
XLMATH.DLL

A Dynamic Link Library for Microsoft Excel
Version 1.0

XLMATH is a DLL for Excel and contains custom functions for diagonalizing a real
symmetric matrix, creating a frequency distribution, and curve fitting functions including
nth order polynomial fitting, cubic spline functions fitting and data smoothing via
Savitsky Golay or by weighted averages. While XLMATH.DLL may be used as it is, the
archive file includes the source programs necessary to extend the DLL with additional
functions or to create a new DLL for Excel.

Files

The files included in the archive are:

Executable files:
README Instructions for executing the demo worksheet called
XLMATH.XLS
XLMATH.DLL The executable DLL
OPTIMEM.DLL A memory management DLL (c) Applegate Software
XLMATH.XLS A demonstration worksheet
XLMATH.XLM Macros required to register the custom functions
POLYDE.XLC A demo chart for polynomial fitting
SPLINEDE.XLC A demo chart for spline function fitting
SMOOTHDE.XLC A demo chart for data smoothing
XLMATH.XLW A workspace file to load XLMATH.XLS and the associated

macro and chart files

Source Code header files:
XLMATH.H, XLMINIT.H, XLMUTIL.H, and XLMCURVE.H
The file OPTIMEM.H is copyrighted by Applegate Software and is not included in the
archive.

Source Code:
XLMINIT.C Task and memory initialization routines
XLMUTIL.C Memory allocation routines
XLMATH.C Main DLL interface routines
XLMATH.DEF Windows .DEF file
XLMATH.RC Windows resource file
The file XLMCURVE.C is not included in the archive because the routines in the file are
the copyright of Quinn-Curtis and have been extracted from their Science and
Engineering Tools library.

XLMATH.DLL 2

Excel Usage

All of the custom functions added by XLMATH.DLL return arrays of data
to Excel. If you are not familiar with Excel's array formula usage, please
read the section on array formulae in the Excel User's Guide (p279ff).
The custom functions added by the DLL must be registered with Excel
prior to usage in a worksheet. This means that the user must load the
XLMATH.XLM macro sheet prior to attempting to use any of the custom
functions. The macro sheet contains an auto open macro which
initializes the DLL and registers the custom functions with Excel. The
macro sheet also contains an auto close macro which unregisters the
function. If the user closes the macro sheet prior to closing the
worksheet, the custom functions added by the DLL will no longer be
available. Always open the macro sheet first, and close the macro
sheet last.

Custom Function Descriptions
The following is a brief description of the custom functions added by
XLMATH.DLL The user should consult the worksheet XLMATH.XLS for
detailed usage of these functions.

InitXLMath()
This function is used to initialize XLMATH.DLL and must always be
called in the auto open macro prior to using any of the other custom
functions. For sample usage see XLMATH.XLM. This function should
only be used in the auto open macro and should not be made visible to
the worksheet user.

ExitXLMath()
This function is used to exit XLMATH.DLL and must always be called in
the auto close macro. Failure to do so will cause error messages from
both XLMATH and OPTIMEM. As with InitXLMath(), this function should
not be visible to the worksheet user.

Frequency(Values, Intervals,)
The Frequency function returns a frequency distribution table. The
function behaves in a manner identical to the found in Quattro Pro.
Values must be a column of values for which the user wishes to
calculate a frequency table. The column range, Intervals, defines the
intervals of the values. The resulting frequency distribution table can
be found by entering the Frequency() array formula in a column range
which has one row more than the number of interval values. The first
frequency value contains the number of values which are less than or
equal to the first interval. The second and subsequent frequency

XLMATH.DLL 3

values contain the number of values greater than the lower interval
and less than or equal to the upper interval. The final frequency value
indicates the number of values that exceed the last interval value.

XLMATH.DLL 4

Diagonalize(SymMat)
This function returns the eigenvectors and eigenvalues of a real
symmetric matrix. The values are returned in an (N+1) x N array where
the last row conatins the eigenvalues.

PolyCurveFit(IndVar, DepVar, Order)
Polynomial curve fitting results in a single polynomial equation of order
m which is the least squares approximation of the observed data.
y = C0 + C1 x X + C2 x X2 + C3 x X3 ... + Cm x Xm

In this function, IndVar is a column range of independent variables (X),
DepVar is a column range of dependent variables (Y) and Order is the
order of polynomial (m) fittted to the dependent vaiables. The function
PolyCurveFit must be entered into an N x 3 array where N is the
number of independent variables. The first column of the return array
contains the estimated Y values, the second row contains the residuals
(differences between calculated and estimated y-values). The third
columns contains in the first (order + 1) rows, the polynomial
coefficients. If fitted to 2nd order, the first three rows contain a0, a1, &
a2. The following values are returned directly below the coefficients,
coefsig - a vector of dimension (order+1). It returns the standard
errors of coefficient estimates. The values are stored in the same order
as the polynoliam coefficients.
see - the standard error of the estimate
rsqrval - the r squared value - the sample correleation coefficient
cferror - returns 1 if the curve fit is singular.

CubicSplines(IndVar, DepVar)
The CubicSplines() function fits a discrete set of cubic polynomial
equations to a discrete set of data. Y-values may be interpolated for
points between the original data points by applying the calculated
cubic equations. The arguments to the function are;
IndVar - the N independent variables (X)
DepVar - the N dependent variables (Y)
The function returns and N x 4 array of coefficients.

CalcSpline(IndVar, Coef, X)
The function CaclSpline returns an interpolated y-value for the
argument X. The argument IndVar is the column array of independent
variables passed to CubicSplines() above. The argument Coef is the N x
4 array of cubic spline coefficients returned by CubicSplines() above.

XLMATH.DLL 5

SmoothSG(Data, SmoothNum, DerivNam)
This function performs a Savitsky - Golay smoothing and differentiation
of data (see Savitsky, A. and Golay, J., Analytical Chemistry 36 (1964),
p. 1627). The arguments are as follows;
Data - a column range of the data to be smoothed
SmoothNum - holds the integer degree of smoothing
1 = 5 point smooth
2 = 7 point smooth
3 = 9 point smooth
4 = 11 point smooth
5 = 13 point smooth
DerivNum - holds the integer derivative degree
0 = smooth data only
1 = first derivative
2 = second derivative
The function returns a column range of smoothed data.

SmoothWT(Data, Weights, Divisor)
This function is used to reduce the noise in a sample. The technique
uses convolution where each data point is recalculated as a weighted
average of its original value and surrounding data points. The
argumants are as follows;
Data - the data points to be smoothed
Weights - the weights used in the convolution process
Divisor - the normalization factor for the weights
The function returns a column range of smoothed data points.

Development Notes

XLMATH can serve as a both black-box DLL and as a template for
writing a custom DLL for Excel. The creation of a DLL for Excel is not a
simple task if one has to begin from scratch but by using the routines
in XLMINIT and XLMUTIL, the creation of a new DLL should be greatly
simplified. The following is a brief discussion of the salient points
regarding the creation of DLL's.

One of the main differences between dynamic link libraries (DLL's) and
static libraries is
that the function code in a DLL is loaded dynamically during run time.
For Microsoft
Excel, the DLL's can be written in a language such as C or FORTRAN,
compiled and
linked into a DLL, and then registered within an Excel macro and
subsequently used as a

XLMATH.DLL 6

custom function within an accompanying Excel worksheet. Two major
concerns in writing a DLL are memory management and the interface
between Excel and the DLL library.

XLMATH.DLL 7

Memory Management
Memory management in a Windows program is particularly difficult
because much of the literature on memory management is relevant to
real mode windows which will no longer be supported in Windows 3.1.
In real mode, the application had to be prepared to run out of memory
any time that the application allocated or locked a memory block. This
meant extensive operation checking and error processing for out of
memory errors. Since memory was at a premium, the real mode
application couldn't leave memory blocks locked for longer than
absolutely necessary. In standard or enhanced modes, Windows uses
hardware memory mapping which allows the application to allocate
and lock memory blocks at initialization and unlock and free them only
when no longer required. It is quite obvious that new applications will
be developed only for standard and enhanced modes.

Although memory allocations in standard and enhanced mode
applications can be written more easily and straightforwardly, small or
medium model programs are still recommended. DLL's in particular
should be written in the small model since they are faster and easier to
maintain. This then necessiates the use of the _far keyword to access
data on the global heap. The need to use the _far keyword is
particularly important in a DLL . For example, in an Excel DLL, the
transfer of array data between Excel and the DLL must be via _far
pointers. Also, arrays created in a DLL must be dynamically allocated
and due to the 64k limit on local memory, they must invariably be
allocated in global memory. Finally, because the DLL does not have its
own stack but instead uses the stack of the calling program, automatic
variables, when passed by reference, must be passed as _far pointers.

Although the use of the _far keyword is at times bothersome, the main
difficulty in using the global heap is the Windows system-wide limit of
8192 selectors for global memory. Each global allocation uses one
selector which means that the allocation of smaller global memory
arrays is both inefficient and easily leads to a depletion of selectors
before a depletion of memory. Since this limit is inherent in the design
of the Intel 80x86 chip, it is unlikely to change in the near future. The
only practical solution to the limited number of selectors is to use an
internal memory manager which allocates global memory within a
single global segment, thus using a single selector. Although memory
allocation routines are described in a number of standard programming
texts (see Advanced C by Paul & Gail Anderson), creating such an
allocator for Windows is a daunting task. In the author's opinion, the
only reasonable solution to the problem of memory management is to
purchase a commercial memory management library such as

XLMATH.DLL 8

OPTIMEM. This library manages the allocation of memory blocks within
a segment allowing for efficient allocation of small blocks of memory.
This library also allows the user to use shared memory which further
reduces the memory demand upon Windows. The greatest benefit of
such a memory management library is that it lets the user concentrate
on the task at hand which is to write a useful custom function in the
minimum amount of time.

If you really don't want to purchase OPTIMEM, then there is a work
around although it is not recommended. When compiling XLMATH,
define the flag SUB_OPTIMEM by adding the term /DSUB_OPTIMEM to
the compiler flags. This will delete all references to the OPTIMEM
library and include substitute routines. All memory will be allocated in
the global heap and kept locked for the duration of its use. If you want
to try your hand at building a memory suballocation module, then an
article by Paul Yao on subsegment allocation in the Microsoft Sytems
Journall 6, January 1991, p75, is required reading. In addition, the
BOOK/DISK SET of Martin Heller's text (7) contains a sub-allocator
called smalloc.

Interface
Excel is able to interface with a DLL by passing to the DLL and
returning from the DLL a number of different data types. A very useful
data type is K which is a floating-point array, passed by reference. The
C data structure describing this data type is commonly defined as
typedef struct fp
{

WORD wRows;
WORD wCols;
double Data[1];

} FP;
The first word of the structure contains the number of rows. The
second word contains the number of columns. This is followed by rows
x columns floating point numbers. Since the Excel array exists in a
global memory segment, reference to the array is made with a far
pointer defined by
typedef FP FAR *LPFP

Accessing a one dimensional array of type K is relatively
straightforward and is done by
defining a far pointer to a FP structure. For example, the Frequency
function is
defined as
LPFP PASCAL FAR Frequency(LPFP lpValues, LPFP lpIntervals)

XLMATH.DLL 9

In this function, both far pointers lpValues and lpIntervals refer to type
K arrays passed to the function from Excel. Individual elements of the
array can be accessed via statements such as lpValues->Data[wIndex]
where wIndex is an array index defined in a DO loop. DLL computed
values are passed back to Excel in an internally allocated type K array.
The allocation and initialization of the array is performed in the
function InitRetBuffer(). By convention within XLMATH DLL, the array
returned to Excel is always called XLKInt (for internal).

Accessing a dynamically allocated two dimensional array in C with
standard array
subscripts such as a[i][j] is not a simple process. However, the method
of accessing these
arrays is well described in a number of texts on the C language . The
method involves
the creation of pointers to each row of the matrix Data and then
subsequently accessing the array with the array of pointers. Since the
Excel allocated array is in global memory, the access must be via far
pointers to type double and the type LPLPREAL is defined as
typedef double FAR * FAR *LPLPREAL

Prior to using the DLL in an Excel worksheet, the DLL functions must be
registered in an Excel macro sheet. This is usually done in the Excel
auto_open macro. Prior to closing, the DLL functions must be
unregistered in an Excel macro sheet. This is normally done in the
Excel auto_close macro. The details of this registration and
unregistration procedure are illustrated in the macro sheet
XLMATH.XLM.

Because Windows allows the execution of multiple copies of Excel, with
each copy given a unique task handle, the DLL application must
choose to either support only one task or multiple tasks. If the DLL is
written to support multiple tasks, then the DLL must pass back to the
task (Excel) a pointer to a unique return buffer. The management of
multiple tasks in XLMATH is accomplished by using a data structure
which contains the task handle and the return buffer pointer for that
task. The data structure used is;
typedef struct td
{

HANDLE hTask;
LPVOID lpReturnBuffer;

} TD;
Task management is performed by several routines in the module
XLMUTIL.C.

XLMATH.DLL 10

After writting the above descrition on task management, the author
engaged in a converstaion with several experts on Excel. The following
is an edited version of the converstaion:
QUESTION:
> If you maintain only a single "return" array, then what happens
> if someone starts a second copy of excel and they both
> call the dll. I would have thought that you have to maintain
> a single "return" array for each task that calls your DLL.
> What's the real story?

An interesting observation, but I don't think that win3x's
"multitasking" gives rise to such worries. Since the multitasking
in windows is cooperative, so long as the DLL has control and doesn't
have provisions for giving it up, it's the only thing running, right? So
the question is whether Excel, after it has called a DLL, but before it
has copied the new value to its destination, allows another program
(e.g. instantiation of itself) to run (cooperates?). I doubt it does,
since that would be a really bad time to do so. Besides which, Excel
doesn't seem that "cooperative" in the first place. But I'm curious...
Any Excel hackers out there care to comment?

I do know that it has worked so far, even with multiple copies open.
However, that is no guarantee of correctness.
Clay

Excel copies out the array before using it. On Windows with
DOS you can be sure that the second copy of Excel will not
get any processor time until this happens, so you're probably
ok.

If you are worried about which instance of Excel is talking to you,
you can find out the instance handle of Excel as follows:

XLMATH.DLL 11

HANDLE GetExcelHWND()
{
HANDLE hTask;
HWND hwnd;

hTask = GetCurrentTask();
hwnd = GetActiveWindow();
while (hwnd)
{
if (GetWindowTask(hwnd) == hTask)
break;
hwnd = GetNextWindow(hwnd, GW_HWNDNEXT);
}

return hwnd;
}

HANDLE GetExcelInst()
{
return (HANDLE) GetWindowWord (GetExcelHWND(), GWW_HINSTANCE);
}

_Joel Spolsky
joelsp@microsoft.com
--
QUESTION:
>Joel's short routine makes it clear how to find the Excel instance
>but it still leaves me a little confused about the need for
>finding the instance handle of Excel. If the need is to find
>a unique identifier for the copy of Excel that called the
>DLL, would it not be sufficient to simply use the task handle?

Yep; you can use the task handle for uniqueness. The instance handle is
still useful for other things like MakeProcInstance.
_Joel

SUMMARY:
I think we've pretty much established that in Excel/Win/DOS it is OK to
pass back a pointer to memory local to the DLL, and without worrying
about multiple instances of Excel calling the DLL (see Joel's post on
the subject). In NT (Not There?), this may not work, since real
multitasking/threading is implemented; but for the moment, that's
academic. Whether you *want* to do this is subject to your taste. It is
certainly more efficient (and to an extent, more elegant) than worrying
about passing space to the DLL. We do it *a lot*.

Clay

AUTHOR'S COMMENTS
It appears that task management is not an issue in Excel. As Clay says, it is a matter of
taste. The task management routines in XLMATH can be omitted.

XLMATH.DLL 12

Excel v4.0 Notes
Excel v4.0 was released after XLMATH was written. No changes are
required in XLMATH but the function Frequency() is now internally
available in v4.0. In addition, v4.0 contains two new macros called
Auto_Activate and Auto_Deactivate that can be used to run the macros
required to Register and Unregister the custom functions in XLMATH.

XLMATH.DLL 13

References:

1. Microsoft QuickC for Windows - C for Windows; Microsoft
Corporation, 1991; p540

2. P. Wilken; D. Honekamp, Windows System programming; Abacus,
1991; p657

3. Microsoft Excel Function Reference, Microsoft Corporation, 1991;
Appendix A

4. P. Anderson; G. Anderson, Advanced C; Hayden Books, 1988; p 182

5. OptiMem, Applegate Software, 1991

6. Micosoft Developer's Kit, Microsoft Corporation; Microsoft
Corporation, 1991

7. Martin Heller, Advanced Windows Programming, Wiley, 1992

Author:
Roy Kari
Department of Chemistry & Biochemistry
Laurentian University
Sudbury, Ont.
Canada
P3E 2C6
(705) 675-1151

The author would appreciate any and all comments on XLMATH. The
author may be reached via Internet EMAIL at
"ROY@NICKEL.LAURENTIAN.CA"
The author would appreciate receiving comments and any corrections
or additions that anyone makes to XLMATH.

