hotlinks.hyper 1

1.1 hotlinks.doc . 1

1.2 hotlinks.library/HLSysinfo . 2

1.3 hotlinks.library/HLRegister . 3

1.4 hotlinks.library/UnRegister . 3

1.5 hotlinks.library/AllocPBlock . 4

1.6 hotlinks.library/FreePBlock . 5

1.7 hotlinks.library/SetUser . 5

1.8 hotlinks.library/ChgPassword . 6

1.9 hotlinks.library/FirstPub . 7

1.10 hotlinks.library/NextPub . 7

1.11 hotlinks.library/RemovePub . 8

1.12 hotlinks.library/Notify . 9

1.13 hotlinks.library/PubStatus . 10

1.14 hotlinks.library/GetInfo . 11

1.15 hotlinks.library/SetInfo . 11

1.16 hotlinks.library/LockPub . 12

1.17 hotlinks.library/OpenPub . 13

1.18 hotlinks.library/ReadPub . 13

1.19 hotlinks.library/WritePub . 14

1.20 hotlinks.library/SeekPub . 15

1.21 hotlinks.library/ClosePub . 16

1.22 hotlinks.library/GetPub . 17

1.23 hotlinks.library/PutPub . 17

1.24 hotlinks.library/PubInfo . 18

1.25 hotlinks.library/NewPassword . 19

hotlinks.hyper 1 / 19

Chapter 1

hotlinks.hyper

1.1 hotlinks.doc

HLSysInfo()

HLRegister()

UnRegister()

AllocPBlock()

FreePBlock()

SetUser()

ChgPassword()

FirstPub()

NextPub()

RemovePub()

Notify()

PubStatus()

GetInfo()

SetInfo()

LockPub()

OpenPub()

ReadPub()

WritePub()

SeekPub()

hotlinks.hyper 2 / 19

ClosePub()

GetPub()

PutPub()

PubInfo()

NewPassword()

1.2 hotlinks.library/HLSysinfo

NAME
HLSysInfo - obtain information regarding the hotlinks system.

SYNOPSIS
error = HLSysInfo(handle, array)
d0 d0 d1

int HLSysInfo(ULONG, int *);

FUNCTION
Will fill array with useful information like memory used, number of
editions, etc. The exact information to be returned has not been
decided yet.

This routine is not yet implemented so it will return UNIMPLEMENTED.

INPUTS
handle - the hotlinks ’handle’ as returned by HLRegister.

array - an array of long words that will be filled in by the routine.
The exact format of this array has not been decided yet, other
than to say that it will be an array of long words. But exactly
how many entries are needed and what they each stand for has
yet to be determined.

RESULTS
Will fill in the array with information about the hotlinks system.

Possible information includes:
user name
hotlinks resident code version number
number of local editions
number of remote editions
number of programs registered with hotlinks
memory used by hotlinks

BUGS
None.

hotlinks.hyper 3 / 19

1.3 hotlinks.library/HLRegister

NAME
HLRegister - register a program with the hotlinks system.

SYNOPSIS
handle = HLRegister(id, msgport, screen)

d0 d0 d1 d2

ULONG HLRegister(int, struct MsgPort *, struct Screen *);

FUNCTION
Program must make this call to register themselves with HotLinks
prior to making any calls to hotlinks.

Handle must be freed before the registered program exits or memory
will be lost.

INPUTS
id - a four byte id to be used for as the creator id of any editions

that this application may create.

msgport - a pointer to a standard exec message port. This port is used
to send Notify messages to the application when an edition changes.
This may be NULL, if the application never calls

Notify()
to set up

a notify on an edition.

screen - a pointer to a valid screen where to application wants
hotlinks to open up it’s requester on. If this argument is NULL
the default public screen is chosen (which is normally Workbench).

RESULTS
handle - a handle to be maintained throughout the duration of the

registered application. This must be freed by calling
UnRegister()

before the application exits or memory will be lost.

INVPARAM - ?
NOMEMORY - there was not enough memory to perform this function.

SEE ALSO

UnRegister()
BUGS

None.

1.4 hotlinks.library/UnRegister

NAME
UnRegister - used to unregister an application with hotlinks.

hotlinks.hyper 4 / 19

SYNOPSIS
error = UnRegister(handle)
d0 d0

int UnRegister(ULONG);

FUNCTION
This call is used to free the handle allocated by

HLRegister()
. This

routine must be called before the registered application exits or
memory will be lost.

INPUTS
handle - must be a valid handle returned from

HLRegister()
.

RESULTS
NOERROR - if everything is OK.
?

SEE ALSO

HLRegister()
BUGS

None.

1.5 hotlinks.library/AllocPBlock

NAME
AllocPBlock - allocate a publication block.

SYNOPSIS
pblock = AllocPBlock(handle)

d0 d0

struct PubBlock *AllocPBlock(ULONG);

FUNCTION
This function will allocate a struct PubBlock and initialize it.
This is the preferred method of allocating a PubBlock structure because
if the size of the PubBlock structure changes your program will not
have to be changed to work properly.

INPUTS
handle - must be a valid handle as returned by

HLRegister()
.

RESULTS
pblock - points to a valid initialized PubBlock struct.

NOMEMORY - not enough memory to allocate a PubBlock struct.

hotlinks.hyper 5 / 19

INVPARAM - the handle was invalid.

SEE ALSO

FreePBlock()
,
HLRegister()

BUGS
None.

1.6 hotlinks.library/FreePBlock

NAME
FreePBlock - frees a publication block obtained by

AllocPBlock()
.

SYNOPSIS
error = FreePBLock(pblock)
d0 d0

int FreePBlock(struct PubBlock *);

FUNCTION
This will free the memory allocated by

AllocPBlock()
pointed to by

pblock.

INPUTS
pblock - must point to a valid PubBlock struct as returned by

AllocPBlock()
.

RESULTS
INVPARAM - if the pblock was not a valid PubBlock pointer (NULL

for example).

SEE ALSO

AllocPBlock()
BUGS

None.

1.7 hotlinks.library/SetUser

NAME
SetUser - sets the current user on the hotlinks system.

hotlinks.hyper 6 / 19

SYNOPSIS
error = SetUser(handle, name, password);
d0 d0 a0 a1

int SetUser(ULONG, char *, char *);

FUNCTION
Will set the current user to Name, if Password is valid for Name’s
account.

INPUTS
handle - must be a valid handle as returned by

HLRegister()
.

name - a pointer to a NULL terminated string or NULL.
password - a pointer to a NULL terminated string or NULL.

If both the name and password are NULL then the current user is
logged off the system. The next time a call to hotlinks is made the
login prompt will be presented.

RESULTS
INVPARAM - if password is not valid for name.

SEE ALSO

HLRegister()
BUGS

None.

1.8 hotlinks.library/ChgPassword

NAME
ChgPassword - allows the changing of a users password.

SYNOPSIS
Error = ChgPassword(handle, name, oldpwd, newpwd);
d0 d0 a0 a1 a2

int ChgPassword(ULONG, char *, char *, char *);

FUNCTION
Changes the password of <name> from <oldpwd> to <newpwd>.

INPUTS
name - a pointer to a NULL terminated string.
oldpwd - a pointer to a NULL terminated string.
newpwd - a pointer to a NULL terminated string.

All values must be valid and not NULL, unless the current user is
the superuser. As superuser, one must only supply the name and
newpwd to change a regular user’s password. If the superuser wants to
change the superuser’s password then all parameters must be valid and
not NULL.

hotlinks.hyper 7 / 19

The arguments need not be kept around for the duration of the program.
The hotlinks resident code makes copies of the strings.

RESULTS
INVPARAM - the oldpwd was not valid for name, or a parameter was NULL.
NOPRIV - the current user tried to change another uses password.
NOMEMORY - not enough memory to allocate the newpwd.

BUGS
None.

1.9 hotlinks.library/FirstPub

NAME
FirstPub - fills in a PubBlock with the first publication’s information

SYNOPSIS
error = FirstPub(pblock)
d0 d0

int FirstPub(struct PubBlock *);

FUNCTION
Returns the pblock structure filled in for first available edition.
This works much like the dos.library Examine call in that it sets
up for a series os

NextPub()
calls to look at all the editions the

current user can gain access to.

INPUTS
pblock - pointer to a valid PubBlock as returned by

AllocPBlock()
.

RESULTS
NOERROR - pblock will be filled in with the information for the first

edition file that the user can gain access to. Note that only the
editions that the current user has access to will be peeked by
this function all others will be skipped over.

NOMOREBLOCKS - if there are no editions this user can access or if
there are no editions at all.

INVPARAM - if the pblock is invalid or NULL

SEE ALSO

NextPub()
BUGS

None.

1.10 hotlinks.library/NextPub

hotlinks.hyper 8 / 19

NAME
NextPub - fills in a pubblock struct with the next pub’s information.

Valid only after a call to
FirstPub()
.

SYNOPSIS
Error = NextPub(pblock)
d0 d0

int NextPub(struct PubBlock *);

FUNCTION
Returns the pblock structure filled in for the next available edition.
pblock must be the same pblock that was used in the call to

FirstPub()
or the previous NextPub() call. This routine functions ←↩

much like the
dos.library ExNext call. Repeated calls to this function will have
the result of stepping through each of the available editions available
to the currently logged in user.

INPUTS
pblock - must be a valid PubBlock as returned by

AllocPBlock()
and

processed by a call to
FirstPub()
or a previous call to NextPub().

RESULTS
NOERROR - pblock will be filled in with the information for the next

edition file that the user can gain access to. Note that only the
editions that the current user has access to will be peeked by
this function all others will be skipped over.

NOMOREBLOCKS - there are no more editions available.
INVPARAM - an invalid pblock was passed.

SEE ALSO

FirstPub()
BUGS

None.

1.11 hotlinks.library/RemovePub

NAME
RemovePub - delete an edition

SYNOPSIS
Error = RemovePub(pblock)
d0 d0

hotlinks.hyper 9 / 19

int RemovePub(struct PubBlock *);

FUNCTION
Will remove the edition file if the currently logged in user can do so.

If an edition is deleted while applications still have links to it or
notifies set up on it they will receive errors when those applications
try to access any hotlinks function with that pblock. Normally this
error will be INVPARAM.

INPUTS
pblock - must be a valid PubBlock as returned by

AllocPBlock()
.

pblock->PRec.ID[0], pblock->PRec.ID[1], and pblock->PRec.Version
must be valid. The version number must be the latest version
number or the call will fail.

RESULTS
INVPARAM - the pblock was NULL or otherwise invalid (the version number

was not the most recent).
IOERROR - the dos.library DeleteFile() routine failed.
CHANGED - ?

BUGS
None.

1.12 hotlinks.library/Notify

NAME
Notify - set up a notify node for this application on this edition

SYNOPSIS
Error = Notify(pblock, flag, class, userdata)
d0 d0 d1 d2 a0

int Notify(struct PubBlock *, int, int, void *);

FUNCTION
This will cause a notify to be set up on the pblock. Anytime the
edition file is changed by any application a message is sent to
the message port specified in the

HLRegister()
call telling it so.

The message sent is a struct HLMsg.

INPUTS
pblock - must point to a valid PubBLock as returned by AllocPBLock().
flag -

INFORM - will set up a link to the edition file during which time
if the document is changed. A message will be sent to the
program indicating a publication has changed (and it’s ID) via
the message port specified in the

hotlinks.hyper 10 / 19

HLRegister()
call.

EXINFORM - will set up a link to the edition file during which
time if the document is changed. A message will be sent to the
program indicating a publication has changed (and it’s ID) via
the message port specified in the

HLRegister()
call. Using this

flag only 1 notify per edition per message port may be set up.

NOINFORM - will cancel the notify request made on a previous call
to Notify() with either INFORM or EXINFORM.

RESULTS
NOERROR - a notify was set up on the edition file.
INVPARAM - an invalid argument was passed.
NOMEMORY - not enough memory to set up the notify.

SEE ALSO

HLRegister()
BUGS

None.

1.13 hotlinks.library/PubStatus

NAME
PubStatus - checks to see if the edition has changed.

SYNOPSIS
Error = PubStatus(pblock)
d0 d0

int PubStatus(struct PubBlock *);

FUNCTION
This will check to see if the edition file has changed from the data
contained in the pblock passed to it.

INPUTS
pblock - must be a valid PubBlock as returned by

AllocPBlock()
.

pblock->PRec.ID[0], pblock->PRec.ID[1], and pblock->PRec.Version
must be valid.

RESULTS
NOERROR - if the edition has not changed.
CHANGED - if the edition has changed.
INVPARAM - if the pblock is invalid or NULL.
NOPRIV - if the currently logged in user cannot access the edition

file specified by the pblock.

hotlinks.hyper 11 / 19

No values in the pblock are modified by this call.

SEE ALSO

AllocPBlock()
BUGS

None.

1.14 hotlinks.library/GetInfo

NAME
GetInfo - fills in a pubblock struct with the information for the

given id.

SYNOPSIS
Error = GetInfo(pblock)
d0 d0

int GetInfo(struct PubBlock *);

FUNCTION
This function will fill in a PubBlock with all the information for
the requested edition file.

INPUTS
pblock - must be a valid PubBlock with the pblock->PRec.ID fields

filled in for the edition file you want the information for.

RESULTS
NOERROR - the pblock is filled in with the edition’s information.
INVPARAM - an invalid or NULL pblock was passed.
NOPRIV - the currently logged in user does not have access to the

requested edition file.

BUGS
None.

1.15 hotlinks.library/SetInfo

NAME
SetInfo - will change the information for the publication to the new

information as specified in the setinfo call.

SYNOPSIS
Error = SetInfo(pblock)
d0 d0

int SetInfo(struct PubBlock *);

FUNCTION

hotlinks.hyper 12 / 19

This function will reset all fields in the hotlinks internal database
record for the edition file with the information from the pblock. All
the fields will be changed to the data specified in the pblock. To
change only a few fields, first make a call to the

GetInfo()
routine

to fill the pblock with all the current information. Then make your
changes and call SetInfo().

INPUTS
pblock - must be a valid pblock filled in with the new information.

RESULTS
INVPARAM - an invalid pblock was passed.

SEE ALSO

GetInfo()
BUGS

None.

1.16 hotlinks.library/LockPub

NAME
LockPub - locks an edition file for read or write access.

SYNOPSIS
Error = LockPub(pblock, flags)
d0 d0 d1

int LockPub(struct PubBlock *, int);

FUNCTION
This function will allow you to lock other applications out from being
able to modify the edition file until you unlock it.

This is a ’soft’ lock in that it is only in effect while the hotlinks
resident code is active. If the computer is turned off, all locks
are lost.

INPUTS
pblock - must be a valid PubBLock.
flags -

LOCK_RELEASE - will release the previously held lock.
LOCK_READ - locks the edition file for reading. This is not an

exclusive lock. So other applications can also gain read
access to this file.

LOCK_WRITE - locks the edition file for writing. This is an
exclusive lock. No other application can get a lock on the
edition file until the lock is released.

RESULTS
NOERROR - got the lock with no problems.
INVPARAM - a invalid parameter was passed to the function.

hotlinks.hyper 13 / 19

INUSE - the edition file is locked by some one else.
NOPRIV - the currently logged in user does not have access to the

edition file asked for.
CHANGED - ?

BUGS
None.

1.17 hotlinks.library/OpenPub

NAME
OpenPub - opens a publication file for reading/writing.

SYNOPSIS
Error = OpenPub(pblock, flags)
d0 d0 d1

int OpenPub(struct PubBlock *, int);

FUNCTION
Opens the edition file for read or write. No one else may read/write
while the edition file is opened for writing. If opened for write,
the version number is incremented and modified date and time are set.

INPUTS
pblock - must point to a valid PubBlock.

If pblock->PRec.ID[0] and [1] are 0, this means that a new edition
file should be created. Call with the following parameters in
PubBlock filled in:
Type, Access, Name, Desc, Creator.

flags -
OPEN_READ - opens the edition file for reading.
OPEN_WRITE - opens the edition file for writing.

RESULTS
NOERROR - the pblock is filled in with the latest information
NOMEMORY - not enough memory to carry out the open.
INVPARAM - either the pblock was NULL or had invalid information in it,

or the flags were incorrect.
IOERROR - the dos.library Open() called failed.
INUSE - the edition file is currently in use by another application.

BUGS
None.

1.18 hotlinks.library/ReadPub

NAME
ReadPub - reads data from an edition file into a buffer.

SYNOPSIS
numbytes = ReadPub(pblock, buffer, len)

hotlinks.hyper 14 / 19

d0 d0 d1 d2

int ReadPub(struct PubBlock *, char *, int);

FUNCTION
This will read len bytes into buff from the edition file pointed to
by the pblock.

INPUTS
pblock - must be a valid pblock previously opened via

OpenPub()
.

buffer - a pointer to a buffer at least len bytes in size.
len - the number of bytes to read into buffer.

RESULTS
numbytes - the actual number of bytes read.
NOPRIV - the currently logged in user does not have access to the

specified edition file.
IOERROR - the dos.library Read() call failed.

SEE ALSO

OpenPub()
,
WritePub()
,
SeekPub()
,
ClosePub()

BUGS
None.

1.19 hotlinks.library/WritePub

NAME
WritePub - writes data to an edition file from a buffer.

SYNOPSIS
error = WritePub(pblock, buffer, len)
d0 d0 d1 d2

int WritePub(struct PubBlock *, char *, int);

FUNCTION
This will read len bytes into buff from the edition specified by
pblock.

INPUTS
pblock - a valid pblock previously opened via

OpenPub()
.

buffer - a pointer to a buffer at least len bytes long from which
data will be written to the edition file.

hotlinks.hyper 15 / 19

len - the number of bytes to write to the edition file from buffer.

RESULTS
NOERROR - no problems occurred while writing.
NOPRIV - the currently logged in user does not have access to the

requested edition file.
INVPARAM - there was a problem with one of the arguments.
IOERROR - the dos.library Write() failed or fewer bytes than requested

were written to the edition.
CHANGED - ?

SEE ALSO

OpenPub()
,
ReadPub()
,
SeekPub()
,
ClosePub()

BUGS
None.

1.20 hotlinks.library/SeekPub

NAME
SeekPub - Sets the current read/write position in the file.

SYNOPSIS
position = SeekPub(pblock, offset, flags)

d0 d0 d1 d2

int SeekPub(struct PubBlock *, int, int);

FUNCTION
Sets the current read/write position in the file. Will return the
new position in the file relative to the beginning.

INPUTS
pblock - must be a valid pblock, previously opened by

OpenPub()
.

offset - the number of bytes to move.
flags -

SEEK_BEGINNING - the offset is from the start of the file.
SEEK_CURRENT - the offset is from the current position.
SEEK_END - the offset is from the end of the file.

RESULTS
position - the new position in the file.

IOERROR - the dos.library Seek() call failed.
INVPARAM - one of the arguments was invalid.
NOPRIV - the currently logged in user does not have access to the

hotlinks.hyper 16 / 19

requested edition file.

SEE ALSO

OpenPub()
,
ReadPub()
,
WritePub()
,
ClosePub()

BUGS
None.

1.21 hotlinks.library/ClosePub

NAME
ClosePub - closes an edition file.

SYNOPSIS
error = ClosePub(pblock)
d0 d0

int ClosePub(struct PubBlock *);

FUNCTION
This will close the edition file that was opened via

OpenPub()
.

INPUTS
pblock - must be a valid pblock previously opened via

OpenPub()
.

RESULTS
NOERROR - the edition file closed without any problems.
NOPRIV - the currently logged in user does not have access to the

requested edition file.
IOERROR - the dos.library Close() call failed.

SEE ALSO

OpenPub()
,
ReadPub()
,
WritePub()
,
SeekPub()

BUGS
None.

hotlinks.hyper 17 / 19

1.22 hotlinks.library/GetPub

NAME
GetPub - presents an edition requester (much like a file requester).

SYNOPSIS
error = GetPub(pblock, filterproc)
d0 d0 d1

int GetPub(struct PubBlock *, int (*)());

FUNCTION
Presents the user with an edition requester. This functions much like
a file requester except it only shows hotlinks edition files.

The requester will be opened on the screen specified in the

HLRegister()
call.

Only the editions available to the currently logged in user will be
shown in the requester.

INPUTS
pblock - must be a valid pblock.
filterproc - a pointer to a procedure that returns an integer in d0.

The filterproc is called with a pointer to a PubBlock in a0. This
allows the calling application to display only the editions in the
edition requester it wants to. It can decide if the edition should
be displayed by examining the PubBlock (passed in a0) and returning
ACCEPT or NOACCEPT in d0. This is useful if the application only
handles one type of edition file (ILBM, DTXT, etc.). If this
argument is NULL, then all editions will be shown.

RESULTS
on return - the pblock is filled in with the information for the

edition the user selected.

NOERROR - the data in the pblock is valid for the selected edition.

SEE ALSO

PutPub()
BUGS

None.

1.23 hotlinks.library/PutPub

NAME
PutPub - presents a requester for a new edition file.

SYNOPSIS
Error = PutPub(pblock, filterproc)

hotlinks.hyper 18 / 19

d0 d0 d1

int PutPub(struct PubBlock *, int (*)());

FUNCTION
This presents the user with a new edition requester and allows
them to edit the name, description, and access code.

The requester will be opened on the screen specified in the

HLRegister()
call.

Note that this does not create the edition file, the application must
still call

OpenPub()
with the ID set to 0 for the edition to be

created.

INPUTS
pblock - must be a valid pblock returned by

AllocPBlock()
. The

pblock->PRec.Name, pblock->PRec.Description, and
pblock->PRec.Access will be shown to the user when the requester
opens. This is used for the application to give some default
values.

filterproc - This argument is not utilized at this time and may be
set to NULL.

RESULTS
NOERROR - no problem.
NOMEMORY - not enough memory to open the requester.
IOERROR - ?

SEE ALSO

GetPub()
,
OpenPub()

BUGS
None.

1.24 hotlinks.library/PubInfo

NAME
PubInfo - presents a requester with the information for the edition

and allows the user to make changes.

SYNOPSIS
error = PubInfo(pblock)
d0 d0

int PubInfo(struct PubBlock *);

hotlinks.hyper 19 / 19

FUNCTION
Presents the user with the new publication requester with the fields
filled out and allows the user to make changes and save them to the
edition file.

INPUTS
pblock - must be a valid pblock.

RESULTS
NOERROR - the new information is saved to the edition file and changed

in the pblock.

BUGS
None.

1.25 hotlinks.library/NewPassword

NAME
NewPassword - presents the new password requester.

SYNOPSIS
error = NewPassword(handle);
d0 d0

int NewPassword(ULONG);

FUNCTION
Presents the user with a requester that allows them to change
passwords interactively.

The requester will be opened on the screen specified in the

HLRegister()
call.

INPUTS
handle - must be a valid handle as returned by

HLRegister()
.

RESULTS
NOERROR - the new password has been successfully saved to the

password file.

SEE ALSO

ChgPassword()
BUGS

None.

	hotlinks.hyper
	hotlinks.doc
	hotlinks.library/HLSysinfo
	hotlinks.library/HLRegister
	hotlinks.library/UnRegister
	hotlinks.library/AllocPBlock
	hotlinks.library/FreePBlock
	hotlinks.library/SetUser
	hotlinks.library/ChgPassword
	hotlinks.library/FirstPub
	hotlinks.library/NextPub
	hotlinks.library/RemovePub
	hotlinks.library/Notify
	hotlinks.library/PubStatus
	hotlinks.library/GetInfo
	hotlinks.library/SetInfo
	hotlinks.library/LockPub
	hotlinks.library/OpenPub
	hotlinks.library/ReadPub
	hotlinks.library/WritePub
	hotlinks.library/SeekPub
	hotlinks.library/ClosePub
	hotlinks.library/GetPub
	hotlinks.library/PutPub
	hotlinks.library/PubInfo
	hotlinks.library/NewPassword

