12 OUTPUT REPORTS

- 12 OUTPUT REPORTS 253
 - 12.1 Introduction 253
 - 12.2 Types of Output 253
 - 12.2.1 Single and Batch Run Modes 253
 - 12.2.2 Parametric Run Mode 256
 - 12.2.3 Single and Multiple ECO Run Modes 256
 - 12.3 Run-Time Graphics and Reports 257
 - 12.4 Accessing Output Reports 257
 - 12.4.1 LOTUS-Compatible Reports 260
 - 12.4.2 Data Files BEPS and Peak Load Summaries 261
 - 12.4.3 Text Files 262
 - 12.5 Sample Outputs 262
 - 12.5.1 Run-Time Graphics 262
 - 12.5.2 Run-Time Calculation Reports 270
 - 12.5.3 LOTUS-Compatible Reports 303
 - 12.5.4 BEPS Report 314
 - 12.5.5 Peak Loads Summary 317
 - 12.5.6 Parametric Output 318
 - 12.5.7 ECO/BLCC Output 318
 - 12.5.8 Stand Alone Reports 320

12 OUTPUT REPORTS

12.1 Introduction

ASEAM3.0 is capable of creating many different output reports. Run-time reports and graphic displays are available while the calculations are being performed. These reports may be directed to the printer or to the screen, but cannot be stored in a file and accessed later. There are also numerous reports that are written to files, and you need not be at the computer during the calculations to obtain them.

This chapter describes various types of output reports, the data they contain, the filenaming conventions, and how to get the data into useful form. Not all output reports are available from all calculation modes. Refer to Section 12.2.1, 12.2.2, and 12.2.3 for a listing of output reports created by different calculation methods.

Note: Make sure, when specifying the analyses, that all of the output reports you want are available with the type of calculation you are performing and that the reports have been specified, if required. Once the runs have been made, there is no way to backtrack and obtain additional output data that was not specified originally. You must first specify the additional outputs and then rerun the calculations.

12.2 Types of Output

ASEAM3.0 can produce many different kinds of output reports. Outlined in the sections below are the various output reports that can be specified or produced for the different calculation modes. Also refer to Chapter 11 for a discussion of the various outputs created by the calculation modes.

12.2.1 Single and Batch Run Modes

Single and Batch Run Modes can create up to 39 reports that detail heating and cooling loads, system psychrometrics, energy consumptions, and the like by zone or by system. Most of these reports can be imported into a spreadsheet package (such as LOTUS) for further calculations or graphical presentation, or into a three-dimensional graphics package.

Output reports are available for both peak and diversified loads. Note that peak loads correspond to full occupancy, full solar, all lights and equipment on, etc. Diversified loads take into account the fraction percent sunshine (from the weather file), occupancy, lighting, and equipment schedules (entered as diversity factors in the Loads input segment of the program). All loads type report values are in BTUH, except for daylighting reports, which use footcandles on the work plane. The following output reports are available for single run and batch run modes:

LOADS REPORTS: For each zone (the 24 hourly values for reports LB through LW are written to file by month)

LA - Peak Loads Summary (This report is *not* LOTUS compatible. It generates the load by components at the time the zone peak load occurs. Use the Miscellaneous Output Reports from the main menu to access these reports).

LB - Peak Total Load (sum of all time-dependent peak load components excluding temperature-dependent loads such as conduction and infiltration)

LC - Diversified Total Load (sum of all time-dependent diversified load components excluding temperature-dependent loads such as conduction and infiltration)

- LD Peak Opaque CLTD Load (sum of wall and roof CLTD)
- LE Peak Glass Solar Load
- LF Peak Lighting Load
- LG Diversified Lighting Load
- LH Peak Plenum Load
- LI Diversified Plenum Load
- LJ Peak People Load
- LK Diversified People Load
- LL Peak Equipment Load
- LM Diversified Equipment Load
- LN Daylighting Footcandles on Work plane, Function 1, Overcast Sky
- LO Daylighting Footcandles on Work plane, Function 2, Overcast Sky
- LP Daylighting Footcandles on Work plane, Function 3, Overcast Sky
- LQ Daylighting Footcandles on Work plane, Function 1, Clear Sky
- LR Daylighting Footcandles on Work plane, Function 2, Clear Sky
- LS Daylighting Footcandles on Work plane, Function 3, Clear Sky
- LT Wall CLTD Load
- LU Roof CLTD Load
- LV Direct Solar on Glass (considers only effect of external shading, *not* orientation)
- LW Shaded Solar on Glass (considers only effect of external shading, not orientation)

SYSTEMS REPORTS: For each system (the values are written to file by cycle, by month, and by bin)

- SA System Loads (Zone Diversified Loads on System)
- SB System Energy Requirements (System Loads on Plant)
- SC System Psychrometrics (Central Systems)

SD - System Psychrometrics (Unitary Systems)

PLANT REPORTS: For each plant component (values are written to file by cycle, by month, and by bin)

SLDS - Plant Loads (Composite System Loads on Plant)

PDHW - Domestic Hot Water

PCEN - Centrifugal Chiller

PABS - Absorption Chiller

PDBC - Double Bundle Chiller

- PREC Reciprocating Chiller
- PDBH Double Bundle Heating
- PBLR Boiler
- PTOW Cooling Tower

BEPS report - building end-use summary (this report is not LOTUS-compatible)

MCON - Monthly energy consumption by fuel type.

Note: All reports *except* the Peak Loads Summary (LA) and the Building Energy End-Use Summary (BEPS) are suitable for importing into LOTUS. If you indicated that a printer was available, and asked for either of these reports, they will automatically be printed when the run calculations are finished. To access these two data type output file, refer to Section 12.4.2.

The report file names of LOTUS-compatible output files will appear as xxxxLLyy.PRN, xxxxSSzz.PRN, or xxxxPPPP.PRN:

- 1. `xxxx' is the file-name prefix you specified in "Specify Analysis"
- 2. `LL' is the loads report type (LB through LW)
- 3. 'yy' is the zone number for loads report
- 4. `SS' is the systems report type (SA through SD)
- 5. `ZZ' is the system number for systems report
- 6. `PPPP' is the plant report type (SLDS, PDHW, etc.)

The files from these reports are also saved in the data subdirectory. To create legible reports from these files, follow the directions in Section 12.4.1.

12.2.2 Parametric Run Mode

If you are running ASEAM3.0 in the parametric processing mode, the output files are more limited. Refer to Chapter 11 for a discussion of how to specify the outputs included in the report.

The Parametric Run Mode creates a maximum of nine output files. The first two are always created:

xxxxPRIN.PRN (contains the input variables) xxxxPROU.PRN (contains the output variables and results)

The following seven files are created only if you requested them in "Specify Analysis":

xxxxPRMG.PRN (monthly gas consumption, parametric input variable #30) xxxxPRMO.PRN (monthly oil consumption, parametric input variable #31) xxxxPRME.PRN (monthly electricity consumption, parametric input variable #32)

xxxxPRMH.PRN (monthly district heating consumption, parametric input #33) xxxxPRMC.PRN (monthly district cooling consumption, parametric input #34) xxxxPRPL.PRN (peak loads summaries, parametric input variable #35) xxxxPRLC.PRN (BLCC summaries; if a base case BLCC file is specified)

To create legible reports from these LOTUS compatible files, follow the directions in Section 12.4.1.

12.2.3 Single and Multiple ECO Run Modes

If you are running ASEAM3.0 in the Single or Multiple ECO Run mode, the output reports are ASCII text files only, which compare the base case with the ECO case(s). The file names used are xxxxSECO.Z (Single ECO Run Mode) and xxxxMECO.Z (Multiple ECO Run Mode), where Z is the run number (1 is the first, or base case, run; 2 compares the base case run and ECO #1, etc.).

These reports are already in text file mode. The file is legible when you "type" it or retrieve the file with a word processor. Follow the directions in Section 12.4.3.

12.3 Run-Time Graphics and Reports

Run-time graphic displays and reports differ from other output reports in that you must be at the computer while the program is calculating to obtain them. These displays occur while the calculations are being performed regardless of the calculation mode. They show the calculations being performed, typically hour by hour for loads and bin by bin for systems and plant. If you want to see what is happening on a particular hour of a particular month, these data are available, but you must turn on the display when the calculations reach that month.

The run-time outputs are quite voluminous. They may be directed to a printer or to the screen, but not to a file. Viewing or printing the displays slows down the calculations considerably, so you should turn the displays off when you are not watching them.

Run-time outputs are accessed by using the function keys while ASEAM3.0 is performing the calculations. You can tell where you are in the calculations from the message on the screen (e.g., Calculating Loads, Zone 3, May). Below this message a function key menu appears. The keys have the following functions:

F1 - turns on the function key menu. This stops any present screen display.

F2 - stops the program. The screen will display a question asking if you want to stop the program. If this key was pressed by mistake, respond accordingly and the program will continue.

- F3 turns on screen display of calculations (loads only)
- F4 turns off screen display of calculations (loads only)
- F5 turns on screen graphics display of calculations
- F6 turns off screen graphics display of calculations
- F7 turns on printer output
- F8 turns off printer output

F9 - increases graphic screen delay by 1 second. If you want to "freeze" the screen, the CTRL-NUMLOCK keys should be pressed at the same time. Press any key to resume the screen display update.

F10 - decreases graphic screen delay by 1 second

12.4 Accessing Output Reports

The three types of output reports (LOTUS-compatible data files, non-LOTUScompatible data files, and text files) are accessed differently. Obviously, you can "type" any of these files, but, except for the text files, the result will be basically unintelligible strings of numbers.

ASEAM3.0 includes ways to present the data in a more useful and understandable manner in Section 12.4.1 through 12.4.3.

The following table lists all of the possible output reports, the calculation run modes that generate the reports, and the file type.

Output File Type

		DATA		availability Culation Moe E M	DES)	
=====						
LOADS						
1 xxxxLAyy	- 9	5 S	S -			
2 xxxxLByy.PRN						
	5 -	-	5 5			
3 xxxxLCyy.PRN						
4 xxxxLDyy.PRN	S -	-	SS			
5 xxxxLEyy.PRN	S -	-	SS			
6 xxxxLFyy.PRN	S -	_	SS			
	-					
7 xxxxLGyy.PRN	-	-				
8 xxxxLHyy.PRN	S -	-	SS			

9 xxxxLlyy.PRN	S	-	-	S	S			-	
10 xxxxLJyy.PRN	S	-	-	S	S	-	-	-	
11 xxxxLKyy.PRN	S	-	-	S	S	-	-	-	
12 xxxxLLyy.PRN	S	-	-	S	S	-	-	-	
13 xxxxLMyy.PRN	S	-	-	S		-	-	-	
14 xxxxLNyy.PRN	S	-	-	S		-	-	-	
15 xxxxLOyy.PRN	S	-	-	S	-	-	-	-	
16 xxxxLPyy.PRN	S	-	-	S		-	-	-	
17 xxxxLQyy.PRN	S	-	-	S	-	-	-	-	
18 xxxxLRyy.PRN	S	-	-	S	S	-	-	-	
19 xxxxLSyy.PRN	S	-	-	S	S	-	-	-	
20 xxxxLTyy.PRN	S	-	-	S	S	-	-	-	
21 xxxxLUyy.PRN	S	-	-	S		-	-	-	
22 xxxxLVyy.PRN	S	-	-	S	S	-	-	-	
23 xxxxLWyy.PRN	S	-	-	S	S	-	-	-	
SYSTEMS									
1 xxxxSAyy.PRN	S	-	-	S	S	-	-	-	
2 xxxxSByy.PRN	S	-	-	S	S	-	-	-	
3 xxxxSCyy.PRN	S	-	-	S	S	-	-	-	
4 xxxxSDyy.PRN	S	-	-	S	S	-	-	-	

REPORT OUTPUT FILE TYPE AVAILABILITY LOTUS- TEXT DATA (CALCULATION MODES) COMPAT. S B P E M

=====
PLANT
1 xxxxSLDS.PRN S S S
2 xxxxPDHW.PRN S S S
3 xxxxPCEN.PRN S S S
4 xxxxPABS.PRN S S S
5 xxxxPDBC.PRN S S S 6 xxxxPREC.PRN S S S
6 xxxxPREC.PRN S S S 7 xxxxPDBH.PRN S S S
8 xxxxPBLR.PRN S S S
9 xxxxPTOW.PRN S S S
10 xxxxBEPS.ASO S S S
10 XXXXDEFS.ASO 5 5 5 5
PARAMETRIC
1 xxxxPRIN.PRN D D
2 xxxxPROU.PRN D D
3 xxxxPRPL.PRN S S
4 xxxxPRLC.PRN S S
5 xxxxPRMG.PRN S S
6 xxxxPRMO.PRN S S
7 xxxxPRME.PRN S S
8 xxxxPRMH.PRN S S
9 xxxxPRMC.PRN S S
LCC
1 xxxxLCCO.LCO - S - S S
1 XXXX2000.200 5 5 5 5
ECO
1 xxxxSECO.Z - D D -
2 xxxxMECO.Z - D D
where 'S' indicates this report may (or may not) be specified
'D' indicates this report is defaulted - it always is produced
Availability (Calculation Mode) Codes
`S' Single Run Mode

- `B' Batch Run Mode
- P' Parametric Run Mode
- `E' Single ECO Run Mode
- `M' Multiple ECO Run Mode

12.4.1 LOTUS-Compatible Reports

All output reports from the Single and Batch Run Modes are written in standard ASCII files and may be imported into many spreadsheet or word processing packages

except for the Peak Loads (xxxxLAyy.PRN) and BEPS (xxxxBEPS.ASO) reports. All output reports from the Parametric Run mode are also LOTUS-compatible. This section explains how to use LOTUS to format these reports.

To format Peak Loads and BEPS reports, refer to Section 12.4.2. The output reports from Single and Multiple ECO Run modes and from the BLCC program are text files. Refer to Section 12.4.3 for instructions.

ASEAM3.0 includes a LOTUS worksheet template file consisting of many "macros" for formatting LOTUS-compatible output files. This file is named "AS3TEMPL.WKS" and is located in the ASEAM3.0 directory. To use this template, enter LOTUS and, on the blank worksheet, use the "/File Retrieve" command to load in "AS3TEMPL". This file contains macro's for formatting ASEAM3.0 output reports. Instructions are included in the file and will be visible when the file is imported into LOTUS.

First, determine the output report file to be displayed (see menu below). Second, position the cursor to the right of the instructions, separated by at least one blank column and five blank rows. If you are importing more than one file, import the others below or to the right of each other, separated by at least five blank rows (for headings) and one blank column. Third, press the appropriate key (see below) to format your report. If your report file is not in your data subdirectory, press "Ctrl-Break" to stop the macro.

Macro Definitions

Loads Reports Alt-a all loads reports

Systems Reports

- Alt-b systems SA report (zone loads on systems)
- Alt-c systems SB report (system energy requirements)
- Alt-d systems SC report (system psychrometrics central systems)
- Alt-e systems SD report (system psychrometrics unitary systems)

Plant Reports

- Alt-f plant SLDS report (system loads on plant)
- Alt-g plant PDHW report (plant domestic hot water)
- Alt-h plant PCEN report (centrifugal or recipricating chiller)
- Alt-i plant PABS report (absorption chiller)
- Alt-j plant PBDC report (double bundle chiller cooling)
- Alt-k plant PBDH report (double bundle chiller heating)
- Alt-I plant PBLR report (boiler)
- Alt-m plant PTOW report (cooling tower)
- Parametric Reports

Alt-p parametric output reports

Monthly Energy Consumption

Alt-x monthly energy consumption by fuel type

12.4.2 Data Files - BEPS and Peak Load Summaries

The BEPS and Peak Load summaries (if specified) will automatically be printed if you

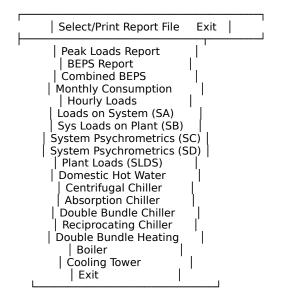
indicated that you have a printer installed. The data for these files will also be written to files in the data subdirectory for later use. Printed output of these files is suppressed in the parametric run mode.

The BEPS and Peak Loads summaries are stored in data files that are not LOTUScompatible (i.e., you cannot import these files into a spreadsheet). To generate useful reports from these files, ASEAM3.0 includes report generator programs.

The report generator program is used after the calculations are complete. The file names in the data subdirectory will be in the form xxxxBEPS.ASO (BEPS file) and xxxxLAyy.PRN (Peak Loads file), where `xxxx' is your specified file-name prefix, `yy' is the zone number for the report, and `00' is the whole building peak loads summary.

You can enter the report generator program from the Main Menu or from the "exit" choices of any program. If you access this program from the Main Menu (shown below), select "Print Reports" from the horizontal bar and then "Misc Output" from the pull-down menu.

ASEAM3 MAIN MENU


Input Data	Print Reports Spec	ify Analyses	Run Calcs	Exit DOS
[Loads Echo Systems Echo Plant Echo Weather Echo Misc Output Exit			

The ASEAM3.0 Reports Program Menu will then appear on the screen. Select "Select/Print Report File" and press CR. Select the type of output report to be generated. The "Combined BEPS" report is used when you want to combine several BEPS reports. For example, if a building was so complex that it had to be modeled by two separate ASEAM3.0 runs (e.g., if the building model required more than 15 zones), you would combine the two "halves" of the building to obtain the total annual energy consumption.

ASEAM3.0 User's Manual

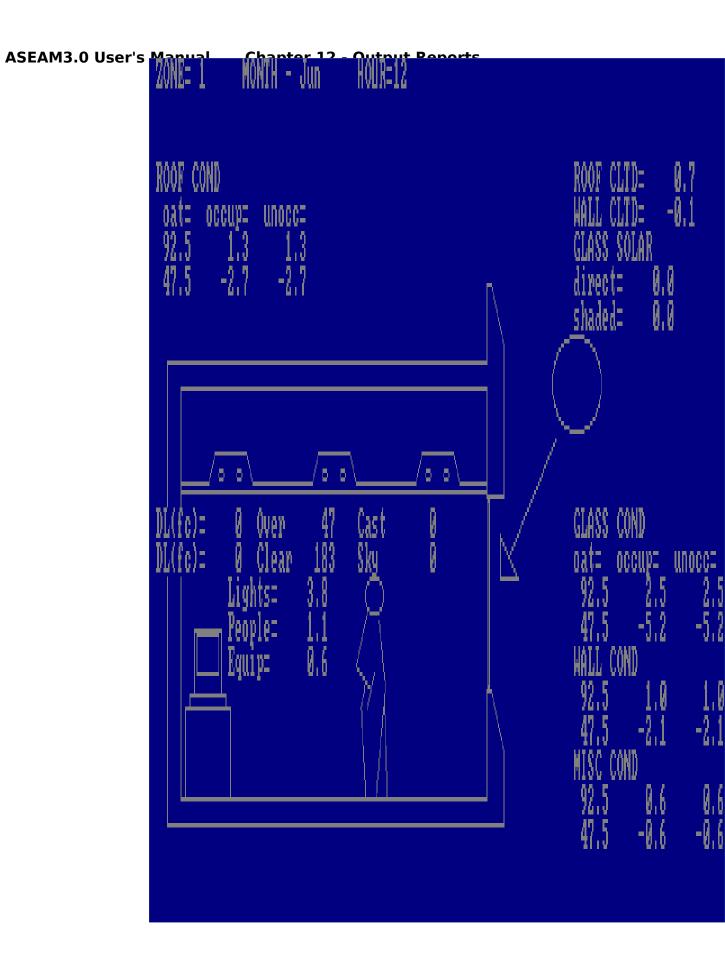
Chapter 12 - Output Reports

Next, specify the output device for the output report. The output report may be printed to the screen, to a printer, or to a file. You will be asked to provide a two-line title, which will appear at the top of the output report. If the report is to be written to a file, you will also be asked for the file name. Do not include a drive specification; the file will automatically be written to drive B.

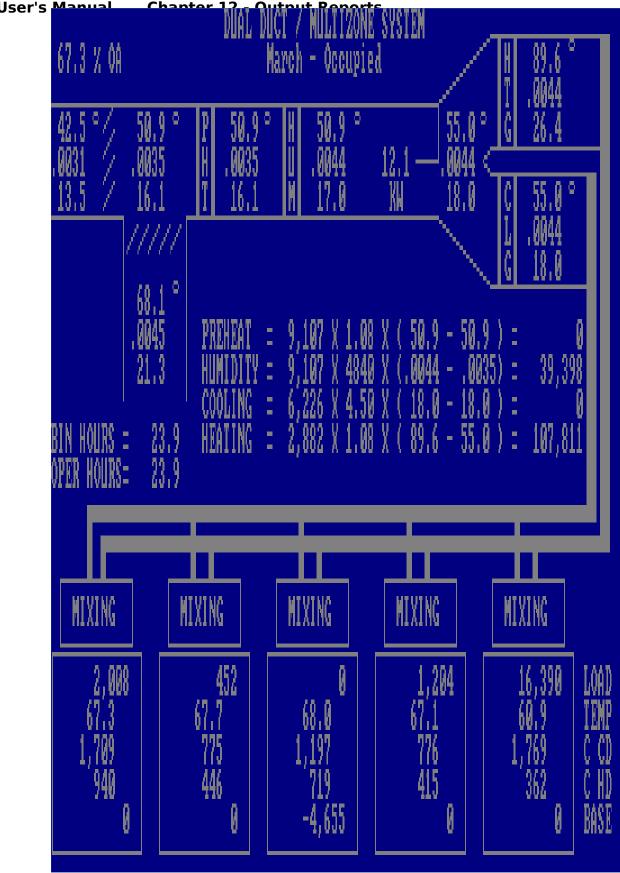
ASEAM3 OUTPUT DEVICE

12.4.3 Text Files

The outputs of the BLCC and ECO calculations are text files. You can view these files using the "type" command from DOS (e.g., "type xxxxLCCO.LCO" (CR)). The files are standard ASCII files, so they may also be retrieved and edited with a word processor.

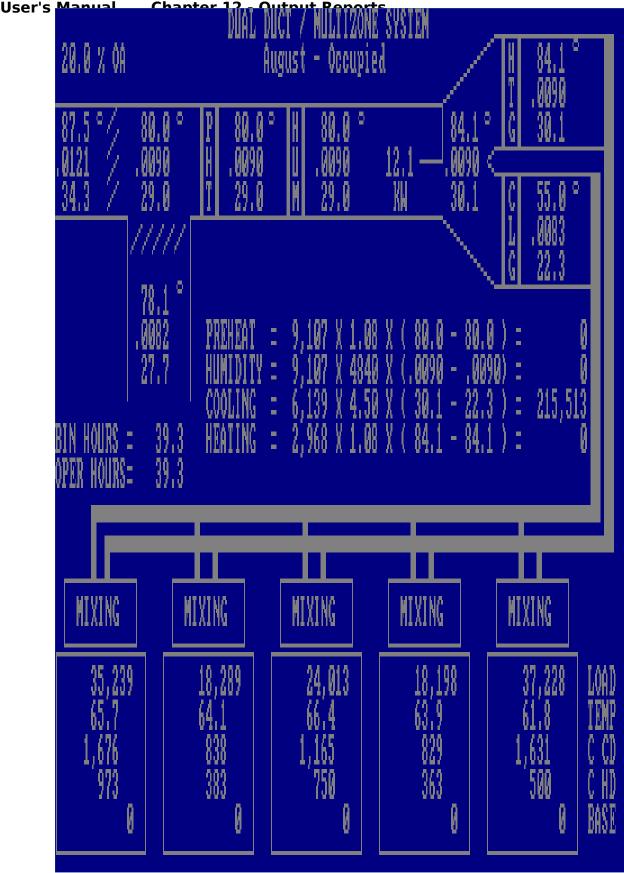

12.5 Sample Outputs

12.5.1 Run-Time Graphics

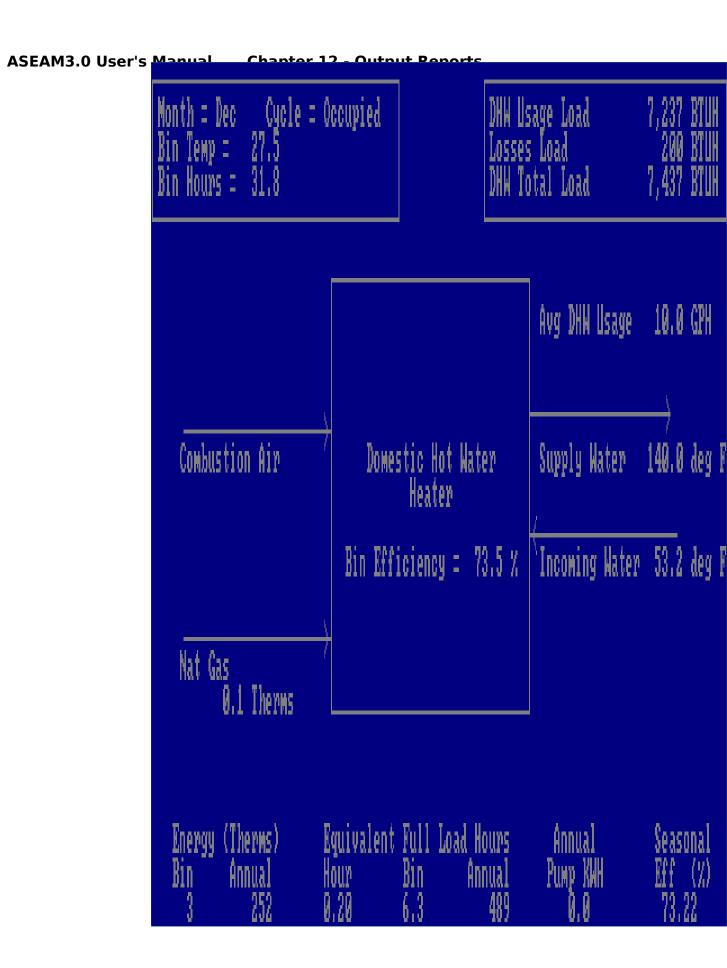

Examples of run-time graphics are shown on the following pages. The graphics vary with system type and plant component. The examples do not include all possible combinations.

Run-time graphics will be displayed on the screen when you press the F5 key during the calculations. Refer to Section 12.3 for details.

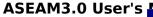
ASEAM3.0 User's Manual Chapter 12 - Output Reports Sample ASEAM3.0 Graphic Screen - Loads

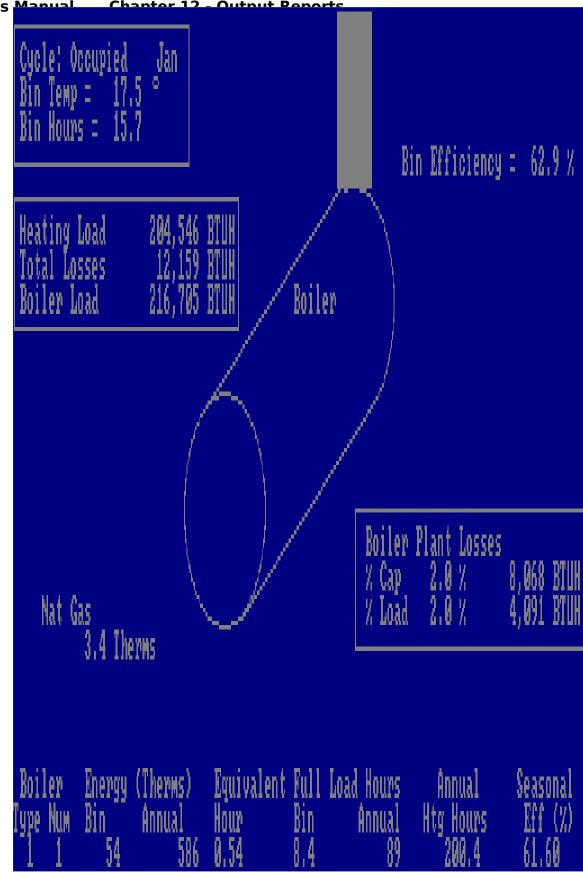


ASEAM3.0 User's Manual Chapter 12 - Output Reports Sample ASEAM3.0 Graphic Screen - Dual Duct / Multizone System - Heating

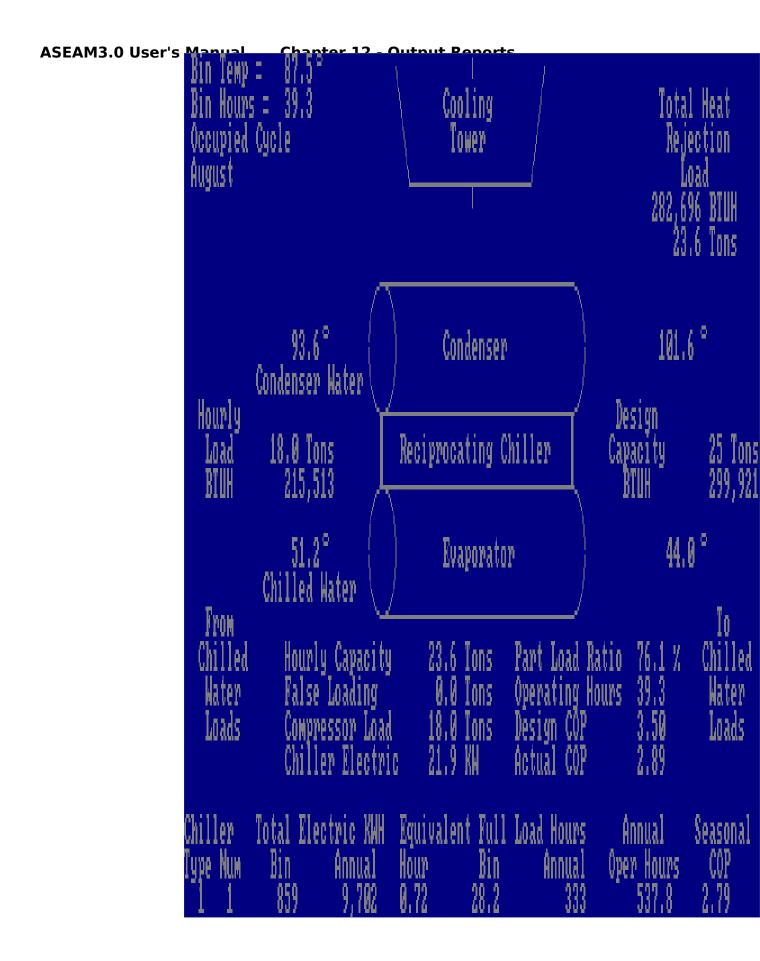

ASEAM3.0 User's

ASEAM3.0 User's Manual Chapter 12 - Output Reports Sample ASEAM3.0 Graphic Screen - Dual Duct / Muiltizone System - Cooling

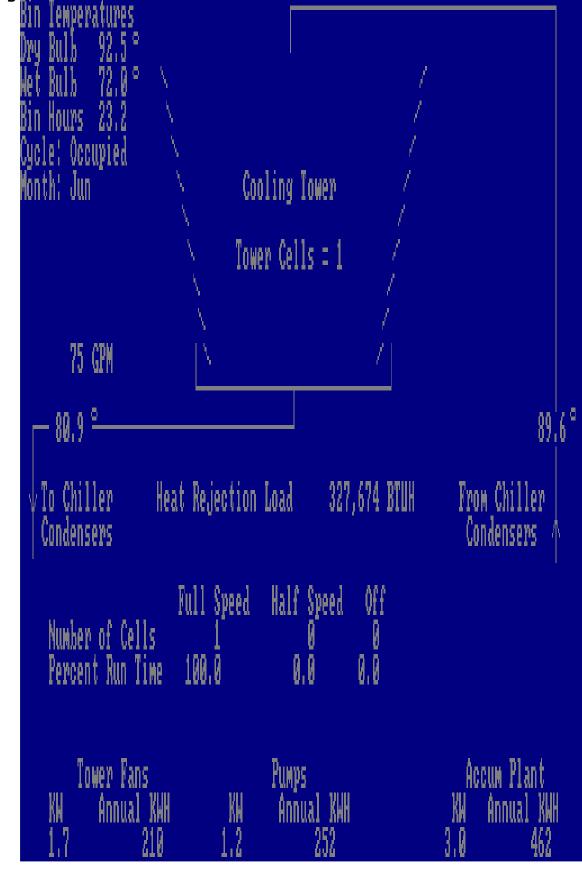



ASEAM3.0 User's

ASEAM3.0 User's Manual Chapter 12 - Output Reports Sample ASEAM3.0 Graphic Screen - Domestic Hot Water



ASEAM3.0 User's Manual Chapter 12 - Output Reports Sample ASEAM3.0 Graphic Screen - Boiler



ASEAM3.0 User's Manual Chapter 12 - Output Reports Sample ASEAM3.0 Graphic Screen - Reciprocating Chiller

ASEAM3.0 User's Manual Chapter 12 - Output Reports Sample ASEAM3.0 Graphic Screen - Cooling Tower

ASEAM3.0 User's Manual Chapter 12 - Output Reports 12.5.2 Run-Time Calculation Reports

Examples of run-time loads calculations are shown on the following pages. The calculation reports for the systems and plant calculations vary with system type and plant component. The examples shown below only include the load calculations.

Run-time calculations will be printed when you press the F7 key during the calculations. For the Loads segment *only*, run-time calculations will be displayed on the screen when you press the F3 key. Refer to Section 12.3 for details.

Exterior Load Calculations

ASEAM3 breaks down the exterior loads into two load components - time (CLTD) and temperature (conduction) dependent loads. The wall and roof conduction and CLTD loads were calculated using the CLTD method outlined in Chapter 26 of the 1985 ASHRAE Handbook of Fundamentals (see Table 7), where

Wall Load = U * A * Corrected CLTD

where: Corr. CLTD = [(CLTD + LM) * K + (78 - Tr) + (To - 85)]= [(CLTD + LM) * K + (78 - 85)] + [(To - Tr)]

or:

Wall Load = U * A * [(CLTD + LM) * K - 7] CLTD term (time dependent)

U * A * (To - Tr) conduction term (temperature dependent)

with,

U	= wall U Factor, Btu / hr-ft²-°F
Α	= wall area, ft ²
CLTD	= 1985 ASHRAE Fundamentals, Chapter 26 - Table 7
LM	= latitude and month correction, Chapter 26 - Table 9
К	= color correction, see footnote in Table 7, Chapter 26
То	= outside air temperature, °F
Tr	= room or zone set point temperature, °F

Outlined below are sample conduction and CLTD outputs.

Wall Conduction

e) d) a) b) c) f) g) h) i) Load Calc Z# M# S# U-FCT AREA OAT SPC T WALL LOAD ACCUM WALL Wall Cond 1 2 1 (0.100)(700)(57.5 - 68.0)= -735 -735 Wall Cond 1 2 1 (0.100)(700)(-2.5 - 68.0)= -4.935 -4.935 Wall Cond 1 2 1 (0.100)(700)(57.5 - 60.0)= -175 -175 Wall Cond 1 2 1 (0.100)(700)(-2.5 - 60.0)= -4.375 -4.375

a) is the zone number

b) is the month number

c) is the wall type. It corresponds to one of the four columns entered in the wall input screen.

- d) is the wall U-Value. (Wall Input Screen); [Btu / hr-ft²-°F]
- e) is the wall area. (Wall Input Screen); [ft²]

f) is the outside air temperature. (Maximum and minimum bin temperature for the month). $[^\circ F]$

- g) is the zone set point temperature. (Zone Input Screen); [°F]
- h) is the wall load due to "pure" conduction. (i.e. no CLTD correction)
 (h) = (d) * (e) * [(f)-(g)]; [Btu/hr]
- i) Accumulated wall conduction from all wall types. [Btu/hr]

Note: Each of the above entries is provided for 4 cases for each wall. These are:

Case#1: Occupied cycle, high temperature bin. (Max. outside temp.) Case#2: Occupied cycle, low temperature bin. (Min. outside temp.)

Case#3: Same as case #1 for unoccupied cycle. Case#4: Same as case #2 for unoccupied cycle.

Wall CLTD

a) b) c) d) e) f) g) h) i) j) k) l) m) Load Z# M# S# HR SOL# U-FCT AREA CLTD LMC COL C CLTD LD ACC LD

Wall CLTD 1 2 1 1 1.1 (0.100)(700)[(18.8 + 12)(0.83)-7]= 1,297 1,297 Wall CLTD 1 2 1 2 2.1 (0.100) (700) [(16.8 + 12)(0.83)-7] = 1.181 1.181 Wall CLTD 1 2 1 3 3.1 (0.100) (700)[(14.8 + 12)(0.83)-7]= 1,065 1,065 Wall CLTD 1 2 1 4 4.1 (0.100)(700)[(12.8 + 12(0.83)-7=949 949 Wall CLTD 1 2 1 5 5.1 (0.100)(700)[(10.8 + 12)(0.83)-7]= 833 Wall CLTD 1 2 1 6 6.1 (0.100)(700)[(8.9 + 12)(0.83)-7]= 723 723 Wall 833 $CLTD \ 1 \ 2 \ 1 \ 7 \ 7.1 \ (0.100)(\ 700)[(\ 7.9 + \ 12)(0.83)-7] = \ 665$ 665 Wall CLTD 1 2 1 8 8.1 (0.100)(700)[(6.9 + 12)(0.83)-7] = 607607 Wall CLTD 1 2 1 9 9.1 (0.100)(700)[(6.0 556 Wall CLTD 1 2 1 10 10.1 (0.100)(700)[(6.1 + 12)(0.83)-7]= + 12(0.83)-7 = 556563 Wall CLTD 1 2 1 11 11.1 (0.100)(700)[(7.2 + 12)(0.83)-7]= 563 628 628 Wall CLTD 1 2 1 12 12.1 (0.100)(700)[(9.4 + 12)(0.83)-7]= 751 751 Wall CLTD 1 2 1 13 13.1(0.100)(700)[(12.5 + 12)(0.83)-7] = 932932 Wall CLTD 1 2 1 14 14.1 (0.100) (700)[(16.5 + 12)(0.83)-7]= 1,164 1,164 Wall CLTD 1 2 1 15 15.1 (0.100)(700)[(20.5 + 12(0.83)-7=1,397 1,397 Wall CLTD 1 2 1 16 16.1 (0.100)(700)[(24.4 + 12)(0.83)-7]= 1,622 1,622 Wall CLTD 1 2 1 17 17.1 (0.100)(700)[(27.2 + 12)(0.83)-7]= 1,790 1,790 Wall CLTD 1 2 1 18 18.1 (0.100)(700)[(29.0 + 12)(0.83)-7]= 1,892 1,892 Wall CLTD 1 2 1 $19\ 19.1\ (0.100)(\ 700)[(29.0 + 12)(0.83)-7] = 1,892\ 1,892\ Wall\ CLTD\ 1\ 2\ 1\ 20\ 20.1\ (0.100)(\ 0.100)$

700)[(28.8 + 12)(0.83)-7]= 1,878 1,878 Wall CLTD 1 2 1 21 21.1 (0.100)(700)[(26.9 + 12) (0.83)-7]= 1,769 Wall CLTD 1 2 1 22 22.1 (0.100)(700)[(25.8 + 12)(0.83)-7]= 1,704 1,704 Wall CLTD 1 2 1 23 23.1 (0.100)(700)[(23.8 + 12)(0.83)-7]= 1,588 1,588 Wall CLTD 1 2 1 24 24.1 (0.100)(700)[(21.6 + 12)(0.83)-7]= 1,465 1,465

- a) is the zone number
- b) is the month number

c) is the wall type. It corresponds to one of the four columns entered in the wall input screen.

- d) is the local time.
- e) is the solar time.
- f) is the wall U-value. (Wall Input Screen); [Btu / hr-ft²-°F]
- g) is the wall area. (Wall Input Screen); [ft²]

h) is the Cooling Load Temperature Difference. Based on wall orientation, classification (U-value/thermal mass) and location's latitude. [°F] 1985 ASHRAE Fundamentals, Chapter 26 - Table 7. (Adjusted for the local solar hour)

i) is a CLTD latitude/month correction. 1985 ASHRAE Fundamentals, Chapter 26 - Table 9.

j) is a CLTD color adjustment factor. (Wall Input Screen)

k) is a CLTD temperature adjustment resulting from rearranging the equation for the corrected CLTD in 1985 ASHRAE Fundamentals, Chapter 26 - Table 7. (k)= 7 $^{\circ}$ F)

I) is the wall load resulting from the CLTD component. This part of the load accounts for solar gains through opaque walls, radiative exchanges of wall surface with ambient, ... See 1985 ASHRAE Fundamentals, Chapter 26. [Btu/hr]

m) is the accumulated wall CLTD loads from all wall types. [Btu/hr]

Roof Conduction

a) b) c) d) e) f) g) h) i) Load Calc Z# M# S# U-FCT AREA OAT SPC T BIN LOAD ACCUM LOAD Roof Cond 1 2 1 (0.100)(900)(57.5 - 68.0)= -945 -945 Roof Cond 1 2 1 (0.100)(900)(-2.5 - 68.0)= -6,345 -6,345 Roof Cond 1 2 1 (0.100)(900)(57.5 - 60.0) =-225 -225 Roof Cond 1 2 1 (0.100)(900)(-2.5 - 60.0) =-5.625 -5.625

- a) is the zone number
- b) is the month number

c) is the roof type. It corresponds to one of the two columns entered in the roof input screen.

- d) is the roof U-Value. (Roof Input Screen); [Btu / hr-ft²-°F]
- e) is the wall area. (Roof Input Screen); [ft²]
- f) is the outside air temperature. (Max/Min from weather data for the month). [°F]
- g) is the set point / zone temperature. (Zone Input Screen); [°F]
- h) is the roof load due to "pure" conduction. (i.e. no CLTD correction)
 (h) = (d) * (e) * [(f)-(g)]; [Btu/hr]
- i) Accumulated roof conduction from all roof types. [Btu/hr]

Note: Each of the above entries is provided for 4 cases as in the wall conduction

Roof CLTD

a) b) c) d) e) f) g) h) i) j) k) l) m) Load Z# M# S# HR SOL# U-FCT AREA CLTD LMC COL C CLTD LD ACC LD
Roof CLTD 1 2 1 1 1.1 (0.100)(900)[(31.5 + -14)(1.00)-7]= 947 2,245
Roof CLTD 1 2 1 2 2.1 (0.100)(900)[(27.4 + -14)(1.00)-7]= 577 1,758
Roof CLTD 1 2 1 3 3.1 (0.100)(900)[(22.5 + -14)(1.00)-7]= 137 1,202
Roof CLTD 1 2 1 4 4.1 (0.100)(900)[(18.6 + -14)(1.00)-7] = -212 737
Roof CLTD 1 2 1 5 5.1 $(0.100)(900)[(15.6 + -14)(1.00)-7] = -482$ 351
Roof CLTD 1 2 1 6 6.1 (0.100)(900)[(12.6 + -14)(1.00)-7]= -752 -29
Roof CLTD 1 2 1 7 7.1 (0.100)(900)[($9.8 + -14$)(1.00)-7]= -1,011 -346
Roof CLTD 1 2 1 8 8.1 (0.100)(900)[(7.9 + -14)(1.00)-7]= -1,181 -574
Roof CLTD 1 2 1 9 9.1 (0.100)(900)[(7.1 + -14)(1.00)-7]= -1,249 -694
Roof CLTD 1 2 1 10 10.1 (0.100)(900)[(8.4 + -14)(1.00)-7]= -1,138 -575
Roof CLTD 1 2 1 11 11.1 $(0.100)(900)[(11.6 + -14)(1.00)-7] = -847 -219$
Roof CLTD 1 2 1 12 12.1 (0.100)(900)[(16.7 + -14)(1.00)-7]= -386 364
Roof CLTD 1 2 1 13 13.1 (0.100)(900)[(22.8 + -14)(1.00)-7]= 164 1,096
Roof CLTD 1 2 1 14 14.1 (0.100)(900)[(29.8 + -14)(1.00)-7]= 794 1,959
Roof CLTD 1 2 1 15 15.1 (0.100)(900)[(36.7 + -14)(1.00)-7]= 1,414 2,810
Roof CLTD 1 2 1 16 16.1 (0.100)(900)[($42.7 + -14$)(1.00)-7]= 1,954 3,576
Roof CLTD 1 2 1 17 17.1 (0.100)(900)[(48.5 + -14)(1.00)-7]= 2,473 4,262
Roof CLTD 1 2 1 18 18.1 (0.100)(900)[(52.2 + -14)(1.00)-7]= 2,811 4,703
Roof CLTD 1 2 1 19 19.1 (0.100)(900)[(54.0 + -14)(1.00)-7]= 2,970 4,862
Roof CLTD 1 2 1 20 20.1 (0.100)(900)[(53.6 + -14)(1.00)-7]= 2,938 4,816
Roof CLTD 1 2 1 21 21.1 (0.100)(900)[(50.5 + -14)(1.00)-7]= 2,657 4,427
Roof CLTD 1 2 1 22 22.1 (0.100)(900)[(46.4 + -14)(1.00)-7]= 2,287 3,991
Roof CLTD 1 2 1 23 23.1 (0.100)(900)[(41.4 + -14)(1.00)-7]= 1,837 3,425
Roof CLTD 1 2 1 24 24.1 (0.100)(900)[(36.4 + -14)(1.00)-7]= 1,387 2,852

- a) is the zone number
- b) is the month number

c) is the roof type. It corresponds to one of the two columns entered in the roof input screen.

- d) is the local time.
- e) is the solar time.
- f) is the roof U-value. (Roof Input Screen); [Btu / hr-ft²-°F]
- g) is the roof Area. (Roof Input Screen); [ft²]

h) is the Cooling Load Temperature Difference. Based on roof classification (U-value/thermal mass) and location's latitude. [°F] 1985 ASHRAE Fundamentals, Chapter 26 - Table 5.

i) is a CLTD latitude/month correction. 1985 ASHRAE Fundamentals, Chapter 26 - Table 9.

j) is a CLTD color adjustment factor. (Roof Input Screen)

k) is a CLTD temperature adjustment resulting from rearranging the equation for the corrected CLTD in 1985 ASHRAE Fundamentals, Chapter 26 - Table 5. (k)= 7 °F)

I) is the roof load resulting from the CLTD component. This part of the load accounts for solar gains through opaque roofs, radiative exchanges of roof surface with ambient, ... See 1985 ASHRAE Fundamentals, Chapter 26. [Btu/hr]

m) is the accumulated CLTD loads from all wall and roof types. [Btu/hr]

Glass Conduction

a) b) c) d) e) f) g) h) i) Load Calc Z# M# S# U-FCT AREA OAT SPC T BIN LOAD ACCUM LOAD Glass Cond 1 2 1 (0.570)(300)(57.5 - 68.0)= -1,796-1,796 Glass Cond 1 2 1 (0.570)(300)(-2.5 - 68.0)= -12,056 -12.056Glass Cond 1 2 1 (0.570)(300)(57.5 - 60.0)= -428 -428 Glass Cond 1 2 1 (0.570)(300)(-2.5 - 60.0) = -10,688 -10.688

- a) is the zone number
- b) is the month number

c) is the window type. It corresponds to one of the four columns entered in the window input screen.

- d) is the window U-Value. (Window Input Screen); [Btu / hr-ft²-°F]
- e) is the window area. (Window Input Screen); [ft²]
- f) is the outside air temperature. (Maximum and minimum bin temperatures for

the month). [°F]

- g) is the zone setpoint temperature. (Zone Input Screen); [°F]
- h) is the window load due to "pure" conduction. (i.e. no CLTD correction) (h) = (d) * (e) * [(f)-(g)]; [Btu/hr]
- i) Accumulated window conduction from all window types. [Btu/hr]

Note: Each of the above entries is provided for 4 cases as in the wall conduction

Glass CLTD

a) b) c) d) e) f) g) h) i) j) k) Load Z# M# S# HR SOL# U-FCT AREA CLTD CLTD LOA	AD ACCUM LOAD
Glass CLTD 1 2 1 1 1.1 (0.570)(300)(0.9 - 7)= -1,046	1,199
Glass CLTD 1 2 1 2 2.1 (0.570)(300)(-0.1 - 7)= -1,217	541
Glass CLTD 1 2 1 3 3.1 (0.570)(300)(-1.1 - 7)= -1,388	-186
Glass CLTD 1 2 1 4 4.1 (0.570)(300)(-2.0 - 7)= -1,539	-802
Glass CLTD 1 2 1 5 5.1 (0.570)(300)(-2.0 - 7)= -1,539	-1,188
Glass CLTD 1 2 1 6 6.1 (0.570)(300)(-2.0 - 7)= -1,539	-1,568
Glass CLTD 1 2 1 7 7.1 (0.570)(300)(-1.8 - 7)= -1,499	-1,845
Glass CLTD 1 2 1 8 8.1 (0.570)(300)(0.2 - 7)= -1,157	-1,730
Glass CLTD 1 2 1 9 9.1 (0.570)(300)(2.2 - 7)= -815	-1,508
Glass CLTD 1 2 1 10 10.1 (0.570)(300)(4.4 - 7)= -452	-1,028
Glass CLTD 1 2 1 11 11.1 (0.570)(300)(7.2 - 7)= 40	-179
Glass CLTD 1 2 1 12 12.1 (0.570)(300)(9.4 - 7)= 403	767
Glass CLTD 1 2 1 13 13.1 (0.570)(300)(12.1 - 7)= 875	1,971
Glass CLTD 1 2 1 14 14.1 (0.570)(300)(13.1 - 7)= 1,046	3,005
Glass CLTD 1 2 1 15 15.1 (0.570)(300)(14.0 - 7)= 1,197	4,007
Glass CLTD 1 2 1 16 16.1 (0.570)(300)(13.9 - 7)= 1,177	4,753
Glass CLTD 1 2 1 17 17.1 (0.570)(300)(12.9 - 7)= 1,006	5,268
Glass CLTD 1 2 1 18 18.1 (0.570)(300)(11.8 - 7)= 815	
Glass CLTD 1 2 1 19 19.1 (0.570)(300)(9.8 - 7)= 473	5,335
Glass CLTD 1 2 1 20 20.1 (0.570)(300)(7.8 - 7)= 131	4,947
Glass CLTD 1 2 1 21 21.1 (0.570)(300)(5.8 - 7)= -211	4,215
Glass CLTD 1 2 1 22 22.1 (0.570)(300)(3.9 - 7)= -533	
Glass CLTD 1 2 1 23 23.1 (0.570)(300)(2.9 - 7)= -704	-
Glass CLTD 1 2 1 24 24.1 (0.570)(300)(1.9 - 7)= -875	1,976

- a) is the zone number
- b) is the month number

c) is the window type. It corresponds to one of the four columns entered in the window input screen.

- d) is the local time.
- e) is the solar time.
- f) is the window U-value. (Window Input Screen); [Btu / hr-ft²-°F]

g) is the window area. (Window Input Screen); [ft²]

h) is the Cooling Load Temperature Difference for glass conduction. 1985 ASHRAE Fundamentals, Chapter 26 - Table 10. (adjusted for the solar hour); [°F]

i) is a CLTD temperature adjustment resulting from rearranging the equation for CLTD in 1985 ASHRAE Fundamentals, Chapter 26 - Table 10. (k)= 7 °F)

j) is the window load resulting from the CLTD component ... See 1985 ASHRAE Fundamentals, Chapter 26, page 26.13. [Btu/hr]

k) is the accumulated CLTD loads from all wall, roof and window types. [Btu/hr]

Exterior Window Shading

a) b) c) d) e) f) g) h) i) j) k) Load Z# M# S# HR SOL# AREA MSHG CLFG SHDC CLF LOAD ACCUM LOAD

Glass Direct 1 2 1 1 1.1 (300)(247)(0.12)(0.80) =7,0447,044Glass Shade 1 2 1 1 1.1 (0)(22)(0.23)(0.80) =07,044

HOURS BETWEEN 1:00 A.M AND SUNRISE :

- a) is the zone number
- b) is the month number

c) is the window type. It corresponds to one of the four columns entered in the window input screen.

- d) is the local time.
- e) is the solar time.
- f) is the window area. (Window Input Screen); [ft²]

g) is the Maximum Solar Heat Gain Factor (hourly), from 1985 ASHRAE Fundamentals, Chapter 26 - Table 11. These values are provided for each month as a function of latitude and orientation.

h) is the Cooling Load Factor for Glass, from 1985 ASHRAE Fundamentals, Chapter 26 - Table 13. These values are provided for each hour for different thermal mass levels and windows orientations.

i) is the window Shading Coefficient. (Window Input Screen) ... See 1985 ASHRAE Fundamentals, Chapter 27 for further discussion.

j) is the cooling load due to fenestration solar heat gain for the hour. From equation 12, page 26.14 of the 1985 ASHRAE Fundamentals. [Btu/hr]

k) is the accumulated cooling load due to solar gains from all window types. [Btu/hr]

Glass Direct 1 2 1 6 6.1 (300)(247)(0.08)(0.80)=4,9524,952Glass Shade 1 2 1 6 6.1 (0)(22)(0.35)(0.80)=04,952

WALL SOLAR ANGLE SOLAR <------ AREAS SHADED -----> TOTAL TOTALAZIM AZIMUTH DIFF ALT OVERSIDE SHADED SUNLIT180108.8-71.21.00.10.07.37.47.61

a) b) c) d) e) f) g) h) i) j) k) Load Z# M# S# HR SOL# AREA MSHG CLFG SHDC CLF LOAD ACCUM LOAD

Glass Direct 1 2 1 7 7.1 (152)(247)(0.11)(0.80) =3,4174,498Glass Shade 1 2 1 7 7.1 (148)(22)(0.42)(0.80) =1,0814,498

HOURS BETWEEN SUNRISE AND SUNSET:

For the hours that the sun is up, the shaded areas of the typical window are calculated as a function of the hourly solar angles and the window geometry. The results are presented in two tables for each hour. The first table outlines the data and results of the shading calculations, the second table presents the calculated cooling loads in exactly the same format as for the other hours of the day (i.e. a) ... k) are the same entries as for hours between 1:00 a.m. and Sunrise). The portion of the total window area that is shaded is assigned a north facing orientation (with maximum solar heat gain factors and cooling load factors for north). This method of estimating the cooling loads due to solar heat gain is an approximation based on an extrapolation of the method used for non-shaded windows as presented in 1985 ASHRAE Fundamentals, chap 26.14.

The method used to perform the shading calculations was based on an algorithm presented in "Procedures for Determining Heating and Cooling Loads for Computerizing Energy Calculations, Algorithms for Building Heat Transfer Subroutines", 1985 ASHRAE Energy Calculations 1 (1975).

All shading calculations are done on per window basis, then generalized to the total glazing area.

WALL SOLAR ANGLE SOLAR <------ AREAS SHADED ------> TOTAL TOTAL AZIM AZIMUTH DIFF ALT OVER SIDE SHADED SUNLIT 180 249.3 69.3 3.0 0.2 0.0 0.0 6.6 6.7 8.26 Z# M# S# HR SOL# AREA MSHG CLFG SHDC CLF LOAD ACCUM LOAD Load Glass Direct 1 2 1 17 17.1 (165)(247)(0.40)(0.80)= 13,191 14,950 Glass Shade 1 2 1 17 17.1 (135)(22)(0.74)(0.80)= 14.950 1.760

Glass Direct 1 2 1 18 18.1 (300)(247)(0.35)(0.80)= 20,851 20,851 Glass Shade 1 2 1 18 18.1 (0)(22)(0.67)(0.80)= 0 20,851

HOURS BETWEEN SUNSET AND MIDNIGHT:

(Same entries as hours between 1:00 a.m. and Sunrise)

Glass Direct 1 2 1 24 24.1 (300)(247)(0.14)(0.80) =8,159Glass Shade 1 2 1 24 24.1 (0)(22)(0.27)(0.80) =08,159

Glass Infiltration

a)b)c)d)e)f) g) h) i) Load Calc Z# M# S# CFM I OAT SPC T BIN LOAD ACCUM LOAD Glass Infil 1 2 1 (141)(1.08)(57.5 - 68.0)= -1.602 -1.602Glass Infil 1 2 1 (141)(1.08)(-2.5 - 68.0) = -10,755-10,755 Glass Infil 1 2 1 (141)(1.08)(57.5 - 60.0)= -381 -381 Glass Infil 1 2 1 (141)(1.08)(-2.5 - 60.0)= -9,535 -9,535

a) is the zone number

b) is the month number

c) is the window type. It corresponds to one of the four columns entered in the window input screen.

d) is the crack induced infiltration rate in CFM, calculated once every month based on the wind speed and pressure, crack length and leakage coefficient.

CFM I = CRACK LENGTH * LEAKAGE COEFFICIENT * INFILC

with,

INFILC= (WIND PRESSURE)^0.65 WIND PRESSURE= 0.000482 * (MONTHLY AVERAGE WIND SPEED)^2

Please refer to section A5.7 of the "Cooling and Heating Load Calculation Manual" of ASHRAE GRP 158 (1979) for further discussion.

e) 1.08 is a conversion factor used to convert air flow (CFM) rate and temperature into an energy term

1.08 = AIR DENSITY * SPECIFIC HEAT OF AIR * 60 MINUTES/HR= 0.075 * 0.24 * 60

f) is the outside air temperature. (Maximum and minimum bin temperatures for the month). [°F]

g) is the zone setpoint temperature. (Zone Input Screen); [°F]

h) is the window load due to infiltration through window cracks. [Btu/hr]

i) is the accumulated crack infiltration load from all window types. [Btu/hr]

Note: Each of the above entries is provided for 4 cases as in the wall conduction

Door Conduction

a)b)c) d) e) f) h) g) i) Load Calc Z# M# S# U-FCT AREA OAT SPC T BIN LOAD ACCUM LOAD Door Cond 1 2 1 (0.700)(42)(57.5 - 68.0) =-309 -309 Door Cond 1 2 1 (0.700)(42)(-2.5 - 68.0)= -2,073 -2,073 Door Cond 1 2 1 (0.700)(42)(57.5 - 60.0)= -74 -74 Door Cond 1 2 1 (0.700)(42)(-2.5 - 60.0) =-1,838 -1,838

- a) is the zone number
- b) is the month number

c) is the door type. It corresponds to one of the two columns entered in the door input screen.

- d) is the door U-Value. (Door Input Screen); [Btu / hr-ft²-°F]
- e) is the door area. (Door Input Screen); [ft²]

f) is the outside air temperature. (Maximum and minimum bin temperatures for the month). $\cite[{}^\circ F\cite[{}]$

- g) is the zone setpoint temperature. (Zone Input Screen); [°F]
- h) is the door load due to "pure" conduction. (i.e. no CLTD correction) (h) = (d) * (e) * [(f)-(g)]; [Btu/hr]
- i) Accumulated door conduction from all door types. [Btu/hr]

Note: Each of the above entries is provided for 4 cases as in the wall conduction

Door CLTD

a) b)	c)d)e)f)g)h)i)j)k)	
Load Calc	Z# M# S# HR SOL# U-FCT AREA CLTD	CLTE	D LOAD ACCUM LOAD
Door CLTD	$1 \ 2 \ 1 \ 1 \ 1.1 \ (0.700)(42)(0.9 - 7) =$	-180	1,019
Door CLTD	$1 \ 2 \ 1 \ 2 \ 2.1 \ (0.700)(42)(-0.1-7) =$	-209	332
Door CLTD	$1 \ 2 \ 1 \ 3 \ 3.1 \ (0.700)(42)(-1.1-7) =$	-239	-424
Door CLTD	$1 \ 2 \ 1 \ 4 \ 4.1 \ (0.700)(42)(-2.0-7) =$	-265	-1,067
Door CLTD	1 2 1 5 5.1 (0.700)(42)(-2.0-7)=	-265	-1,453
Door CLTD	$1 \ 2 \ 1 \ 6 \ 6.1 \ (0.700)(42)(-2.0-7) =$	-265	-1,832
Door CLTD	$1 \ 2 \ 1 \ 7 \ 7.1 \ (0.700)(42)(-1.8 - 7) =$	-258	-2,102
Door CLTD	$1 \ 2 \ 1 \ 8 \ 8.1 \ (0.700)(42)(0.2 - 7) =$	-199	-1,929
Door CLTD	1 2 1 9 9.1 (0.700)(42)(2.2 - 7)=	-140	-1,648
Door CLTD	$1 \ 2 \ 1 \ 10 \ 10.1 \ (0.700)(42)(4.4 - 7) =$	-78	-1,106

ASEAM3	.0 User's Manual Chapter 12	- Output Reports
Door CLTD	1 2 1 11 11.1 (0.700)(42)(7.2 - 7)=	-172
Door CLTD	1 2 1 12 12.1 (0.700)(42)(9.4 - 7)=	69 836
Door CLTD	1 2 1 13 13.1 (0.700)(42)(12.1 - 7):	= 150 2,122
Door CLTD	1 2 1 14 14.1 (0.700)(42)(13.1 - 7):	= 180 3,185
Door CLTD	1 2 1 15 15.1 (0.700)(42)(14.0 - 7):	= 206 4,213
Door CLTD	1 2 1 16 16.1 (0.700)(42)(13.9 - 7):	= 202 4,955
Door CLTD	1 2 1 17 17.1 (0.700)(42)(12.9 - 7):	= 173 5,441
Door CLTD	1 2 1 18 18.1 (0.700)(42)(11.8 - 7):	= 140 5,658
Door CLTD	1 2 1 19 19.1 (0.700)(42)(9.8 - 7)=	81 5,416
Door CLTD	1 2 1 20 20.1 (0.700)(42)(7.8 - 7)=	= 22 4,970
Door CLTD	1 2 1 21 21.1 (0.700)(42)(5.8 - 7)=	-36 4,179
Door CLTD	1 2 1 22 22.1 (0.700)(42)(3.9 - 7)=	-92 3,366
Door CLTD	1 2 1 23 23.1 (0.700)(42)(2.9 - 7)=	-121 2,599
Door CLTD	1 2 1 24 24.1 (0.700)(42)(1.9 - 7)=	-150 1,826

- a) is the zone number
- b) is the month number

c) is the door type. It corresponds to one of the two columns entered in the door input screen.

- d) is the local time.
- e) is the solar time.
- f) is the door U-value. (Door Input Screen); [Btu / hr-ft²-°F]
- g) is the door area. (Door Input Screen); [ft²]

h) is the Cooling Load Temperature Difference for glass conduction. 1985 ASHRAE Fundamentals, Chapter 26 - Table 10. (Adjusted for the solar hour); [°F]

i) is a CLTD temperature adjustment resulting from rearranging the equation for CLTD in 1985 ASHRAE Fundamentals, Chapter 26 - Table 10. (k)= 7 °F)

j) is the door load resulting from the CLTD component; [Btu/hr]

k) is the accumulated CLTD loads from all wall, roof, window and door types. [Btu/hr]

Door Infiltration

a)b)c) d) e) f) g) h) i) Load Calc Z# M# S# CFM I OAT SPC T BIN LOAD ACCUM LOAD Door Infil 1 2 1 (44)(1.08)(57.5 - 68.0)= -505 -2,106 Door Infil 1 2 1 (44)(1.08)(-2.5 - 68.0) =-14.143-3,388 Door Infil 1 2 1 (44)(1.08)(57.5 - 60.0)= -120 -502 Door Infil 1 2 1 (44)(1.08)(-2.5 - 60.0)= -3,003 -12,538

a) is the zone number

b) is the month number

c) is the door type. It corresponds to one of the 2 columns entered in the door input screen.

d) is the crack induced infiltration rate in CFM, calculated once every month based on the wind speed and pressure, crack length and leakage coefficient.

CFM I = CRACK LENGTH * LEAKAGE COEFFICIENT * INFILC

with,

INFILC= (WIND PRESSURE)^0.65 WIND PRESSURE= 0.000482 * (MONTHLY AVERAGE WIND SPEED)^2

Please refer to section A5.7 of the "Cooling and Heating Load Calculation Manual" of ASHRAE GRP 158 (1979) for further discussion.

e) 1.08 is a conversion factor used to convert air flow (CFM) rate and temperature into an energy term

1.08 = AIR DENSITY * SPECIFIC HEAT OF AIR * 60 MINUTES/HR= 0.075 * 0.24 * 60

f) is the outside air temperature. (Maximum and minimum bin temperatures for the month). $\cite["relation"]{\cite["rela$

g) is the zone setpoint temperature. (Zone Input Screen); [°F]

- h) is the door load due to infiltration through door cracks. [Btu/hr]
- i) Accumulated crack infiltration from all door and window types. [Btu/hr]

Note: Each of the above entries is provided for 4 cases as in the wall conduction

Air Change Infiltration

a) b) Load Calc Z	c) d) e Z# M# CFM		g) SPC T	h) BIN LOAD	ACCUM LOAD
Air Change Infil Air Change Infil Air Change Infil Air Change Infil	1 2 (38)(1 1 2 (75)(1	1.08)(-2.5 - 1.08)(57.5 -	68.0)= 60.0)=	-203	-2,532 -16,998 -704 -17,601

- a) is the zone number
- b) is the month number

c) is the infiltration rate -due to air change- in CFM, calculated once every month based on the number of air changes per hour entered in the infiltration screen.

INFILTRATION CFM = ACH * ZONE VOLUME * 1 HR / 60 MIN

d) 1.08 is a conversion factor used to convert air flow (CFM) and temperature into energy terms

1.08 = AIR DENSITY * SPECIFIC HEAT OF AIR * 60 MINUTES/HR= 0.075 * 0.24 * 60

e) is the outside air temperature. (Maximum and minimum bin temperatures for the month). $\cite["emperature"]$

f) is the set point / zone temperature. (Zone Input Screen); [°F]

g) is zone load due to infiltration calculated using the air change method. [Btu/hr]

h) is the accumulated <u>total</u> infiltration load for the zone. [Btu/hr]

Note: Each of the above entries is provided for 4 cases as in the wall conduction

Miscellaneous Conduction

	c) d) e) f) g) h) i) Z# M# S# U-FCT AREA OAT SPC T BIN LOAD	ACCUM LOAD
Misc Cond Misc Cond	$1 \ 2 \ 1 \ (0.350)(\ 250)(\ 73.9 - \ 60.0) = 1,220$	520 -1,137 1,220 -438

a) is the zone number

b) is the month number

c) is the miscellaneous conduction type. It corresponds to one of the two columns entered in the miscellaneous conduction input screen.

d) is the miscellaneous conduction U-Value. (Miscellaneous conduction Input Screen); [Btu / hr-ft²-°F]

e) is the miscellaneous conduction area. (Miscellaneous conduction Input Screen); [ft²]

f) is the outside air temperature. (Maximum and minimum bin temperatures for the month). $\cite["F"]$

g) is the set point / zone temperature. (Zone Input Screen); [°F]

h) is the miscellaneous conduction load(h) = (d) * (e) * [(f)-(g)]; [Btu/hr]

i) is the accumulated miscellaneous conduction conduction from all miscellaneous conduction types. [Btu/hr]

Note: Each of the above entries is provided for 4 cases as in the wall conduction

Daylighting Calculations

ASEAM3 performs daylight calculations for two sky conditions. The first part of the calculations is for an overcast sky condition, the second is done for a clear sky condition.

The first two parts of the hourly output summarize the key parameters used in the calculations for the overcast and the clear sky conditions respectively. The same format is used in both cases. The following two tables summarize the daylight contribution in the two cases for the specified daylight control strategy. Finally, the table of lighting peak load is provided for the indicated hour.

It is important to note that the current version of ASEAM does not consider peak load reduction due to the presence of daylighting.

OVERCAST Hr = 7 Solar Alt 1.0 Illumination of sky on window (Ekw) Illumination of sky on ground (Ekg) Illumination of ground on window (E	13 35	0 0	Solar Azimuth 109 1) 2) 3)
FC on working plane from sky	0	0.4)	5)
FC on working plane from ground	0	0	
FC total on working plane	1	0.6)	

With,

0.1) is the illumination on the window from an overcast sky condition. See Figure 7-9 page 7.6 of the "Daylighting" section of the IES Lighting Handbook, 1984 Reference Manual.

O.2) is the illumination on the ground from an overcast sky condition. See Fig 7-9 page 7.6 of the "Daylighting" section of the IES Lighting Handbook, 1984 Reference Manual.

O.3) is the illumination on the window from the ground. This value is calculated by multiplying the ground illumination from the sky by the ground reflectance and the ground-to-window view factor.

O.4) is the total illuminance from the sky on the working plane in Foot-Candles for the control sensor location entered in the daylighting input screen. This value is calculated by multiplying the illuminance on the window by the glass transmittance and two coefficients of utilization determined from Figure 7-40 page 7.26 of the "Daylighting" section of the IES Lighting Handbook, 1984 Reference Manual. The first coefficient is provided as a function of room length and wall reflectance, the second is based on ceiling height and wall reflectance. Both are provided for various room widths. ASEAM uses a Lagrange interpolation procedure to provide the respective coefficients for the prescribed room conditions.

- 0.5) same as above for illuminance from ground.
- 0.6) is the total illuminance on the working plane under overcast sky conditions.

	-			-
CLEAR SKY $Hr = 7$ Solar Alt 1.0	Surface Az	imuth	180 Solai	⁻ Azimuth 109
Illumination of sky on window (Ekw)	288		C.1)	
Illumination of sun on window (Euw)	0		C.2)	
Illumination of sky on ground (Ekg)	51		C.3)	
Illumination of sun on ground (Eug)	2	C.4)		
Illumination on window from sky / su	ın 288		C.5)	
Illumination on ground from sky / su			C.6)	
Illumination on window from ground			C.7)	
j			- /	
FC on working plane from sky	12	C.8)		
FC on working plane from ground	0	,	C.9)	
FC total on working plane	12	C.10	, ,	
r e totar on working plane	12	0.10	/	

with

C.1,2) are the illumination of the sky and sun on the window under clear sky condition. These numbers were calculated based on the procedures provided in the "Daylighting" section of the IES Lighting Handbook, 1984 Reference Manual, page 7-18. [footcandle]

C.3,4) are the illumination of the sky and sun on the ground. These figures are also based on the procedures provided in the "Daylighting" section of the IES Lighting Handbook, 1984 Reference Manual, page 7-18. [footcandle]

C.5) is the total illumination from the sun and the sky on the window. $\{C.1\} + C.2\}$; [footcandle]

C.6) is the total illumination from the sun and the sky on the ground. $\{C.3\} + C.4\}$; [footcandle]

C.7) is the illumination on the window from the ground. This value is calculated by multiplying the ground illumination from the sky by the ground reflectance and the ground-to-window view factor.

C.8) is the total illuminance from the sky and sun on the working plane in Foot-Candles for the control sensor location entered in the daylighting input screen. This value is calculated by multiplying the illuminance on the window by the glass transmittance and two coefficients of utilization determined from Figure 7-40 page 7.26 of the "Daylighting" section of the IES Lighting Handbook, 1984 Reference Manual. The first coefficient is provided as a function of room length and wall reflectance, the second is based on ceiling height and wall reflectance. Both are provided for various room widths. ASEAM3 uses a Lagrange interpolation procedure to provide the respective coefficients for the prescribed room conditions.

C.9) same as above for illuminance from ground.

C.10) is the total illuminance on the working plane under clear sky conditions.

Sky Condition: Overcast Daylight Control: DimmingHour = 7Present FC = 60Present Watts = 1,575 a)b)Daylite FC = 1b)Art Lighting FC = 49Revised Watts = 1,325 c)

Unoccupied Cycle Diversity Factor = 1.000 d) (Percent time in sky condition = 0.530 Occupied Cycle Diversity Factor=0.823)

Sky Condition: ClearDaylight Control: DimmingHour = 7Present FC= 60Present Watts = 1,575a)Daylite FC= 12b)Art Lighting FC = 38Revised Watts = 1,059c)Unoccupied Cycle Diversity Factor = 1.000d)(Percent time in sky condition = 0.470Occupied Cycle Diversity Factor=0.544)

a) This line contains two figures. The first is the total illumination intensity on the working plane resulting from both artificial and daylight. The second is the total installed watts in the room. Note that the first number could be larger than the design illumination intensity depending on the type of daylighting control used.

b) is the daylight contribution to the required lighting level.

c) This line contains two figures. The first is the artificial light contribution to the lighting level. The second is the effective lighting watts in the space. This value is calculated by deducting the equivalent watts of the daylight contribution from the total installed watts.

d) This line of output has two formats. The first is a format used for unoccupied hours, the second is used for occupied periods. A sample of the second format was included in the above output as an example. (This sample was extracted from a different hour and is shown above between parenthesis)

* Unoccupied Hours Format: Only one output value, the night time diversity factor.

* Occupied Hours Format: Two output values, the first is a ratio reflecting the fraction of time the sky was under the given condition; i.e. overcast or clear, this number is deduced from the percent possible sunshine values for the respective month. The second number is a diversity factor reflecting the daylight contribution.

<u>NOTE</u>: The above calculations are provided in two sets. The first set provides all calculations for the overcast sky conditions. The second set provides the calculations for the clear sky condition. The overall daylighting contribution is estimated by multiplying the overcast and clear sky contribution by their respective fraction of time.

a) b) c) d) e) f) g) h) i) j) k) Load Calc Z# M# S# H# BTU/WT LTG WT CLFL HTSPC BIN LOAD ACCUM LOAD Lighting 1 2 1 1 7 (3.413)(1575)(0.13)(0.80)= 542 542 Plenum 1 2 1 1 7 (3.413)(1575)(0.13)(0.20)= 135 135

HOURS BETWEEN SUNRISE AND SUNSET

OVERCAST Hr =17 Solar Alt 3.0 Surface Azimuth 180 Solar Azimuth 249 Illumination of sky on window (Ekw) 40

ASEAM3.0 User's Manual Chapter 12 - Output Reports Illumination of sky on ground (Ekg) 105 Illumination of ground on window (Egw) 11 FC on working plane from sky 1 FC on working plane from ground 0 FC total on working plane 2 CLEAR SKY Hr = 17 Solar Alt 3.0 Surface Azimuth 180 Solar Azimuth 249 Illumination of sky on window (Ekw) 415 Illumination of sun on window (Euw) 73 Illumination of sky on ground (Ekg) 147 Illumination of sun on ground (Eug) 44 Illumination on window from sky / sun 488 Illumination on ground from sky / sun 191 Illumination on window from ground 19 FC on working plane from sky 20 FC on working plane from ground 1 FC total on working plane 20 Sky Condition: Overcast Daylight Control: Dimming Hour = 17Present FC 60 Present Watts = 1,575= Davlite FC = 2 Art Lighting FC = 48 Revised Watts = 1,297 Percent time in sky condition = 0.530 Occupied Cycle Diversity Factor = 0.823Sky Condition: Clear Daylight Control: Dimming Hour = 17Present Watts = 1,575Present FC = 60 20 Daylite FC = Art Lighting FC = 30Revised Watts = 856 Percent time in sky condition = 0.470 Occupied Cycle Diversity Factor = 0.544a) b) c) d) e) f) g) h) i) k) j) Load Calc Z# M# S# H# BTU/WT LTG WT CLFL HTSPC BIN LOAD ACCUM LOAD Lighting 1 2 1 11 17 (3.413)(1575)(0.86)(0.80) =3.688 3.688 Plenum 1 2 1 11 17 (3.413)(1575)(0.86)(0.20)= 922 922 HOURS BETWEEN SUNSET AND SUNRISE (See Lighting Output Description) Load Calc Z# M# S# H# BTU/WT LTG WT CLFL HTSPC **BIN LOAD** ACCUM LOAD Lighting 1 2 1 24 6 (3.413)(1575)(0.14)(0.80) =583 583 Plenum $1 \ 2 \ 1 \ 24 \ 6 \ (3.413)(\ 1575)(0.14)(0.20) =$ 146 146 a) is the zone number

b) is the month number

c) is the lighting function type. It corresponds to one of the four columns entered in the lighting input screen.

d) is the number of hours elapsed since the lights were turned on. This is calculated from the building's operation starting hour entered in the zone input screen. This number is used to determine the lighting cooling load factor for the hour (column h)).

e) is the local time.

f) is a conversion factor to calculate the corresponding BTU/hr to the lighting wattage.

g) is the lighting wattage entered in the lighting input screen for the given lighting function.

h) is the lighting cooling load factor for the given hour. This cooling load factor is based on the tabulated values in Chapter 26 of the 1985 ASHRAE Fundamentals in Tables 17A through 17E. The tabulated values were adjusted to account for any amount of lights that remains on during the unoccupied hours using the following:

ADJUSTED CLF = [CLF*(TOTAL WATTAGE-UNOCCUPIED WATTAGE) + UNOCCUPIED WATTAGE] / TOTAL WATTAGE

Note that CLF = 1 if all lights remain on continuously (24 hours).

- e) is the fraction of heat from lights that enters the space. (Lighting input screen)
- f) is the lighting load for the given lighting function. [Btu/hr]
- g) is the accumulated lighting load from all lighting functions. [Btu/hr]

Lighting Calculations

		d)e) f M#S#) g) H# BTU	h) i) /WT LTG	j) WT	CLFL I	k) HTSPC	BIN LOAD	ACCUM LOAD
Lighting	1 2	217	(3.413)(200)(0.2	26)(1	.00)=	180	722	
Lighting	1 2	228	(3.413)(200)(0.7	70)(1	=(00	475	3,223	
Lighting	1 2	239	(3.413)(200)(0.7	73)(1	=(00	497	3,408	
Lighting	1 2	2 4 10) (3.413)(200)(0.	75)(1	.00)=	513	3,547	
Lighting	1 2	2 5 1 1	(3.413)	200)(0.	78)(1	.00)=	535	3,732	
Lighting	1 2	2 6 1 2	2 (3.413)(200)(0.	80)(1	.00)=	546	3,825	
Lighting	1 2	2 7 13	3 (3.413)(200)(0.	82)(1	.00)=	562	3,964	
Lighting	1 2	2 8 1 4	4 (3.413)(200)(0.	84)(1	.00)=	573	4,057	
Lighting	1 2	2 9 1 5	5 (3.413)(200)(0.	86)(1	.00)=	584	4,149	
Lighting	1 2	2 10 1	6 (3.413)(200)(0	.87)(1.00)=	595	6 4,242	
Lighting	1 2	2 11 1	7 (3.413)(200)(0	.88)(1.00)=	601	. 4,288	
Lighting	1 2	2 12 1	8 (3.413)(200)(0	.46)(1.00)=	311	. 1,834	
Lighting	1 2	2 13 1	9 (3.413)(200)(0	.43)(1.00)=	295	5 1,695	
Lighting	1 2	2 14 2	0 (3.413)(200)(0	.41)(1.00)=	279) 1,556	
Lighting	1 2	2 15 2	1 (3.413)(200)(0	.38)(1.00)=	: 262	2 1,417	
Lighting	1 2	2 16 2	2 (3.413)(200)(0	.37)(1.00)=	251	. 1,324	

ASEAN	13	.0	Usei	r's	Manual	Chapter 12 -	Output	Reports
Lighting	1	2	2 17	23	(3.413)(200)(0.35)(1.00) =	240	1,232
Lighting	1	2	2 18	24	(3.413)(200)(0.34)(1.00) =	229	1,139
Lighting	1	2	2 19	1	(3.413)(200)(0.32)(1.00) =	218	1,046
Lighting	1	2	2 20	2	(3.413)(200)(0.31)(1.00) =	213	1,000
Lighting	1	2	2 21	3	(3.413)(200)(0.30)(1.00) =	202	907
Lighting	1	2	2 22	4	(3.413)(200)(0.29)(1.00) =	197	861
Lighting	1	2	2 23	5	(3.413)(200)(0.28)(1.00) =	191	815
Lighting	1	2	2 24	6	(3.413)(200)(0.27)(1.00) =	186	768

a) is the zone number

b) is the month number

c) is the lighting function type. It corresponds to one of the four columns entered in the lighting input screen.

d) is the number of hours elapsed since the lights were turned on. This is calculated from the building's operation starting hour entered in the zone input screen. This number is used to determine the lighting cooling load factor for the hour (column h)).

e) is the local time.

f) is a conversion factor to calculate the corresponding Btu/hr to the lighting wattage.

g) is the lighting wattage entered in the lighting input screen for the given lighting function.

h) is the lighting cooling load factor for the given hour. This cooling load factor is based on the tabulated values in chapter 26 of the 1985 ASHRAE Fundamentals in Tables 17A through 17E. The tabulated values were adjusted to account for any amount of lights that remains on during the unoccupied hours using the following:

ADJUSTED CLF = [CLF*(TOTAL WATTAGE-UNOCCUPIED WATTAGE) + UNOCCUPIED WATTAGE] / TOTAL WATTAGE

Note that CLF = 1 if all lights remain on continuously (24 hours).

i) is the fraction of heat from lights that enters the space. (Lighting input screen)

j) is the lighting load for the given lighting function. [Btu/hr]

k) is accumulated lighting load from all lighting functions. [Btu/hr]

People Calculations

a) b) c) d) e) f) g) h) Load Calc Z#M#H##PEOP BTUPP CLF/DF HOUR LOADPeople Sensible 1 2 1 8 (6)(230)(0.53)= 731 People Latent 1 2 1 8 (6)(190)(1.00)= 1,140

People Sensible People Latent	1 2 2 9 (6)(230)(0.62)= 1 2 2 9 (6)(190)(1.00)=	856 1,140
•		
•		
•	•	
People Sensible People Latent	1 2 23 6 (6)(230)(0.07)= 1 2 23 6 (6)(190)(0.00)=	97 0
People Sensible People Latent	1 2 24 7 (6)(230)(0.06)= 1 2 24 7 (6)(190)(0.00)=	83 0

- a) is the zone number
- b) is the month number

c) is the number of hours elapsed since the occupants entered the zone. This is calculated from the building's operation starting hour entered in the zone input screen. This number is used to determine the people cooling load factor for the hour (column h)).

- d) is the local time.
- e) is the total number of people in the space. (People input screen)
- f) is the rate of heat gains from occupants. (People input screen); [Btu/hr]

g) is an adjusted occupants cooling load factor based on the tabulated values in chapter 26 of the 1985 ASHRAE Fundamentals in Table 19. The tabulated values were adjusted to account for any number of people in the zone during the unoccupied hours using a similar formulation to the one used for lighting cooling load factors.

Note that CLF = 1 for the sensible load portion if all occupants remain in the zone continuously (24 hours). Latent loads are instantaneous loads (no time delay); therefore the multiplier is 1.0

h) is the hourly load from occupants gains. [Btu/hr]

Miscellaneous Electric Calculations

a) b) c)	d) (e) f) g) ł	ר) i)	j)		
					WT WATTS (CLF BIN	LOAD ACC	UM LOAD
Misc Elect	1	21	18	(3.413)(225)(0.60)=	461	461	
Misc Elect	1	21	29	(3.413)(225)(0.68)=	522	522	
Misc Elect	1	21	3 10	(3.413)(225)(0.73) =	561	561	
Misc Elect	1	21	4 1 1	(3.413)((225)(0.77) =	591	591	
Misc Elect	1	21	5 12	(3.413)(225)(0.81) =	622	622	
Misc Elect	1	21	613	(3.413)((225)(0.83) =	637	637	
Misc Elect	1	21	7 14	(3.413)((225)(0.85) =	653	653	
Misc Elect	1	21	8 1 5	(3.413)((225)(0.87) =	668	668	
Misc Elect	1	21	9 1 6	(3.413)(225)(0.89)=	683	683	

ASEAM 3	3.0 U	lser's Manua	al Chapter 12	2 - Outpu	it Reports
Misc Elect	12	1 10 17 (3.41	3)(225)(0.90)=	691	691
Misc Elect	12	1 11 18 (3.41	3)(225)(0.36)=	276	276
Misc Elect	12	1 12 19 (3.41	3)(225)(0.29)=	223	223
Misc Elect	12	1 13 20 (3.41	3)(225)(0.24)=	184	184
Misc Elect	12	1 14 21 (3.41	3)(225)(0.20)=	154	154
Misc Elect	12	1 15 22 (3.41	3)(225)(0.17)=	131	131
Misc Elect	12	1 16 23 (3.41	3)(225)(0.15)=	115	115
Misc Elect	12	1 17 24 (3.41	3)(225)(0.13)=	100	100
Misc Elect	12	1 18 1 (3.413	3)(225)(0.11)=	84	84
Misc Elect	12	1 19 2 (3.413	3)(225)(0.10)=	77	77
Misc Elect	12	1 20 3 (3.413	3)(225)(0.08)=	61	61
Misc Elect	12	1 21 4 (3.413	3)(225)(0.07)=	54	54
Misc Elect	12	1 22 5 (3.413	3)(225)(0.07)=	54	54
Misc Elect	12	1 23 6 (3.413	3)(225)(0.06)=	46	46
Misc Elect	1 2	1 24 7 (3.413	3)(225)(0.05)=	38	38

a) is the zone number

b) is the month number

c) is the miscellaneous electric equipment type. It corresponds to one of the 2 columns entered in the miscellaneous electric equipment input screen.

d) is the number of hours elapsed since the equipments were turned on. This is calculated from the building's operation starting hour entered in the zone input screen. This number is used to determine the equipment cooling load factor (CLF) for the hour (column h)).

e) is the local time.

f) is a conversion factor to calculate the corresponding Btu/hr to the electric wattage.

g) is the equipment wattage entered in the equipment input screen for the given miscellaneous electric equipment.

h) is the equipment cooling load factor for the given hour. This cooling load factor is based on the tabulated values in chapter 26 of the 1985 ASHRAE Fundamentals in Tables 22 and 23. The tabulated values were adjusted to account for any part of the equipments that remains on during the unoccupied hours using the same approach used to determine the lighting cooling load factors.

Note that CLF = 1 if all equipments remain on continuously (24 hours).

- i) is the load resulting from miscellaneous electric equipment. [Btu/hr]
- j) is the total accumulated load from all electric equipments. [Btu/hr]

Miscellaneous Sensible Loads

a) b) c) d) e) f) g) h) i) Load Calc Z# M# S# H# BTUH CLF BIN LOAD ACCUM LOAD

ASEAM3.0	U	ser	's	Ma	nua	al	Chapter	12 - Outpu	ıt Reports
Misc Sensible	1	2	1	1	8	((1.00) =	1,500	1,500
Misc Sensible	1	2	1	2	9	((1.00) =	1,500	1,500
Misc Sensible	1	2	1	3	10	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	4	11	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	5	12	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	6	13	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	7	14	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	8	15	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	9	16	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	10	17	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	11	18	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	12	19	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	13	20	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	14	21	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	15	22	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	16	23	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	17	24	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	18	1	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	19	2	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	20	3	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	21	4	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	22	5	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	23	6	(1500)(1.00) =	1,500	1,500
Misc Sensible	1	2	1	24	7	(1500)(1.00) =	1,500	1,500

- a) is the zone number
- b) is the month number

c) is the miscellaneous sensible heat type. It corresponds to one of the 2 columns entered in the lighting input screen.

d) is the number of hours elapsed since the miscellaneous sensible heat were turned on. This is calculated from the building's operation starting hour entered in the zone input screen. This number is used to determine the equipment cooling load factor for the hour (column g)).

e) is the local time.

f) is the Btu/hour sensible heat rating entered for the given miscellaneous sensible heat.

g) is the sensible heat cooling load factor for the given hour. This cooling load factor is based on the tabulated values in chapter 26 of the 1985 ASHRAE Fundamentals in Tables 22 and 23. The tabulated values were adjusted to account for any part of the sensible heat present during the unoccupied hours using the same approach used to determine the lighting cooling load factors.

Note that CLF = 1 if all sensible heat is generated continuously (24 hours).

h) is the load resulting from miscellaneous sensible heat. [Btu/hr]

i) is the total accumulated load from all types of sensible heat. [Btu/hr]

ASEAM3.0 User's Manual

SUMMARY OF HOURLY PEAK LOADS BY COMPONENT

	d) e) f)) i)		
HR SOL HR OPAQ			EOPLE EQUIP	MIS SENS	TOTAL HOUR
	7,044 1,046		84 1,500	10,872	
	5,381 1,000		77 1,500	9,441	
	5,265 907		1 1,500	7,448	
	4,672 861		54 1,500	6,145	
	4,220 815		54 1,500	5,246	
	4,952 768		6 1,500	5,531	
-	4,498 722		8 1,500	4,739	
	6,741 3,223		461 1,500	10,728	
-	L0,724 3,408		522 1,500	15,362	
	16,375 3,54 [°]		561 1,500		
	22,898 3,732		591 1,500		
	29,140 3,825		622 1,500		
13 13.1 2,122	30,477 3,964				
14 14.1 3,185	29,134 4,05		653 1,500		
15 15.1 4,213	24,999 4,149		668 1,500		
16 16.1 4,955	20,286 4,242		683 1,500		
17 17.1 5,441	14,950 4,288		691 1,500		
18 18.1 5,658	20,851 1,834		276 1,500		
19 19.1 5,416	16,911 1,695		223 1,500		
20 20.1 4,970	14,540 1,556		184 1,500		
21 21.1 4,179	12,239 1,41		154 1,500		
22 22.1 3,366	10,530 1,324		131 1,500		
23 23.1 2,599	9,345 1,232		115 1,500		
24 24.1 1,826	8,159 1,139	207	100 1,500	12,931	

- a) is the local hour.
- b) is the solar hour.

c) is the peak hourly total opaque CLTD loads from all contributing components (walls, roofs, etc.) [Btu/hr]

- d) is the peak hourly total solar load through all glazing areas. [Btu/hr]
- e) is the peak hourly total load from all interior lighting fixtures. [Btu/hr]
- f) is the peak hourly total load from occupants. [Btu/hr]
- g) is the peak hourly total load from all electric equipments. [Btu/hr]
- h) is the peak hourly total load from all miscellaneous sensible heat. [Btu/hr]
- i) is the total or summation of the previous hourly loads. [Btu/hr]

DIVERSIFIED HOURLY SOLAR LOADS

ASEAM3.0 User's Manual Chapter 12 - Output Reports										
a) b)	c) d)	e)	f)	g)						
HR SOL			FPSS		AD ACCUM	HOURLY				
Solar 1 1	.1 1,019	7,044 0.	470	3,789	3,789					
Solar 2 2	.1 332	6,381 0.4	470	3,155	3,155					
Solar 3 3	.1 -424		470	2,275	2,275					
Solar 4 4	.1 -1,067	4,672 0.	470	1,695	1,695					
Solar 5 5	.1 -1,453		470	1,300	1,300					
Solar 6 6	.1 -1,832	4,952 0.	470	1,466	1,466					
Solar 7 7	.1 -2,102	4,498 0.	470	1,126	1,126					
Solar 8 8	.1 -1,929	6,741 0.	470	2,262	2,262					
Solar 9 9	.1 -1,648	10,724 0	.470	4,266	4,266					
Solar 10 1	0.1 -1,106	16,375	0.470	7,177	7,177					
Solar 11 1	1.1 -172	22,898	0.470	10,681	10,681					
Solar 12 1	2.1 836	29,140 (0.470	14,089	14,089					
Solar 13 1	3.1 2,122	30,477	0.470	15,321	15,321					
Solar 14 1	4.1 3,185	29,134	0.470	15,190	15,190					
Solar 15 1	5.1 4,213	24,999	0.470	13,730	13,730					
Solar 16 1	6.1 4,955	20,286	0.470	11,863	11,863					
Solar 17 1	7.1 5,441	14,950	0.470	9,584	9,584					
	8.1 5,658	20,851	0.470	12,459	12,459					
Solar 19 1	9.1 5,416	16,911	0.470	10,494	10,494					
	0.1 4,970	•	0.470	9,169	9,169					
	1.1 4,179	•	0.470	7,716	7,716					
Solar 22 2	2.1 3,366	•	0.470	6,531	6,531					
	3.1 2,599		0.470	5,614	5,614					
Solar 24 2	4.1 1,826	8,159 (0.470	4,693	4,693					

a) is the local hour.

b) is the solar hour.

c) is the peak hourly total opaque CLTD loads from all contributing components. [Btu/hr]

d) is the peak hourly total solar load through all glazing areas. [Btu/hr]

e) is the monthly-averaged percent possible sunshine fraction. This value is taken from the solar weather file and varies by month.

f) is the hourly diversified solar load. (Monthly average); [Btu/hr] f) = e) * [c) + d)]

g) is the total accumulated hourly diversified load from the solar contribution. [Btu/hr]

DIVERSIFIED HOURLY LIGHTING LOADS

a) b) c) d) H# PEAK HR LOAD DIVR HR LOAD ACCUM HOURLY LOAD Lites 1 1,046 1,046 4,836

ASEAM 3	8.0 User's I	Manual	Chapter 1	2 - Output Reports
Lites 2	1,000	1,000	4,155	
Lites 3	907	907	3,182	
Lites 4	861	861	2,556	
Lites 5	815	815	2,115	
Lites 6	768	768	2,235	
Lites 7	722	481	1,607	
Lites 8	3,223	1,890	4,152	
Lites 9	3,408	1,871	6,137	
Lites 10	3,547	1,839	9,015	
Lites 11	3,732	1,855	12,536	
Lites 12	3,825	1,869	15,957	
Lites 13	3,964	1,957	17,278	
Lites 14	4,057	2,076	17,266	
Lites 15	4,149	2,241	15,971	
Lites 16	4,242	2,442	14,305	
Lites 17	4,288	3,152	12,735	
Lites 18	1,834	1,834	14,293	
Lites 19	1,695	1,695	12,188	
Lites 20	1,556	1,556	10,725	
Lites 21	1,417	1,417	9,133	
Lites 22	1,324	1,324	7,855	
Lites 23	1,232	1,232	6,845	
Lites 24	1,139	1,139	5,832	

- a) is the local hour.
- b) is the peak hourly load from lighting. [Btu/hr]
- c) is the diversified hourly load from lighting. [Btu/hr]
- d) is the accumulated diversified hourly load from solar and lights. [Btu/hr]

DIVERSIFIED HOURLY PEOPLE LOADS

a)	b) c)		d)			
H#	PEAK HR LOAD	DIVR HR	LOAD	ACCUM F	IOURLY	LOAD
People 1	179	179	5,0	15		
People 2	152	152	4,3	807		
People 3	138	138	3,3	20		
People 4	124	124	2,6	680		
People 5	110	110	2,2	25		
People 6	97	97	2,33	31		
People 7	83	83	1,69	0		
People 8	731	731	4,8	884		
People 9	856	856	6,9	92		
People 10	952	952	9,9	968		
People 11	1,021	1,021	1.	3,557		
People 12	1,063	1,063	1	7,020		
People 13	1,104	1,104	18	8,382		
People 14	1,145	1,145	18	8,411		
People 15	1,173	1,173	1	7,144		
People 16	1,201	1,201	1	5,506		

ASEAM3.0) User's Ma	nual	Chapter 12 - Output F	Reports
People 17	1,228	1,228	13,964	
People 18	580	580	14,872	
People 19	469	469	12,658	
People 20	386	386	11,112	
People 21	317	317	9,450	
People 22	276	276	8,131	
People 23	235	235	7,080	
People 24	207	207	6,039	
a)	is the local ł	nour.		
b)	is the peak l	hourly load	from occupants. [Btu/hr]	
c)	is the divers	ified hour	y load from occupants. [Bt	u/hr]
d)	is the accum	nulated div	versified hourly load from so	olar, lights and occupants.

[Btu/hr]

DIVERSIFIED HOURLY EQUIPMENT LOADS

Equip184845,099Equip277774,383Equip361613,382Equip454542,734Equip554542,279Equip646462,378	a) H#	b) c) PEAK HR LOAD	d DIVR HR L	I) JOAD	ACCUM HOURLY LOAD
Equip73838 $1,728$ Equip8461461 $5,344$ Equip9 522 522 $7,514$ Equip10561561 $10,528$ Equip11591591 $14,149$ Equip12 622 622 $17,642$ Equip13 637 637 $19,020$ Equip14 653 653 $19,064$ Equip15 668 668 $17,812$ Equip16 683 683 $16,189$ Equip17 691 691 $14,655$ Equip18 276 276 $15,149$ Equip19 223 223 $12,880$ Equip20 184 184 $11,296$ Equip21 154 154 $9,604$ Equip22 131 131 $8,262$ Equip23 115 115 $7,195$ Equip24 100 100 $6,139$	Equip 1 Equip 2 Equip 3 Equip 4 Equip 5 Equip 6 Equip 7 Equip 8 Equip 9 Equip 10 Equip 10 Equip 11 Equip 12 Equip 13 Equip 14 Equip 15 Equip 16 Equip 17 Equip 18 Equip 19 Equip 20 Equip 21 Equip 22 Equip 23	$\begin{array}{c} 84\\ 77\\ 61\\ 54\\ 54\\ 46\\ 38\\ 461\\ 522\\ 561\\ 591\\ 622\\ 637\\ 653\\ 668\\ 683\\ 691\\ 276\\ 223\\ 184\\ 154\\ 131\\ 115\end{array}$	84 77 61 54 54 46 38 461 522 561 591 622 637 653 668 683 691 276 223 184 154 131 115	5,099 4,383 3,382 2,734 2,279 2,378 1,728 5,34 7,51 10,5 14,1 17,6 19,0 17,8 16,1 14,6 15,1 14,6 15,1 12,8 11,2 9,6 8,2 7,1	3 3 4 4 528 49 542 900 964 880 296 04 62 95

- a) is the local hour.
- b) is the peak hourly load from electric equipment. [Btu/hr]

c) is the diversified hourly load from electric equipment. [Btu/hr]

d) is the accumulated diversified hourly load from solar, lights, occupants and electric equipment. [Btu/hr]

DIVERSIFIED HOURLY MISC SENSIBLE LOADS

a)		b) c)	d)	
H#	F	PEAK HR LOAD	DIVR HR LOAD	ACCUM HOURLY LOAD
Misc Sens	1	1,500	1,500	6,599
Misc Sens	2	1,500	1,500	5,883
Misc Sens	3	1,500	1,500	4,882
Misc Sens	4	1,500	1,500	4,234
Misc Sens	5	1,500	1,500	3,779
Misc Sens	6	1,500	1,500	3,878
Misc Sens	7	1,500	1,500	3,228
Misc Sens	8	1,500	1,500	6,844
Misc Sens	9	1,500	1,500	9,014
Misc Sens	10	1,500	1,500	12,028
Misc Sens	11	1,500	1,500	15,649
Misc Sens	12	1,500	1,500	19,142
Misc Sens	13	1,500	1,500	20,520
Misc Sens	14	1,500	1,500	20,564
Misc Sens	15	1,500	1,500	19,312
Misc Sens	16	1,500	1,500	17,689
Misc Sens	17	1,500	1,500	16,155
Misc Sens	18	1,500	1,500	16,649
Misc Sens	19	1,500	1,500	14,380
Misc Sens	20	1,500	1,500	12,796
Misc Sens	21	1,500	1,500	11,104
Misc Sens	22	1,500	1,500	9,762
Misc Sens		•	1,500	8,695
Misc Sens	24	1,500	1,500	7,639

a) is the local hour.

b) is the peak hourly load from miscellaneous sensible heat. [Btu/hr]

c) is the diversified hourly load from miscellaneous sensible heat. [Btu/hr]

d) is the accumulated diversified hourly load from solar, lights, occupants, electric equipment and miscellaneous sensible heat. [Btu/hr]

DIVERSIFIED HOURLY SUMMARY

a H) #	b) c) PEAK HR LOAD	d) DIVR HR L	-	e) CC SYS OCC	ACC SYS UNO
Total Total	_	,	6,599 5,883	0 0	6,599 12,483	

ASE	ΞΑΜ	3.0 User's	Manual	Chapter 3	12 - Output Reports
Total	3	7,448	4,882	0	17,365
Total	4	6,145	4,234	0	21,598
Total	5	5,246	3,779	0	25,377
Total	6	5,531	3,878	0	29,255
Total	7	4,739	3,228	0	32,483
Total	8	10,728	6,844	0	39,328
Total	9	15,362	9,014	9,014	39,328
Total	10	21,829	12,028	21,043	39,328
Total	11	29,571	15,649	36,691	39,328
Total	12	36,986	19,142	55,833	39,328
Total	13	39,804	20,520	76,353	39,328
Total	14	39,674	20,564	96,917	39,328
Total	15	36,703	19,312	116,229	39,328
Total	16	32,867	17,689	133,919	39,328
Total	17	28,099	16,155	150,073	39,328
Total	18	30,698	16,649	166,722	39,328
Total	19	26,214	14,380	166,722	53,708
Total	20	23,136	12,796	166,722	66,504
Total	21	19,805	11,104	166,722	77,608
Total	22	17,127	9,762	166,722	87,370
Total	23	15,026	8,695	166,722	96,065
Total	24	12,931	7,639	166,722	103,704

a) is the local hour.

b) is the total non-temperature dependent peak hourly load from all contributing components. [Btu/hr]

c) is the total non-temperature dependent diversified hourly load from all contributing components. [Btu/hr]; (Monthly average)

d) is the accumulated daily time dependent diversified load from all contributing components for <u>the occupied period</u>. (sum over all previous occupied hours of column c)); [Btu/hr]

e) is the accumulated daily non-temperature dependent diversified load from all contributing components for <u>the unoccupied period</u>. (sum over all previous unoccupied hours of column c)); [Btu/hr]

SUMMARY OF DIVERSIFIED LOADS BY BIN (OCCUPIED AND UNOCCUPIED)

a)	b)	c)	d)	e)	f)	g)		
BIN T	OCC CON	ST	OCC LINEAR	OCC	TOTAL	UNO CONST	UNO LINEAR	UNO TOTAL

57.5	16,672	-4,742	11,930	7,407	-134	7,274
52.5	16,672	-7,386	9,286	7,407	-2,981	4,427
47.5	16,672	-10,031	6,642	7,407	-5,827	1,580
42.5	16,672	-12,675	3,997	7,407	-8,674	-1,267
37.5	16,672	-15,319	1,353	7,407	-11,521	-4,113
32.5	16,672	-17,963	-1,291	7,407	-14,367	-6,960
27.5	16,672	-20,607	-3,935	7,407	-17,214	-9,807
22.5	16,672	-23,252	-6,579	7,407	-20,061	-12,653

ASE	AM3.0 U	ser's Mai	nual	Chapter 1	2 - Outpu	ut Reports
17.5	16,672	-25,896	-9,224	7,407	-22,907	-15,500
12.5	16,672	-28,540	-11,868	7,407	-25,754	-18,347
7.5	16,672	-31,184	-14,512	7,407	-28,601	-21,193
2.5	16,672	-33,828	-17,156	7,407	-31,447	-24,040
-2.5	16,672	-36,473	-19,800	7,407	-34,294	-26,887

a) is the bin temperature considered. [°F]

b) is the average time dependent hourly diversified load for the occupied period. (= [daily accumulated time dependent diversified load for occupied hours] / [number of occupied hours]); from the previous page, 166,722 Btus were accumulated over 10 occupied hours or 166,722 / 10 is the average time dependent load [Btu/hr]

c) is the hourly temperature dependent load for the occupied period. This includes all thermal loads due to conduction and infiltration. [Btu/hr]

d) is the total thermal hourly load for the occupied period. [= b) + c) [Btu/hr]

e) is the average time dependent hourly diversified load for the unoccupied period. (= [daily accumulated time dependent diversified load for unoccupied hours] / [number of unoccupied hours]); from the previous page, 103,704 Btus were accumulated during the 14 unoccupied hours; 103,704 / 14 = 7,407 [Btu/hr]

f) is the hourly temperature dependent load for the unoccupied period. This includes all thermal loads due to conduction and infiltration. [Btu/hr]

g) is the total thermal hourly load for the unoccupied period. [= e) + f] [Btu/hr]

ASEAM3.0 User's Manual Chapter 12 - Output Reports 12.5.3 LOTUS-Compatible Reports

Examples of LOTUS-compatible reports, after formatting with the template macros, are shown on the following pages. The examples do not include all possible combinations. Refer to Section 12.4.1 for instructions on formatting these reports.

Sample Lotus Report for Loads - LQ report (Daylighting Footcandles - Clear Sky)

Repo 23	rt Zo	one Mon	th Va	ar 1	12	1	2	3	4	5	6	78	9	10	11	12	13	14	15	16	17	18	19	20	21	22
		Mid	ar	n a	m	am	ar	n a	m	am	am	am	am	am	n ar	m No	oon	pm	pm	pm	pm	n pr	n p	om	pm	pm
pm	pm	pm																		•						
===	===	====:	===	===	===	===	==	==:	===			===	===	===	===	==:	===					===	==	===		===
=== LO	=== 1	1 16	=== 0	0	===	===	·== 0	0	=== ^	=== 63	=== 101	=== 276	325	=== 3/12	=== 22	6 2	=== 78	==== 10/	==== 67	====	===:		==: 0	===	-==	0
LQ	1	2 16	0	0	0	0	0	0	-			270 3 286								~ `		0	0	Ũ	0	•
0	-	2 10	Ũ	Ŭ	Ũ	Ũ	Ŭ	Ũ				200			5 5	57	200	220	100	20	Ũ	Ŭ	Ũ	Ŭ	Ŭ	Ũ
LQ	1	3 16	0	0	0	0	0	0	51	136	214	1 275	5 31	4 32	8 3	15	276	215	137	52	0	0	0	0	0	0
0																										
LQ	1	4 16	0	0	0	0	0	18	52	119	9 18	4 23	4 26	5 2	74 2	259	222	2 167	/ 100) 35	14	0	0	0	0	0
0	1	F 10	~	~	~	~	~		24	20		1 4 3	100	1 /			0.4	170	120	C 1	22	10	~	~	~	0
LQ 0	T	5 16	0	0	0	0	0	11	24	38	80	142	180) 21.	2 2.	19 2	204	170	120	01	32	19	0	0	0	0
LQ	1	6 16	0	0	0	0	0	13	26	30	62	115	156	5 18 [.]	2 10	20 1	177	146	101	48	35	22	10	0	0	0
0	-	0 10	U	Ŭ	U	U	Ŭ	15	20	55	02	115	150	, 10,	,		.,,	140	101	40	55	~~	10	Ŭ	Ŭ	Ū
LQ	1	7 16	0	0	0	0	0	11	24	37	64	119	163	19	0 20	00 1	L89	159	114	58	36	22	10	0	0	0
0																										
LQ	1	8 16	0	0	0	0	0	0	20	35	96	157	205	236	24	62	33	200	150	88	33	18	0	0	0	0
0	-	0.10		~	~	~	~	~		~ ~								~ • •				~	~	~	~	
LQ	1	9 16	0	0	0	0	0	0	15	68	143	212	265	290	b 30)3 2	285	244	184	111	39	0	0	0	0	0
0 LQ	1	10 16	0	0	Δ	0	٥	٥	Ο	70	160	248	305		6 33	20 2	215	264	100	05	10	0	Δ	0	0	0
0	-	10 10	0	0	0	0	0	0	0	70	109	240	505		5.5	55 .	515	204	190	95	10	0	0	0	U	0
ĽQ	1	11 16	0	0	0	0	0	0	17	140	0 24	0 30	6 34	0 34	43 3	315	256	5 163	3 35	0	0	0	0	0	0	0 0
LQ	1	12 16	0	0	0	0	0	0	0	77	203	282	325	334	4 30	09 2	250	151	20	0	0 0	0 0	0	0	0	0

Sample Lotus Report - Systems Report 'SA' - Sensible Loads on Zones

Report System Cycle Month Bin Bin Load Div Sen Temp Hours Zone Load Zone Load Zone Load Zone Load Zone Load ______ _____ SA 1 1 4 87.5 8.2 1 23,182 2 10,710 3 16,171 4 11,396 5 24,781 SA 4 82.5 11.4 1 20,559 2 9,635 3 13,948 4 10,321 5 23,581 1 1 SA 1 1 4 77.5 7.9 1 17,937 2 8,561 3 11,726 4 9,246 5 22,381 2 7,486 3 9,503 4 8,171 5 21,181 2 6,411 3 7,281 4 7,096 5 19,981 2 5,336 3 5,058 4 6,021 5 18,781 1 15,314 SA 1 1 4 72.5 6.8 SA 1 1 4 67.5 12.9 1 12,692 SA 1 1 4 62.5 7.9 1 10,069 SA 1 1 4 57.5 22.5 1 7,447 2 4,261 3 2,836 4 4,946 5 17,581 2 3,186 3 614 4 3,871 2 2,111 3 (1,609) 4 2,796 SA 1 1 4 52.5 22.9 4,824 614 4 3,871 5 16,381 1 2,202 2 2,111 3 (1,609) 4 2,796 5 15,181 (421) 2 1,036 3 (3,831) 4 1,721 5 13,981 SA 4 47.5 43.9 2,202 5 15,181 1 1 1 4 42.5 43.9 SΔ 1 1 1 1 (3,044) 2 (39) 3 (6,054) 4 646 5 12,781 SA 1 4 37.5 23.9 1 1 (5,666) 2 (1,114) 3 (8,276) 4 (429) 5 11,581 4 32.5 SA 1 1 2.1 SA 1 1 5 87.5 1.4 1 15,874 2 8,354 3 12,084 4 10,047 5 22,663 SA 5 82.5 18.6 1 13,320 2 7,305 3 9,914 4 8,998 5 21,463 1 1 SA 5 77.5 39.6 1 10,766 2 6,256 3 7,743 4 7,949 1 1 5 20,263 SA 1 1 5 72.5 38.2 1 8,212 2 5,207 3 5,573 4 6,900 5 19,063 2 4,158 5 17,863 5 67.5 SA 1 1 20.0 1 5,658 3 3,403 4 5,851 SA 1 1 5 62.5 12.5 1 3,104 2 3,109 3 1,233 4 4,802 5 16,663 5 57.5 27.1 550 2 2,061 3 SA (937) 4 3,754 5 15,463 1 1 1 1 (2,003) 2 1,012 3 (3,107) 4 2,705 5 14,263 1 (4,557) 2 (37) 3 (5,278) 4 1,656 5 13,063 SA 5 52.5 1 1 25.7 5 47.5 29.6 SA 1 1 SA 1 5 42.5 7.9 1 (7,111) 2 (1,086) 3 (7,448) 4 607 5 11,863 1 1 (9,665) 2 (2,135) 3 (9,618) 4 (442) 5 10,663 SA 1 1 5 37.5 0.7 SA 1 1 18,655 2 9,709 1 6 92.5 23.2 3 15,835 4 11,610 5 24,245 SA 6 87.5 28.2 1 16,148 2 8,677 3 13,699 4 10,578 5 23,045 1 1 2 7,646 SA 1 1 6 82.5 39.3 1 13,640 3 11,564 4 9,547 5 21,845 9,429 SA 1 28.2 1 11,132 2 6,615 3 4 8,516 5 20,645 1 6 77.5 6 72.5 2 5,583 SA 1 1 40.7 1 8,624 3 7,294 4 7,485 5 19,445 5,159 4 6,453 SA 1 6 67.5 21.1 6,116 2 4.552 3 5 18,245 1 1 SA 6 62.5 22.9 3,609 2 3,521 3 3,024 4 5,422 5 17,045 1 1 1 SΔ 1 1 6 57.5 10.7 1 1,101 2 2,490 3 889 4 4,391 5 15,845

Sample Lotus Report - 'SB' - System Coil Loads on Plant

Temp Hours Hours Load Load Load Load Load Load
SB 1 1 4 87.5 8.2 8.2 0 0 0 12.1 0 0 SB 1 1 4 82.5 11.4 11.4 0 0 0 12.1 0 0 SB 1 1 4 77.5 7.9 7.9 0 0 0 12.1 0 0 SB 1 1 4 77.5 7.9 7.9 0 0 0 12.1 0 0 SB 1 1 4 77.5 7.9 7.9 0 0 0 12.1 0 0 SB 1 1 4 67.5 12.9 12.9 0 0 0 12.1 0 0 SB 1 1 4 67.5 22.5 22.5 10.090 0 0 0 12.1 0 0 SB 1 1 4 57.5 22.5 10.090 0 0 12.1 0 0
SB 1 1 5 87.5 1.4 1.4 0 201,995 0 0 12.1 0 0 SB 1 1 5 82.5 18.6 18.6 0 165,530 0 0 0 12.1 0 0 SB 1 1 5 82.5 18.6 18.6 0 165,530 0 0 0 12.1 0 0 SB 1 1 5 77.5 39.6 39.6 0 140,139 0 0 0 12.1 0 0 SB 1 1 5 72.5 38.2 38.2 0 111,832 0 0 0 12.1 0 0 SB 1 1 5 67.5 20.0 20.0 1,420 14,125 0 0 0 12.1 0 0 SB 1 1 5 62.5 12.5 77.7,343 11,482 0 0 0 12.1 0 0
SB 1 1 6 92.5 23.2 23.2 0 248,309 0 0 12.1 0 0 SB 1 1 6 87.5 28.2 28.2 0 216,014 0 0 12.1 0 0 SB 1 1 6 82.5 39.3 0 186,012 0 0 12.1 0 0 SB 1 1 6 77.5 28.2 28.2 0 155,663 0 0 12.1 0 0 SB 1 1 6 77.5 28.2 28.2 0 155,663 0 0 0 12.1 0 0 SB 1 1 6 77.5 28.2 28.2 0 124,796 0 0 12.1 0 0 SB 1 1 6 67.5 21.1 21.1 0 16,936 0 0 12.1 0 0 SB 1 1 6 57.5 <t< td=""></t<>

Report Sys Cycle Month Bin Bin Oper Heating Cooling Baseboard Humidif Preheat Fan KW Furnace DX

Sample Lotus Report - 'SC' - System Psychrometrics

Temperatures Kumidity Ratios> Report System Cycle Month Bin Oper Bin Return Mixed Preheat Fan D CLG D HTG D Outside Return Mixed Humid Cooling CLG Air HTG Air Percent Fan KW Hours Hours Temp Temp Temp Temp Temp Temp Temp (DDMZ) Disch Flow CFM Flow CFM O.A.							
SC 1 1 4 8.2 87.5 68.1 72.0 76.1 76.1 76.1 0.0076 0.0075 0.0075 9,107 0 0.20 12.11 SC 1 4 11.4 82.5 68.1 71.0 71.0 75.1 75.1 0.0068 0.0073 0.0073 0.0073 9,107 0 0.20 12.11 SC 1 4 7.9 7.9 77.5 68.1 70.0 74.1 74.1 0.0060 0.0067 0.0065 0.0063 9,107 0 0.20 12.11 SC 1 4 7.9 7.9 67.5 68.1 67.5 67.5 71.6 71.6 71.8 0.0089 0.0089 0.0089 9,107 0 1.00 12.11 SC 1 4 12.9 12.9 67.5 68.1 67.5 71.6 71.6 71.8 0.0089 0.0089 0.0089 9,107 0 1.00 12.11 SC 1 4 22.9 22.5 57.5 68.1							
SC 1 4 2.1 2.1 32.3 03.1 50.3 50.3 50.3 50.3 50.0 2.000 0.000							
SC 1 1 6 23.2 23.2 92.5 78.1 81.0 85.1 55.0 85.1 0.0125 0.0081 0.0089 0.0084 6,941 2,166 0.20 12.11 SC 1 6 28.2 28.2 87.5 78.1 80.0 84.1 55.0 84.1 0.0113 0.0081 0.0087 0.0082 6,236 2,871 0.20 12.11 SC 1 1 6 39.3 39.3 82.5 78.1 79.0 79.0 83.1 55.0 82.1 0.0109 0.0082 0.0088 0.0081 5,482 3,626 0.20 12.11 SC 1 1 6 28.2 77.5 78.1 78.0 82.1 55.0 82.1 0.0106 0.0084 0.0089 0.0081 4,671 4,436 0.20 12.11 SC 1 1 6 40.7 40.7 72.5 78.1 77.0 81.1 55.0 81.1 0.0104 0.0086 0.0090 0.0098 716 8,391 <td< td=""></td<>							

Sample Lotus Report - 'SLDS' - Composite System Loads on Plant

	,	e Month Temp Ho	Bin I ours I	Bin Ce _oad	ntrif Ab Load	Load	ist C L	lg DB Chiller Re oad Load L	oad	Lo	ad	Loa	e Resist Dist Htg DB Htg Load Load
SLDS SLDS SLDS SLDS SLDS SLDS SLDS SLDS	==== 1 1 1 1 1 1 1 1 1 1	4 82.5 4 77.5 4 72.5 4 67.5 4 62.5 4 57.5 4 52.5	8.2 11.4 7.9 6.8 12.9 7.9 22.5 22.9 43.9 43.9	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0		000000000000000000000000000000000000000	$\begin{array}{ccccc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 10,089 \\ 0 & 67,017 \\ 0 & 111,792 \\ 0 & 124,429 \\ 0 & 154,764 \\ 0 & 167,366 \end{array}$	())))			0 0 0 0
SLDS SLDS SLDS SLDS SLDS SLDS SLDS SLDS	1 1 1 1 1 1 1 1 1	5 87.5 5 82.5 5 77.5 5 72.5	1.4 18.6 39.6 38.2 20.0 12.5 27.1 25.7	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	201,994 0 165,530 0 140,139 0 111,832 0 14,125 1,419 11,482 77,34 9,854 144,74 3,630 197,48 0 219,625 0 229,327 0 237,417	0 () 3 5 0				
SLDS SLDS SLDS SLDS SLDS SLDS SLDS SLDS	1 1 1 1 1 1 1	6 92.5 6 87.5 6 82.5 6 77.5 6 72.5 6 67.5 6 62.5 6 57.5	21.1 22.9	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0	248,309 0 216,014 0 186,011 0 155,662 0 124,795 0 16,935 0 0 0 0 0					0 0 0 0

Sample Lotus Report - 'PDHW' - Domestic Hot Water

	Report Cycle Month Bin Bin Usage Total Part DHW Energy Pump Temp Hours Load Load Effic Units KW									
PDHW PDHW PDHW PDHW PDHW PDHW PDHW PDHW	4 87.5 11.4 6,710 6,910 0.183 72.9 0.09 0.0 4 82.5 7.8 6,754 6,954 0.184 73.0 0.10 0.0 4 77.5 6.7 6,798 6,998 0.185 73.0 0.10 0.0 4 72.5 12.8 6,842 7,042 0.186 73.1 0.10 0.0 4 67.5 7.8 6,885 7,085 0.187 73.1 0.10 0.0 4 62.5 22.5 6,929 7,129 0.189 73.2 0.10 0.0 4 57.5 22.8 6,973 7,173 0.190 73.2 0.10 0.0 4 57.5 22.8 6,973 7,173 0.190 73.3 0.10 0.0 4 47.5 43.9 7,061 7,261 0.192 73.3 0.10 0.0 4 42.5 23.9 7,105 7,305 0.193 73.4 0.10 0.0 4 27.5 1									
PDHW PDHW PDHW PDHW PDHW PDHW PDHW										
PDHW PDHW PDHW PDHW PDHW										

 ASEAM3.0 User's Manual
 Chapter 12 - Output Reports

 PDHW
 1
 6
 47.5
 5.7
 7,061
 7,261
 0.192
 73.3
 0.10
 0.0

ASEAM3.0 User's Manual Chapter 12 - Output Reports Sample Lotus Report - 'PREC' - Reciprocating Chiller

Report	-							irs Load	l Lo	ad Capad	city Lo					vg CW p Tem		HW Lvg CHW emp Load	Tower
=====		===			===	====		======		=====									
PREC	1	5	1	1	87.5	1.4	1.4	201,994	0	284,096	0.711	2.856	20.7	93.1	101.1	50.7	44	265,627	
PREC	1	5	1	1	82.5	18.5	18.5	165,530	C	286,976	6 0.576	5 2.766	5 17.5	91.6	99.6	49.5	44	219,384	
PREC	1	5	1	1	77.5	39.6	39.6	140,139	C	288,950	0.484	2.689	15.3	90.5	98.5	48.7	44	187,028	
PREC	1	5	1	1	72.5	38.2	38.2	111,832	C	291,120	0.384	2.581	. 12.7	89.4	97.4	47.7	44	150,827	
PREC	1	5	1	1	67.5	20.0	3.7	14,125	0	298,370	0.250	2.427	1.7	85.4	93.4	44.5	44	19,362	
PREC	1	5	1	1	62.5	12.5	1.9	11,482	(1)	298,561	0.250	2.430	1.4	85.3	93.3	44.4	44	15,733	
PREC	1	5	1	1	57.5	27.1	3.5	9,854	(1)	298,679	0.250	2.432	1.2	85.3	93.3	44.3	44	13,499	
PREC	1	5	1	1	52.5	25.7	1.2	3,630	(1)	299,127	0.250	2.440	0.4	85.0	93.0	44.1	44	4,969	
PREC	1	6	1	1	92 5	232	23.2	248,309	C	280,363	0.885	5 2 9 5 5	24.6	94 9	102 0	9 52.3	4	4 323,917	
PREC	1							216.014		282.975								4 283.328	
PREC	1							186.011		285.365					100.4			4 245.393	
PREC	1							155.662		287.746					99.2			206.824	
PREC	1							124,795		290,130					97.9			167.422	
PREC	1							16,935		298,167				85.5		44.6	44	23,223	

Sample Lotus Report - 'PBLR' - Boiler

Report	Report Cycle Month Boil Boil Bin Bin Oper Heating Plant Part Boiler Fuel Type Numb Temp Hours Hours Load Load Effic Cons									
==					_					
PBLR	1	4	1	L 57.5 22.5 4.0 10,089 18,359 0.250 55.68 0.3						
PBLR	1			L 52.5 22.8 17.3 67,017 76,426 0.250 55.68 1.4						
PBLR	1	-	1	L 47.5 43.9 43.9 111,792 122,096 0.302 57.97 2.1						
PBLR	1	4	1	42.5 43.9 43.9 124,429 134,986 0.334 59.05 2.3						
PBLR	1	4	1	L 37.5 23.9 23.9 154,764 165,927 0.411 60.96 2.7						
PBLR	1	4	1	L 32.5 2.1 2.1 167,366 178,781 0.443 61.56 2.9						
PBLR	1	5	1	L 67.5 20.0 1.8 1,419 9,516 0.250 55.68 0.2						
PBLR	1	_		L 62.5 12.5 10.7 77,343 86,958 0.250 55.68 1.6						
PBLR	1	5		1 57.5 27.1 27.1 144,745 155,708 0.385 60.42 2.6						
PBLR	1	5	1	L 52.5 25.7 25.7 197,480 209,498 0.519 62.66 3.3						
PBLR	1	5	1	L 47.5 29.6 29.6 219,625 232,086 0.575 63.24 3.7						
PBLR	1	5	1	L 42.5 7.8 7.8 229,327 241,981 0.599 63.45 3.8						
PBLR	1	5	1	L 37.5 0.7 0.7 237,417 250,234 0.620 63.61 3.9						

Sample Lotus Report - 'PTOW' - Cooling Tower

	e Month Bin MCWB Bin Tower Fan Pump Lvg CW Ent CW Temp Temp Hours Load KW KW Temp Temp
======= PTOW 1 PTOW 1	5 87.5 66.0 1.4 269,384 1.73 1.22 74.5 81.7 5 82.5 62.0 18.5 223,140 1.73 1.22 70.0 76.0 5 77.5 62.0 39.6 190,785 1.73 1.22 68.9 74.0 5 72.5 61.0 38.2 154,584 1.73 1.22 67.1 71.2 5 67.5 59.0 20.0 23,119 0.00 1.22 85.5 86.2 5 62.5 55.0 12.5 19,490 0.00 1.22 85.4 86.0 5 57.5 51.0 27.1 17,256 0.00 1.22 85.4 85.8 5 52.5 48.0 25.7 8,726 0.00 1.22 85.2 85.4
PTOW 1	6 92.5 72.0 23.2 327,674 1.73 1.22 80.8 89.6 6 87.5 69.0 28.2 287,085 1.73 1.22 77.3 85.0 6 82.5 67.0 39.2 249,149 1.73 1.22 74.6 81.2 6 77.5 65.0 28.2 210,581 1.73 1.22 71.8 77.4 6 72.5 63.0 40.7 171,178 1.73 1.22 69.1 73.7 6 67.5 60.0 21.0 26,980 0.00 1.22 85.6 86.4

Sample Lotus Report - 'MCON' - Monthly Energy Consumption

Month	The	Gas rms C	Oil Gallons	Electric KWH	Dist Htg MBTU	Dist Clg MBTU	
January J February F March M April A May M June J 0 July J 7 August A September October C November December	2 3 4 5 6 8 5 9 10	1,164 1,016 873 471 532 29 32 32 32 32 32 32 32 32 32 32 32 32 32	0) (60	5,350 5,041 7,301 8,431 9,646 9,468 0 7,20 0 6,54 0 5,3	5 0.0 0.0 0.0 0.0 0.0 0.0 5 0.0 304 0.0	0.0	
December		1,0	91	υ ,	550 0	0.0	

ASEAM3.0 User's Manual Chapter 12 - Output Reports 12.5.4 BEPS Report

A sample BEPS report is shown on the following page. Refer to Section 12.4.2 for instructions on formatting this report.

ASEAM3 Report: Monthly Energy Consumption Date: 04-04-1991

Mont	Natural h Gas (Therms)		Electricity) (kwh)	•	District Cooling U) (MBTU	U)					
Jan	======= 1,164	0	======= 5,494	0.0				 		 	
Feb	1,016	0	4,935	0.0	0.0						
Mar	873	0	5,350	0.0	0.0						
Apr	471	0	5,041	0.0	0.0						
May	532	0	7,301	0.0	0.0						
Jun	29	0	8,431	0.0	0.0						
Jul	32	0	9,646	0.0	0.0						
Aug	32	0	9,468	0.0	0.0						
Sep	30	0	7,260	0.0	0.0						
Oct	786	0	6,545	0.0	0.0						
Nov	760	0	5,304	0.0	0.0						
Dec	1,097	0	5,536	0.0	0.0						
=== Ann	====== 6,822	·=====: 0	====== 80,310	====== 0.0	======= 0.0	=====:	====	 	====	 ====:	====:

Year-to-Date Totals

Totals Throug Month	•	Oil (Gall		Heating	Distri Coolin IBTU)	
Jan	1,164	0	 5.494	0.0	0.0	
Feb	2,180	0	10.429	0.0	0.0	
Mar	3,052	Õ	15,779	0.0	0.0	
Apr	3,524	0	20,820	0.0	0.0	
May	4,056	0	28,120	0.0	0.0	
Jun	4,085	0	36,551	0.0	0.0	
Jul	4,117	0	46,198	0.0	0.0	
Aug	4,150	0	55,666	0.0	0.0	

AS	EAM3.0 Us	ser's №	Ianual	Chapte	r 12 - (Dutput Reports
Sep	4,179	0	62,926	0.0	0.0	
Oct	4,965	0	69,470	0.0	0.0	
Nov	5,725	0	74,774	0.0	0.0	
Dec	6,822	0	80,310	0.0	0.0	

Chapter 12 - Output Reports

ASEAM3.0 Sample BEPS Report Building Energy Performance

> * Building Annual Energy by * * End Use and Fuel Type *

		Electric) (KWH)		
Heating Energy			-	
Gas Boiler	6,53	12	651.21	
Cooling Energy				
Reciprocating C	Chiller	14,87	2 50.76	ò
Domestic Hot W	ater Energ	ay .		
Domestic HW H	 leater	285	28.5	1
Building Miscella	aneous			
Lights Equipment		22,276 3,259		
System Miscella	ineous			
Fans		31,665	108.07	
Plant Miscellane	eous			
Cooling Tower Pumping Exterior Lightin Gas Range (Kite			9.50 11.79 6.83 2.50	

Consumption Totals6,82280,310Unit Cost\$0.500\$0.050Dollar Cost\$3,411\$4,016\$7,427Site Energy (MBTU)682.2274.1956.3Source Energy (MBTU)682.2931.61,613.8

ASEAM3.0 User's Manual Chapter 12 - Output Reports 12.5.5 Peak Loads Summary

A sample Peak Loads Summary for a building is shown below. Refer to Section 12.4.2 for instructions on formatting this report.

ASEAM3.0 Sample LA Report Peak Loads on Building

Loads Report File: DEMOLA00.PRN

Report: Peak Load Summary

Space: Building Floor Area: 5,000 sq ft Volume: 50,000 cu ft COOLING HEATING

Time of Peak	Apr hour = 17	Feb hour = 5
Outside Temp	87.5 deg F	-2.5 deg F

	isible TUH)	Latent (BTUH)		isible TUH)
Glass Solar	36,181			0
Glass Conductio	n 10,0	04		-32,063
Wall Conduction	4,09	95		-13,125
Roof Conduction	ı 9,7!	50		-31,250
Opaque Solar 25,625				0
Door Conduction	า 57	73		-1,838
Misc Conduction 1,349		49		-438
Occupants	6,960	6,4	160	0
Lights	28,438		0	
Equipment	3,840)		0
Misc Sensible	1,500)		1,500
Infiltration	11,718		-46,233	
Total 1	140,032		-124,945	

Total Load / Area 28.0 (BTUH/FT2) -25.0

ASEAM3.0 User's Manual Chapter 12 - Output Reports 12.5.6 Parametric Output

Parametric run outputs give an echo copy of the altered input values, the output variables from the calculations, and the peak loads. See Section 11.5 for sample outputs from an ASEAM3.0 parametric analysis. In section 11.5.6, two spreadsheet applications are presented to help analyze the parametric output. You are advised to read these sections.

Since the output of the parametric analysis is LOTUS compatible, you could "sort" these values to determine the optimum combination of inputs, or add additional calculations (e.g., simple payback period).

12.5.7 ECO/BLCC Output

The output of an ECO run and life-cycle cost analysis is a brief summary of the present value of the project. A sample loads ECO is presented below. The first two pages (Monthly Energy Consumption and BEPS report) have been omitted below.

ASEAM3 ECO Summary

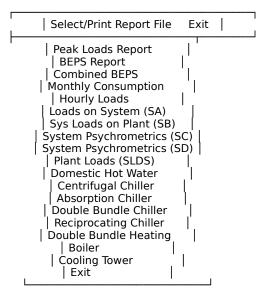
ECO Description

Sample Loads ECO

ECO Comparison with Base Case

Energy	Units	Base	ECO	Savings Percent
Type		Case Ca	ase	Savings
Gas	Therms	6,822	5,377	1,445 21.2
Electricity	kWh	80,310	72,321	7,989 9.9
Gas	Dollars	3,411	2,689	722 21.2
Electricity	Dollars	4,016	3,616	399 9.9
Annual Tota	Is Dollars	7,427	6,305	1,122 15.1

Gas	MBTU	682.218	537.743	144.476	21.2
Electricity	MBTU	274.099	246.833	27.266	9.9
Annual Tota	ls MBTU	956.318	784.576	171.742	2 18.0


BLCC SUMMARY FOR (file name)

RESENT VALUE	ANNUAL	VALUE
NCY)	\$10,479	\$841
M COSTS	\$9,543	3 \$766
4 COSTS	\$501	\$40
\$97,	927 \$	7,858
9	\$3,063	\$246
(\$0) (\$0)
\$121,51	.3 \$9,	751
	NCY) M COSTS 4 COSTS \$97, (M COSTS \$9,543 4 COSTS \$501 \$97,927 \$ \$3,063

ASEAM3.0 User's Manual Chapter 12 - Output Reports 12.5.8 Stand Alone Reports

ASEAM3.0 contains an additional report labeled "Stand Alone Report Program". This is not actually a report, but rather a command to execute a menu-driven report program (AS3REPRT) at the completion of an ASEAM run. The "Miscellaneous Output Reports" program (AS3REPRT) has been expanded to include reading other Lotus compatible report data such as the hourly loads report files and the plant boiler, dhw, chiller, etc. files.

This report program is menu driven and allows the user to access report data without leaving ASEAM. At the completion of the ASEAM analysis, the report program will print out the peak loads and BEPS reports as usual, but instead of continuing with the next analysis (or going to the main menu), a new menu will appear. The menu appears below (fully expanded).

ASEAM3 REPORTS PROGRAM

The report program has been structured so that additional reports can be generated without having to recompile ASEAM. Reports are easy to generate by modifying or creating "report format" (.RPF) text files.

Sample '.RPF' file (Used with boiler reports)

Line - Description or value

1 - Boiler Report 2 -3 -4 - Cycle Month Bin Bin Operating Boiler Load Plant Load Efficiency 5 -BTUH Percent Temp Hours Hours BTUH 6 -7 - ## ###.###.### ##.###.### ## ###.# ###.# ###.# ###.# 8 - 13 9 - 1.1 10 - 2 11 - 3 12 - 6 13 - 8 14 - 2,3,6,7,8,9,10,12

These .'RPF' files must match the file structure of the corresponding data file. The last four characters of the filename correspond to the last four characters of the report data file. For example, the boiler report 'REP1<u>PBLR</u>.RPF' file must be used with a 'xxxx<u>PBLR</u>.PRN' data file. A sample boiler data file is shown below.

Sample boiler data file.

"PBLR",1,1,1,1,42.5,1.4,1.4,170499,181977,.451,61.694,2.94 "PBLR",1,1,1,1,37.5,33.9,33.9,161863,173168,.429,61.312,2.82 "PBLR",1,1,1,1,32.5,90,90,155964,167151,.414,61.025,2.73 "PBLR",1,1,1,1,27.5,38.9,38.9,176735,188338,.466,61.946,3.04 "PBLR",1,1,1,1,22.5,20.3,20.3,192270,204183,.506,62.493,3.26 "PBLR",1,1,1,1,17.5,15.7,15.7,204546,216705,.537,62.858,3.44 "PBLR",1,1,1,1,12.5,17.8,17.8,214544,226903,.562,63.118,3.59 "PBLR",1,1,1,1,7.5,2.5,2.5,219674,232136,.575,63.239,3.67 "PBLR",1,1,1,1,2.5,.7,.7,227915,240542,.596,63.419,3.79 "PBLR",1,2,1,1,57.5,2.5,.5,15735,24118,.25,55.679,.43 "PBLR",1,2,1,1,52.5,10.3,8.4,73032,82560,.25,55.679,1.48 "PBLR",1,2,1,1,47.5,11,11,104627,114788,.284,57.268,2 "PBLR",1,2,1,1,42.5,13.2,13.2,129361,140016,.347,59.416,2.35 "PBLR",1,2,1,1,37.5,31.4,31.4,159786,171050,.424,61.213,2.79 "PBLR",1,2,1,1,32.5,33.2,33.2,171220,182713,.452,61.724,2.96 "PBLR",1,2,1,1,27.5,35.3,35.3,182079,193789,.48,62.146,3.11 "PBLR".1.2.1.1.22.5.27.8.27.8.191034.202923..503.62.453.3.24

ASEAM3.0 User's Manual Chapter 12 - Output Reports "PBLR",1,2,1,1,17.5,9.2,9.2,208121,220352,.546,62.955,3.5 "PBLR",1,2,1,1,12.5,8.5,8.5,217717,230140,.57,63.194,3.64 "PBLR",1,2,1,1,7.5,8.5,8.5,226059,238648,.591,63.38,3.76 "PBLR",1,2,1,1,2.5,7.8,7.8,233667,246409,.61,63.534,3.87 "PBLR",1,2,1,1,-2.5,.7,.7,240801,253685,.628,63.666,3.98 "PBLR",1,3,1,1,57.5,5.7,1,10585,18865,.25,55.679,.33 "PBLR",1,3,1,1,52.5,14.2,11,68231,77664,.25,55.679,1.39 etc.

The report format text files actually format the report through the use of codes. Each report has a consistent format (see above for sample):

Lines 1 through 6 Text output to be printed at the beginning of the report. Lines 4, 5, and 6 are generally the column headers.

Line 7 BASIC format statement

Line 8 Number of data values per record in the corresponding data file. In the above printout "PBLR" is the first value, '1' is the second, etc.

Line 9 The number of character strings to ignore in each record, followed by the column number containing the character strings. For example, "1,1" says there is one character string to ignore, and it is located in the first field.

Line 10	The column or field number containing the cycle.
Line 11	The column or field number containing the month.
Line 12	The column or field number containing the bin temperature.
Line 13	The number of separate fields to be printed in the report. This should correspond to the format entered

in line 7.

Line 14 The column numbers to be printed, separated by commas. The number of entries should be equal to the number entered in line 13. For example, "2,3,6,..." states that field number 2 in the data file should be printed using the first formatted number (##) in line 7, field number 3 printed with the second formatted number (also ##), field number 6 (bin temperature) should be printed in the third column using the BASIC ###.# number format.

Several inputs questions are displayed in the new report program which allow you to select which data to display. Note that cycle '1' corresponds to the occupied cycle and cycle '2' to the unoccupied cycle. The reporting limits months for the months use the 'and' condition - i.e. in order for a particular month's data to be printed, the month number must be both greater than the beginning month number <u>and</u> less than the ending month number.

New Input Questions:

Cycle, Months, and Temperature Limits for Report

Enter beginning cycle number for report (1 or 2) ? 1 Enter ending cycle number for report (1 or 2) ? 1

Print all months greater or equal to (1 to 12) ? 1 Print all months less than or equal to (1 to 12) ? 3

Print all bin temperatures greater than (deg F) ? -20 Print all bin temperatures less than (deg F) ? 40

After the input questions are answered, you can select the output device and report titles.

ASEAM3 OUTPUT DEVICE

Screen Printer File Exit

ASEAM3 REPORT TITLE

Enter title (line 1)? sample report Enter title (line 2)?

Are Titles Correct (Y/N) ?

Finally, the report is printed, displayed on screen or written to a file.

sample report

Boiler Report

Cycl					ating Boile BTUH		t Load Efficiency Percent
1 1	1	37.5 32.5	33.9 90.0	33.9 90.0	161,863 155,964		61.3 61.0
1	1	27.5	38.9	38.9	176,735	188,338	61.9
1 1	1 1	22.5 17.5	20.3 15.7			216,705	62.9
1 1	1 1	12.5 7.5	17.8 2.5		214,544 219,674	232,136	63.1 63.2
1	1	2.5	0.7	0.7	227,915		63.4
1 1	2 2	37.5 32.5	33.2	31.4 33.2	159,786 171,220	182,713	
1 1	2 2	27.5 22.5	35.3 27.8	35.3 27.8	182,079 191,034	•	
1 1	2 2		9.2 8.5	9.2 8.5	208,121 217,717	220,352 230,140	63.0 63.2
1 1	2 2	7.5 2.5	8.5 7.8	8.5 7.8	226,059 233,667		63.4 63.5
1	2	-2.5	0.7	0.7	240,801	253,685	63.7
1 1	3 3	37.5 32.5	70.7 59.2	70.7 59.2	156,271 160,528		61.0 61.2
1 1	3 3	27.5 22.5	19.2 2.8	19.2 2.8	179,648 194,266		62.1

For the hourly loads reports, the report format is shown below. Each report is in units of BTUH.

Hourly Load Summary for Report LB

ASEAM3.0 User's Manual

Chapter 12 - Output Reports

	JEANJ	0 0301	5 manue		Chapte	1 75	Outp
Hour	Jan	Feb	Mar	Apr	Мау	Jur	ne
1	9,431	9,421	8,590	7,114	7,650		734
2	8,025	8,116	7,355	5,976	6,477	6,	527
3	6,222	6,371	5,842	4,740	5,364	5,	420
4	5,012	5,190	4,783	3,846	4,297	4,	356
5	4,247	4,378	4,098	3,289	3,489	3,	527
6	4,621	4,712	4,497	3,723	2,954	2,	950
7	5,896	5,800	5,338	4,281	3,352	3,	612
8	11,620	11,160	10,461	9,05	4 7,40	6	7,658
9	16,221	15,191	13,819	11,54	14 8,74	16	8,904
10	22,332	20,617	18,212	14,6	75 10,6	580	10,662
11	29,123	26,787	23,177	18,1	72 13,2	207	12,928
12	34,966	32,239	27,497	21,1	92 15,9) 08	15,403
13	38,598	35,786	30,424	23,4	05 18,4	421	17,763
14	39,721	37,152	31,605	24,4	49 20,3	315	19,646
15	38,200	36,030	31,015	24,5	11 21,3	371	20,823
16	35,970	34,192	29,817	24,0	85 21,7	753	21,418
17	33,549	32,131	28,433	23,5	04 21,6	538	21,474
18	27,405	26,401	23,145	18,7	70 17,8	317	17,854
19	23,527	22,795	20,304	16,8	19 16,5	599	16,746
20	20,684	20,169	18,017	14,9	38 15,0)69	15,270
21	17,663	17,306	15,559	12,9	66 13,4	413	13,578
22	15,231	14,975	13,541	11,3	24 11,7	743	11,881
23	13,265	13,105	11,860	9,87	79 10,2	76	10,383
24	11,306	11,254	10,200	8,45	54 8,96	50	9,046

ASEAM3.0 User's Manual

Chapter 12 - Output Reports

Hour Jul		Aug	Sep	Oct	Nov	Dec
1	7,879	8,476	8,739	9,645	8,601	8,763
2	6,648	7,153	7,412	8,226	6,995	7,226
3	5,559	5,990	6,145	6,706	5,479	5,587
4	4,467	4,782	4,902	5,338	4,419	4,461
5	3,610	3,869	3,991	4,352	4,074	3,954
6	3,018	3,267	3,463	3,959	4,798	4,538
7	3,581	3,731	3,891	4,560	6,184	5,896
8	7,583	7,907	8,259	9,362	12,638	
9	8,805	9,418	10,157	12,167		
10	10,566	11,754	-	-		
11	12,867	14,844	16,883	-		
12	15,437	18,231	20,867			
13	17,885	21,330	24,325	-		
14	19,858	23,581	26,596	-		•
15	21,076	24,712	27,420	-		
16	21,645	24,826	27,093	-		-
17	21,668	24,372	26,231	31,09		
18	17,993	20,210	21,687	25,75		
19	16,921	18,749	19,786	22,86		
20	15,398	16,798	-	-		•
21	13,748	14,940	15,550	-		
22	12,040	13,017	13,510	15,13		-
23	10,525	11,350	11,781	13,17		-
24	9,189	9,906	10,263	11,422	10,16	0 10,454

Presented on the following pages are sample reports for various other stand alone reports.

ASEAM3.0 - Stand Alone Reports - Hourly Load Summary for Report LQ

Hour	Jan	Feb	Mar	- A	pr	May	June
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 etc	0 0 0 63 191 276 325 342 326 278 194 67 0 0 0 0 0	213 286 332 349 337 296 228 133 20 0 0	0 0 0 51 136 214 275 314 328 315 276 215 137 52 0 0	0 0 0 18 52 119 18 23 26 27 25 26 10 35 14 0	0 0 0 11 22 4 34 55 74 59 22 57 0 6 32 19	0 0 13 4 2 38 86 142 186 212 219 204 170 120 1 4 35	6 39 62 115 156 182 190 177 146 101 8
Hour	Jul	Aug	Sep	0	ct	Nov	Dec
1 2 3 4 5 6 7 8 9 10	0 0 0 11 24 37 64	0 0 0 0 20 35 96 157	0 0 0 15 68 143	0 0 0 0 0 70	0 0 0 17 14	0 0 0 7 7 40 240	77

AS	EAM3	.0 Usei	's Ma	nual	Ch	apte	er 12	- Output Reports
11	163	205	265	305	3,	40	325	
12	190	236	296	336	34	43	334	
13	200	246	303	339	3	15	309	
14	189	233	285	315	2	56	250	
15	159	200	244	264	1	63	151	
16	114	150	184	190	З	35	20	
17	58	88	111	95	0	(0	
18	36	33	39	10	0	C)	
19	22	18	0	0	0	0		
20	10	0	0	0	0	0		
21	0	0	0	0	0	0		
etc								

ASEAM3.0 Stand Alone Report

Systems 'SA' Report - Zone Loads on System

Systems Report - Zone Loads (Sensible) on Systems

Cycl			Bin B	ie 1 Zor in Loa BTUH	d Loa	one 3 Zo d Loao BTUH	d Load	
1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 4 4 4 4 4 4 4 4 4 4 4	87.5 82.5 77.5 72.5 67.5 62.5 57.5 52.5 47.5 42.5 37.5 32.5	8.2 11.4 7.9 6.8 12.9 7.9 22.5 22.9 43.9 43.9 23.9 2.1	23,182 20,559 17,937 15,314 12,692 10,069 7,447 4,824 2,202 -421 -3,044 -5,666	10,710 9,635 8,561 7,486 6,411 5,336 4,261 3,186 2,111 1,036 -39 -1,114	13,948 11,726 9,503	10,321 9,246 8,171 7,096 6,021 4,946 3,871 2,796 1,721 646 1	
1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	87.5 82.5 77.5 67.5 62.5 57.5 52.5 47.5 42.5 37.5	1.4 18.6 39.6 38.2 20.0 12.5 27.1 25.7 29.6 7.9 0.7	15,874 13,320 10,766 8,212 5,658 3,104 550 -2,003 -4,557 -7,111 -9,665	8,354 7,305 6,256 5,207 4,158 3,109 2,061 1,012 -37 -1,086 -2,135	12,084 9,914 7,743 5,573 3,403 1,233 -937 -3,107 -5,278 -7,448 -9,618	2,705 1,656 607	22,663 21,463 20,263 19,063 17,863 16,663 15,463 14,263 13,063 11,863 10,663
1 1	6 6	92.5 87.5	23.2 28.2	18,655 16,148	9,709 8,677	15,835 13,699		•

	ASE/	AM3.0	User	's Manua	al O	Chapter 12 - Output Report				
1	6	82.5	39.3	13,640	7,646	11,564	9,547	21,845		
1	6	77.5	28.2	11,132	6,615	9,429	8,516	20,645		
1	6	72.5	40.7	8,624	5,583	7,294	7,485	19,445		
1	6	67.5	21.1	6,116	4,552	5,159	6,453	18,245		
1	6	62.5	22.9	3,609	3,521	3,024	5,422	17,045		
1	6	57.5	10.7	1,101	2,490	889	4,391	15,845		

ASEAM3.0 Stand Alone Report

Report SB - System Loads of Plant Equipment

Cyc		lonth I Temp		Bin Heat BTUH			g Bas BTUI			ımidif FUH	fication BTUH	ı Prehe	at
1 1	4	87.5 82.5	8.2 11.4	0 0	0 0	0		0 0	0 0				
1	4	77.5	7.9	Õ	Õ	Ő		Õ	0				
1	4	72.5	6.8	Õ	Õ	Õ		Õ	Ō				
1	4	67.5	12.9	0	0	0		0	0				
1	4	62.5		0	0	0		0	0				
1	4	57.5	22.5	10,090	0		0	C)	0			
1	4	52.5	22.9	67,018	0		0	C)	0			
1	4	47.5	43.9	100,142	2 0		0	11,	651	0)		
1	4	42.5	43.9	106,914	l 0	4	,251	1	3,26	4	0		
1	4	37.5	23.9),135		3,72		0		
1	4	32.5	2.1	115,432	0	15	6,484	3	6,45	1	0		
-	-	07.5			01 005		•			•			
1	5	87.5	1.4		01,995		0	C		0			
1	5	82.5	18.6		65,530		0		0	0			
1	5	77.5			40,139		0		0	0			
1	5	72.5	38.2		11,832		0		0	0			
1	5	67.5	20.0	1,420	14,12		0		0	0			
1	5	62.5	12.5				0		0	0			
1	5	57.5	27.1	144,746			0		0 0	0			
1 1	5 5	52.5 47.5	25.7 29.6	197,481 219,625			0			0			
1	5	47.5	7.9				0		0	0			
1	5	42.5 37.5	0.7	229,327 237,418			0	C		0 0			
T	J	57.5	0.7	237,410	0		0	U		0			
1	6	92.5	23.2	0 2	248,309		0		0	0			
1	6	87.5	28.2		216,014		Ō		0	Ō			
1	6	82.5	39.3		86,012		Ō		0	Ō			
1	6	77.5	28.2		55,663		0		0	Ō			
1	6	72.5	40.7		24,796		0		0	0			

ASEAM3.0 User's Manual Ch

Chapter 12 - Output Reports

1	6	67.5	21.1	0	16,936	0	0	0
1	6	62.5	22.9	0	0	0	0	0
1	6	57.5	10.7	0	0	0	0	0
1	6	52.5	0.0	0	0	0	0	0
1	6	47.5	0.0	0	0	0	0	0

ASEAM3.0 User's Manual

Chapter 12 - Output Reports

ASEAM3.0 Stand Alone Report

ASEAM Report SC - System Psychrometrics Temperature Values in Deg F.

Cycle Month Bin Outside Return Mixed Preheat Fan Cooling Heating Hours Temp Temp Temp Temp Discharge Discharge Dischrg										
1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 4 4 4 4 4 4 4 4 4 4	11.4 7.9 6.8 12.9 7.9 22.5 22.9 43.9 43.9	82.5 77.5 72.5 67.5 62.5 57.5 52.5 47.5 42.5 37.5	68.1 68.1 68.1 68.1 68.1 68.1 68.1 68.1	71.0 70.0 69.0 67.5 62.5 57.5 52.5 50.9 50.9 50.9	71.0 70.0 69.0 67.5 62.5 57.5 52.5 50.9 50.9 50.9	56.6 55.0 55.0 55.0	$\begin{array}{c} 75.1 \\ 74.1 \\ 73.1 \\ 71.6 \\ 66.6 \\ 61.6 \\ 56.6 \\ 55.0 \\ 55.0 \\ 55.0 \\ 55.0 \end{array}$	75.1 74.1 73.1 71.8 75.4 78.9 82.5 86.1 89.6	
1 1 1 1 1 1 1 1 1 1	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.4 18.6 39.6 38.2 20.0 12.5 27.1 25.7	87.5 82.5 77.5 72.5 67.5 62.5 57.5 52.5 47.5	78.1 78.1 78.1 78.1 78.1 78.1 78.1 78.1	80.0 79.0 78.0	80.0 79.0 78.0 77.0 67.5 62.5 57.5 52.5 50.9 50.9	84.1 83.1 82.1 81.1 71.6 66.6 61.6 56.6 55.0	55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0	84.1 83.1 82.1 81.1 71.8 75.4 78.9 82.5 86.1	
1 1 1 1	6 6 6 6	23.2 28.2 39.3 28.2 40.7	87.5 82.5 77.5	78.1 78.1 78.1 78.1 78.1		80.0 79.0	85.1 84.1 83.1 82.1 81.1	55.0 55.0 55.0	85.1 84.1 83.1 82.1 81.1	

	ASE/	AM3.0	User	's Mar	nual	Chapter 12 - Output Reports				
1	6	21.1	67.5	78.1	67.5	67.5	71.6	55.0	71.6	
1	6	22.9	62.5	78.1	62.5	62.5	66.6	55.0	66.6	
1	6	10.7	57.5	78.1	57.5	57.5	61.6	55.0	61.6	

ASEAM3.0 User's Manual

Chapter 12 - Output Reports

ASEAM3.0 Stand Alone Report

Report SLDS - Load on Plant Equipment All Loads in BTUH

Cycl		onth I Temp	3in Bir Hours	ר Ce BTU		cip H	Tower BTUH	Boile BTUH	r Elec Resist I BTUH
1 1	4 4	87.5 82.5	8.2 11.4	0 0	0 0	0 0	0 0	0 0	
1	4	77.5	7.9	0	0	0	0	0	
1	4	72.5	6.8	0	0	0	0	0	
1	4	67.5	12.9	0	0	0	0	0	
1	4	62.5	7.9	Ő	0	0	Ő	0	
1	4	57.5	22.5	0	0	0	10,089	-	0
1	4	52.5	22.9	Ő	0	0	67,017		0
ī	4	47.5	43.9	Ő	Ő	Ő	111,792		Ő
1	4	42.5	43.9	Õ	Õ	Õ	124,429		0
1	4	37.5	23.9	Ō	Õ	Õ	154,764		0
1	4	32.5	2.1	0	0	0	167,366		0
1	4	27.5	0.0	0	0	0	0	0	
1	5	87.5	1.4	0	201,994		0 0		0
1	5	82.5	18.6	0	165,530		0 0		0
1	5	77.5	39.6	0	140,139		0 0		0
1	5	72.5	38.2	0	111,832		0 0		0
1	5	67.5	20.0	0	14,125		0 1,41		0
1	5	62.5	12.5	0	11,482		0 77,34		0
1	5	57.5	27.1	0	9,854		0 144,74		0
1	5	52.5	25.7	0	3,630		0 197,48	30	0
1	5	47.5	29.6	0	0		219,625		0
1	5	42.5	7.9	0	0	0	229,327		0
1	5	37.5	0.7	0	0	0	237,417		0
1	6	92.5	23.2	0	248,309		0 0		0
1	6	87.5	28.2	0	216,014		0 0		0
1	6	82.5	39.3	0	186,011		0 0		0
1	6	77.5	28.2	0	155,662		0 0		0

1	6	72.5	40.7	0	124,795	0	0	0
1	6	67.5	21.1	0	16,935	0	0	0
1	6	62.5	22.9	0	0	0	0	0
1	6	57.5	10.7	0	0	0	0	0
1	6	52.5	0.0	0	0	0	0	0
1	6	47.5	0.0	0	0	0	0	0

Chapter 12 - Output Reports

ASEAM3.0 Stand Alone Report

Reciprocating Chiller Report

Сус				n Opera Hours	ating Chille BTUH	r Load Pa Ratio	rt Loa	d COP Towe BTUH	er Load
1	5	87.5	1.4	1.4	201,994	0.711 2	2.9	265,627	
1	5	82.5	18.5	18.5	165,530	0.576	2.8	219,384	
1	5	77.5	39.6	39.6	140,139	0.484	2.7	187,028	
1	5	72.5	38.2	38.2	111,832	0.384	2.6	150,827	
1	5	67.5	20.0	3.7	14,125	0.250 2	2.4	19,362	
1	5	62.5	12.5	1.9	11,482	0.250 2	2.4	15,733	
1	5	57.5	27.1	3.5	9,854	0.250 2	2.4	13,499	
1	5	52.5	25.7	1.2	3,630	0.250 2	2.4	4,969	
1	6	92.5	23.2	23.2	248.309	0.885	3.0	323,917	
1	6	87.5	28.2	28.2	216,014	0.763		283,328	
1	6	82.5	39.2	39.2	186,011	0.651	2.8	245,393	
1	6	77.5	28.2	28.2	155,662		2.7	206,824	
1	6	72.5	40.7	40.7	124,795	0.430	2.6	167,422	
1	6	67.5	21.0	4.7	16,935	0.250 2	2.4	23,223	

Chapter 12 - Output Reports

ASEAM3.0 Stand Alone Report

Boiler Report

Cycl		lonth E Temp		Opera Hours		r Load Plar BTUH	nt Load Efficiency Percent
	4	57.5	22.5	4.0	10,089	18,359	- 55.7
1	4	52.5	22.8	17.3	67,017	•	
1	4	47.5	43.9	43.9	111,792	•	
1	4	42.5	43.9	43.9	124,429	134,986	59.0
1	4	37.5	23.9	23.9	154,764	165,927	61.0
1	4	32.5	2.1	2.1	167,366	178,781	61.6
1	5	67.5	20.0	1.8	1,419	9,516	55.7
1	5	62.5	12.5	10.7	77,343	86,958	55.7
1	5	57.5	27.1	27.1	144,745	155,708	60.4
1	5	52.5	25.7	25.7	197,480	209,498	62.7
1	5	47.5	29.6	29.6	219,625	232,086	63.2
1	5	42.5	7.8	7.8	229,327	241,981	63.4
1	5	37.5	0.7	0.7	237,417	250,234	63.6

ASEAM3.0 User's Manual Chapter

Chapter 12 - Output Reports

ASEAM3.0 Stand Alone Report

ASEAM Plant Report - TOW - Cooling Tower

Leaving Entering											
Cyc	le M	lonth E	Bin Wet	Bulb	Bin Towe	r Loa	d Far	n Pumj	o Cond	lenser Water	
-		Temp	Temp	Hours	BTUH	k٧					
									•	•	
1	5	87.5	66.0	1.4	269,384	1.7	1.2	74.5	81.7		
1	5	82.5	62.0	18.5	223,140	1.7	1.2	70.0	76.0		
1	5	77.5	62.0	39.6	190,785	1.7	1.2	68.9	74.0		
1	5	72.5	61.0	38.2	154,584	1.7	1.2	67.1	71.2		
1	5	67.5	59.0	20.0	23,119	0.0	1.2	85.5	86.2		
1	5	62.5	55.0	12.5	19,490	0.0	1.2	85.4	86.0		
1	5	57.5	51.0	27.1	17,256	0.0	1.2	85.4	85.8		
1	5	52.5	48.0	25.7	8,726	0.0	1.2	85.2	85.4		
1	6	92.5	72.0	23.2	327,674	1.7	1.2	80.8	89.6		
1	6	87.5	69.0	28.2	287,085	1.7	1.2	77.3	85.0		
1	6	82.5	67.0	39.2	249,149	1.7	1.2	74.6	81.2		
1	6	77.5	65.0	28.2	210,581	1.7	1.2	71.8	77.4		
1	6	72.5		40.7	171,178	1.7	1.2	69.1	73.7		
1	6	67.5	60.0	21.0	26,980	0.0	1.2	85.6	86.4		
					,						