
BBL

Programming Logic Manual

David Todd

Computing Center

Wesleyan University

Middletown, CT

August 1992

Introduction

BBL is an installable software device driver for MS DOS that displays on the screen, in big block

letters, any characters sent to it. It is a memory-resident (800 bytes of memory) program that can be

used by any program or utility as an output device, much as CON: might be used for input or output.

This manual explains how BBL is organized so that others can customize or revise it as needed.

Design Philosophy

BBL was implemented in response to a request from a faculty member in Chemistry for a video

display system that would let him display on a DOS-based computer the results of real-time measure-

ments from experiments in classroom demonstrations. The system was to replace a system he had used

a Commodore PET that he had retired. The new system was to be an AT&T 6300 computer with

GPIB interface, and he was adapting his BASIC code to that system. He needed a display system that

would let him iterate the loop fread-data, compute values, display resultsg.

I looked on the FTP-able archives for a \bulletin board" program with source code that I could

adapt, but found none and concluded that I would have to develop the code.

I realized that it would be prudent to develop the code so that it could be used from any language

and be portable to other DOS machines (those 6300's can only last so long!). It seemed to me that the

best way to implement the system would be to write it as a device driver | make it a small, portable

piece of code that, once installed, could be accessed by programmers using their favorite language with

no concern for the underlying support code.

I tried to develop the code as an assembly-language shell around a Turbo-C core, but I have

been unable to get that to load correctly. I'll distribute that if I ever �gure out how to get it working.

Since I made some design decisions that other programmers might want to alter, I decided to

write this PLM (Programmer's Logic Manual) to guide others in changes they might want to make

and note the reasons for my choices. Some of the basic decisions were:

� Use the 8x8 font ROM built into the video adapter of most (all?) DOS machines. Rationales:

from a distance, the 8x8 ROM, displayed as 8x8, 16x16, or 24x24 cells of block characters on the

screen should be su�ciently readable; embedding the character pixel patterns in the code would

increase the size of the resident device driver unnecessarily; the code would be less portable if

it were designed to use a base 16x16 pixel pattern in 43x132 EGA display mode, for example

1

BBL Programming Logic Manual Page 2

(in particular, it wouldn't work on the AT&T 6300 for which the code was intended!). However,

the core display routines use 16-bit masks and retrieve 16-bit quantities as pixel patterns. The

character width is an assembly parameter, and adaptation to 16x16 pixel patterns should not be

too di�cult.

� Use BIOS INTs to display | don't access video memory directly. Rationale: code portability

was paramount. Video memory seems pretty standardized, but this didn't seem worth the risk.

The display loop is very well de�ned, and the display INT is well identi�ed: easy to change to

direct addressing if speed is an issue.

� Use 8086-compatible code. Rationale: there were only a few situations where shifts or multiplies

with immediate-mode arguments would have made the code shorter and faster. I didn't bother

to insert conditional-assembly options, either, because the penalties are pretty small.

� Implement commands through the input character stream rather than use the device-driver

IOCTL feature. Rationale: few casual programmers (for whom this was intended) would want

to master the IOCTL calling sequence in their preferred high-level language; only a few special

symbolic characters are made undisplayable by using them as command-introducers (and they are

parameterized); and the IOCTL mode of control can be introduced easily, if desired, by adding

the IOCTL code to invoke the control routines and changing the command-interpreting state

tables.

� Implement command-character interpretation through a state machine. Rationale: Once imple-

mented, the state tables can be changed easily to implement new commands or rearrange the

way they're processed; processing within the device driver is fast.

Code Organization

The code skeleton is pretty standard device-driver code (see Lai's book, for example). I put

the equates at the beginning for easy editing. The STRUC de�nitions used by the BBL -speci�c code

follow. Then the STRUC de�nitions and equates used in standard device-driver code (some not needed

for this program have been left in).

The device-driver \strategy" section is standard code. The command dispatching upon invoca-

tion of the device-driver \interrupt" code is also standard.

This particular device does not hook into the interrupt system, so there are no timing issues and

no places at which the interrupts must be disabled.

There are few commands to implement. The Initialization command and Output command are

really the only ones that require code. The others are ignored; the code for handling them is standard.

The State Machine

The processing of characters sent to BBL is handled by a state machine. The incoming character

is classi�ed by a type (\token type") that indicates if the character can be interpreted as a command or

command parameter or is simply to be displayed. The state machine is a matrix with rows identi�ed by

states and columns identi�ed by the token type of the incoming character; the elements of the matrix

identify the action to be taken and resulting next state when a token of the speci�ed type is processed

when the machine is in each particular state.

In version 1 of BBL, the commands available, invoked by the incoming character stream, are:

BBL Programming Logic Manual Page 3

hFFi clear screen & move cursor to home

hBSi move cursor back one character position (same line)

hCRi move cursor to beginning of line

hLFi move cursor down one line (or scroll up)

hVTihdigiti position cursor on line hdigiti; e.g. hVTi1 positions cursor on line 1, no change in column

position

hHTihdigiti position cursor on column hdigiti; e.g., hHTi3 positions cursor on column 3, no change

in line position

hSOihdigiti with hdigiti = [0|1|2] means set display mode to 0 (3rows x 10char/row), 1 (1x5), or

2 (1x3).

Accordingly, the state machine has four states:

0: waiting-for-character

1: VT-waiting-for-digit

2: HT-waiting-for-digit

3: SO-waiting-for-digit

and the character set (256 chars) is classi�ed by the following types:

0: non-action char --- just display (any but the following)

1: digit char {0..9}

2: move-cursor {FF, BS, CR, LF}

3: Hor-position {HT}

4: Vert-position {VT}

5: Set-mode {SO}

Note that the whole 256-char set has displayable characters in the 8x8 ROM, so all could be displayed

except the ones used for control functions here. If you want to extend BBL to display the symbol

located at the place in ROM addressed by one of these action chars, you'll need to add an escape char

that can be used to pre�x the control chars used above and modify the state tables accordingly.

With the de�nition of tokens types and states above, the following state table is used to de�ne

the actions and transitions:

Token Type char digit move ht vt so

0 1 2 3 4 5

State

0 Emit, Emit, Act, Noop, Noop, Mode,

0 0 0 2 1 3

1 beep, VPos, beep, beep, beep, beep,

0 0 0 0 0 0

2 beep, HPos, beep, beep, beep, beep,

0 0 0 0 0 0

3 beep, beep, beep, beep, beep, SetMode,

0 0 0 0 0 0

The actions include:

BBL Programming Logic Manual Page 4

Emit: display the character coming in from the input stream

Act: perform the action indicated by the cursor-moving command

beep: error: sound bell, reset state

HPos: position cursor horizontally

VPos: position cursor vertically

SetMode: set mode for display.

Incoming characters are categorized by direct table addressing, using the value of the character

as an index (actually, the value of the character, divided by two is the index since the 4-bit token-

class values are stored two nibbles per byte). The token-class table (\TC") is built dynamically at

initialization time (see below).

The state table is constructed as a matrix using a STRUC de�nition that gives the action

procedure and next state associated with each hcurrent-state,token-classi pair. This is a static matrix.

Using the state table makes the code easier to modify (just modify the state table and categorize

the token type of any new command characters), and it makes the processing of commands in the input

stream very fast (direct table addressing to �nd the routine to invoke and next state).

Code Description

The best way to understand the code is to read it, but this might help.

Initialization

Recall that device drivers are called once when loaded through the strategy section to pass a

DOS pointer, then again through the interrupt section using the Initialization function code. These

sections are called just once. The Initialization section can do whatever it needs to set up the device

driver, then dispose of much of itself, and one-time code, by returning to DOS a pointer that indicates

that the �rst byte of free space (reused by DOS) is at the address of the once-only code.

The initialization code for BBL has to process any command-line options, set up the pointer to

the 8x8 ROM font, build the token-class table, and announce that it has been loaded.

The command-line processing, located in the initialization section, is straightforward recursive-

descent code ... not pretty, but it works. I tried to leave a road map for future extension.

The address of the 8x8 ROM font is assumed to be accessible via BIOS calls (true for EGA and

VGA, for Phoenix BIOS at least). The command-line options may specify some other choice, and the

appropriate address is selected if the option was invoked.

The token-class table is set up so that all characters default to class 0, displayable. The token-

class table must reside in the device driver during execution. The exceptions to the default settings

are listed in a separate list in the initialization section. The initialization code processes the exceptions

from that list into the memory-resident \TC" table, and the exceptions list is then discarded by the

init code since it is in the \once-only" section of the program.

The banner announcing that BBL has been loaded is part of the once-only code and uses the

standard DOS INT for string display.

Output: Character Processing

The device driver can be given a string of characters to process at once, so ther output code

contains a loop to process all characters in the input bu�er. For each of those characters, the following

process is followed in a procedure invoked in the string-processing loop.

BBL Programming Logic Manual Page 5

The output character is classi�ed by using its value to select the correct nibble from the TC table

addressed by the character value divided by two (left nibble for even-valued characters, right for odd-

valued characters). The current state and token-class value are used to compute the matrix address of

the correct state-table entry, the next state value is loaded and the action-procedure associated with

this state and input character token-type is executed. Upon completion, control is returned to the

invoking procedure.

Author, Copyright, and Distribution

BBL was written by David Todd, Chemistry Department and Computing Center, Wesleyan Uni-

versity, August, 1992; for John Sease, Chemistry Department. Author's address:

H. David Todd

Computing Center

Wesleyan University

Middletown, CT 06459

email via Internet: hdtodd@eagle.wesleyan.edu

The author retains the copyright to BBL and documentation, but you may use the software for

personal, non-commercial purposes. The author makes no warranty as to the quality, performance,

or �tness for a particular purpose. You may distribute this software freely via magnetic, digital or

electronic means, if you do not:

� Charge fees or ask donations in exchange for copies of the software.

� Distribute the software with commercial products without the written permission from the author

and copyright owner.

� Remove author or copyright information from the software and documentation.

