
PEXtk Overview

PEXtk Reference Manual 1.0 vi

Overview

Introduction

PEXtk is a 3D graphics library that communicates with a PEX server. It is an Application
Programmer’s Interface to PEX, and thus it is intended to provide as much access to the
functionality provided by the PEX server as possible. PEXtk requires a PEX server with the
“immediate rendering” and “structure rendering” subsets.

PEXtk attempts to duplicate the functionality of existing graphics libraries and “common
practice” to ease the porting of existing applications to PEX. To this end the library must
maintain a database and state information on the host. Wherever possible, the geometry is
cached in the server.

PEXtk is a mixed-mode library. This implies that the application can use both retained struc-
tures and immediate mode commands at the same time.

The following is a brief description on some fundamental concepts of PEXtk and provides
some insight descriptions of how the various routines interact.

Initialization

PEXtk is initialized by invoking Pinit before any other PEXtk routine is called. The connec-
tion id to the X server that is returned from a successful call to XOpenDisplay is passed as
the only argument for Pinit. This routine initializes PEXtk and sets the default state infor-
mation. The current drawable also needs to be defined, and this is performed by invoking
Pset_drawable as the next routine which is called. This routine instructs PEXtk to direct all
graphics output to the specified X window.The id of the window returned from a call to
XCreateWindow is passed as its only argument.

Termination

To terminate a PEXtk session, applications should call Pexit. This routine will close down
the PEXtk session, and frees any acquired data.

Data Types

The following data types are used in PEXtk:

Fcoord

All coordinates are single precision IEEE floating point numbers.

Fcoord3D

Data structure containing x,y,z coordinates.

Fdata

All floating point data are single precision IEEE floating point numbers.

PCOLOR

PCOLOR is a structure that contains a color type and color data. The color type can be any
that is supported by the system, such as Indexed, RGB, HSV, CIE, etc. The color data will
be in a format that is determined by the color type. See the Colors Section for more infor-

PEXtk Overview

PEXtk Reference Manual 1.0 vii

mation about colors.

When Colors are to be expressed as an Indexed color into a color table, a color table must be
constructed using the Pset_color_table commands.

Angle

Angles are expressed as single precision IEEE floating point numbers in degrees.

Screencoord

Screen coordinates are integers that represent the screen space in X window relative coordi-
nates. The range of these integers will depend on the size of the current X window (e.g.
1280x1024). The (x,y) values of (0,0) define the lower left hand corner of the screen.

Tvar

Structure containing 2 Fcoord variables for use as Texture mapping values, each member
is a single precision IEEE floating point number.

Drawable

The X window which is to receive the rendered primitives must be specified before any
PEXtk primitives are invoked. This is performed with the Pset_drawable routine. The
drawable may be changed at any time so that multiple windows may be used. PEXtk sup-
ports up to PEXtk_MAX_BUFFERS number of drawables. The argument which is passed
is the identifier of a window (or pixmap) created by a successful call to XCreateWindow
(or XCreatePixmap).

Buffering

If the server supports double buffering, the update and display buffers can be controlled
by Pswap_buffers, Pset_update_buffer, and Pset_display_buffer.
The type of window buffering may be set to the type required by the application by using
Pbuffer_mode(mode). If it is not set, the buffering mode will default to be in single buffered
mode. This is the same as invoking Pbuffer_mode(PEXtk_SINGLE_BUFFER). Single buff-
ered mode displays primitives as they are rendered. This will give a ‘flashing’ appearance
as the primitives are drawn. To give a smooth appearance, the buffering mode should be
doubled buffered. This is performed by calling Pbuffer_mode(PEXtk_DOUBLE_BUFFER).
Double buffering renders primitives to an off-screen area known as a back buffer. When the
mode is switched to double buffered, PEXtk will create a back buffer if one has not already
been created. PEXtk will attempt to use the Multi-Buffering extension if it exists. If it does
not exist, then PEXtk will use a Pixmap for the back buffer. Note that the rendered primi-
tives will not be visible until Pswap_buffers is called.
When in double buffer mode, any X geometry primitives (such as XFillRectangle, XDraw-
String, etc.) may be rendered to the back buffer by obtaining the back buffer id using the
routine Pget_backbuffer(). Since the back buffer id changes at each Pswap_buffers() com-
mand, this routine would have to be called every time the buffers are swapped. An exam-
ple of this is:

Pswap_buffers();

id = Pget_backbuffer();

An alternative method for double buffering is for the application to create the back buffer
using either the Multi-Buffering extension or by creating a Pixmap. The buffer swapping
would be performed by using Pset_display_buffer and Pset_update_buffer.

Windows

An X window is a window that has been successfully opened by the Xlib functions XCreate-
Window or XCreateSimpleWindow.

PEXtk defines a window as the world coordinate space defined by a Portho_2d_view,

PEXtk Overview

PEXtk Reference Manual 1.0 viii

Portho_view, Ppersp_view, or Pwindow_view call. A viewport is the area of the current X
window that this window is mapped to using the Pviewport call and its coordinates are rel-
ative to the X window. World coordinates are clipped to the limits defined. For example, the
call Portho_view(0, -1000.0, 2000.0, -5000.0, 10000.0, 100.0, 12500.0) will produce the
clipped parallelepiped shown in Figure 1.
The Ppersp_view, Portho_view, Portho_2d_view, Pwindow_view, Plookat_view, or
Ppolar_view routines can not be used inside a structure. If a structure is to contain a window
definition, then set the id argument to a non zero value when defining the window, and use
the Pset_view_index routine to reference that window. Note however, that the parameters
that specify the view will essentially be “static” when stored in a structure.

Perspective projection generates a clipping area that is a frustum defined by the field of view

(100)
near

Figure 1.

-z

left
(-1000)

y

x

eye position

at origin

far
(500)

near
(100) -z

x

y fovx
(70.6)

Figure 2.

eye position

at origin

fovy
(53.1)

top (10000)

far
(12500)

bottom
(-5000) right

(2000)

PEXtk Overview

PEXtk Reference Manual 1.0 ix

and the near and far clipping planes. For example, the call Ppersp_view(0, 53.1, 1.33,100.0,
500.0) will produce the clipping frustum shown in Figure 2.

There are three fundamental coordinate systems used by PEXtk. The first is the world coor-
dinate system. If this system is compared to PEX/PHIGS, it would be described as a com-
bination of the local modeling coordinate system and the world coordinate system. The second
is the normalized projection coordinate system. This system limits the x, y, z ranges to the cube

. Note that for PEX/PHIGS+, this would be the unit cube
.The third coordinate system is the screen coordinate system, which is the

coordinate system of a viewport. This coordinate system is the same as that used by an X
window, and is expressed using integer values, except that the point (0,0) is at the lower left
hand corner, y is positive up.

Geometric Transformations

The PEXtk rendering pipeline may be described as follows:

where M is the geometric modeling transformation, V is the viewing transformation, P is the
projection transformation, and W is the workstation (viewport) transformation. Note that
this differs from the PEX/PHIGS+ rendering pipeline, which is:

where W is the workstation transformation, Vm is the view mapping transformation, Vo is the
view orientation transformation, G is the global modeling transformation, and L is the local
modeling transformation.

PEXtk also provides an application with access to a client side transformation stack. There
are two matrix stacks, a modeling matrix stack and a viewing matrix stack. To switch between
the two, use Pmatrix_mode.

The method of concatenation to be performed on the stack with an input matrix may be
postconcatenation or preconcatenation. If the current transformation stack has a matrix ,
and a new matrix is to be concatenated to it, then a postconcatenation is described by:

A preconcatenation is described by:

For example, to perform a scaling of an object in its own coordinate system, one would
translate the object to the origin of the global coordinate system (call this), perform the
scaling operation (), and translate it back to its original position (). The logical order of
the combined transformation is , however, the order in which the matrices are to
be multiplied together using the matrix stack must begin with , followed by , and then

. This is due to the fact that the matrices are concatenated together using a right to left
order, and hence a transformation matrix affects everything to the left of it. Therefore, since
we want matrix to affect , and have matrix affect matrix , then the matrices will
be specified using postconcatenation.

1.0− x y z, , 1.0≤ ≤
0.0 x y z, , 1.0≤ ≤

x′ y′ z′ w′ x y z w MVPW=

x′ y′ z′ w′
T

WVmVoGL x y z w
T

=

T
C

T
new

TC Tnew TC⋅=

TC TC Tnew⋅=

T
1

T
2

T
3

T
1

T
2

T
3

⋅ ⋅
T

3
T

2

T
1

T
3

T
2

T
2

T
1

PEXtk Overview

PEXtk Reference Manual 1.0 x

Viewports

A viewport may be defined as the part of the window in which the rendered primitives will
be visible. It may be the entire window, or a fraction thereof. A window may contain many
viewports, and they may overlap. Note that in either immediate mode or retained mode,
to view a primitive in multiple viewports requires that the application redraws (i.e., calls
the primitive routine again using Ppoly, etc.) or re-traverses the structure or display list
(i.e., by calling Pcall_struct, Pexec_struct, or Pcall_display_list).
 In order to use the whole X window, a call to Xlib is required to obtain the current size of
the X window, and then Pviewport should be invoked with that data. If the user is allowed
to dynamically resize the X window (using the window manager), then a routine should be
created that catches the window resize event (i.e., the XEvent) and resize the viewport
accordingly.

Pclip_rectangle sets up a 2D clipping rectangle in a viewport. This rectangle clips all geom-
etry drawn to the viewport. The Pviewport call will always clip to the dimensions speci-
fied, and Pclip_rectangle is used to specify a subregion of the viewport. For example, the
following calls:

Pviewport(50, 350, 300, 550); /* viewport 1 */

Pviewport(100, 380, 100, 220); /* viewport 2 */

will generate two viewports as shown in “Window 1” in Figure 1, where viewport 1 shows
the clip rectangle clipping a rectangle, and viewport 2 shows the clip rectangle clipping a
triangle. The entire viewport is used, since the effective clip rectangle is (50, 350, 300, 500)
for viewport 1, and (100, 380, 100, 220) for viewport 2. Note that the clip limits are at the
full size of the viewport.The following calls show an example of clipping to a subregion of
a viewport:

Pset_drawable(window2);

Pviewport(50, 330, 100, 220);

Pclip_rectangle(50, 300, 100, 190);

The clip rectangle in “Window 2” of Figure 1 shows this as generating a subregion of the
viewport.

The Pviewport routine cannot be called inside a structure in PEXtk version 1.0.

Lights

PEXtk is designed to support four light types: Ambient, Point, Infinite, and Spot. The actual
light types that are supported may vary among different hardware platforms. Use
Pget_support_info to inquire about the type of lights that are supported.

An Ambient light is specified using Plight_ambient, and Point, Infinite, and Spot lights are
specified using Plight. Only one Ambient light can be specified. An object that is illumi-
nated only by an ambient light will appear to have no depth, since no distance information
is used in the ambient light equation. For example, a ball will appear only as a flat shaded
circle.

A Point light is specified by its color, a global x,y,z position, and an attenuation factor (see

PEXtk Overview

PEXtk Reference Manual 1.0 xi

Window 1

viewport 1

viewport 2

Window 2

clip rectangle

Figure 3: Viewports and Clip Rectangle

PEXtk Overview

PEXtk Reference Manual 1.0 xii

Figure 4).

An Infinite light is specified by its color and a direction vector x,y,z (an example is the sun).
A Spot light is specified by its color, a global x,y,z position, a direction vector x,y,z, an atten-
uation factor, and an angle of influence (see Figure 5). Note that in Figure 5 how part of the

top of the desk is illuminated directly from the light which is in the angle (or cone) of influ-

Figure 4: Light bulb as a point light

Figure 5: Light bulb as a spot light

PEXtk Overview

PEXtk Reference Manual 1.0 xiii

ence. The remainder of the desk and the room is illuminated by the ambient light. See Fig-
ure 6 for a description of properties for each of the supported light types.

The effect of the light on a polygon is determined by the current shade mode, specified by
the Pshade_mode routine, with mode as its argument. No lights are activated until the
mode PEXtk_SHADE_LIGHTS is specified. This is true regardless of any calls to Plight or
Plight_ambient. To specify a specular highlight, the specular color should be given with
Pspecular_color, and the shading mode PEXtk_SHADE_SPECULAR should be ored with
mode. This attribute may be turned on or off as desired.

The ambient light intensity is calculated using:

where Ia is the ambient intensity, Ka is the ambient coefficient, OC is the object’s intrinsic
color (from the Pcolor routine), and LC is the ambient light color.

The infinite light intensity is calculated using , where:

The diffuse component is computed using the diffuse coefficient Kd times OC, times the
sum of each enabled light color LC multiplied by the product of the cosine of the angle

angle of influence

Point Light Spot Light Infinite Light

Figure 6: Supported Light Types

Properties:
Color
Position

Properties:

Color

Angle of influence
Attenuation2

Properties:

Color
Position
Direction

Ambient Light

ambient or indirect

light (such as a shadow)

Properties:
Color

Direction

Concentration

Attenuation1
Attenuation1
Attenuation2

Ia KaOCLC=

I
v

I
vd

I
vs

+=

Ivd KdOC LC N Ldir−()()⋅()
i 0=

i n<

∑=

Ivs KsSC LC R V⋅()
Sconc

i 0=

i n<

∑=

PEXtk Overview

PEXtk Reference Manual 1.0 xiv

between the surface normal and the negation of the enabled light source direction vector
. The specular component is computed using the specular coefficient Ks time

the specular color SC, times the sum of each enabled light color LC, which is multiplied by
the product of cosine of the angle between the direction of the peak highlight from the light
source and the vector from the object to the viewing position raised to the power of
the specular coefficient Sconc.

The point light intensity is computed similarly, but has a light attenuation factor, LATT

This equation is similar to the infinite light equation, except that is a vector in the
direction of the light source, and both and must be recalculated for each point to be
shaded. The light attenuation factor LATT is calculated using:

where LA1 and LA2 are light attenuation factors specified for each enabled light using
Plight, and is the magnitude, or distance, between the object and the light. If
the specified values for LA1 and LA2 are both zero, then PEXtk uses their default values.

The spot light intensity is computed using

The term is a vector from the object to the position of the spotlight , and is the
direction vector that the light is pointed.

Shading Models

PEXtk supports 10 different shading modes, 4 of which are shading models. Some of the
modes affects all polygon and polyline primitives, and the others apply only to the
Ppoly_index, Ppoly_fill_area and Ppoly_with_data routines. PEXtk also provides primi-
tives which give direct support of these shading models. These are listed in Table 1, in addi-
tion to the other shading models which are supported. The shading model is specified with
the routine Pshade_mode(mode), where the mode is the only argument, given as a bitmask.
The shading model PEXtk_SHADE_SPECULAR turns on specular highlights. This mode
affects all polygon primitives.

N

N Ldir−()⋅()

R V

Ipd KDOC LC N Ldir−()⋅() LATT

i 0=

i n<

∑=

Ips KsSC LC R V⋅()
Sconc

LATT

i 0=

i n<

∑=

Ldir−()
Ldir R

LATT

1

LA1
LA2

Opos Lpos−()+=

O
pos

L
pos

−

Isd KdOC LC N Ldir−()⋅() OL Ldir⋅()
Lconc

LATT

i 0=

i n<

∑=

Iss KsSC LC R V⋅()
Sconc

OL Ldir⋅()
Lconc

LATT

i 0=

i n<

∑=

OL L
pos

Ldir

PEXtk Overview

PEXtk Reference Manual 1.0 xv

The shading models which are discussed here affect the routines Ppoly_index,
Ppoly_fill_area and Ppoly_with_data only. The shading model PEXtk_SHADE_WIRE will
render Ppoly_index, Ppoly_fill_area and Ppoly_with_data polygons as a wireframe (out-
line only) primitive. This mode is similar to using the Ppoly_line routine with the last ver-
tex duplicated. The mode PEXtk_SHADE_COLORS will render the polygons as color
interpolated polygons. This mode is sometimes inappropriately referred to as “Gouraud
Shading”. In this mode, colors are computed at the vertices of a polygon. These colors are
then linearly interpolated across the interior of the polygon. For polylines, the color is com-
puted by linear interpolation between the vertices when they are provided using
Pvertex_color_array. The shading mode PEXtk_SHADE_DOTPRODUCT will calculate the
lighting equation dot products at the vertices.
These dot products are then linearly interpolated and the light source shading computation
is applied using these values to compute the color value for each pixel in the interior of the
polygon. This method is intermediate in complexity between Gouraud and Phong shading,
and is sometimes referred to as “Pseudo Phong”. The shade mode
PEXtk_SHADE_NORMALS will compute the normal at each pixel in the interior of the
polygon, and then perform the light source shading computation using the computed nor-
mal.

 Direct supportPEXtk #define type

PEXtk_SHADE_WIRE

PEXtk_SHADE_HIDDENLINE

PEXtk_SHADE_FLAT

PEXtk_SHADE_COLORS

Description

Wireframe

Ppoly_fill

Ppoly_shade

PEXtk_SHADE_NORMALS

PEXtk_SHADE_DOTPRODUCT

PEXtk_SHADE_ANTIALIAS

Hiddenline

Flat or constant

Gouraud

Phong

“Pseudo” Phong

Antialiased lines

Ppoly

Ppoly_shade_normal

(bitmask)

Routines
affected

Ppoly_line

routine

†

†

†

†

†

†

Pvertex_color

PEXtk_SHADE_LIGHTS Enable lights

PEXtk_SHADE_SPECULAR
Enable specular

highlights

All polygon
primitives

All polygon
primitives

† Ppoly_index, Ppoly_fill_area and Ppoly_with_data

Table 1: Supported Shading Modes

PEXtk_SHADE_NONE No attributes
defined †

PEXtk Overview

PEXtk Reference Manual 1.0 xvi

The shading mode PEXtk_SHADE_HIDDENLINE will render polygons as a wireframe
mesh, but with hidden surfaces removed. However, PEXtk_SHADE_WIRE should not be
specified with PEXtk_SHADE_HIDDENLINE (since the polygons are actually solid with
the filled color as the background color, wireframe mode will be turned off).
The shading mode PEXtk_SHADE_ANTIALIAS will render all polyline primitives using
antialiased lines. If the mode PEXtk_SHADE_WIRE is not specified, it will be turned on.
The shading mode PEXtk_SHADE_SPECULAR will turn on specular highlights. A specu-
lar highlight appears on shiny objects. For example, if a shiny red apple is illuminated by
a bright white light, a specular highlight will appear as a bright white spot, and the rest of
the apple will be red (the diffuse color). The part of the apple which is not directly illumi-
nated by the white light is illuminated by the ambient light (activated by Plight_ambient).

Structures

A structure is a collection of polygon and polyline primitives stored together on the server
side. Not all of the PEXtk routines are available for server side storage. When PEXtk prim-
itives are invoked between a Pcreate_struct and Pclose_struct, they are inserted into the
named structure. The name for the structure is given as an argument to Pcreate_struct. The
execution of the commands given between these two routines is deferred until the structure
is traversed. This is called retained structure mode. A structure is traversed when it, or a
structure that refers to it, is executed by invoking Pexec_struct or Pcall_struct in immediate
mode or from inside a Display List (see below). An object hierarchy can be constructed by
using Pcall_struct within a structure. To ease the construction of complicated hierarchies,
a Pcall_struct(x) may be inserted into a structure y before x is defined. No error will occur
provided that x exists before y is traversed. A property of structures is that elements can be
edited without rebuilding the whole structure.
PEXtk version 1.0 currently does not support the state saving Ppush_attributes,
Ppush_viewport, and Ppush_matrix, and the state restoring Ppop_attributes,
Ppop_viewport, and Ppop_matrix when invoked from inside a structure. The current
attribute, viewport, and matrix state are automatically saved when a Pcall_struct com-
mand is executed. In the current revision of PEXtk, Pexec_struct is the same as Pcall_struct.
In a future revision, Pexec_struct will not save the current attribute, viewport, and matrix
state. This would be done explicitly by calling Ppush_attributes, Ppush_viewport, and
Ppush_matrix. The state may be restored by calling Ppop_attributes, Ppop_viewport, and
Ppop_matrix. An example is:

This implies that the transformation matrix and attributes may change farther down the
hierarchy without affecting the geometry at the current level.

Editing Structures

Structures may be opened for editing with Pedit_struct. Elements within the structure can
be replaced or elements can be added to the end of the structure or after a given label within
a structure.

Ppush_matrix();
Pcreate_struct(n);
Ppush_attributes();
Ppush_matrix();
... /* geometry definition */
Ppop_attributes();
Ppop_matrix
Pclose_struct();

Ppush_attributes();
Pexec_struct(name);
Ppop_attributes();
Ppop_matrix();

or

PEXtk Overview

PEXtk Reference Manual 1.0 xvii

Display Lists

Display List Storage, or DLS, is essentially a database of commands stored on the client side
for later execution. When commands are given between the Pcreate_display_list and
Pclose_display_list routines, they are inserted into the named Display List. The name is
given as an argument to Pcreate_display_list.
The execution of the commands between these two routines is deferred until the Display
List is traversed. A Display List is traversed when it, or a Display List that refers to it, is
executed by invoking Pcall_display_list in immediate mode. An object hierarchy can be
constructed by using Pcall_display_list within a Display List. To ease the construction of
complicated hierarchies, a Pcall_display_list(x) may be inserted into Display List y before
x is defined. No error will occur provided that x exists before y is traversed. There are cur-
rently no editing functions available for Display Lists, but they will be provided in a follow-
up revision. The interface will be similar to the structure editing routines. Since a display
list is data stored on the client side, no performance gains will be achieved using them, they
are for convenience only.

Geometry

PEXtk supports a variety of geometry types and geometry building primitives. In addition,
it also supports two different geometric display paradigms. One is the direct specification
of a primitive in regards to its shading model, such as Ppoly_shade for a “Gouraud
shaded” polygon, or Ppoly_fill for a flat shaded polygon. The other paradigm is specifying
the geometry and then changing its appearance before the primitive is actually rendered.
This is performed in immediate mode by specifying the shading mode and then calling
Ppoly_index, Ppoly_fill_area, or Ppoly_with_data, or in retained structure mode by build-
ing a primitive with those routines, and then changing the shading mode with
Pshade_mode before the structure is executed. This paradigm has more meaning in
retained structure mode, since geometry may be built once, and its appearance changed by
the application for various purposes. For example, an application could switch from a
“Gouraud shaded” mode to wireframe when rotating a large object to provide more inter-
activity and better response time.
Geometry can be built vertex by vertex using the Ppoly_point... routines. To begin, a
Pbegin_line, Pbegin_poly, or a Pbegin_tmesh routine is called. Colors may be assigned to
each vertex using the Pvertex_color... commands. For efficiency, the library will create a
staging area where the geometry is built. After completion (i.e., a Pend_... routine is called)
the geometry will be placed in the currently opened structure, or in immediate mode, it will
be sent to be rendered.
Geometry may also be built as polygons by providing an array of vertices and using the
Pvertex... commands. Colors may be assigned to each polygon vertex using the
Pvertex_color... or Pvertex_color_array... commands.
For special polygons, the command Ppoly_with_data can be used. This allows an arbitrary
number of bytes of data to be attached to each vertex.
PEXtk also supports marker primitives with the Pmarker routine. A marker is a two-
dimensional symbol representing a location in three-dimensional space. The marker posi-
tion is specified in modeling coordinates, similar to the polyline and polygon primitives.
The type of the marker is specified with Pmarker_type, the color of the marker is specified
with Pmarker_color, and its relative size is specified with Pmarker_scale.

2D Geometry

All 2D geometry is handled by the 3D geometry pipe as 3D coordinates with the z coordi-
nate equal to 0.

X window geometry, such as XFillPolygon, XDrawLine, etc., may be used along with PEXtk
primitives, by specifying the drawable to be the same as that given with Pset_drawable. For

PEXtk Overview

PEXtk Reference Manual 1.0 xviii

double buffered mode, however, the primitives must be placed in the back buffer, since a
swap buffer call (Pswap_buffers) will copy over what is in the front buffer. The current
back buffer id may be obtained with Pget_backbuffer. Note that this id will change at
every Pswap_buffers call.

Text

The text drawing routines Ptext and Ptext_annotate both display text as stroke text (text
composed of short lines). Their position and orientation are affected by the current trans-
formation matrix. The font to be used is set by Ptext_font, and the text direction is specified
using Ptext_path. The size of the text may be scaled using Ptext_size or
Ptext_annotate_size.

Ptext_annotate displays text that is always parallel to the viewing plane. Attributes that
affect Ptext_annotate are Ptext_orientation, Ptext_path, Ptext_annotate_size, Ptext_font.
The routine Ptext_orientation takes an array of two Fcoords as its argument to specify the
positive y direction to define the up position, in normalized coordinates. Figure 7 displays
the coordinate system for annotation text. Ptext_path specifies the direction the text is to be

drawn, such as up, down, left or right.The vector shows an orientation of v1[0] = 0.0,
v1[1] = 1.0, and a text path of right, which displays the text in a horizontal alignment. The
vector shows an orientation of v2[0]=1.0, v2[1]=0.0, and a text path of left, which dis-
plays the text in a vertical alignment and backwards. The vector shows an orientation
of v3[0]=0.0, v3[1]=1.0, and a text path of down, which displays the text in a vertical down-
ward alignment.

Ptext displays text that is not necessarily aligned parallel to the viewing plane. Attributes
that affect Ptext are Ptext_orientation, Ptext_path, Ptext_size, Ptext_font. The text is
defined in the x-y plane, and transformed using the any of the transformation matrix rou-
tines. Ptext_orientation specifies the position y direction as it does for Ptext_annotate. Fig-
ure 8 displays some examples for Ptext. The ABC in Figure 8 shows an isometric view of
the 3D text coordinate system. The vector shows a direction of v4[0] = 0.5, v4[1] = 0.0,

x

y

annotation text
coordinate system

v1

v2

Figure 7: Text orientation

v3

v1

v2
v3

v4

PEXtk Overview

PEXtk Reference Manual 1.0 xix

v4[2] = 0.5, and the text is rotated about y 30 degrees, and around z 40 degrees.

Colors

Colors may be specified using the PCOLOR structure, which supports Indexed color, RGB
floats, HSV floats, HLS floats, and CIE floats. The PCOLOR structure is passed as a pointer
to Pcolor, Pline_color, Pclear, Plight_color. and Ptext_color. The same routines appended
with _rgb or _hsv will accept RGB floats or HSV floats, respectively. PEXtk currently con-
verts all color types to RGB floats, except when in PEXtk_COLOR_INDEXED mode.If the
color mode is PEXtk_COLOR_INDEXED, then and index value may be passed to the same
routines appended with _ind.

PEXtk provides a colormap utility, Pset_color_equation, for use on 8-bit color systems.
This utility will generate a colormap, or set the colormap if one is passed in.

Attributes

An attribute is an item which modifies the appearance of a geometric primitive. These items
are saved and restored by Ppush_attributes and Ppop_attributes, respectively. An
attribute is any item specified with the following routines:

Pcolor Pline_color Plight_color Pspecular_color

Pclear Pborder Pline_width Pline_type

Ptext_font Ptext_size Pbackface Ptext_orientation

Ptext_color Ptext_path Preflection_property

Pmarker_type Pmarker_scale Pmarker_color Ptext_annotate_size

Ptexture_info Ptexture_name

Note that the associated routines with an _rgb, _hsv, or _ind are also considered attributes.

Texture Mapping

The PEXtk API provides the interface necessary to support texture mapping. However,
current implementations of PEX do not provide texture mapping support. There are cur-
rently proposals in progress specifying methods on how PEX can support this feature, and
these should be available in future releases of PEXtk.

v4

x

y

3D text

z

Figure 8: 3D Text

x

y

coordinate system

30 degrees

PEXtk Overview

PEXtk Reference Manual 1.0 xx

Support Functions

PEXtk provides hooks for applications to specify routines to use for various functions,
which are listed in Table 2. Although the hooks are primarily designed for a hardware

manufacturer to specify their own hardware specific routines for these functions, an inter-
face is provided for the application to set the support functions to their own specific rou-
tines. Most applications will not need to use this functionality, however.

High Performance Rendering

To achieve the highest performance possible, geometry should be placed in a server side
structure, which is created using Pcreate_struct. The data will therefore be stored on the
server side, and does not have to be sent ‘down the wire’ again when the geometry is to be
displayed.

The Ppoly_fill, Ppoly_shade, Ppoly_line routines will provide the best possible perfor-
mance. The geometry building routines, (Pbegin_line, Pbegin_poly, Pbegin_tmesh, and
Ppoly_point...) should be avoided, since they must use a data cache to buffer the data
before sending it to the server.

Open Issues

PEXtk currently does not completely address the following issues: Picking, Parametric
Curves and Surfaces, and Error handling. The specification for these items is now in
progress. A NURBS interface to the PEX server is provided with the Pnurb_curve and
Pnurb_surface routines. The Picking interface will be similar to the following:

Pbegin_pick(x, y, xsize, ysize, buf, buf_size);

Ppick_id(10); /* set the id for geometry to be picked */

Swap Buffers

Color mapping

Create back
buffer

Delete back
buffer

 Support
PEXtk #define

type

PEXtk_FUNC_CREATE_BUFF

PEXtk_FUNC_DELETE_BUFF

PEXtk_FUNC_SWAP_BUFF

PEXtk_FUNC_COLOR_MAP

Description

Creates the back buffer to

be used for double buffering

Deletes (frees) the back
buffer

Swaps the back buffer to be
the display buffer in double
buffer mode

Calculates the color index
from an RGB, or HSV
trio of floats

Table 2: Supported functions

Dithering PEXtk_FUNC_DITHER Sets the dither function

Transparency PEXtk_FUNC_TRANSPARENCY Sets the transparency
rendering function

PEXtk Overview

PEXtk Reference Manual 1.0 xxi

Ppoly(n, pts); /* specify geometry to be picked */

.

.

cnt = Pend_pick(buf, &more_hist);

A pick session will start with Pbegin_pick, with (x,y) specifying the center point of the pick
box, and (xsize,ysize) will be the dimensions of the pick box (the actual shape of the pick box
is implementation dependant). The Pend_pick routine will stop the picking and return the
number of items picked, and a list of the pick ids in buf.

