
Concurrent Programming with Events

—

The Concurrent ML Manual
(Version 0.9.8)

February 1, 1993

John H. Reppy

AT&T Bell Laboratories

600 Mountain Ave.

Murray Hill, NJ 07974



COPYRIGHT c
 1990,1991,1992 by John H. Reppy

COPYRIGHT c
 1993 by AT&T Bell Laboratories

ALL RIGHTS RESERVED



Contents

License and disclaimer iii

Preface 1

1 A CML tutorial 3

1.1 Getting started : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

1.2 Basic concurrency primitives : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

1.3 Running a CML program : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

1.4 Streams : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

1.5 First-class synchronous operations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

1.6 More synchronous operations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

1.7 Building new synchronous abstractions : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

1.8 Client-server protocols : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

2 Basic concurrency primitives 20

2.1 Threads : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

2.2 Channels : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

3 Events 22

3.1 Simple events : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

3.2 Wrappers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

3.3 Selective communication : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

3.4 Advanced event programming : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24

3.5 Polling and timeouts : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

4 Condition variables 27

5 Multi-threaded I/O 29

5.1 Stream I/O : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

5.2 Low-level I/O : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30

i



6 Initialization and termination 31

6.1 Servers and top-level channels : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31

6.2 Starting and stopping a CML program : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

7 Debugging CML programs 34

7.1 Debugging hints : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34

7.2 Trace modules : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34

7.3 Thread watching : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

7.4 Uncaught exceptions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

8 Administrative details 38

8.1 How to get the release : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38

8.2 Installing CML : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

8.3 Release history : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

8.4 Bug reports : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 40

A The top-level environment 43

A.1 CML : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43

A.2 RunCml : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 45

A.3 CIO : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 45

A.4 TraceCML : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46

B The CML Library 48

B.1 Plumbing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48

B.2 Buffered channels : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 49

B.3 Futures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50

B.4 Cobegin : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50

B.5 Safe callcc : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51

C Source files for examples 52

ii



License and disclaimer

This distribution is provided free of charge, under the following “X-windows style” copyright:

Copyright c
 1990,1991,1992 by John H. Reppy

All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any

purpose and without fee is hereby granted, provided that the above copyright notice appear in

all copies and that both the copyright notice and this permission notice and warranty disclaimer

appear in supporting documentation,and that the name of John H. Reppy not be used in advertising

or publicity pertaining to distribution of the software without specific, written prior permission.

John H. Reppy makes no representations about the suitability of this software for any purpose. It

is provided "as is" without express or implied warranty.

John H. Reppy disclaims all warranties with regard to this software, including all implied

warranties of merchantability and fitness In no event shall John H. Reppy be liable for any

special, indirect or consequential damages or any damages whatsoever resulting from loss

of use, data or profits, whether in an action of contract, negligence or other tortious action,

arising out of or in connection with the use or performance of this software.

Portions of this software may also be under the SML/NJ copyright:

Copyright c
 1993 by AT&T Bell Laboratories

Permission to use, copy, modify, and distribute this software and its documentation for any

purpose and without fee is hereby granted, provided that the above copyright notice appear in

all copies and that both the copyright notice and this permission notice and warranty disclaimer

appear in supporting documentation, and that the name of AT&T Bell Laboratories or any AT&T

entity not be used in advertising or publicity pertaining to distribution of the software without

specific, written prior permission.

AT&T disclaims all warranties with regard to this software, including all implied warranties

of merchantability and fitness. In no event shall AT&T be liable for any special, indirect or

consequential damages or any damages whatsoever resulting from loss of use, data or profits,

whether in an action of contract, negligence or other tortiousaction, arising out of or in connection
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Preface

Concurrent ML (CML) is a system for concurrent programming in Standard ML (SML)[MTH90]. A CML

program consists of a set of threads (or light-weight processes). A thread is the sequential evaluation of

a ML expression. It does not have to be a terminating computation; in fact, infinitely looping threads are

often useful. The evaluation of a thread may involve communication with other threads, which is done by

sending a message on a channel. Message passing is synchronous and forms the basis of communication and

synchronization in CML. This model is extended by first-class synchronous operations[Rep88], which provide

a mechanism for building new synchronization and communication abstractions.

CML is implemented on top of Standard ML of New Jersey (SML/NJ). We use SML/NJ’s first-class

continuations[DHM91] to implement threads and its asynchronous signal mechanism[Rep90] to implement pre-

emptive thread scheduling. The implementation is derived from the one described in [Rep89].

In addition to this manual, the distribution also contains an overview paper, which is a revised version of

[Rep91a], and a description of the formal semantics of the CML concurrency primitives, which is a revised

version of [Rep91b]. The author’s disseratation [Rep92] provides further details about CML.

We would like to hear from you. If you ftp a copy of the distribution, then please send us mail; we will

use this information for sending bug fixes between releases. If you have any comments, suggestion or bug

reports, then please send them to us at:

sml-bugs@research.att.com

1

or surface mail to:

John H. Reppy

Rm. 2A-428

AT&T Bell Laboratories

600 Mountain Ave.

Murray Hill, NJ 07974

How to read this manual

This manual attempts to satisfy many needs: tutorial, user’s guide and reference manual, as well as release

notes. For a tutorial introduction to CML, you should read Chapter 1. Source code for many of the examples

is included in the distribution; Appendix C gives a mapping from examples to source files. Chapters 2–5

1The old address of cml-bugs@cs.cornell.edu should still work.
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are a more complete and systematic presentation of CML. The information in Chapter 6 is important for the

development and construction of systems based on CML. Some hints on debuggin CML programs and a

description of the debugging support provided is given in Chapter 7. Installation and licensing information

can be found in Chapter 8. Appendix A contains the complete signatures of the CML system; Appendix B

gives the signatures of the library modules. Lastly, Appendix C gives list of the source files in the distribution

corresponding to the examples.
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Chapter 1

A CML tutorial

This chapter provides information on how to load and run the system, and a tutorial introduction to the

concurrency features and common programming techniques of CML. We assume familiarity with SML (and

SML/NJ), which provides the sequential core of CML. See [Pau91] or [Har86] for an introduction to SML.

1.1 Getting started

If CML has not been installed on your local system, you will need to load it.1 To do so, change to the root

directory of the CML installation; there you will find a file load-cml. Start up SML/NJ, and load this file:

% sml

Standard ML of New Jersey, Version 0.93, February 1, 1993

val it = () : unit

- use "load-cml";

[opening load-cml]

val loadCML = fn : unit -> unit

val loadAll = fn : unit -> unit

[closing load-cml]

val it = () : unit

-

Applying the function loadCML will load the various pieces of CML; the function loadAll will load CML

plus the various library modules (see Appendix B). Loading the system defines a number of top-level

structures; in this chapter we will be concerned just with the structures CML and RunCML. The full signatures

of these structures and of the other top-level structures can be found in Appendix A. Note that loading the

system does not open these structures. Because the use function does not yet support relative paths, you need

to be in the CML root directory for loadCML to work. Once you have loaded the system, you can change to

your own personal source directory using the function System.Directory.cd.

1See section 8.2 for information on installing a pre-loaded version of CML.
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1.2 Basic concurrency primitives

Once you have CML loaded, the first thing you need to know is how to make an ML program multi-threaded;

i.e., how to create new threads. This is easily done using the following function

val spawn : (unit -> unit) -> thread_id

Applying spawn to a function f causes a new thread to be created, which evaluates the application of f to

(). The newly created thread is called the child, and its creator is the parent. The return value of spawn is a

thread id that uniquely identifies the child thread. The child thread will run until the evaluation of the function

application is complete, at which time it terminates. A thread can also terminate itself by calling the function

val exit : unit -> 'a

which never returns (hence the 'a return type). Another cause of thread termination is an uncaught exception

(see Section 7.4).

Since CML runs on a single processor in the address space of a single UNIX process, threads must share

the CPU. CML uses preemptive scheduling, so we don’t need to be concerned with insuring that threads are

scheduled to run.2

Once we have multiple threads, we need a way for our threads to cooperate: i.e., a way to communicate

and synchronize. There are a number of different language mechanisms for providing this. CML uses

first-class synchronous operations[Rep88] for synchronization and communication. This mechanism is based

on synchronous message passing via typed channels. Channels are dynamically created by the function

val channel : unit -> '1a chan

The result type is weakly polymorphic in order to avoid type loop-holes that can be introduced by polymorphic

state.3 Two operations are provided for channel communication:

val accept : 'a chan -> 'a

val send : ('a chan * 'a) -> unit

When a thread executes a send or accept on a channel, we say that it is offering communication. The

thread will block until some other thread offers a matching communication (i.e., the complementary operation

on the same channel). When two threads offer matching communications, they exchange the message and

both threads continue execution. This is also called rendezvous style communication, since two threads must

rendezvous to exchange data.

Example 1.1

This simple example consists of a root thread that creates a channel ch and then spawns two children, which

use ch to communicate once. All three threads print a message at their beginning and end. Note that the

function CIO.print is used to print the messages; the structure CIO provides an implementation of I/O

operations that can be safely used in a CML program (see section 5.1).

2This is in contrast with coroutine based implementations, where the issue of scheduling rears its ugly head.
3This is one of the places in which SML/NJ varies from the definition ([MTH90]). The imperative types of the definition are more

restrictive then the weak types of SML/NJ.
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fun simple_comm () = let

val ch = channel()

val pr = CIO.print

in

pr "hi-0\n";

spawn (fn () => (pr "hi-1\n"; send(ch, 17); pr "bye-1\n"));

spawn (fn () => (pr "hi-2\n"; accept ch; pr "bye-2\n"));

pr "bye-0\n"

end

An outside observer of this program’s execution will see the messages “hi-0,” “hi-1,” ..., “bye-2,” printed

in some order. The possible orders are characterized by the following graph:

hi-1 hi-2

bye-1 bye-2

hi-0

bye-0

The solid edges are induced by the order of sequential execution, the dashed edges by spawn, and the

dotted edges by the rendezvous. Even though this program does not involve non-deterministic choice

(i.e., from selective communication), it exhibits indeterminacy because of the independence of the threads.

Indeterminate behavior is both the bane and boon of concurrent programming. It limits our ability to predict

program behavior, but provides flexibility in scheduling independent tasks.

1.3 Running a CML program

CML is currently designed to be used in “batch” mode: you enter a program in the single-threaded top-level

environment, and then you run it. Threads should only be spawned inside other functions (never at top-level).

To run a CML program you use the function

val doit : ((unit -> unit) * int option) -> unit

from the structure RunCML. The first argument is your root thread, which is a function that creates the other

threads of your program. The second argument specifies the size of the scheduling time-slice in milliseconds.

If NONE is supplied as the time-slice value, then preemptive scheduling is disabled, but, since various system

services depend on preemption to work correctly, it is not recommended.

Example 1.2

For example, let us look at the steps required to run the program given in Example 1.1. Assume that we are

in the root directory of the CML distribution and are running CML. Then we can load and run the example

as follows:

5



- open CML;

open CML

- use "examples/ex-simple-comm.sml";

[opening examples/ex-simple-comm.sml]

val simple_comm = fn : unit -> unit

[closing examples/ex-simple-comm.sml]

val it = () : unit

- RunCML.doit(simple_comm, SOME 20);

hi-0

hi-1

hi-2

bye-0

bye-2

bye-1

val it = () : unit

-

In this example, we first open the CML structure to provide the right environment for compiling the example;

then we load the example file and run it. The “SOME 20” argument to doit specifies a time-slice of 20

milli-seconds.

Termination in concurrent programs is a more involved process than in sequential programs. A CML

program will terminate if it deadlocks, i.e., all of its threads are blocked (threads waiting for input or timeouts

are not considered blocked). In the case of Example 1.2, all of the user threads terminate and the system

threads are all blocked, so the whole system terminates. In general, it is necessary to terminate under software

control, since it is often the case that a program has some threads that will always have the potential of running

(e.g., monitoring an input stream). The function RunCML.shutdown forces a clean shutdown of the system.

The are a number of issues related to the initialization and clean termination of CML programs that we have

not discussed here. See Chapter 6 for details.

It is also possible to kill a CML program by hitting the break key (e.g. control-C), which should return

control to the SML top loop.4 If, for some reason, this does not terminate CML, you should use the UNIX

commands ps(1) and kill(1) to kill the program.

1.4 Streams

One use of processes and channels is for stream (or data-flow) style programming[ASS85]. Streams can be

viewed as infinite lists; for example

Nat = f(0) where f(n) = n � f(n + 1)

defines the stream (or list) of natural numbers (where “�” is lazy cons). This definition can be implemented

as follows:

fun makeNatStream () = let

val ch = channel()

fun f i = (send(ch, i); f(i+1))

in

spawn (fn () => f 0);

ch

end

4If the garbage collector is running, then termination is postponed until after it finishes.
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where the function f is represented by a thread, and the stream is represented by an integer valued channel.

This style of programming has been used to implement computations with power series in the language

newsqueak[McI90].

Example 1.3 (Sieve of Eratosthenes)

As an example of this style of programming, we will implement the Sieve of Eratosthenes for computing

prime numbers. To start with, we need the stream of natural numbers greater than one, which is provided by

the following generalization of the natural number stream:

fun counter start = let

val ch = channel()

fun count i = (send(ch, i); count(i+1))

in

spawn (fn () => count start);

ch

end

The function sieve produces a new stream of prime numbers, which is represented by a chain of threads

connected by channels:

fun sieve () = let

val primes = channel ()

fun filter (p, inCh) = let

val outCh = channel()

fun loop () = let val i = accept inCh

in

if ((i mod p) <> 0) then send (outCh, i) else ();

loop ()

end

in

spawn loop;

outCh

end

fun head ch = let val p = accept ch

in

send (primes, p);

head (filter (p, ch))

end

in

spawn (fn () => head (counter 2));

primes

end

Looking at the implementation of sieve, we see that the chain of threads starts with the counter thread and

ends with the head thread. There is one filter thread in the chain for each prime number discovered so far;

the head thread creates new filters as new primes are found. The function primes prints the first n prime

numbers.
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fun primes n = let

val ch = sieve ()

fun loop 0 = ()

| loop i = (CIO.print(makestring(accept ch)^"\n"); loop(i-1))

in

loop n

end

The following picture shows the state of the sieve at each iteration of evaluating primes 4:
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The counter thread is represented as a square labeled by the current counter value. The filters are circles

labeled by their prime number, and the head is represented by a diamond labeled with the next prime. The

numbers labeling the arrows between the threads are the values that the threads on the left are offering the

threads on the right.

Note that in this example there is no mechanism for capturing an intermediate value or state of the stream

(the way one can do with a lazy infinite list).

1.5 First-class synchronous operations

Thread creation and message passing provide a base for concurrent programming, but we need more to write

real applications. It is necessary for threads to be able to manage communication with multiple partners.

One common way to provide this ability is the select operation, which allows a thread to offer multiple

communications. The first communication that is matched is selected. If more than one communication is

matched, then a non-deterministic choice is made. CML provides the select mechanism as part of the more

general mechanism of first-class synchronous operations.

The basic idea is to treat synchronous operations, such as channel I/O, as values. These values may then

be combined with other values to form new synchronization and communication abstractions. We start with

a new type constructor

type 'a event

If a synchronous operation has the type � ! �

0, then the event-valued version will have the type � !

�

0

event. For example, the basic channel I/O operations are built by:

val receive : 'a chan -> 'a event

val transmit : ('a chan * 'a) -> unit event

To synchronize on an event value, we have the function

8



val sync : 'a event -> 'a

We can draw an analogy with first-class function values in which the event type constructor plays the role of

-> and sync plays the role of function application. Returning to the channel I/O operations, we can redefine

them in terms of events as:

val accept = sync o receive

val send = sync o transmit

From these base event values we can build new values by wrapping them with post-synchronization

actions. For example, we can define a string valued interface to a boolean valued channel, ch, by

wrap (

receive ch,

fn true => "yes" | false => "no")

Synchronizing on this value will read a value from ch and map it to either "yes" or "no". As one might

expect, the wrap function has the type

val wrap : ('a event * ('a -> 'b)) -> 'b event

A wrapper function may also contain synchronous operations. For example, a very common paradigm in

concurrent programs is a request/result exchange (or remote procedure call (RPC)) with a server thread. The

client side of this exchange can be wrapped up into a single synchronous event:

wrap(transmit reqCh, fn () => accept resCh)

where reqCh and resCh are the request and result channels, respectively (section 1.8 discusses these kinds

of protocols in greater detail).

The primitives that we have examined so far are sufficient for a small example of buildingnew abstractions.

Example 1.4 (Futures)

A Multi-lisp future is the parallel evaluation of an expression[Hal85]. The result is acquired by touching the

future; the touching thread may have to wait for the future computation to complete. Since touching a future

is a synchronous operation, we will represent futures as events. The future operation has the type:

val future : ('a -> '2b) -> 'a -> '2b event

and sync is the touch operator. The implementation of future is straight-forward: we spawn a new thread

to evaluate the application and create a channel for reporting the result.

fun future f x = let

datatype 'a msg_t = RESULT of 'a | EXN of exn

val resCh = channel()

fun repeater x = (send(resCh, x); repeater x)

in

spawn (fn () => repeater(RESULT(f x) handle ex => EXN ex));

wrap (

receive resCh,

fn (RESULT x) => x | (EXN ex) => raise ex)

end

9



Since the evaluation of a future might result in a raised exception, the result channel (resCh) can carry either

the result, or an exception. A future value may be touched several times, so we use the tail-recursive function

repeater to repeatedly send the result (or exception) message on the result channel.5 This might seem to

pose a problem with resource reclamation, but if the future event value becomes garbage, then the garbage

collector will also reclaim the channel and thread. In general, any process that communicates infinitely often

will be garbage collected if it becomes disconnected from the rest of the system.6 This is an important

property, which we often exploit.

The event-value produced by the future abstraction may cause an exception to be raised when a thread

synchronizes on it. We can hide this behavior by wrapping an exception handler around the event:

(* myFuture : ('a -> '2b) -> 'a -> '2b option event *)

fun myFuture f x = wrapHandler (

wrap (future f x, SOME),

fn _ => NONE)

This new operation will return NONE in the situation where an exception was raised. The wrapHandler

function has the type

val wrapHandler : 'a event * (exn -> 'a) -> 'a event

If synchronizing on the first argument raises an exception, then the exception will be caught and passed to the

second argument.

The future abstraction in Example 1.4 has the same status as the built-in abstractions, since it has an

event-valued interface. The synchronous character of the abstraction has not been hidden (although the

details of the implementation have been). For the primitives we have seen so far, we could have used function

abstraction, instead of events, to produce the same results. But with selective communication, we need to

have the synchronous character of our abstractions exposed – function abstraction hides too much.

CML provides selective communication via the choose combinator, which builds an event value that is

the “non-deterministic or” of a homogeneously typed list of event values. As expected, choose has the type

val choose : 'a event list -> 'a event

As we saw in Example 1.1, there is non-determinism in the order in which parallel actions occur; with choose

there is also non-determinism in which actions occur.

Example 1.5

To make this concrete, consider the following variation on Example 1.1:

5A better way to do this is to use a write-once condition variable (see Chapter 4).
6There are a couple of technical exceptions to this, but they tend not to arise in practice.
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fun simple_comm2 () = let

val ch1 = channel() and ch2 = channel()

val pr = CIO.print

in

pr "hi-0\n";

spawn (fn () => (pr "hi-1\n"; send(ch1, 17); pr "bye-1\n"));

spawn (fn () => (pr "hi-2\n"; send(ch2, 37); pr "bye-2\n"));

sync (choose [

wrap (receive ch1, fn _ => pr "bye-0.1\n"),

wrap (receive ch2, fn _ => pr "bye-0.2\n")

])

end

The observational behavior of this program fits one of two graphs, depending on the non-deterministic choice

made by the parent thread:

hi-0

hi-1 hi-2

bye-1 bye-0.1

hi-0

hi-1 hi-2

bye-0.2 bye-2

This example also illustrates a very common CML idiom: that of synchronizing on a choice of events. To

support this form, CML provides the select operation for synchronizing on a list of event values. It is a

derived form with the following definition:

val select = sync o choose

1.6 More synchronous operations

In addition to channel communication, the event framework supports other synchronous conditions in a natural

way. A thread can synchronize on another threads termination using the function:

val threadWait : thread_id -> unit event

This mechanism is useful for when a server needs to handle the case of premature termination by one of its

clients.

Example 1.6

The threadWait event can be used by servers that need to be notified of the termination of a client. For

example, consider a token server with the following interface:
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signature TOKEN_SERVER =

sig

structure CML : CONCUR_ML

type ('a, 'b) token

val newToken : ('a -> 'b) -> ('a, 'b) token

exception NotTokenHolder

val getOperation : ('a, 'b) token -> ('a -> 'b)

val releaseToken : ('a, 'b) token -> unit

val acquireToken : ('a, 'b) token -> unit CML.event

end (* TOKEN_SERVER *)

This server implements a facility for controlling access to an operation. Associated with the operation is a

token. While multiple threads may have access to the token value, only one thread actually possesses it at any

given time, and only the possessor may do the operation. The function newToken produces a new token for

controlling access to a given operation. Given a token, the function getOperation extracts the associated

operation. If an attempt to use this operation is made by a thread other than the current token holder, then

the exception NotTokenHolder will be raised. The functions acquireToken and releaseToken are used

to change token holders. Note that a thread can synchronize on receiving possession of the token. Figure 1.1

contains the implementation of this server. The token server can be in one of two states: either the token is

currently held by some thread (heldLoop) or the token is available (availLoop). If the current token holder

terminates, it is necessary for the token server to reclaim the token. The threadWait event in heldLoop

provides notification of this situation.

Another kind of synchronous operation is synchronizing on the clock. CML supports this with the

function

datatype time = TIME of sec : int, usec : int

val timeout : time -> unit event

which produces a value for synchronizing on a real-time delay. This could be used by the above token server,

for example, to reclaim the token after a fixed period during which the token is unused by the possessor.

CML also supports I/O operations as synchronous operations. For example, the event valued function

CIO.inputLineEvt allows a thread to synchronize on the availability of a line of input from a stream.

Chapter 5 describes CML’s I/O support in greater detail.

1.7 Building new synchronous abstractions

The key motivation for events is to provide a mechanism for the user to build new synchronous abstractions.

In this section we describe the implementation of a couple of non-trivial abstractions, which have found use

in real applications.

Example 1.7 (Buffered channels)

Some concurrent languages, such as actor languages[Agh86], use asynchronous message passing for process

communication. One way to support this is by implementing buffered channels. We need operations to

create new channels and to send and receive messages. Since the channels are buffered, the send operation

is asynchronous. The receive operation is synchronous, so we provide an event-valued interface to it. The

following signature defines the interface:

12



structure TokenServer : TOKEN_SERVER =

struct

structure CML = CML

open CML

datatype ('a, 'b) token = TOKEN of {

operation : 'a -> 'b, (* the protected operation *)

acquire_ch : thread_id chan, (* the channel for requesting the token *)

check : unit -> unit, (* check for token possession *)

release : unit -> unit (* release the token *)

}

exception NotTokenHolder

fun newToken operFn = let

val acqCh = channel() and relCh = channel() and holdCh = channel()

fun server () = let

val acquireEvt = receive acqCh

val releaseEvt = receive relCh

val myId = getTid()

fun heldLoop curHolder = select [

wrap (choose [releaseEvt, threadWait curHolder],

fn () => availLoop ()),

wrap (transmit(holdCh, curHolder),

fn () => heldLoop curHolder)

]

and availLoop () = select [

wrap (acquireEvt, fn id => heldLoop id),

wrap (transmit(holdCh, myId), fn () => availLoop())

]

in

availLoop ()

end

fun checkFn () = if sameThread(getTid(), accept holdCh)

then () else raise NotTokenHolder

in

spawn server;

TOKEN{

operation = fn x => (checkFn(); operFn x),

acquire_ch = acqCh,

check = checkFn,

release = fn () => send(relCh, ())

}

end

fun getOperation (TOKEN{check, operation, ...}) = (check(); operation)

fun releaseToken (TOKEN{check, release, ...}) = (check(); release())

fun acquireToken (TOKEN{acquire_ch, ...}) = transmit(acquire_ch, getTid())

end (* TokenServer *)

Figure 1.1: Token server implementation
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signature BUFFER_CHAN =

sig

structure CML : CONCUR_ML

type 'a buffer_chan

val buffer : unit -> '1a buffer_chan

val bufferSend : ('a buffer_chan * 'a) -> unit

val bufferAccept : 'a buffer_chan -> 'a

val bufferReceive : 'a buffer_chan -> 'a CML.event

end (* BUFFER_CHAN *)

To implement the buffer queue, we use an infinitely looping thread. This thread maintains the queue as a

pair of stacks (implemented as lists). When the buffer is empty, then the buffer thread only accepts input;

when there is stuff in the buffer, then it also offers the front of the queue as output. The following functor

implements this scheme:

functor BufferChan (CML : CONCUR_ML) : BUFFER_CHAN =

struct

structure CML = CML

open CML

datatype 'a buffer_chan = BC of {inch : 'a chan, outch : 'a chan}

fun buffer () = let

val inCh = channel() and outCh = channel()

fun loop ([], []) = loop([accept inCh], [])

| loop (front as (x::r), rear) = select [

wrap (receive inCh, fn y => loop(front, y::rear)),

wrap (transmit(outCh, x), fn () => loop(r, rear))

]

| loop ([], rear) = loop(List.rev rear, [])

in

spawn (fn () => loop([], []));

BC{inch=inCh, outch=outCh}

end

fun bufferSend (BC{inch, ...}, x) = send(inch, x)

fun bufferAccept (BC{outch, ...}) = accept outch

fun bufferReceive (BC{outch, ...}) = receive outch

end (* functor BufferChan *)

Asynchronous communication can also be implemented by spawning a new thread to send the message:

fun asyncSend (ch, msg) = (spawn (fn () => send (ch, msg)); ())

This essentially uses the new thread as a cell in the buffer queue. This technique is most often used for

“single-shot” communications, since the order of messages may not be preserved. When using either of these

techniques, it is important to avoid situations in which messages are produced much more rapidly than they

are consumed. If such a discrepancy occurs for a sustained period, substantial memory resources will be

consumed by the buffers, which will degrade performance.

Example 1.8 (Multicast)
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Another useful example is the implementation of buffered multicast channels, which build on the buffered

channels by providing fan-out. A multicast channel has a number of output ports. When a thread sends a

message on a multicast channel, it is replicated once for each output port. In addition to the standard channel

operations (create, send and accept), we need an operation to create new ports. The following signature gives

the multicast interface:

signature MULTICAST =

sig

structure CML : CONCUR_ML

type 'a mchan

val mChannel : unit -> '1a mchan

val newPort : 'a mchan -> 'a CML.event

val multicast : ('a mchan * 'a) -> unit

end (* MULTICAST *)

New multicast channels are created usingmChanneland new ports using newPort. Themulticastoperation

asynchronously broadcasts a message to the ports of a multicast channel. A port is represented by an event

value; synchronizing on a port event will return the next multicast message.

A multicast channel consists of a server thread, which initiates the broadcast and creates new ports and a

chain of ports. Each port consists of a buffer and a “tee” thread that inserts the incoming message in the buffer

and propagates it to the next port. The port buffer is implemented using the library version of the buffered

channels from Example 1.7 (see appendix section B.2). The following picture gives a schematic view of a

multicast channel with four ports:

Multicast server

multicast

newPort

B
u
ffer

Port

B
u
ffer

Port

B
u
ffer

Port

B
u
ffer

Port

The source code for the Multicast structure is given in figure 1.2. All of the interesting stuff is in the

function mChannel, which spawns a new server thread. A multicast channel value is a request/reply channel

pair, which provides an interface to the server thread. A request is either a message to be broadcast, or a

request for a new port. The interface between the server thread and the first port in the chain and the interface

between a tee thread and the next port is an output function. The output function at the end of the chain is a

sink.
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1.8 Client-server protocols

The client-server paradigm is a very important model for structuring CML programs. Servers provide a

mechanism for mediating access to shared state (the token server in Example 1.6 is one example of this). In

general, clients communicate with the server using a request-reply protocol (also called a a remote procedure

call (RPC), although the server and client are in the same name space). One way to implement such a protocol

was presented on page 9, where transmit was used to send the request and a wrapper was used to wait for

the reply. This approach uses the server’s willingness to accept a request as the event to synchronize on, but,

for some services, we need to synchronize on the reply. Thus we need a way to include communications to be

done prior to the synchronization point of an event value (the dual of wrap, which includes communications

after the synchronization point).

The guard combinator provides this mechanism. It is essentially a “delay” operator, which wraps a

event-valued function (or thunk) as an event value. The sync operator plays the role of force, evaluating the

guard prior to synchronizing on the resulting event value. It has the type:

val guard : (unit -> 'a event) -> 'a event

The guard operation allows the abstract implementation of a protocol in which the client first sends a request

to the server.

Example 1.9 (Clock server)

As an example, assume that we want to build a clock server to implement an event constructor

val waitUntil : time -> unit event

which returns an event for synchronizing on the specified time (in fact, waitUntil is provided by CML as

a built-in operation; see Chapter 3). The basic client-server protocol is for the client to send a request to the

clock server, which includes the wake-up time and a fresh reply channel; when the wake-up time arrives, the

server sends a message on the reply channel. The reply channel serves as a unique identifier for the client’s

request. The client-side code is:

fun waitUntil t = guard (fn () => let

val replyCh = channel()

in

spawn (fn () => send (timerReqCh, (t, replyCh)));

receive replyCh

end

where timerReqCh is a global channel for communicating with the timer server.7 The server is built using a

couple of functions provided by the SML/NJ structure System.Timer: earlier, for testing the order of two

times and sub_time, for computing the time difference between two times. We also assume the existence of

a function gettimeofday, for getting the current time of day (this mechanism exists in SML/NJ, but it is

not easily accessed). The clock server is implemented as:

7Using a top-level channel like timerReqCh introduces some initialization requirements; see Chapter 6 for details.
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fun server [] = server [accept timerReqCh]

| server (waitingList as ((nextTim, _)::rest)) = let

fun insert (x as (t, _), []) = [x]

| insert (x as (t, _), (y as (t', _))::r) =

if earlier(t, t') then x::y::r else y::(insert(x, r))

fun wakeup () = let

val now = gettimeofday()

fun wake [] = []

| wake (waitingList as ((t, replyCh)::r)) =

if earlier (now, t)

then waitingList

else (spawn (fn () => send (replyCh, ())); wake r)

in

wake waitingList

end

in

select [

wrap (timeout (sub_time (nextTim, gettimeofday())),

fn () => server (wakeup ())),

wrap (receive timerReqCh,

fn req => server (insert (req, waitingList)))

]

end

The server maintains an ordered list of pending wake-up requests. The function insert adds a request to the

list. When it has pending requests in its queue, it computes the delay to the next wake-up and uses timeout

to wait for it. The function wakeup removes those elements of the list that are ready for wake-up messages.

For each wake-up message a new thread is spawned to send it; this avoids problems in the case that the client

uses waitUntil as part of a choice and a different event is selected.

The clock server example has the property that the server is idempotent; i.e., that the handling of a given

request is independent of other requests. Thus, using a new thread to send a reply is sufficient to protect

the server against the situation in which the client selects another event in a selection. For some services,

however, this is not sufficient; the server needs to know whether to commit or abort the transaction. The

following combinator provides such a mechanism:

val wrapAbort : ('a event * (unit -> unit)) -> 'a event

It associates an abort action with an event. If the resulting event is involved in a selective synchronization and

another event is chosen, then a thread is spawned to evaluate the abort action.

Example 1.10 (Input line event)

For example, consider the implementation of a buffered input stream such as is provided by the CIO structure.

The abstraction should provide event valued operations for reading both single characters and complete lines

of input:

val inputCharEvt : instream -> string event

val inputLineEvt : instream -> string event

The basic protocol is that the client sends a request to the server, which then requests input from the operating

system. Once input is available, the server sends it to the client. The following code implements the client
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side of the inputLineEvt function.8

datatype input_req = INPUTLN of (string chan * unit chan) | � � �

fun inputLineEvt (INSTRMreq_ch, ...) = guard (fn () => let

val replyCh = channel () and abortCh = channel ()

in

spawn (fn () => send (req_ch, INPUTLN(replyCh, abortCh)));

wrapAbort (receive replyCh, fn () => send (abortCh, ()))

end)

The client’s request consists of the desired operation (INPUTLN), a reply channel and an abort channel. Note

that the request is sent asynchronously; this is done to avoid blocking the client in the case that the server

is busy. When the server has the input necessary to satisfy the request, it synchronizes on the choice of

receiving the abort notification or having its reply accepted. If the reply is accepted, then the server commits

the transaction (i.e., discards the input). On the other hand, if an abort message is received, then the server

aborts the transaction and buffers the input for the next request.

8The server side code is too involved to present here; the interested reader is referred to the source code of the CIO structure.
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functor Multicast (BC : BUFFER_CHAN) : MULTICAST =

struct

structure CML = BC.CML

open CML

datatype 'a mchan = MChan of ('a request chan * 'a event chan)

and 'a request = Message of 'a | NewPort

fun mChannel () = let

val reqCh = channel() and respCh = channel()

fun mkPort outFn = let

val buf = BC.buffer()

val inCh = channel()

fun tee () = let val m = accept inCh

in

BC.bufferSend(buf, m);

outFn m;

tee()

end

in

spawn tee;

(fn m => send(inCh, m), BC.bufferReceive buf)

end

fun server outFn = let

fun handleReq NewPort = let val (outFn', port) = mkPort outFn

in

send (respCh, port);

outFn'

end

| handleReq (Message m) = (outFn m; outFn)

in

server (sync (wrap (receive reqCh, handleReq)))

end

in

spawn (fn () => server (fn _ => ()));

MChan(reqCh, respCh)

end

fun newPort (MChan(reqCh, respCh)) = (send (reqCh, NewPort); accept respCh)

fun multicast (MChan(ch, _), m) = send (ch, Message m)

end (* Multicast *)

Figure 1.2: Multicast implementation
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Chapter 2

Basic concurrency primitives

CML is based on a distributed-memory model1 with synchronous message passing on typed channels. These

basic concurrency operations are defined in the structure CML and are described in this chapter. The next

chapter describes the rest of the CML structure, which extends the basic concurrency model with first-class

synchronous operations.

2.1 Threads

A CML program consists of a collection of threads running (logically at least) in parallel. Scheduling of

threads is preemptive, so threads should not share mutable data. The operations on threads are given in

figure 2.1. Threads are dynamically created by the spawn function, which returns the unique thread identifier

type thread_id

val spawn : (unit -> unit) -> thread_id

val exit : unit -> 'a

val getTid : unit -> thread_id

val sameThread : (thread_id * thread_id) -> bool

val tidLessThan : (thread_id * thread_id) -> bool

val tidToString : thread_id -> string

val yield : unit -> unit

Figure 2.1: Thread operations

(thread_id) of the new thread. Thread ids can be tested for equality using the sameThread function

(thread_id is not an equality type). Certain multi-thread protocols (e.g., [Bor86]) require some method

to avoid cyclic dependencies that can lead to deadlock. For this reason, an abstract ordering is defined on

thread_id values; the function tidLessThan tests this order. A string representation of a thread id can

be created using tidToString. A thread can choose to relinquish the CPU by calling the yield function,

which forces a context switch, but, since scheduling is preemptive, this should rarely be needed.2 A thread id

can also be used to implement a process join using the threadWait function described in the next chapter.

1Note, however, that the implementation is a shared-memory model.
2The yield function may go away in a future release.
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2.2 Channels

Synchronous communication of typed channels is the basis of CML’s communication and synchronization

mechanism. Figure 2.2 gives the basic operations on channels. New channels are dynamically created using

type 'a chan

val channel : unit -> '1a channel

val sameChannel : ('a chan * 'a chan) -> bool

val accept : 'a chan -> 'a

val send : ('a chan * 'a) -> unit

Figure 2.2: Channel operations

the channel function, which is a weakly polymorphic function (like the ref constructor). Two channels can

be tested to see if they are the same channel using the predicate sameChannel. A thread can read a message

from a channel using the accept function, and send one using send. Message passing is synchronous, so

when a thread sends a message on a channel, it must wait until another thread is ready to accept a message

from that channel.
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Chapter 3

Events

CML extends the basic synchronous message passing of the previous chapter by making synchronous

operations first-class values[Rep88]. These values, called events, are representations of synchronous operations

(much the same way that function values represent computations). There are various functions for creating the

basic event values, as well as combinators for producing more complex values. Figure 3.1 gives the signature

of the event operations defined in the CML structure. The rest of this chapter will discuss these operations.

val sync : 'a event -> 'a

val select : 'a event list -> 'a

val poll : 'a event -> 'a option

val choose : 'a event list -> 'a event

val wrap : ('a event * ('a -> 'b)) -> 'b event

val wrapHandler : ('a event * (exn -> 'a)) -> 'a event

val guard : (unit -> 'a event) -> 'a event

val wrapAbort : ('a event * (unit -> unit)) -> 'a event

val always : 'a -> 'a event

val transmit : ('a chan * 'a) -> unit event

val receive : 'a chan -> 'a event

val threadWait : thread_id -> unit event

val timeout : time -> unit event

val waitUntil : time -> unit event

Figure 3.1: Event operations

3.1 Simple events

An event value describes a potential synchronous operation. A thread can synchronize on an event value by

applying the sync operation. The message passing model of the previous section provides the core of the

event mechanism. The functions receive and transmit are used to build event values that describe channel

I/O operations. These can be used, for example, to define the operations accept and send:
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val accept = sync o receive

val send = sync o transmit

The event values built by receive and transmit are called base event values. Another base event constructor

is always, which produces an event that is always immediately available for synchronization and produces

the argument fed to always. The base event constructor waitUntilprovides a mechanism for synchronizing

on the termination of another thread.

3.2 Wrappers

One method of building new event values from base events is to wrap a post-synchronization action around

the event. For example, we can turn a channel of integers into a channel, ch, of squares by

wrap (receive ch, fn (x : int) => x*x)

When synchronization occurs on this event, the value read from ch will be fed to the function and its square

will be returned as the synchronization result.

It is also possible to wrap an exception handler around an event. Building on our previous example,

consider the situation in which “x*x” causes an integer overflow. The following event will return zero in that

case:

wrapHandler (

wrap (receive ch, fn (x : int) => x*x),

fn Overflow => 0)

The function that is used as an exception handler should cover all of the possible exceptions; otherwise a

Match exception can occur when applying the handler.

3.3 Selective communication

Selective communication is necessary for threads to manage deadlock-free communication with multiple

partners. CML supports selective communication in an extremely general way via the choose operator. This

constructs the nondeterministic choice of a list of events. For example, a thread can monitor input from two

channels (of the same type) as follows:

choose [

receive ch1,

receive ch2

]

Since the thread is probably interested in which channel a message is from, wrappers can be added to tag the

values:

choose [

wrap (receive ch1, fn x => (1, x)),

wrap (receive ch2, fn x => (2, x))

]
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We can mix both input and output operations in the same choose expression. This raises the question of

what happens if a thread attempts both input and output on the same channel at the same time? For example:

choose [

wrap (transmit(ch, 1), fn () => false),

wrap (receive ch, fn _ => true)

]

In CML synchronizing on this event value will block the thread until another thread either sends or accepts a

message on ch. The thread does not communicate with itself. If a thread synchronizes on the empty choice

(i.e., choose[]), then it will block forever (actually it will be garbage collected).

The operation select provides a useful short-hand for a common CML idiom. It is defined as

val select = sync o choose

3.4 Advanced event programming

The guard and wrapAbort combinators are used for implementing complex client-server protocols. The

guard function acts as a delay operator when applied to an event valued function; when sync is applied to

the guarded event, the delayed function is evaluated, and its result is used for synchronization. As a simple

example of guard, a conditional event constructor can be implemented:

fun condEvt (pred, evt) = guard (fn () => if pred() then evt else choose[]);

This takes a boolean valued predicate and an event value; when sync is applied to the guarded event, the

predicate is evaluated and, if true, then evt is returned, otherwise the null event is returned. A more typical use

of guard is to initiate a transaction with a server while returning an event to synchronize on the transaction’s

completion; section 1.8 gives several examples of this.

Sometimes, when guard is being used to initiate a transaction, it is necessary for the server to be notified

if the transaction will not complete (i.e., because a different event in a select communication was selected).

The wrapAbort combinator provides this mechanism. It associates a abort function with an event value.

When the event value is involved in a selective communication, if a different event is chosen, then a thread is

spawned to evaluate the abort function.

Example 3.1

We can illustrate the semantics of guard and wrapAbortwith the following variation of Example 1.5.
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fun simple_comm3 () = let

val ch1 = channel() and ch2 = channel()

val pr = CIO.print

in

pr "hi-0\n";

spawn (fn () => (pr "hi-1\n"; send(ch1, 17); pr "bye-1\n"));

spawn (fn () => (pr "hi-2\n"; send(ch2, 37); pr "bye-2\n"));

select [

guard (fn () => (

pr "guard-0.1\n";

wrapAbort (wrap (receive ch1, fn _ => pr "bye-0.1\n"),

fn () => pr "abort-0.1\n"))),

guard (fn () => (

pr "guard-0.2\n";

wrapAbort (wrap (receive ch2, fn _ => pr "bye-0.2\n"),

fn () => pr "abort-0.2\n")))

]

end

The observational behavior of this program fits one of two graphs, depending on the non-deterministic choice

made by the parent thread:

hi-0

hi-1 guard-0.1 hi-2

bye-1 bye-0.1

guard-0.2

abort-0.2

hi-0

hi-1 guard-0.1 hi-2

bye-0.2 bye-2

guard-0.2

abort-0.1

These graphs illustrate the complementary relationship between the abort actions and wrapper functions.

Note that the guards are always evaluated in left-to-right order, although depending on this is bad style.

3.5 Polling and timeouts

While selective communication provides a great deal of flexibility in scheduling thread communication, it is

sometimes useful to use polling. CML provides two mechanisms for polling event values.

The operation poll is a non-blocking form of sync; it returns NONE instead of blocking.1 For example,

the expression

poll (receive ch)

will return SOME msg, if a message msg is available on the channel, otherwise it returns NONE. The expression

poll (transmit (ch, msg))

1In version 0.9.3 and earlier, poll was an event value constructor.
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is a conditional send, which returns SOME() if successful. It is similar to Ada’s conditional entry call.

Another way to implement polling behavior is by using timeouts. This is most often useful when dealing

with the external world. The expression timeout t returns an event that will be available for synchronization

approximately t time units after sync is called. The argument to timeout is a value of the type

datatype time = TIME of {sec : int, usec : int}

Note that timeouts are measured in real-time (not cpu-time).2 There is also a mechanism for synchronizing on

an absolute time. The function waitUntil returns an event value that will be available for synchronization

at the specified time. The timeout function can be implemented as

fun timeout t = guard (fn () => waitUntil (addTime (t, currentTime())))

where currentTime returns the current time of day.

It is worth comparing the semantics of poll and timeout because there are some subtle differences.

Consider, for example the function

fun poll' evt = select [

wrap (timeout(TIME{sec=0, usec=0}), fn () => NONE),

wrap (evt, SOME)

]

one might consider it equivalent to poll, but there is a difference when the argument event is immediately

available for synchronization. In the case of poll, the answer will always be (SOME v) (assuming the result

of evt is v), while in the case of poll', the answer is the non-deterministic choice of NONE and (SOME v).

While the poll operation guarantees that an immediately available synchronization result will be returned,

it may be less useful than non-zero timeouts in practice. When the event value involves guards (e.g., a

request/reply protocol), then a poll result of NONE is not be very informative.

2Because of scheduling uncertainties and garbage collection, timeouts may delay for more than the requested amount of time.
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Chapter 4

Condition variables

Although CML is currently only implemented on single processor machines, we hope to have a shared-

memory multi-processor implementation available in the future, which raises the question of the effectiveness

of CML as a parallel programming language. Condition variables are an experimental feature for supporting

parallel programming. Figure 4.1 gives the signature of the condition variable operations. A condition

type 'a cond_var

val condVar : unit -> '1a cond_var

val writeVar : ('a cond_var * 'a) -> unit

exception WriteTwice

val readVar : 'a cond_var -> 'a

val readVarEvt : 'a cond_var -> 'a event

Figure 4.1: Condition variable operations

variable is essentially a “write-once” shared variable, which one can synchronize on. The semantics of

condition variables are defined in terms of an implementation using channels (see Figure 4.2). The actual

implementation is more efficient.

Example 4.1 (Futures)

As an example of how condition variables can be used to support parallel programming, we can implement

futures with them (also see Example 1.4).

fun future f x = let

datatype 'a msg_t = RESULT of 'a | EXN of exn

val result = condVar()

in

spawn (fn () => writeVar (result, RESULT(f x) handle ex => EXN ex));

wrap (

readVarEvt result,

fn (RESULT x) => x | (EXN ex) => raise ex)

end
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abstype 'a cond_var = CV of {req_ch : 'a chan, reply_ch : 'a chan}

with

fun condVar () = let

val reqCh = channel() and replyCh = channel()

fun condvar () = let

val v = accept reqCh

fun loop () = (send(replyCh, v); loop())

in

loop ()

end

in

spawn condvar;

CV{req_ch = reqCh, reply_ch = replyCh}

end

exception WriteTwice

fun writeVar (CV{req_ch, reply_ch}, v) = select [

transmit(req_ch, v),

wrap (receive reply_ch, fn _ => raise WriteTwice)

]

fun readVar (CV{reply_ch, ...}) = accept reply_ch

fun readVarEvt (CV{reply_ch, ...}) = receive reply_ch

end

Figure 4.2: Condition variable implementation

The major advantage of this implementation of futures over the one given in Chapter 1, is that once the answer

is available, no message-passing or context switches are involved in reading the result.

Condition variables can also be used wherever “single-shot” communication is required. For example, a

common style of implementing request-reply (RPC-style) protocols involves allocating a fresh reply channel

for each request (e.g., Example 1.9). Condition variables provide a cheaper reply mechanism in these cases.1

Note, however, that condition variables are asynchronous on their output. Thus, in the case where the server

needs to know if the reply has been accepted (e.g., see Example 1.10) they are unsuitable.

1In fact, experimental evidence suggests that allocating a fresh condition variable for each reply is substantially faster than using a

dedicated reply channel.
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Chapter 5

Multi-threaded I/O

I/O poses two problems for concurrent programs: first, concurrency control is required on access to the I/O

state and, second, I/O operations, which are potentially blocking, need to be supported by the synchronization

primitives. CML supports I/O both at the stream level and at the file descriptor level. The stream I/O library

includes most of the SML/NJ stream I/O operations as well as event valued versions of the input operations.

5.1 Stream I/O

The structure CIO is a first-pass at support for multi-threaded streams (à la SML/NJ’s in and out streams). It

includes a large subset of the IO structure provided by SML/NJ, as well as event valued versions of the input

stream functions:

val lookaheadEvt : instream -> string

val inputEvt : instream * int -> string event

val inputcEvt : instream -> int -> string event

val inputLineEvt : instream -> string event

The event values produced by these functions have the same semantics as the corresponding SML/NJ input

operations. Output operations are assumed to be nonblocking, and thus event valued versions of them are not

provided. Appendix A gives the complete signature of the CIO structure.

Example 5.1

Consider a game program in which the player is given a limited time to answer a question. The following

function could be used to implement a question/response interaction with the player:

fun getAnswer (question, t) = let open CML CIO

in

print question; flush_out std_out;

select [

wrap (inputLineEvt std_in, SOME),

wrap (timeout t, fn () => NONE)

]

end
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This function prints the question (flushing std_out in case there is no terminating newline) and waits for an

answer. If the user does not respond before the time specified by t has elapsed, then NONE is returned.

There is a strong similarity between channel I/O and stream I/O. The CIO structure provides a mechanism

for creating streams with a channel style interface at the other end:

exception ClosedStream

val openChanIn : unit -> ((string -> unit) * instream)

val openChanOut : unit -> (string event * outstream)

These function return a pair representing the two sides of a stream; one side with a channel-style interface

and the other with a stream interface. This mechanism is useful for hooking existing stream based code (i.e.,

sequential code) into a concurrent framework. Note that the instreams are buffered and thus the send-style

operation at the other end is asynchronous.

5.2 Low-level I/O

The CML structure includes the functions

exception InvalidFileDesc of int

val syncOnInput : int -> unit

val syncOnOutput : int -> unit

val syncOnExcept : int -> unit

which provide an event-valued interface to the UNIX select(2) system call. If an attempt is made to

synchronize on a closed file descriptor, then the exception InvalidFileDescwill be raised. These are used

by the CIO structure to avoid blocking the system while waiting for I/O, and can also be used to implement

I/O on sockets.
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Chapter 6

Initialization and termination

The structure RunCML provides a collection of facilities to support the initialization and clean termination of

CML programs. This chapter describes how to use these facilities and when they are necessary.

6.1 Servers and top-level channels

CML provides a mechanism for the automatic initialization and termination of services. This is used, for

example, by the CIO structure to spawn the threads for the standard streams on initialization and to flush

output buffers on termination. The function

val logServer : (string * (unit -> unit) * (unit -> unit)) -> unit

is used to register initialization and termination functions for a service. This function is usually called at the

top-level of the structure that implements the service. The first argument is a string for uniquely identifying

the service;1 the second argument is the initialization function and the third is the termination function. The

initializationfunctions are called in the order that they were registered, and termination functions in the reverse

order. The first service to be initialized (and last to be terminated) is the CIO service, thus other services

may safely use I/O in their initialization and termination. Note, however, that if a termination protocol is

implemented using multiple threads, then the termination function should not return until all of the threads

have terminated (or timed out); otherwise, a race condition exists. A server can be unregistered by the

function:

val unlogServer : string -> unit

For a complete application, this mechanism provides a convenient way to handle initialization and

termination. But, it is most useful in the development cycle, where a program is going to be run, modified

and then run again. The auto-initialization mechanism helps insure that each run will start with a clean slate.

Services usually employ one or more channels bound at top-level for communication with clients. These

can cause problems in the development cycle, since the channels may have blocked threads in their queues.

If the channel is not cleaned between runs, then the threads will be carried over. To avoid this problem, there

is a mechanism for registering top-level channels:

1If the same string is used twice, then the second call will replace the first.
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val logChannel : (string * 'a chan) -> unit

val unlogChannel : string -> unit

Registered channels will have their queues cleared at initialization.

A simple example will illustrate the use of this mechanism:

Example 6.1 (Unique Ids)

Consider a service for generating system-wide unique identifiers with the signature:

signature UNIQUE_ID =

sig

eqtype id

val nextId : unit -> id

end (* UNIQUE_ID *)

structure UniqueId : UNIQUE_ID =

struct

datatype id = ID of int

val idCh : id CML.chan = CML.channel ()

fun server i = (CML.send (idCh, ID i); server (i+1))

fun nextId () = CML.accept idCh

val _ = RunCML.logChannel ("UniqueId.idCh", idCh)

val _ = RunCML.logServer ("UniqueId",

fn () => (CML.spawn (fn () => server 0); ()),

fn () => ())

end (* structure UniqueId *)

The initialization function spawns the server thread. The termination function does not do anything, although

we could have implemented a termination protocol. Upon termination, the server will most likely be blocked

on idCh; but since it is registered, this will not pose any problems.

6.2 Starting and stopping a CML program

Before a CML program can run there are a number of things that must be done, such as enabling preemptive

scheduling and initializing the top-level channels and registered services. This is all handled by the function

val doit : ((unit -> unit) * int option) -> unit

in the structure RunCML. The first argument is the root thread and the second is the time quantum (measured in

milliseconds) for thread preemption. Specifying the value NONE for the time quantum will disable preemptive

scheduling, but this can cause a program to block indefinitely if it uses timeouts. Preemption is implemented

using the interval timer provided by the operating system and the SML/NJ signals facility[Rep90]. The choice

of a good time quantum is application dependent: for programs with “real-time” responsiveness requirements,
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small values (between 10 and 40 ms.) are better; for other applications, larger values will reduce scheduling

overhead.2 Of course, different hardware/OS platforms support different timer granularities, but most provide

50 Hz. or finer.

Once you have built an application using CML, you may want to build an executable image that can be

run from shell command line. The function

val exportFn : (string * ((string list * string list) -> unit) * int option)

-> unit

provides this service. It is essentially the same as the function IO.exportFn provided by SML/NJ, except

that it has an extra third argument for specifying the timer quantum and it binds in the code for service

initialization and termination.3

There is also a mechanism for forcing termination of CML programs. The function

val shutdown : unit -> 'a

in the structure RunCML terminates the system. This includes terminating the registered services. Termination

is robust: if a service termination function does not complete within five seconds, then a timeout message

will be printed to the standard error stream. You may also terminate a run by typing your interrupt character

(e.g. control-C), which will asynchronously force a shutdown.

2For most machines, a 20 ms. scheduling quantum produces an overhead of less than 3%[Rep90].
3As with IO.exportFn, you probably want to start with a version of SML that has the compiler in the heap. See the makeml(1) man

page in the SML/NJ distribution for details.
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Chapter 7

Debugging CML programs

Debugging concurrent programs can be quite difficult, because of their nondeterministic behavior. CML

currently has fairly limited support for debugging; theTraceCMLmodule provides a mechanism for controlling

diagnostic output, a mechanism for monitoring threads for unexpected termination, and a mechanism for

reporting uncaught exceptions in threads.

7.1 Debugging hints

Although there is little support for debugging in CML, there are a few techniques that can make debugging

easier. The most important thing to do is to debug your sequential code in SML before using it in a CML

program; you can use the SML/NJ debugger to do this[Tol90]. Even with correct sequential code, your program

may not work. In this situation, there are two techniques you can use: adding print statements and turning

off preemptive scheduling (see Chapter 6). Try to isolate the problem to one or two threads, and then monitor

their state with print statements. Unfortunately, this technique will often not work with race conditions, since

the print statements change the program timing. The only real solution to race conditions is to design your

communication structure carefully. Turning off preemption increases the repeatability of your program’s

behavior, but programs that use stream I/O and timeouts will not function correctly without preemption.

7.2 Trace modules

For a large CML program, it probably makes sense to systematically include diagnostic output throughout

the system. The CMLTrace structure supports this process by providing a mechanism, called trace modules,

for selectively enabling diagnostic output for different parts of the system. The basic idea is that one defines a

heirarchy of trace modules, which provide valves for turining debugging output on and off. Figure 7.1 gives

the operations on trace modules. The value traceRoot is the root of the trace module heirarchy, and has the

name “/.” A new trace module may be created as the child of an existing module by using the traceModule

function; the name of a trace module is returned by nameOf and a name can be mapped to a trace module

by moduleOf (this raises the exception NoSuchModule if no module of the given name exists). The name

of a trace module in a heirarchy is similar to a UNIX-style pathname; i.e., the individual module names are

separated by “/”. The following transcript illustrates this:
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type trace_module

val traceRoot : trace_module

val traceModule : (trace_module * string) -> trace_module

val nameOf : trace_module -> string

val moduleOf : string -> trace_module

val traceOn : trace_module -> unit

val traceOff : trace_module -> unit

val traceOnly : trace_module -> unit

val amTracing : trace_module -> bool

val status : trace_module -> (trace_module * bool) list

val trace : (trace_module * (unit -> string list)) -> unit

datatype trace_to

= TraceToOut

| TraceToErr

| TraceToNull

| TraceToFile of string

| TraceToStream of CIO.outstream

val setTraceFile : trace_to -> unit

Figure 7.1: Trace module operations

- val foo = TraceCML.traceModule (TraceCML.traceRoot, "foo");

val foo : TraceCML.trace_module

- TraceCML.nameOf foo;

val it = "/foo/" : string

- val bar = TraceCML.traceModule (foo, "bar");

val bar : TraceCML.trace_module

- TraceCML.nameOf bar;

val it = "/foo/bar/" : string

Each trace module is a point of control for diagnostic printing. The function trace is used to conditionally

print according to the state of a given module; the second argument to trace is a function that is evaluated

if the module given as the first argument is enabled. The results of evaluating the second argument are

concatenated and printed to the current trace file (see below).

The functions traceOn and traceOff are used to change the status of a trace module and all of its

descendents. For example, applying traceOn to foo (as defined above), will enable foo, bar and baz. A

subsequent application of traceOff to bar will leave just foo and baz enabled. The function traceOnly is

used to turn on a module without enabling its descendents, and the function amTracing returns the current

status of a module. The function status returns a list of a module and all of its descendents and their

associated state; the list is in pre-order.

The function setTraceFile is used to set the destination of the trace output. The value TraceToOut

specifies that output should be directed to CIO.std_out (the default); the value TraceToErr specifies

CIO.std_err; while th value TraceToNull causes output to be discarded. An arbitrary CIO output stream
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may be specified using either TraceToFile or TraceToStream. In the former case, the specified file is

opened for writing; if the attempt to open fails, then CIO.std_out is used.

The trace module operations are designed to be called either from the SML/NJ top-level loop, or while

executing a CML program (although trace is a no-op from the top-level).

7.3 Thread watching

Another common bug in CML programs is when a thread unexpectedly dies. The TraceCML module

addresses this problem by providing a mechanism for watching specific threads for unexpected termination.

The interface is:

val watcher : trace_module

val watch : (string * CML.thread_id) -> unit

val unwatch : CML.thread_id -> unit

where the trace module watcher controls printing of messages (this is enabled by default); the function

watch causes the specified thread to be watched; and the function unwatch disables the watching of a thread.

The following transcript illustrates the use of the facility:

- fun wspawn (name, f) = let

= val tid = CML.spawn f

= in

= TraceCML.watch (name, tid);

= tid

= end;

val wspawn = fn : string * (unit -> unit) -> CML.thread_id

- fun test () = (wspawn ("dummy", fn () => ()); ());

val test = fn : unit -> unit

- RunCML.doit (test, SOME 100);

WARNING! Watched thread dummy[9] has died.

val it = () : unit

7.4 Uncaught exceptions

One of the the most common errors in CML (and SML) programs is an uncaught exception. This is particularly

nasty in CML, since if a thread raises an uncaught exception, then it will terminate without a trace (unless it

is being watched). The TraceCML structure provides support for reporting uncaught exceptions.

If a thread generates an uncaught exception, then a message is sent to the uncaught-exception server,

which prints a message to the standard error stream. For example:

- fun blah () = (hd []; ());

val blah = fn : unit -> unit

- RunCML.doit(blah, NONE);

CML: uncaught exception Hd in thread [8]

val it = () : unit

It is possible to set the function called by the trace server using the function
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val setUncaughtFn : ((CML.thread_id * exn) -> unit) -> unit

Continuing our example:

- fun complain _ = (CIO.print "goodbye\n"; RunCML.shutdown());

val complain = fn : 'a -> 'b

- TraceCML.setUncaughtFn complain;

- RunCML.doit (blah, SOME 100);

goodbye

val it = () : unit

This can be used to report the arguments of given exceptions, as well as their names.

In a large system, different sub-systems may have their own special exceptions that should be reported if

uncaught. To support such systems, the TraceML structure allows additional handlers to be layered over the

“catch-all” handler defined by setUncaughtFn. The function

val setHandleFn : ((CML.thread_id * exn) -> bool) -> unit

adds an uncaught-exception handler. When a thread has an uncaught exception, the various uncaught-

exception handlers are applied to the thread ID and exception, until one of the handlers return true. If none

of the handlers returns true, then the catch-all handler is applied. For example:

- exception Error of string;

exception Error of string

- fun handleError (_, Error s) = (CIO.print("ERROR: " ^ s ^ "\n"); true)

= | handleError _ = false;

val handleError = fn : 'a * exn -> bool

- TraceCML.setHandleFn handleError;

val it = () : unit

- fun foo () = (raise Error "foo");

val foo = fn : unit -> 'a

- RunCML.doit (foo, SOME 100);

ERROR: foo

val it = () : unit

The default catch-all handler can be restored, and the other handlers removed by calling the function:

val resetUncaughtFn : unit -> unit
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Chapter 8

Administrative details

8.1 How to get the release

CML is distributed via anonymous FTP from three sites, as a compressed tar file named CML-0.9.8.tar.Z.

The sites and locations are:

FTP Site Path

ftp.cs.cornell.edu /pub/CML-0.9.8.tar.Z

research.att.com /dist/ml/CML-0.9.8.tar.Z

princeton.edu /pub/ml/CML-0.9.8.tar.Z

In addition to the CML distribution, you will also need the SML/NJ distribution, which is available from the

latter two FTP sites. Version 0.9.8 of CML works with version 0.75 of SML/NJ, but we recommend a more

recent release (0.93 is the most recent version as of this writing). The following is a sample ftp dialog:

% ftp ftp.cs.cornell.edu

Connected to ftp.cs.cornell.edu.

...

Name: anonymous

331 Guest login ok, send ident as password.

Password: your-name@your-machine

230 Guest login ok, access restrictions apply.

ftp> cd pub

250 CWD command successful.

ftp> binary

200 Type set to I.

ftp> get CML-0.9.8.tar.Z

ftp> quit

221 Goodbye.

%

Once you have the compressed tar file, you can extract the distribution by the command

% zcat CML-0.9.8.tar.Z | tar xof -

This will create a directory named cml-0.9.8, which is the root of the distribution.
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We would like to keep track of the use of CML, so if you ftp a copy, please send electronic mail to

sml-bugs@research.att.com. We will use this information to notify people of bug fixes and other minor

changes between releases.

8.2 Installing CML

If you plan to use CML on a regular basis (or if you have disk space to waste), you may want to install

a pre-loaded version of the system. This can be done using the exportML function of SML/NJ, but to

make things easier, an installation script (install-cml) is provided. To install CML, first change to the

root directory of the distribution and then run the install-cml command. This command recognizes the

following options:

-o name Use name for the name of the exported object (default cml).

-sml name Use name for the name of the SML/NJ executable (default sml).

-all Load the library modules (described in Appendix B) in addition to the core modules of CML.

8.3 Release history

The following list describes the major aspects of the CML release history. The distribution includes a file

named CHANGES, which contains a more detailed description of the changes between versions.

Version 0.9.8 (February 1993). This public release is the first that is being included in the SML/NJ distri-

bution. It fixes a number of bugs, provides improved performance, and a new, more powerful, trace

facility (thanks to C. Krumvieda).

Version 0.9.7 (July 1992). This internal release fixed some bugs and included a new scheduling mechanism

that improves interactive responsiveness in systems like eXene.

Version 0.9.6 (October 1991). This public release tracks changes to the pervasive environment in SML/NJ

version 0.74. It also fixes a couple of bugs and gains a performance boost by adapting the var pointer

to hold the current thread ID (the var pointer is a dedicated register provided by SML/NJ to support

multiprocessors).

Version 0.9.5 (July 1991). This public release corrects a typing problem that was exposed by compiling

CML under SML/NJ version 0.70.

Version 0.9.4 (June 1991). This is the second major public release of CML. In addition to fixing a number

of bugs, it provides a somewhat different interface than the earlier releases.

Version 0.9.3 (March 1991). This internal release was used for the benchmarks presented in [Rep91a]. It

was the first implementation of the the guard and abort operations.

Version 0.9.2 (January 1991). This release fixes a serious space-leak bug. The actual fix required changes

to SML/NJ, so this version requires SML/NJ version 0.68, or later.
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Version 0.9 (November 1990). This is the first public release of CML. It is based on SML/NJ version

0.66, and contains the basic concurrency primitives, support for first-class synchronous operations,

multithreaded I/O, preemptive scheduling and rudimentary debugging support.

8.4 Bug reports

We have tested CML on the following types of machines: Sun-3, Sun-4, DECStation, SGI Indigo (both

R3000 and R40001), IBM RS/6000 and NeXT machines. There are no known bugs in 0.9.8. Bug reports

should be mailed to sml-bugs@research.att.com; please using the following format:

Submitter: Your name and email address.

Date: The date of the report.

System(s) and Version: CML

SML/NJ Version: The version of SML/NJ you are using.

Machine: The architecture and operating system you are using.

Severity: How severe is the bug (major, minor)?

Problem: A short description of the problem.

Transcript: A short example that exhibits the bug, and the output transcript

Comments: Any aditional comments.

Fix: Extra points for filling in this field!!

A template for this format is given in the file doc/cml-bug-form.

1There is a known hardware bug in the R4000 chip that can cause SML (and thus CML) to crash.
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Appendix A

The top-level environment

The top-level CML environment consists of four structures; this appendix lists these with their interface

signatures. These structures are implemented as functors, the source code of which can be found in the

directory cml-0.9.8/src. The following table lists the top-level structures, with the source file and a short

description of each structure:

Structure Source file Description

CML concur.sml The core structure of CML; it defines threads,

channels and events.

RunCML run.sml Provides support for initialization and termi-

nation of CML programs.

CIO cio.sml A multi-threaded input/output facility.

TraceCML trace-cml.sml Support for diagnostic output and error

catching

A.1 CML

The structure CML provides the core functionality of the CML system. See Chapters 2 and 3 for a discussion

of its facilities. This structure has the following signature:

signature CONCUR_ML =

sig

val version : {major : int, minor : int, rev : int, date : string}

val versionName : string

(** events **)

type 'a event

val sync : 'a event -> 'a

val select : 'a event list -> 'a

val poll : 'a event -> 'a option

val choose : 'a event list -> 'a event
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val guard : (unit -> 'a event) -> 'a event

val wrap : ('a event * ('a -> 'b)) -> 'b event

val wrapHandler : ('a event * (exn -> 'a)) -> 'a event

val wrapAbort : ('a event * (unit -> unit)) -> 'a event

val always : 'a -> 'a event

val ALWAYS : unit event (* for backward compatibility *)

(** threads **)

type thread_id

val spawn : (unit -> unit) -> thread_id

val yield : unit -> unit

val exit : unit -> 'a

val getTid : unit -> thread_id

val sameThread : (thread_id * thread_id) -> bool

val tidLessThan : (thread_id * thread_id) -> bool

val tidToString : thread_id -> string

val threadWait : thread_id -> unit event

(** condition variables **)

type 'a cond_var

val condVar : unit -> '1a cond_var

val writeVar : ('a cond_var * 'a) -> unit

exception WriteTwice

val readVar : 'a cond_var -> 'a

val readVarEvt : 'a cond_var -> 'a event

(** channels **)

type 'a chan

val channel : unit -> '1a chan

val send : ('a chan * 'a) -> unit

val sendc : 'a chan -> 'a -> unit

val accept : 'a chan -> 'a

val sameChannel : ('a chan * 'a chan) -> bool

val transmit : ('a chan * 'a) -> unit event

val transmitc : 'a chan -> 'a -> unit event

val receive : 'a chan -> 'a event

(** real-time synchronization **)

datatype time = TIME of {sec : int, usec : int} (* from System.Timer *)

sharing type time = System.Timer.time

val waitUntil : time -> unit event

val timeout : time -> unit event

(* low-level I/O support (not for general use) *)
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exception InvalidFileDesc of int

val syncOnInput : int -> unit event

val syncOnOutput : int -> unit event

val syncOnExcept : int -> unit event

end (* signature CONCUR_ML *)

A.2 RunCml

The structure RunCML provides the bookkeeping code for starting and terminating CML programs (see

Chapter 6). It has the following signature:

signature RUN_CML =

sig

structure CML : CONCUR_ML

(* log/unlog channels and servers for initialization and termination *)

exception Unlog

val logChannel : (string * 'a CML.chan) -> unit

val unlogChannel : string -> unit

val logServer : (string * (unit -> unit) * (unit -> unit)) -> unit

val unlogServer : string -> unit

val unlogAll : unit -> unit

(* run the system *)

val doit : ((unit -> unit) * int option) -> unit

exception Running

(* export a CML program *)

val exportFn : (string * ((string list * string list) -> unit) * int option)

-> unit

(* shutdown a run *)

val shutdown : unit -> 'a

exception NotRunning

end (* RUN_CML *)

A.3 CIO

The CIO structure implements a concurrent version of most of the SML/NJ IO operations (see Chapter 5). It

has the following signature:

signature CONCUR_IO =

sig

structure CML : CONCUR_ML

exception Io of string

type instream
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type outstream

val std_in : instream

val std_out : outstream

val std_err : outstream

val open_in : string -> instream

val open_string : string -> instream

val open_out : string -> outstream

val open_append : string -> outstream

val execute : (string * string list) -> (instream * outstream)

val execute_in_env : (string * string list * string list)

-> (instream * outstream)

exception ClosedStream

val openChanIn : unit -> ((string -> unit) * instream)

val openChanOut : unit -> (string CML.event * outstream)

val close_in : instream -> unit

val close_out : outstream -> unit

val can_input : instream -> int

val lookahead : instream -> string

val input : instream * int -> string

val inputc : instream -> int -> string

val input_line : instream -> string

val end_of_stream : instream -> bool

val lookaheadEvt : instream -> string CML.event

val inputEvt : instream * int -> string CML.event

val inputcEvt : instream -> int -> string CML.event

val inputLineEvt : instream -> string CML.event

val output : outstream * string -> unit

val outputc : outstream -> string -> unit

val flush_out : outstream -> unit

val print : string -> unit

end (* CONCUR_IO *)

A.4 TraceCML

The TraceCML structure provides support for debuggin CML program (see Chapter 7). It has the following

signature:

signature TRACE_CML =

sig

structure CML : CONCUR_ML

structure CIO : CONCUR_IO

(** Trace modules **)
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type trace_module

val traceRoot : trace_module

exception NoSuchModule

val traceModule : (trace_module * string) -> trace_module

val nameOf : trace_module -> string

val moduleOf : string -> trace_module

val traceOn : trace_module -> unit

val traceOff : trace_module -> unit

val traceOnly : trace_module -> unit

val amTracing : trace_module -> bool

val status : trace_module -> (trace_module * bool) list

val trace : (trace_module * (unit -> string list)) -> unit

datatype trace_to

= TraceToOut

| TraceToErr

| TraceToNull

| TraceToFile of string

| TraceToStream of CIO.outstream

val setTraceFile : trace_to -> unit

(** Thread watching **)

val watcher : trace_module

val watch : (string * CML.thread_id) -> unit

val unwatch : CML.thread_id -> unit

(** Uncaught exception handling **)

val setUncaughtFn : ((CML.thread_id * exn) -> unit) -> unit

val setHandleFn : ((CML.thread_id * exn) -> bool) -> unit

val resetUncaughtFn : unit -> unit

end; (* TRACE_CML *)
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Appendix B

The CML Library

This release of CML includes a small library of modules implementing some common concurrent idioms;

it will be expanded in future releases of CML. This appendix describes the interfaces of these library

modules (which include the buffered channels used in Example 1.8). They can be found in the directory

cml-0.9.8/library; the following table lists them with their source file and a short description:

Structure Source file Description

Plumbing plumbing.sml Fixtures for connecting threads.

BufferChan buffer.sml Buffered channels.

Future future.sml Multi-lisp style futures.

Cobegin cobegin.sml Cobegin/end with barrier synchronization.

ConcurCallCC callcc.sml A “safe” version of callcc and throw.

If your version of CML is installed with the library (see section 8.2), then these modules will be defined in

the top-level environment, otherwise you must load them individually. These structures are implemented as

functors, so to load one requires both reading in the source file and applying the resulting functor. The rest of

this appendix gives the signature and a description of each library module.

B.1 Plumbing

The structure Plumbing contains various functions for connecting networks of processes together. It is

defined by the functor

functor Plumbing (CML : CONCUR_ML) : PLUMBING

and has the following signature:
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signature PLUMBING =

sig

structure CML : CONCUR_ML

val sink : 'a CML.event -> unit

val source : '1a -> '1a CML.event

val iterate : ('1a * ('1a -> '1a)) -> '1a CML.event

val connect : ('a CML.event * ('a -> unit CML.event)) -> unit

val filter : ('a CML.event * ('a -> 'b) * ('b -> unit CML.event)) -> unit

end (* PLUMBING *)

The functions source and sink provide end-points for a network of threads (Note that source is really just

always). We can connect them to form a (useless) network:

sink (source 1)

In this example sourcewill produce an infinite stream of 1s, which will be consumed by sink. The function

iterate also produces an infinite stream of values, but each value is computed from the previous. For

example, the stream of numbers that we used in Example 1.3 could have been provided by:

iterate (2, fn x => (x + 1))

The functions connect and filter provide connections between threads. For example, the following code

will print the numbers from 1 to n:

fun printN n = let

open Plumbing

val ch = CML.channel()

in

filter (

iterate (1, fn x => (if (x >= n) then CML.exit() else x+1)),

fn x => CIO.print(makestring x ^ "\n"),

fn x => CML.transmit(ch, x));

sink(CML.receive ch)

end

This example uses iterate to generate the numbers; filter to print them; and sink to provide the demand

to keep the flow going.

B.2 Buffered channels

Buffered channels provide a means of asynchronous communication. This facility is provided by the functor

functor BufferChan (CML : CONCUR_ML) : BUFFER_CHAN

which has the following signature:
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signature BUFFER_CHAN =

sig

structure CML : CONCUR_ML

type 'a buffer_chan

val buffer : unit -> '1a buffer_chan

val bufferIn : '1a CML.chan -> '1a buffer_chan

val bufferOut : '1a CML.chan -> '1a buffer_chan

val bufferSend : ('a buffer_chan * 'a) -> unit

val bufferAccept : 'a buffer_chan -> 'a

val bufferReceive : 'a buffer_chan -> 'a CML.event

end (* BUFFER_CHAN *)

There are three different ways to create a buffered channel. If you already have a channel to connect to the

input or output of the buffer, then the functions bufferIn or bufferOut can be used; otherwise the function

buffer should be used (as in Example 1.8). Buffered channels provide an asynchronous output operation,

bufferSend, and two forms of synchronous input operation, bufferAcceptand bufferReceive. Note that

in the case where you attach an existing channel to a buffer (using bufferIn or bufferOut), the associated

channel operations may be substituted for the buffer operations.

B.3 Futures

Futures are a construct provided by Multi-lisp for introducing parallel evaluation of an expression. We

provide them, more as a demonstration of building new abstractions, than because we think they are useful.

The functor

functor Future (CML : CONCUR_ML) : FUTURE

implements this mechanism. It has the signature

signature FUTURE =

sig

structure CML : CONCUR_ML

val future : ('a -> '2b) -> 'a -> '2b CML.event

end (* FUTURE *)

B.4 Cobegin

The structure Cobegin provides a generalization of the spawn operation. It allows a list of threads to be

spawned and returns an event for synchronizing on the termination of all of the threads (this is called barrier

synchronization). The structure is implemented by the functor

functor Cobegin (CML : CONCUR_ML) : COBEGIN

which has the signature

signature COBEGIN = sig

structure CML : CONCUR_ML

val cobegin : (unit -> unit) list -> unit CML.event

end (* COBEGIN *)
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B.5 Safe callcc

This is the interface of a safe implementation of the first-class continuation primitives. A thread may only

throw to one of its own continuations; an attempt to throw to another thread’s continuation will result in the

exception BadCont being raised.

signature CONCUR_CALLCC =

sig

exception BadCont

type 'a cont

val callcc : ('1a cont -> '1a) -> '1a

val throw : 'a cont -> 'a -> 'b

end
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Appendix C

Source files for examples

The source code for the examples of this document are available on-line in the distribution in the directory

“cml-0.9.8/examples.” The following table maps the example numbers to file names:

Example Source File

Example 1.1 ex-simple-comm.sml

Example 1.3 ex-counter.sml

ex-sieve.sml

ex-primes.sml

Example 1.4 ex-future.sml

Example 1.5 ex-simple-comm2.sml

Example 1.6 ex-token-sig.sml

ex-token.sml

Example 1.7 ex-buffer-sig.sml

ex-buffer.sml

Example 1.8 ex-multicast-sig.sml

ex-multicast.sml

Example 3.1 ex-simple-comm3.sml

Example 4.1 ex-future-cv.sml

Example 5.1 ex-get-answer.sml

Example 6.1 ex-unique-sig.sml

ex-unique.sml

52


