IRIT

A Solid modeling Program

Copyright (C) 1989, 1990, 1991 Gershon Elber

EMail: gershon@gr.utah.edu

This manual is for IRIT version 3.0.



Contents

1

2

10

Introduction

Copyrights

Command Line Options and Set Up
First Usage

Data Types

Commands summary

Functions and Variables

Language description

Operator overloading

9.1 Overloading + . . . . . . . e e
9.2 Overloading — . . . . . . L e e
9.3 Overloading * . . . . . . . e e
9.4 Overloading / . . . . . . .
9.5 Overloading ™ . . . . . L e e
0.6 ASSIZNMENtS . . . . . . . L e e e e e e

Function’s Description

10.1 NumericType returning functions . . . . . . . .. ... . 0 Lo
10.1.1 ABS o o o e
10.1.2 ACOS . . . e
10.1.3 AREA © . . . o e e e
10.1.4 ASIN L L e
10.1.5 ATAN . L o e e
10.1.6 ATAN2 . . . e
10.1.7 COS . . oo e
10.1.8 CPOLY . . . . o o e
10.1.9 EXP .. o o e
101 I0LN 0o o e e
101 ITLOG © o L e
10.112SIN Lo o e
10.113SQRT .« L o o e e
101 TATAN Lo o e
10.1.I5VOLUME . . . o oo e e e

10.2 GeometricType returning functions . . . . . . . . .. ..o o L oL
10.2.1 ARC . . L o e e
10.2.2 BOOLSUM . . . . . e e
10.2.3 BOX L o o o
10.2.4 CBEZIER . . . . o .o e e
10.2.5 CBSPLINE . . . .. e e
10.2.6 CDIVIDE . . . . . . e e
10.2.7 CEDITPT . . . . o o e e
10.2.8 CEVAL . . . .o o e e



10.2.9 CIRCLE . . . . . oo e e 13

10.2.10CIRCPOLY . . . . oo e 14
10.211CMESH . . L o oo e 14
10.2.12C0N2 .« L o 14
10.2.13CONE © .« o o o e e 14
10.2.14CONVEX © L o o o e e 15
10.2.15CPOLY . . o o e e 15
10.2.16 CRAISE . . o o o o e e 15
10.217CREFINE © . o o o oo e 16
10.2.18CREGION . . o oo e e 16
10.2.19CROSSEC . . o o e 16
10.220CSURFACE . . . o o o e e 16
10221 CTANGENT .« . . o e 16
10.2.22CTLPT . . L oo o e e 17
10.223CYLIN . . oo e 17
10.224EXTRUDE . . 0 0 oo e e 17
10.225GBOX . L o e 18
10.226 GPOLYGON . . . o o e e 18
10.227GPOLYLINE . . . o o o e e 19
10.228 MERGPOLY . . . o o e e 19
10.2290FFSET . . o o oo e e e 19
10.2.30POLY . . o o e 20
10.2.31RULEDSRE . . o o o e e 20
10.2.32SBEZIER . . . . o o o e e 20
10.2.33SBSPLINE . . . . oo e 21
10.2.34SDIVIDE . . 0 0 oo e e e 21
10.2.35SEDITPT . . . L o o e e 22
10.2.36 SEVAL L 0 L oL o e e 22
10.2.37SFROMCRVS . . o o e e 22
10.2.38SNORMAL . . L o L e e 23
10.2.39SPHERE . . . o o o e e 23
10.2.40SRAISE . . o o L o e 23
10.241SREFINE © . 0 0 oo e e 23
10.242SREGION .« . o L o o e e 24
10.243STANGENT . . o o e 24
10.244SURFREV . o o oo o e 24
10.245SWEEPSREF . o o o o e 25
10.246 TORUS . . L o o o e e e 25
10.3 Object transformation functions . . . . . . . .. ... o o0 o oL 26
10.3.1 ROTX . L o o e 26
10.3.2 ROTY . . . o o e 26
10.3.3 ROTZ . . . . o o e 26
10.3.4 SCALE . . . . o o e e 26
10.3.5 TRANS . . o e 26
10.4 General purpose functions . . . . . . . . . L L Lo 27
10.4.1 ALTAS © L . o o e e 27
10.4.2 ATTRIB . . . . o e 27
10.4.3 BEEP . . . oL e 27
10.4.4 CHDIR . . . .. oo e e 27

10.4.5 CLOSED . . . . . e 27



10.4.6 COLOR . . . . . . e 28

10.4.7 COMMENT . . ... e e 28
10.4.8 DIR . . . o . o e 28
10.4.9 EDIT . . . . oo e e 28
104 10EXTIT .« L o e 28
10411 FOR © . L o e 29
10.4.12FREE o 0 o e e 29
104.13HELP « o 0 o oo e e 29
104 04TF  © L oo o e 29
104 15INCLUDE . . . L o oo e e e 30
10416 INTERACT . . L o L o s e e e 30
104 37LIST © o L o o e 30
10.4.18LOAD « L . o o 31
10.4.19LOGFILE « . o 0 oo o e e 31
10.420NORMAL .« . . L oo 31
10421NTH .« . L 0o e e 31
10.4.22PAUSE . . L oL e e 31
10.4.23SAVE o o 31
10.4.24SNOC .« L Lo e e 32
10.4.25SYSTEM . . o o oo e e 32
10426 TIME L o L 0o o e e 32
10427 VARLIST © . . L oo e e 32
10428 VECTOR . . . L o o e 32
10420 VIEW o L 0 L 0L e 33
10.5 System variables . . . . .. L Lo 33
10.5.1 AXES « o o e 33
10.5.2 DRAWCTLPT . . . . . o s e e e e 33
10.5.3 DUMPLVL . . . .. e e 33
10.5.4 ECHOSRC . . . . . e 33
10.5.5 FLATAPLY . . . . . e e 33
10.5.6 INTERCRV . . . . . o e e 34
10.5.7 INTERNAL . . . o oo 34
10.5.8 MACHINE . . . . . e 34
10.5.9 RESOLUTION . . . . . o e e e e e e 34
10.5. 10 VIEW _MAT . . . L o e e 34
10.6 System constants . . . . . . . L L e e e e e 34
10.6.1 APOLLO . . . . . . e 34
10.6.2 BLACK . . . . . o e e 34
10.6.3 BLUE . . . . oo o e e 34
10.6.4 COL . . . . o e 35
10.6.5 CYAN . . o 35
10.6.6 B2 . L oL e 35
10.6.7 E3 o e 35
10.6.8 FALSE . . . . . o e e 35
10.6.9 GREEN . . . .o o e 35
10.6.10HP o o o o e e 35
10.6. 11KV FLOAT . . . . Lo e e 35
10.6.12KV_OPEN . . . o e 35
10.6. 13MAGENTA . . . o oo e 35

10.6.14MSDOS . . . . . e e e e 35



10.6.150FF . . . . . oo
10.6.160N . . . . o e
10.,6.17P2 . . o Lo
10.6.18P3 . . . . o o
10.6.19PT . . . . o o
10,6 20RED . . . . . oL oo
10.6.2TROW . . . . oo e
10.6.225GL . . . .. oo
10.6.235UN . . . o e
10,6 24TRUE . . . . .. o oo oo o
10,625 UNIX . . . . oo oo
10,6 26 WHITE . . . .. ... o o o oo oo
10.6.27TYELLOW . . . . . . oo o e

11 poly3d - A Data Display Program

11.1 Introduction . . . . . . . oL Lo
11.2 Command Line Options . . . . . . .. .. ... ... .. .....
11.3 Configuration . . . . . . ... ... L
11.4 Usage . . . . o o o i e
11.5 Output Files . . . . .. o oo

12 poly3d-h - Hidden Line Removing Program

12.1 Introduction . . . . . . . .. Lo
12.2 Command Line Options . . . . . . .. ... ... ... .. ...,
12.3 Configuration . . . . . . ... ... L
124 Usage . . . . . o o

13 poly3d-r - A Simple Data Rendering Program
13.1 Introduction . . . . . . . .. Lo
13.2 Command Line Options . . . . . . ... ... ... ... .....
13.3 Configuration . . . . . . ... ...
13.4 Usage . . . . . 0 e

14 Irit2Ray - IRIT To RAYSHADE filter

14.1 Command Line Options . . . . . . ... ... ... ... .....
14.2 Usage . . . . . o oo
14.3 Advanced Usage . . . . ... ... . .. o

15 Irit2Nff - IRIT To NFF filter

15.1 Command Line Options . . . . . . ... ... ... ... .....
152 Usage . . . . . o o
15.3 Advanced Usage . . . . ... ... . ...

16 Dat2Irit - Data To IRIT file filter

16.1 Command Line Options . . . . . . ... ... ... ... .....
16.2 Usage . . . . . .o o e

17 Data File Format

18 Bugs and Limitations

36
36
37
37
38
39

39
39
39
40
40

40
40
41
42
42

42
42
43
44

44
44
45
46

46
46
46

46

51



Irit Solid modeler G. Elber 1

1 Introduction

IRITis a small solid modeler developed for educational purposes. Although small, it is now powerful
enough to create quite complex scenes. 1 wrote it mainly so I can learn all the little small and not
so small problems in developing such a system.

IRIT started as a polygonal solid modeler and was originally developed (and mostly still is) on
an IBM PC under MSDOS. Version 2.0 was also ported to X11 and version 3.0 to SGI 4D systems.
Version 3.0 also includes quite a few free form curves and surfaces tools. See the UPDATE.NEW
file for more detailed update information.

2 Copyrights

BECAUSE IRIT AND ITS SUPPORTING TOOLS AS DOCUMENTED IN THIS DOCUMENT
ARE LICENSED FREE OF CHARGE, I PROVIDE ABSOLUTELY NO WARRANTY, TO
THE EXTENT PERMITTED BY APPLICABLE STATE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING,I GERSHON ELBER PROVIDE IRITPROGRAM AND ITS SUPPORT-
ING TOOLS 7AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THESE PROGRAMS IS WITH YOU. SHOULD
THE IRIT PROGRAMS PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECES-
SARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL GERSHON ELBER,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY LOST PROFITS, LOST MONIES,
OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGLES ARISING OUT OF
THE USE OR INABILITY TO USE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
A FAILURE OF THE PROGRAMS TO OPERATE WITH PROGRAMS NOT DISTRIBUTED
BY GERSHON ELBER) THE PROGRAMS, EVEN IF YOU HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

IRITis a freeware solid modeler. It is not public domain since I hold copyrights on it. However
unless you are to sell or attempt to make money from any part of this code and/or any model you
made with this solid modeler, you are free to make anything you want with it.

You are not obligated to me or to anyone else in any way by using IRIT. You are encourage
to share any model you made with it, but the models you made with it are yours, and you have
no obligation to share them. You can use this program and/or any model created with it for any
non commerical and non profit purposes only. An acknowledgement on the way the models were
created would be nice but is not required.

3 Command Line Options and Set Up

The IRIT program reads a file called IRIT.CFG each time it is executed. This file configures
the system. It is a regular text file with comments, so you can edit it and properly modify it
for your environment. This file is being searched for in all directories as specified by the PATH
environment variable on MSDOS BC++ port or in the IRIT_.PATH environment variable under
UNIX hosts or MSDOS DJGPP port. For example 'setenv IRIT_PATH /u/gershon/irit/bin/’.
Note IRIT_PATH must terminate with ’/’. If the variables is not set only the current directory
is being searched for IRIT.CFG under UNIX systems. Since there exists a configuration file for
MSDOS BC++ called IRIT-DOS.CFG, for MSDOS DJGPP called IRIT_DJG.CFG, and for UNIX
called IRIT-UNX.CFG, make sure you copy the right one for your system, into IRIT.CFG.



Irit Solid modeler G. Elber 2

In addition, if exists, a file by the name of IRITINIT.IRT will be automatically executed
before any other ’.irt’ file. This file may contain any IRIT command. It is the proper place to put
your ALIASs if you have some. This file will be searched much the same way IRIT.CFG is. The
name of this initialization file may be changed by setting the StartFile entry in the configuration
file.

Under MSDOS the solid modeler can be executed in text mode (see the .cfg and the -t flag
below) on virtually any MSDOS compatible system. The BC++ port uses Borlands BGI interface
which makes it possible to use almost any device that has a BGI interface from Hercules to a Super
VGA. See the configuration file for the supported device. The DJGPP port can be used on any
system that has graphic driver for it in this compiler. Under BC++ the coprocessor will be used
if detected but floating pointing emulation will take place otherwise. Under DJGPP the provided
emulator (emu387) must be used if no 387 exists. If a mouse or a joystick exists they can be use
by enabling their respective flags in the configuration file. The mouse sensitivity can be controlled
via the configuration file MouseSensitivity flag. In addition whether a mouse or a joystick exists
or not, the numeric keypad can be used to move the cursor as well. Shifted keys will move the
cursors 10 pixels at a time instead of one. Since MSDOS does not support windowing system, an
interface library called intr_lib is used and which provides the windowing and interfacing capabilities
expected from a windowing system. Four windows are created under BC++, three under DJGPP:

View The window where geometry is displayed.
Transformation The window holding the transformation interaction.
This window pops up with INTERACT command, by default.
Input The window input is keyed in/sourced from a file.
Status Status window, mainly for core left display (only BC++).

These windows can be placed everywhere in the screen by specifing their position and size in
the configuration file. Border width and color of the window can be specified in the configuration
file as well as other window attributes such as smooth scrolling and window headers. Furthermore,
these windows can be moved, resized, poped, or pushed during a session via a pop up window
triggered by the left mouse button (EXECUTE - see INTERACT) or F1 keystroke. Note however
that while the mouse cursor is on the Input window scroll bar or in the Trans window, EXECUTE
has a different meaning and the pop up menu will not be displayed. The following entries can be
found in the pop up menu, and their meaning.

Redraw all Redraw all windows. No window configuration is modified.
Move Move a window. Window to move is picked by left mouse button.
Resize Resize a window. Window to resize is picked as above.
Pop Pop up a window. Window to pop up is picked as above.
Push Push up a window. Window to push down is picked as above.
Zoom Zoom a window to full screen. Window is picked as above.

Zoom on a zoomed window restore the window original size.
Reset Reset all windows to their default position and size.
Headers Toggle the display of windows header - names.

Under UNIX using X11 add the following options to your .Xdefaults. Most are self explanatory.
The Trans attributes control the transformation window, while View control the view window.
SubWin attributes control the subwindows within the Transformation window.



Irit Solid modeler G. Elber 3

irit*Trans*BackGround: NavyBlue
irit*Trans*BorderColor: Red
irit*Trans*BorderWidth: 3
irit*Trans*TextColor: Yellow

irit*Trans*SubWin*BackGround: DarkGreen
irit*Trans*SubWin*BorderColor:  Magenta

irit*Trans*Geometry: =150x5004-500+0
irit*Trans*CursorColor: Green
irit*View*BackGround: NavyBlue
irit*View*BorderColor: Red
irit*View*BorderWidth: 3
irit*View*Geometry: =500x500+0+0
irit*View* CursorColor: Red

If poly3d is used under SGI gl library, you can set the prefered windows location in the
poly3d.cfg. No color control is provided at this time.

A session can be logged into a file as set via Logkile in the configuration file. See also the
LOGFILE command.

When developing new model under MSDOS, it is extremely convenient to switch between the
solid modeler and an editor of your choice to edit the ’.irt’ file. The solid modeler provides a way
to fork to an editor of your choice to edit the current ".irt” program you develop. Set EditPrgm (in
irit.cfg) to the editor of your choice, which should be small for fast access. Specify the full path to
that editor. Use the edit command in IRIT to call it. Only one argument is given to the editor
once forking to it - the ".irt’ file name as given to the edit command (see EDIT command). You can
alias the command to make it even faster as it is done in the current iritinit.irt - IRIT initialization
file. Under UNIX one can use the gnu emacs irit.el IRIT mode provided in this package to run
IRIT.

The following command line options are available:

IRIT [-t] [-z] [file.irt]

-t Puts TRIT into text mode. No graphics will be displayed and
the INTERACT and VIEW commands will be ignored. Useful when

one needs to execute an irt file to create data on a tty device...

-7 Prints usage message and current configuration/version
information.

file.irt | A file to directly invoke instead of waiting to input from
stdin.

4 First Usage

Once executed, the program opens four windows under MSDOS BC++ (three under MSDOS
DJGPP - no status window): view, status, trans and input windows, and opens a view window
under UNIX.

Commands are entered through the input window, which is in the same window as the shell
executed IRIT under UNIX. Objects are viewed in the view window, and the status window is used
as an auxiliary window (MSDOS only).

Some important commands to begin with are



Irit Solid modeler G. Elber 4

1. include(”file.irt”); - will execute the commands in file.irt. Note include can be recursive up
to 10 levels. To execute the demo (demo.irt) simply type ’include(”demo.irt”);’. Another way to
run the demo is by typing DEMO (must be capitalized as this is an alias loaded via the iritinit.irt
initialization file - see the ALIAS command for more).

2. help(””); - will print all available commands and how to get help on them. A file by the
name irit.hlp will be searched as irit.cfg is being searched (see above), to provide the help.

3. exit(); - close everything and exit IRIT.

Be careful. Most operators are overloaded. This means that you can multiply two scalars
(numbers) or two vectors or even two matrices with the same multiplication symbol (). To get its
on line type “help(”«”);’

The best way to learn this program (like any other program...) is by playing with it. Print the
manual and study each of the commands available. Study the demo programs (x.irt) provided as
well.

Under MSDOS, input from keyboard has full line editing capability:

Up/Down arrow : retrieve old command for 10 last commands.
Left/Right arrows : to move left and right along the line.

Home/End : to move to beginning/end of line.

Delete : to delete the character the cursor is on.

Back space : to delete one char backward.

Insert : toggles insert/overwrite mode. Note cursor shape is modified.
Esc : clear the entire line.

0 =~ O Tk W N~

CR : to accept line and quit.

5 Data Types

These are the Data Types recognized the system. They are also used to define the calling sequences
of the different functions below:

ConstantType Scalar real type that cannot be modified.

NumericType Scalar real type.

VectorType 3D real type vector (points/vectors).

CtlPtType Curve or Surface Control Point.

MatrixType 4 by 4 matrix (homogeneous transformation matrix).

PolygonType Object consists of Polygons.

PolylineType Object consists of Polylines.

CurveType Object consists of Curves.

SurfaceType Object consists of Surfaces.

GeometriceType One of Polygon/lineType, CurveType, SurfaceType.

GeometricTreeType | A list of GeometricTypes or GeometricTreeTypes.

StringType Sequence of chars within double quotes - ”A string”.
Current implementation is limited to 80 chars.

AnyType Any of the above.

ListType List of (any of the above type) objects. Implementation
is currently limited to 250 (50 MSDOS) objects in a list.

6 Commands summary

These are all the commands and operators supported by the IRIT solid modeler:



Irit Solid modeler G. Elber
+ CBEZIER CRAISE GPOLYLINE | ROTY SREFINE
- CBSPLINE | CREFINE HELP ROTZ SREGION
* CDIVIDE CREGION IF RULEDSRF STANGENT
/ CEDITPT CROSSEC INCLUDE SAVE SURFREV
- CEVAL CSURFACE | INTERACT SBEZIER SWEEPSRF
ABS CHDIR CTANGENT | LIST SBSPLINE SYSTEM
ACOS CIRCLE CTLPT LN SCALE TAN
ALIAS CIRCPOLY | CYLIN LOAD SDIVIDE TIME
ARC CLOSED DIR LOG SEDITPT TORUS
AREA CMESH EDIT LOGFILE SEVAL TRANS
ASIN COLOR EXIT MERGEPOLY | SFROMCRVS | VARLIST
ATAN COMMENT | EXP NORMAL SIN VECTOR
ATAN?2 CON2 EXTRUDE NTH SNOC VIEW
ATTRIB CONE FOR OFFSET SNORMAL VOLUME
BEEP CONVEX FREE PAUSE SPHERE
BOOLSUM | COS GBOX POLY SQRT
BOX CPOLY GPOLYGON | ROTX SRAISE

7 Functions and Variables

This sections lists all the functions supported by the IRIT system according to their classes - the

object type they return.

These are the functions returning a NumericType:

ABS ASIN COS LN SQRT
ACOS | ATAN CPOLY | LOG | TAN
AREA | ATAN2 | EXP SIN VOLUME
These are the functions returning a GeometricType:
ARC CIRCLE CREFINE GBOX SBSPLINE SREFINE
BOOLSUM | CIRCPOLY | CREGION GPOLYGON SDIVIDE SREGION
BOX CMESH CROSSEC GPOLYLINE SEDITPT STANGENT
CBEZIER CON2 CSURFACE | MERGEPOLY | SEVAL SURFREV
CBSPLINE | CONE CTANGENT | OFFSET SFROMCRVS | SWEEPSRF
CDIVIDE CONVEX CTLPT POLY SNORMAL TORUS
CEDITPT | CPOLY CYLIN RULEDSRF SPHERE
CEVAL CRAISE EXTRUDE SBEZIER SRAISE
These are the functions to linearly transform an object:
| ROTX | ROTY [ ROTZ [ SCALE | TRANS ||
These are the miscellaneous functions:
ALIAS COLOR FOR INTERACT | NTH TIME
ATTRIB | COMMENT | FREE LIST PAUSE VARLIST
BEEP DIR HELP LOAD SAVE VECTOR
CHDIR EDIT IF LOGFILE SNOC VIEW
CLOSED | EXIT INCLUDE | NORMAL SYSTEM




Irit Solid modeler G. Elber 6

These are the variables predefined in the system:

AXES DUMPLVL | FLAT4PLY | INTERNAL | RESOLUTION
DRAWCTLPT | ECHOSRC | INTERCRV | MACHINE | VIEW_MAT

These are the constants predefined in the system:

APOLLO | E2 KV_FLOAT | ON ROW | WHITE
BLACK E3 KV_OPEN | P2 SGI YELLOW
BLUE FALSE | MAGENTA | P3 SUN

COL GREEN | MSDOS PI TRUE

CYAN HP OFF RED | UNIX

8 Language description

The front end of the IRIT solid modeler is an infix parser that mimics some of the C language
behavior. The infix operators that are supported are plus (+), minus (-), multiply (*), divide (/),
and power (7) for numeric operators and with the same precedence as in C.

However, unlike the C language, these operators are overloaded, ! or different action is taken
based upon the different operands. This means that one can write ’1L + 2’ in which the plus sign
is a regular numetic addition, or one can write 'PolyObjl + PolyObj2’ in which the plus sign is
now the Boolean operation of union between two geometric objects. The exact way each operator
is overloaded is defined below.

In this environment the representation of reals, integers, and even Boolean data is identical.
Data is automatically promoted as necessary. The constants TRUE and FALSE are defined as 1.0
and 0.0 respectively, for example.

Each expression is terminated by a semicolon. An expression can be as simple as ’a;” which
prints the value of variable a, or as complex as:

for ( (t =1.1), 0.1, 1.9,
(
( cbl = csurface( sb, COL, t ) ):
color( cbl, green ):
snoc( cbl, cb_all )

)

Once a complete expression is read in and parsed correctly (i.e. no syntax errors were found),
it is executed. Before each operator or a function are executed, parameter type matching tests are
being made to make sure the operator can be applied to these operand(s), or the function gets the
correct set of arguments.

The parser is almost totally case insensitive (with one exception - see the ALIAS command) so
Obj, obj and OBJ will refer to the same object while MergePoly, MERGEPOLY, and margePoly
will refer to the same function.

Objects (Variables if you prefer) need not be declared. Simply use them when you need them.
Object names may be any alpha-numeric (and underscore) string of at most 10 characters. By
assigning to an old object, the old object will be automatically deleted and if necessary its type
will be changing on the fly. For example:

n fact the C language do support overloaded operators to some extent: *1 + 2’ and 1.0 4 2.0’ implies invocation
of two different actions.



Irit Solid modeler G. Elber 7

sin( 45 * pi / 180.0 );
V * vector( 1, 2, 3 );
V * rotx( 90 );

V x V;

S S <
non

will assign to V a NumericType of sine of 45 degrees, the VectorType ( 1, 2, 3 ) scaled by the
sine of 45, rotate that vector around the X axis by 90 degrees, and finally a NumericType which is
its dot product.

The parser will read from stdin unless a file was specified on the command line or an INCLUDE
command was executed. In both cases, when done reading from the file, the parser will again
wait for input from stdin. In order to execute a file and quit when the file is done, put an EXIT
command as the last command in the file

9 Operator overloading

This section lists the way the basic operators +, —, *, /, and ~ are overloaded. In other words,
what action is taken by each of these operators depending upon its arguments.

9.1 Overloading +

The + operator is overloaded above the following domains:

NumericType + NumericType -> NumericType

VectorType + VectorType -> VectorType

MatrixType + MatrixType -> MatrixType

PolygonType + PolygonType -> PolygonType (Boolean UNION operation)
CurveType + CurveType -> CurveType (Curve curve chaining)
CurveType + CtlPtType -> CurveType (Curve control point chaining)
Ct1PtType + CtlPtType -> CurveType (Control points chaining)
ListType + ListType -> ListType (Append lists operator)

Note: Boolean UNION of two disjoint objects (no common volume) will result with the two
objects combined. It is the USER responsibility to make sure that the non intersecting object are
also disjoint - this system only tests for no intersection.

9.2 Overloading —

The — operator is overloaded above the following domains:
As a Diadic operator:

NumericType - NumericType -> NumericType
VectorType - VectorType -> VectorType
MatrixType - MatrixType -> MatrixType
PolygonType - PolygonType -> PolygonType (Boolean SUBTRACT operation)

As a Monadic operator:

- NumericType -> NumericType

- VectorType -> VectorType (Scaling all vector by -1)

- MatrixType -> MatrixType (Scaling all matrix by -1)

- PolygonType -> PolygonType (Boolean NEGATION operation)

- CurveType -> CurveType (Curve parameterization is reversed)

- SurfaceType -> SurfaceType (Surface parameterization is reversed)



Irit Solid modeler G. Elber 8

Note: Boolean SUBTRACT of two disjoint objects (no common volume) will result with an
empty object. For both a curve and a surface parameterization reverse opeartion (Monadic minus)
causes the object normal to be flipped as a side effect.

9.3 Overloading *

The * operator is overloaded above the following domains:

NumericType * NumericType  -> NumericType

VectorType * NumericType -> VectorType (Vector scaling)

VectorType * VectorType -> NumericType (Inner product)

MatrixType * NumericType -> MatrixType (Matrix Scaling)

MatrixType * VectorType -> VectorType (Vector transform)

MatrixType * MatrixType -> MatrixType (Matrix multiplication)
MatrixType * GeometricType -> GeometricType (Object transform)

MatrixType * ListType -> ListType (Object hierarchy transform)
PolygonType * PolygonType -> PolygonType (Boolean INTERSECTION operation)

Note: Boolean INTERSECTION of two disjoint objects (no common volume) will result with an
empty object. Object hierarchy transform transforms any transformable object (GeometricType)
found in the list recursively.

9.4 Overloading /

The / operator is overloaded above the following domains:

NumericType / NumericType -> NumericType
PolygonType / PolygonType -> PolygonType  (Boolean CUT operation)

Note: Boolean CUT of two disjoint objects (no common volume) will result with an empty
object.

9.5 Overloading "~

The ~ operator is overloaded above the following domains:

NumericType ~ NumericType -> NumericType
MatrixType =~ NumericType -> MatrixType (Matrix to the power)
PolygonType ~ PolygonType -> PolygonType (Boolean MERGE operation)

Note: Boolean MERGE simply merges the two sets of polygons without any intersection tests.
Matrix powers must be positive integers or -1 in which the matrix inverse (if exists) is computed.

9.6 Assignments

Assignments are allowed as side effects, any place in any expressions: If Expr is an expression, then
(var = Expr) is the exact same expression with the side effect of setting Var to that value. There
is no guarantee on the order of evaluation, so using Vars that are set within same expression are a
bad practice.

Any assignment which is not at top level, MUST be within parenthesis.



Irit Solid modeler G. Elber 9

10 Function’s Description

The function description below defines their calling sequence in ANSI C notation. Listed are all
the functions the system knows about in alphabetic order, according to their classes.

10.1 NumericType returning functions
10.1.1 ABS

NumericType ABS( NumericType Operand )

Returns the absolute value of the given Operand.

10.1.2 ACOS

NumericType ACOS( NumericType Operand )

Returns the arc cosine value (in radians) of the given Operand.

10.1.3 AREA

NumericType AREA( PolygonType Object )

Return the area of the given Object (in object units). Returned is the real area of the polygonal
object - not the primitive it might approximate.

That means that the area of a polygonal approximation to a sphere will be returned, not the
sphere area.

10.1.4 ASIN

NumericType ASIN( NumericType Operand )

Returns the arc sine value (in radians) of the given Operand.

10.1.5 ATAN

NumericType ATAN( NumericType Operand )

Returns the arc tangent value (in radians) of the given Operand.

10.1.6 ATAN2

NumericType ATAN2( NumericType Operandl, NumericType Operand2 )

Returns the arc tangent value (in radians) of the given ratio: Operandl / Operand2, over
the whole angle circle.

10.1.7 COS

NumericType COS( NumericType Operand )

Returns the cosine value of the given Operand (in radians).



Irit Solid modeler G. Elber

10.1.8 CPOLY

NumericType CPOLY( PolygonType Object )

Returns the number of polygons in the given polygonal Object.

10.1.9 EXP

NumericType EXP( NumericType Operand )

Returns the natural exponent value of the given Operand.

10.1.10 LN

NumericType LN( NumericType Operand )

Returns the natural logarithm value of the given Operand.

10.1.11 LOG

NumericType LOG( NumericType Operand )

Returns the base 10 logarithm value of the given Operand.

10.1.12 SIN

NumericType SIN( NumericType Operand )

Returns the sine value of the given Operand (in radians).

10.1.13 SQRT

NumericType SQRT( NumericType Operand )

Returns the square root value of the given Operand.

10.1.14 TAN

NumericType TAN( NumericType Operand )

Returns the tangent value of the given Operand (in radians).

10.1.15 VOLUME

NumericType VOLUME( PolygonType Object )

10

Return the volume of the given Object (in object units). Returned is the real volume of the

polygonal object - not the object it might approximate.

This routine decompose all non convex polygons to convex ones as side effect (see CONVEX).



Irit Solid modeler G. Elber 11

10.2 GeometricType returning functions
10.2.1 ARC

CurveType ARC( VectorType StartPos, VectorType Center, VectorType EndPos )

An arc constructor between two end points StartPos and EndPos centered at Center. Arc
will always be less than 180 degrees so the shortest arc path from StartPos to EndPos is selected.
The case where StartPos, Center, and EndPos are colinear is illegal, since it attempts to define
a 180 degrees arc. Arc is constructed as a single rational quadratic Bezier curve. Example:

Arcl = ARC( vector( 1.0,
vector( 1.0,
vector( 0.0

b b

b b

)

= = O
O O O
O O O
O O O
N~ N v

b b

constructs a 90 degrees arc tangent to both X and Y axes at coordinate 1.

10.2.2 BOOLSUM

SurfaceType BOOLSUM( CurveType Crvl, CurveType Crv2,
CurveType Crv3, CurveType Crvé4 )

Construct a surface using the provided four curves as its four boundary curves. Curves do not
have to have the same order or type and will be promoted to their least common denominator. The
four curves end points should match as follows:

Crvl start point, to Crv3 start point.
Crvl end point, to Crv4 start point.
Crv2 start point, to Crv3 end point.
Crv2 end point, to Crv4 end point.

where Crvl and Crv2 are the two boundaries in one parameteric direction and Crv3 and
Crv4 are the two in the other.

Example:

Cbzrl = cbezier( list( ctlpt( E3, 0.1, 0.1, 0.1 ),
ctlpt( E3, 0.0, 0.5, 1.0 ),
ctlpt( E3, 0.4, 1.0, 0.4 ) ) );

Cbzr2 = cbezier( list( ctlpt( E3, 1.0, 0.2, 0.2 ),
ctlpt( E3, 1.0, 0.5, -1.0 ),
ctlpt( E3, 1.0, 1.0, 0.3 ) ) );

Cbsp3 = cbspline( 4,

list( ctlpt( E3, 0.1, 0.1, 0.1),
ctlpt( E3, 0.25, 0.0, -1.0 ),
ctlpt( E3, 0.5, 0.0, 2.0 ),
ctlpt( E3, 0.75, 0.0, -1.0 ),
ctlpt( E3, 1.0, 0.2, 0.2 ) ),

list( KV_OPEN ) );

Cbsp4 = cbspline( 4,

list( ctlpt( E3, 0.4, 1.0, 0.4 ),
ctlpt( E3, 0.25, 1.0, 1.0 ),
ctlpt( E3, 0.5, 1.0, -2.0 ),
ctlpt( E3, 0.75, 1.0, 1.0 ),



Irit Solid modeler G. Elber 12

Ctlpt( E3, 1.0, 1.0, 0.3 ) ),
list( KV_OPEN ) );
Srf = BOOLSUM( Cbzril, Cbzr2, Cbsp3, Cbsp4 );

10.2.3 BOX

PolygonType BOX( VectorType Point,
NumericType Dx, NumericType Dy, NumericType Dz )

Creates a main planes parallel BOX polygonal object, defined by Point as base position, and
Dx, Dy, Dz as BOX dimensions. Note negative dimensions are allowed. Example:

B = BOX( vector( 0, 0, 0 ), 1, 1, 1);

creates a unit cube from 0 to 1 in all axes.

10.2.4 CBEZIER

CurveType CBEZIER( ListType CtlPtList )

Creates a Bezier curve out of the provided control point list. CtlPtList is a list of control
points, all of the same type (E2, E3, P2, or P3). Example:

545 = sin(pi / 4);

Arc90 = CBEZIER( 1list( ctlpt( P2, 1.0, 0.0, 1.0 ),
ctlpt( P2, =45, s45, s45 ),
ctlpt( P2, 1.0, 1.0, 0.0 ) ) );

constructs an arc of 90 degrees as a rational quadratic Bezier curve.

10.2.5 CBSPLINE

CurveType CBSPLINE( NumericType Order, ListType CtlPtlList,
ListType KnotVector )

Creates a Bspline curve out of the provided control point list and the knot vector, with the
specified order. CtlPtList is a list of control points, all of the same type (E2, E3, P2, or P3)
defining the curve control polygon. The length of the KnotVector must be equal to the number
of control points in CtlPtList plus Order. Example:

545 = sin(pi / 4);
HalfCirc = CBSPLINE( 3,
list( ctlpt( P3, 1.0, 0.0, 0.0, 1.0 ),
ctlpt( P3, =45, -s45, 0.0, s45 ),
ctlpt( P3, 1.0, -1.0, 0.0, 0.0 ),
ctlpt( P3, =45, -s45, 0.0, -s45 ),
ctlpt( P3, 1.0, 0.0, 0.0, -1.0) ),
list( 0, 0, 0, 1, 1, 2, 2, 2 ) );

constructs an arc of 180 degrees in the X7 plane as a rational quadratic Bspline curve.
The knot vector list may be specified as list( KV_OPEN ) or as list( KV_FLOAT ) in which
a uniform open or floating knot vector with the appropriate length is automatically constructed.



Irit Solid modeler G. Elber 13

10.2.6 CDIVIDE

ListType CDIVIDE( CurveType Curve, NumericType Param )

Subdivides a curve into two at the specified parameter value. Curve can be either a Bspline
curve in which Param must be within Curve parametric domain or a Bezier curve in which Param
must be in the 0 to 1 range.

Returned is a list of the two sub-curves. The individual curves may be extracted from the list
using the NTH command. For example:

CrvLst = CDIVIDE( Crv, 0.5 );
Crvl = nth( Crvlst, 1 );
Crv2 = nth( Crvlst, 2 );

subdivides the curve Crv at the parameter value 0.5.

10.2.7 CEDITPT

CurveType CEDITPT( CurveType Curve, CtlPtType CtlPt, NumericType Index )

Provides a simple mechanism to manually modify a single control point number Index (base
count is 0) in Curve, by substituting CtIPt instead. CtIPt must have the same point type as
Curve points. Original curve Curve is not modified. FExample:

CPt = Ctlpt( E3, 1, 2, 3 );
NewCrv = CEDITPT( Curve, CPt, 1 );

constructs a NewCrv with the second control point of Curve being CPt.
10.2.8 CEVAL
Ct1PtType CEVAL( CurveType Curve, NumericType Param )

Evaluates the provided Curve at the given Param value. Param should be with the curve
domain if Curve is a Bspline curve, or between 0 and 1 if Curve is a Bezier curve. Returned
control point has the same type as the Curve control points. Example:

CPt = CEVAL( Crv, 0.25 );
evaluates Crv at the parameter value of 0.25.
10.2.9 CIRCLE
CurveType CIRCLE( VectorType Center, NumericType Radius )

Construct a circle at the specified Center with the specified Radius. Returned circle is a
Bspline curve of four piecewise Bezier 90 degree arcs. Circle is always parallel to the XY plane.
Use the linear transformation routines to place the circle in the appropriate location.



Irit Solid modeler G. Elber 14

10.2.10 CIRCPOLY

PolygonType CIRCPOLY( VectorType Normal, VectorType Trans, NumericType Radius )

As in this solid modeler, open objects are allowed (although any two objects intersection should
form a closed loop), a plane (open!) object also exists. The function defines a circular polygon
with the given Normal, and includes the Trans point. It is implemented as a FINITE circle
with resolution (see RESOLUTION) edges, radius Radius and center Trans on that plane. It is
the user responsibility to make sure that any Boolean operation on it (or any other open object)
will create closed loops as intersecting curves and/or open loops terminated on its boundary (no
termination in the middle of it is allowed).

Alternative to the function are manual construction of the required plane as a single polygon
using POLY, or construction of a flat ruled surface using RULEDSRF.

10.2.11 CMESH

CurveType CMESH( SurfaceType Srf, ConstantType Direction, NumericType Index )

Returns a single ROW or COLumn as specified by the Direction and Index (base count is 0)
of the surface Srf control mesh.
Returned curve will have the same knot vector as Srf in the appropriate direction. See also

CSURFACE.

Note this curve is not necessarily in the surface Srf. Example:
Crv = CMESH( Srf, COL, 0 );

extracts the first column of surface Srf as a curve.

10.2.12 CON2

PolygonType CON2( VectorType Center, VectorType Direction,
NumericType Radiusl, NumericType Radius2 )

Create a truncated CONE geometric object, defined by Center as CONE main base center,
CONE axes Direction, and CONE base radii Radius1/2.

Note Direction magnitude also sets the CONE height. Direction can be any 3D vector.

Unlike the regular cone (CONE) constructor which has discontinuities in its apex generated
normals, CON2 may be used to form a truncated cone but with continuous normals. See RESO-
LUTION for accuracy of CON2 approximation as polygonal model. Example:

Crv = CON2( vector( 0, 0, -1 ), vector( 0, 0, 4), 2, 1 );

constructs a truncated cone based at the XY parallel plane 7 = -1, top at plane 7 = 3, and
with radii of 2 and 1 respectively.

10.2.13 CONE

PolygonType CONE( VectorType Center, VectorType Direction,
NumericType Radius )

Create a CONE geometric object, defined by Center as CONE base center, CONE axes Di-
rection, and CONE base radius Radius. Note Direction magnitude also sets the CONE height.
Direction can be any 3D vector.

See RESOLUTION for accuracy of CONE approximation as polygonal model. Example:



Irit Solid modeler G. Elber 15

Crv = CONE( vector( 0, 0, 0 ), vector( 1, 1, 1), 1 );

constructs a cone based in the XY parallel plane, centered at the origin with radius 1 and with
tilted apex at ( 1,1, 1).
See also CON2.

10.2.14 CONVEX

PolygonType CONVEX( PolygonType Object )

Coerce non convex polygons in Object, into convex one. New vertices are introduced into
the polygonal data during this process. The Boolean operations require the input to have convex
polygons only (although it may return non convex polygons...) and automatically coerced non
convex input polygons to convex ones, using this same routine.

However some external tools (like irit2ray, poly3d-r and poly3d-h) requires convex polygons.
This function may be used on the objects to provide that, just before they are being saved into
data files. Example:

Cnvx0bj = CONVEX( 0bj );
save(''data", Cnvx0bj);

decompose non convex polygons into convex ones so that data file could be used by external
tools requiring convex polygons.

10.2.15 CPOLY

NumericType CPOLY( PolygonType Polys )
Returns number of polygons in provided object. Example:

DumpLvl = 1
NumPolys = CPOLY( 0bj );
NumPolys;

prints the number of polygons in object Obj.

10.2.16 CRAISE

CurveType CRAISE( CurveType Curve, NumericType NewOrder )

Raise Curve to the NewOrder Order specified. Currently implemented for Bezier curves of
any order and linear Bspline curve only. Example:

Crv = ctlpt( E3, 0.0, 0.0, O.
ctlpt( E3, 0.0, 0.0, 1.
ctlpt( E3, 1.0, 0.0, 1.

Crv2 = CRAISE( Crv, 4 );

+
+

o O O
s s

b

raises the 90 degrees corner linear Bspline curve Crv to be a cubic.



Irit Solid modeler G. Elber 16

10.2.17 CREFINE

CurveType CREFINE( CurveType Curve, NumericType Replace, ListType KnotList )

Provides the ability to Replace a knot vector of Curve or refine it. KnotList is a list of
knots to refine Curve at and all should be within Curve parametric domain. If knot vector is to
be replaced, the length of KnotList should be identical to the length of Curve knot vector. If
Curve is a Bezier curve, it is automatically promoted to be a Bspline curve. Example:

Crv2 = CREFINE( Crv, FALSE, list( 0.25, 0.5, 0.75 ) );

refines Crv at the three knots 0.25, 0.5, and 0.75.

10.2.18 CREGION

CurveType CREGION( CurveType Curve, NumericType MinParam,
NumericType MaxParam )

FExtracts a subdomain of Curve between MinParam and MaxParam. Both MinParam and
MaxParam should be within Curve parametric domain. Example:

SubCrv = CREGION( Crv, 0.3, 0.6 );

extracts the subdomain of Crv from the parameter value 0.3 to the parameter value 0.6.
10.2.19 CROSSEC
PolygonType CROSSEC( PolygonType Object )

Unfortunately, this feature is NOT implemented...

10.2.20 CSURFACE

CurveType CSURFACE( SurfaceType Srf, ConstantType Direction,
NumericType Param )

Extract an iso parametric curve out of Srfin the specified Direction (ROW or COL) at the
specified parameter value Param. Param must be in Srf parameter range in Direction direction.
The returned curve is in Srf. See also CMESH. Example:

Crv = CSURFACE( Srf, COL, 0.15 );

extract an iso parametric curve in the COLumn direction at parameter value 0.15 from surface

Srf.

10.2.21 CTANGENT

VectorType CTANGENT( CurveType Curve, NumericType Param )
Computes the tangent vector to Curve at the parameter value Param. Example:
Tang = CTANGENT( Crv, 0.5 );

computes the tangent to Crv at the parameter value 0.5.



Irit Solid modeler G. Elber 17

10.2.22 CTLPT

CPt = CTLPT( ConstantType E2, NumericType X, NumericType Y )

or

CPt = CTLPT( ConstantType E3, NumericType X, NumericType Y, NumericType Z )
or

CPt = CTLPT( ConstantType P2, NumericType W, NumericType X, NumericType Y )
or

CPt = CTLPT( ConstantType P3, NumericType W,

NumericType X, NumericType Y, NumericType Z )

Construct a single control point to be used in curves and surfaces construction. Four types of
points may be constructed as follows:

E2 | A two dimensional point with X and Y.

E3 | A three dimensional point with X, Y, and Z.

P2 | A two dimensional rational point at X/W, and Y/W.

P3| A three dimensional rational point at X/W, Y/W, and Z/W.

Example:
CPt = CTLPT( E3, 0.0, 0.0, 0.0 );

constructs an E3 points at the origin.

10.2.23 CYLIN

PolylineType CYLIN( VectorType Center, VectorType Direction,
NumericType Radius )

Create a CYLINder geometric object, defined by Center as CYLIN base center, CYLIN axes
Direction, and CYLIN base radius Radius. Note Direction magnitude also sets the CYLIN height.
Direction can be any 3D vector. See RESOLUTION for accuracy of CYLIN approximation as
polygonal model. Example:

Crv = CYLIN( vector( 0, 0, O ), vector( 1, 0, 0 ), 10 );

constructs a cylinder along the X axis from the origin to X = 10.

10.2.24 EXTRUDE

PolygonType EXTRUDE( PolygonType Object, VectorType Dir )
or

SurfaceType EXTRUDE( CurveType Object, VectorType Dir )



Irit Solid modeler G. Elber 18

Creates an extrusion of the given Object. If Object is a PolygonObject, its first polygon is
used as the base for the extrusion in Dir direction, and a closed PolygonObject is constrcted. If
Object is a CurveType, an extrusion surface is constructed instead which is not a closed object
(the two bases of the extrusion are excluded and the curve may be open by itself).

No limitation exists on the polygon (can be non-convex), but Dir cannot be coplanar with the
polygon plane. The curve need not be planar. Example:

Cross = cbspline( 3,

list( ctlpt( E2, -0.018, 0.001 ),
ctlpt( E2, 0.018, 0.001 ),
ctlpt( E2, 0.019, 0.002 ),
ctlpt( E2, 0.018, 0.004 ),
ctlpt( E2, -0.018, 0.004 ),
ctlpt( E2, -0.019, 0.001 ) ),

list( KV_OPEN ) );
Cross = Cross + -Cross * scale( vector( 1, -1, 1) );
Napkin = EXTRUDE( Cross * scale( vector( 1.6, 1.6, 1.6 ) ),
vector( 0.02, 0.03, 0.2 ) );

constructs a closed cross section Cross by duplicating a half of it in reverse and merging the
two sub-curves. Cross is then used as the cross section for the extrusion operation.

10.2.25 GBOX

PolygonType GBOX( VectorType Point,
VectorType Dx, VectorType Dy, VectorType Dz )

Create a parallelpiped - Generalized BOX polygonal object, defined by Point as base position,
and Dx, Dy, Dz as 3 3D vectors to define the 6 faces of this generalized BOX. The regular BOX
object is special case of GBOX where Dx = vector(Dx, 0, 0), Dy = vector(0, Dy, 0), Dz = vector(0,
0, Dz).

Note Dx, Dy, Dz must be non-coplanar in order to create a feasible object. Example:

GB = GBOX(vector(0.0, -0.35, 0.63), vector(0.5, 0.0, 0.5),
vector(-0.5, 0.0, 0.5),
vector(0.0, 0.7, 0.0));

10.2.26 GPOLYGON

PolygonType GPOLYGON( GeometryTreeType Object )

Approximate all Surface(s) in Object as polygons using the RESOLUTION and FLAY4PLY
variables. The larger RESOLUTION is the more polygons and finer the result approximation will
be. Each Bezier patch will have roughly RESOLUTION? polygons.

FLAT4PLY is a Boolean flag controlling the conversion of an (almost) flat patch into four
(TRUE) or two (FALSE) polygons. Normals are computed to polygons vertices using surface
normal, so Guaroud or Phong rendering can be performed. Returned is a single polygon object, no
matter how complex Object Hierarchy is. Example:

Polys = GPOLYGON( 1list( Srf1l, Srf2, Srf3 ) );

Converts to polygons the three surfaces Srfl, Srf2, and Srf3.



Irit Solid modeler G. Elber 19

10.2.27 GPOLYLINE
PolylineType GPOLYLINE( GeometryTreeType Object )

Converts all Surface(s) and Curves(s) in Object into polylines using the RESOLUTION vari-
able. The larger RESOLUTION is the finer the result approximation will be. Returned is a single
polyline object, no matter how complex Object Hierarchy is. Example:

Polys = GPOLYLINE( list( Srf1l, Srf2, Srf3, list( Crvil, Crv2, Crv3 ) ) );
converts to polyline the three surfaces Srfl, Srf2, and Srf3 and the three curves Crvl, Crv2,
and Crv3.
10.2.28 MERGPOLY
PolygonType MERGEPOLY( ListType PolyList )

Merge a set of polygonal objects in PolyList list to a single polygonal object. All elements
in ObjectList must be of PolygonType type. No test is made on the validity of the data. This
function performs the same operation as the ~ operator would, but may be more convenient to use
under some conditions. Example:

Vrtxl = vector( -3, -2, -1 );

Vrtx2 = vector( 3, -2, -1 );

Vrtx3 = vector( 3, 2, -1 );

Vrtx4 = vector( -3, 2, -1 );

Polyl = poly( list( Vrtxl, Vrtx2, Vrtx3, Vrtx4 ) );

Vrtxl = vector( -3, 2, 1 );

Vrtx2 = vector( 3, 2, 1 );

Vrtx3 = vector( 3, -2, 1 );

Vrtx4 = vector( -3, -2, 1 );

Poly2 = poly( list( Vrtxl, Vrtx2, Vrtx3, Vrtx4 ) );

Vrtxl = vector( -3, -2, 1 );

Vrtx2 = vector( 3, -2, 1 );

Vrtx3 = vector( 3, -2, -1 );

Vrtx4 = vector( -3, -2, -1 );

Poly3 = poly( list( Vrtxl, Vrtx2, Vrtx3, Vrtx4 ) );

PolyObj = MERGEPOLY( 1list( Polyl, Poly2, Poly3 ) );

10.2.29 OFFSET

CurveType OFFSET( CurveType Crv, NumericType OffsetDistance )
or

SurfaceType OFFSET( SurfaceType Srf, NumericType OffsetDistance )

Offsets Crv or Srf, by translating all control points in the curve or surface normal, by the
OffsetDistance amount. Returned curve or surface only approximates the real offset. One may
improve the offset accuracy using refinement. Negative OffsetDistance denotes offset in the
reversed direction of the normal.

Example:



Irit Solid modeler G. Elber 20

0ffCrv = OFFSET(Crv, -0.1);

offsets Crv by the amount of —0.1 in the reversed normal direction.

10.2.30 POLY

PolygonType POLY( ListType ObjectlList )

Create a single polygon (and therefore open) object, defined by the vertices which respec-
tively defined by the objects in ObjectList (see LIST). All elements in ObjectList must be of
VertorType type. No validity test is made and it is the user responsibility. see CIRCPOLY for
conditions applied to open objects. Example:

V1 = vector( 0.0, 0.0, 0.0 );
V2 = vector( 0.3, 0.0, 0.0 );
V3 = vector( 0.3, 0.0, 0.1 );
V4 = vector( 0.2, 0.0, 0.1 );
V5 = vector( 0.2, 0.0, 0.5 );
V6 = vector( 0.3, 0.0, 0.5 );
V7 = vector( 0.3, 0.0, 0.6 );
V8 = vector( 0.0, 0.0, 0.6 );
V9 = vector( 0.0, 0.0, 0.5 );
V10 = vector( 0.1, 0.0, 0.5 );
V11 = vector( 0.1, 0.0, 0.1 );
V12 = vector( 0.0, 0.0, 0.1 );
I = poly( list( Vi, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12 ) );

constructs an object with a single polygon in the shape of the I letter.

10.2.31 RULEDSRF

SurfaceType RULEDSRF( CurveType Crvl, CurveType Crv2 )

Constructs a ruled surface between the two curves Crvl and Crv2. Curves do not have to
have the same order or type and will be promoted to their least common denominator.
Example:

Circ = circle( vector( 0.0, 0.0, 0.0 ), 0.25 );
Cyl = RULEDSRF( circ, circ * trans( vector( 0.0, 0.0, 1.0 ) ) );

Constructs a cylinder of radius 0.25 along the Z axis from 0 to 1.

10.2.32 SBEZIER

SurfaceType SBEZIER( ListType CtlMesh )

Creates a Bezier surface out of the provided control mesh. CtlMesh is a list of control points
rows, each is a list of control points. All control points must be of the same type (E2, E3, P2, or
P3).

Example:



Irit Solid modeler G. Elber 21

Srf = SBEZIER( list ( list( ctlpt( E3, 0.0, 0.0, 1.0 ),
ctlpt( E3, 0.0, 1.0, 0.0 ),
ctlpt( E3, 0.0, 2.0, 1.0 ) ),

list( ctlpt( E3, 1.0, 0.0, 0.0 ),
ctlpt( E3, 1.0, 1.0, 2.0 ),
ctlpt( E3, 1.0, 2.0, 0.0 ) ),
list( ctlpt( E3, 2.0, 0.0, 2.0 ),
ctlpt( E3, 2.0, 1.0, 0.0 ),
ctlpt( E3, 2.0, 2.0, 2.0 ) ),
list( ctlpt( E3, 3.0, 0.0, 0.0 ),
ctlpt( E3, 3.0, 1.0, 2.0 ),
ctlpt( E3, 3.0, 2.0, 0.0 ) ),
list( ctlpt( E3, 4.0, 0.0, 1.0 ),
ctlpt( E3, 4.0, 1.0, 0.0 ),
ctlpt( E3, 4.0, 2.0, 1.0 ) ) ) );

10.2.33 SBSPLINE

SurfaceType SBSPLINE( NumericType UOrder, NumericType VOrder,
ListType CtlMesh, ListType KnotVectors )

Creates a Bspline surface out of the provided UOrder and VOrder orders, the control mesh
CtlMesh and the two knot vectors KnotVectors. CtlMesh is a list of control points rows,
each is a list of control points. All control points must be of the same type (E2, E3, P2, or P3).
KnotVectors is a list of two knot vectors, each is a list of NumericType knots or a list of a
single constant KV_OPEN or KV_FLOAT in which a uniform knot vector with open or floating
end condition will automatically be constructed. Example:

Mesh = 1list ( list( ctlpt( E3,
ctlpt( E3,
ctlpt( E3,

list( ctlpt( E3,
ctlpt( E3,
ctlpt( E3,

list( ctlpt( E3,
ctlpt( E3,
ctlpt( E3,

list( ctlpt( E3,
ctlpt( E3,
ctlpt( E3,

list( ctlpt( E3,
ctlpt( E3,
ctlpt( E3, 4.0, 2.0, ) ) )

Srf = SBSPLINE( 3, 3, Mesh, list( list( KV_OPEN ),

list( 3, 3, 3, 4, 5, 6, 6, 6 ) ) );

b

-
-

b

-
-

~—
-

b

-

b

-
-

b

-
-

~—
-

b

-

b

0
0
0
0
0
0
0
.0,
0
0
0
0
0
0
0

-

~—
-

b

-

b

-
-

b

-
-

~—
-

b

-

b

-
-

P ONFP, ONFPLONPFLONRO
O OO O O OO OO OO OO O o

-

BB W W WNNNR, PR, PR, OO O
N N N N N N N N N N N N N

b

-

R O R, ONONONONORFRO-
O O O O OO OO OO OO OO o

constructs a Bspline surface with its first knot vector being uniform with open end condition.

10.2.34 SDIVIDE

SurfaceType SDIVIDE( SurfaceType Srf, ConstantType Direction,
NumericType Param )



Irit Solid modeler G. Elber 22

Subdivides a surface into two at the specified parameter value Param in the specified Direc-
tion (ROW or COL). Srf can be either a Bspline curve in which Param must be within surface
parametric domain or a Bezier curve in which Param must be in the 0 to 1 range.

Returned is a list of the two sub-surfaces. The individual surfaces may be extracted from the
list using the NTH command. Example:

SrflLst = SDIVIDE( Srf, ROW, 0.5 );
Srfl = nth( Srflst, 1 );
Srf2 = nth( Srflst, 2 );

subdivides Srf at the parameter value of 0.5 in the ROW direction.

10.2.35 SEDITPT

SurfaceType SEDITPT( SurfaceType Srf, CtlPtType CPt, NumericType Ulndex,
NumericType VIndex )

Provides a simple mechanism to manually modify a single control point number Ulndex and
VIndex (base count is 0) in Srf control mesh by substituting CtlPt instead. CtIPt must have the
same point type as Srf points. Original surface Srf is not modified. Example:

CPt = ctlpt( E3, 1, 2, 3 );
NewSrf = SEDITPT( Srf, CPt, O, 0 );

constructs a NewSrf with the first control point of Srf being CPt.

10.2.36 SEVAL

Ct1PtType SEVAL( SurfaceType Srf, NumericType UParam, NumericType VParam )

Evaluates the provided surface Srf at the given UParam and VParam values. Both UParam
and VParam should be within the surface parametric domain if Srfis a Bspline surface, or between
0 and 1 if Srfis a Bezier surface. Returned control point has the same type as Srf control points.
Example:

CPt = SEVAL( Srf, 0.25, 0.22 );

evaluates Srf at the parameter values of (0.25, 0.22).

10.2.37 SFROMCRVS

SurfaceType SFROMCRVS( ListType Crvlist )

Construct a surface by substituting the curves in CrvList as rows in a surface control mesh.
Curves in CrvList are made compatible by promoting Bezier curves to Bsplines if necessary and
raising degree and refining as required before substituting their control polygons as rows in the
mesh.

The other direction order is the same as the first direction order or if not enough curves are
provided equal to the number of curves in CrvList.

The surface will interpolate the first and last curves only. Example:



Irit Solid modeler G. Elber 23

Crvi

cbspline( 3,

list( ctlpt( E3, 0.0,
ctlpt( E3, 1.0,
ctlpt( E3, 1.0,

list( KV_OPEN ) );
Crvl * trans( vector( 0.0, 0.0,
Crv2 * scale( vector( 0.0, 0.0,
* trans( vector( 0.1, 0.1,
Srf = SFROMCRVS( list( Crvi, Crv2, Crv3 ) );

-

= O O
o O O
o O O
o O O
N~ N/

Crv2
Crv3

1]
O N =
~ o o
N~ N/ N
N~ N/ N

10.2.38 SNORMAL

VectorType SNORMAL( SurfaceType Srf, NumericType UParam, NumericType VParam )
Computes the normal vector to Srf at the parameter values UParam and VParam. Example:
Tang = SNORMAL( Crv, 0.5, 0.5 );

computes the normal to Srf at the parameter values (0.5, 0.5).

10.2.39 SPHERE

PolygonType SPHERE( VectorType Center, NumericType Radius )

Creates a SPHERE geometric object, defined by Center as SPHERE center, and with radius
Radius. See RESOLUTION for accuracy of SPHERE approximation as polygonal model.

10.2.40 SRAISE

SurfaceType SRAISE( SurfaceType Srf, ConstantType Direction,
NumericType NewOrder )

Raise Srf to the specified NewOrder Order in the specified direction Direction. Currently
implemented for Bezier surfaces of any order and linear Bspline surfaces only. Example:

Srf = ruledSrf( cbezier( list( ctlpt( E3, -0.5, -0.5, 0.0 ),
ctlpt( E3, 0.5, -0.5, 0.0 ) ) ),
cbezier( list( ctlpt( E3, -0.5, 0.5, 0.0 ),
ctlpt( E3, 0.5, 0.5, 0.0) ) ) );
Srf = SRAISE( SRAISE( Srf, ROW, 3 ), COL, 3 );

construct a bilinear flat ruled surface and raise its both directions to be quadratic.

10.2.41 SREFINE

SurfaceType SREFINE( SurfaceType Srf, ConstantType Direction,
NumericType Replace, ListType KnotList )

Provides the ability to Replace a knot vector of Srf or refine it in the specified direction
Direction (ROW or COL). KnotList is a list of knots to refine Srf at. All knots should be
within Srf parametric domain in Direction direction. If knot vector is to be replaced, the length
of KnotList should be identical to the length of Srf knot vector in direction Direction. If Srf is
a Bezier surface, it is automatically promoted to be a Bspline surface. Example:



Irit Solid modeler G. Elber 24

Srf = SREFINE( SREFINE( Srf,
ROW, FALSE, list( 0.333, 0.667 ) ),
COL, FALSE, 1list( 0.333, 0.667 ) );

refines Srfin both directions by adding two more knots at 0.333 and 0.667

10.2.42 SREGION

SurfaceType SREGION( SurfaceType Srf, ConstantType Direction,
NumericType NewOrder )

Extracts a subdomain of Srf between MinParam and MaxParam in the specified Direc-
tion. Both MinParam and MaxParam should be within Srf parametric domain in Direction.
Example:

SubSrf = SREGION( Srf, COL, 0.3, 0.6 );

extracts the subdomain of Srf from the parameter value 0.3 to the parameter value 0.6 along
the COLumn direction. the ROW direction is extracted as a whole.

10.2.43 STANGENT

VectorType STANGENT( SurfaceType Srf, ConstantType Direction,
NumericType UParam, NumericType VParam )

Computes the tangent vector to Srf at the parameter values UParam and VParam in the
direction Direction. Example:

Tang = STANGENT( Srf, ROW, 0.5, 0.6 );

computes the tangent to Srfin the ROW direction at the parameter values (0.5, 0.6).

10.2.44 SURFREV

PolygonType SURFREV( PolygonType Object )
or

SurfaceType SURFREV( CurveType Object )

Create a surface of revolution by rotating the first polygon/curve of the given Object, around
the Z axes. No limitation exists on the polygon (can be non-convex), aside from the requirement
for it to be non coplanar with a plane of the form 7Z = Const. No limitation exists for the curve.
Use the linear transformation function to position a surface of revolution in a different orientation.
Example:

VTailAntn = SURFREV( ctlpt( E3, 0.001, 0.0, 1.0 ) +
ctlpt( E3, 0.01, 0.0, 1.0 ) +
ctlpt( E3, 0.01, 0.0, 0.8 ) +
ctlpt( E3, 0.03, 0.0, 0.7 ) +
ctlpt( E3, 0.03, 0.0, 0.3 ) +
ctlpt( E3, 0.001, 0.0, 0.0 ) );

constructs a piecewise linear Bspline curve in the X7 plane and use it to construct a surface of
revolution by rotating it around the 7 axis.



Irit Solid modeler G. Elber 25

10.2.45 SWEEPSRF

SurfaceType SWEEPSRF( CurveType CrossSection, CurveType Axis,
NumericType Scale )

or

SurfaceType SWEEPSRF( CurveType CrossSection, CurveType Axis,
CurveType ScaleCrv )

Construct a generalized cylinder surface. This function sweeps a specified cross section Cross-
Section along the provided Axis. The cross section may be constantly scaled (first form above),
or scaled along the Axis parametric domain (second form).

No refinement is performed on any of the curves so scaling and axis following result is only
approximated. Refinement at the proper location should improve the output accuracy. ScaleCrv
parametric domain do not have to match the Axis parametric domain and their domains are made
compatible by this function. Example:

Cross = arc( vector(
vector(
vector(

arc( vector(
vector(
vector(
arc( vector(
vector(
vector(
arc( vector(
vector(
vector(
ctlpt( E2, O.
Axis = arc( vector( -1.0, 0.0 )
vector( 0.0, 0.1),
vector( 1.0, 0.0, 0.0 ) );
Axis crefine( Arc1l, FALSE, list( 0.25, 0.5, 0.75 ) );
ScaleCrv = cbezier( 1list( ctlpt( E2, 0.0, 0.01 ),
ctlpt( E2, 1.0, 0.5 ),
ctlpt( E2, 2.0, 0.01 ) ) );

Srf = SWEEPSRF( Cross, Axis, ScaleCrv );

-
-
-

-
-
-

~
+

-
-

-
-
-

-
-
-

~
+

-

-
-

-

~
+

-
-

-
-
-

-
-
-

OQO(OOOOJOJI—\I—\OO[\)[\)

O O OO OO O OO OO OO OO o
O O~ O r kr W WO o & &N NDO
O O O O O O O O O O O OO

O O O O O O O O O O O OO

NN N N N N N N N N N

-

~
+

N OORr P, OO OO OO O O

-

b

constructs a rounded rectangle cross section and sweep it along an arc while scaling it so its
end points shrink. Note the axis curve Axis is manually refined to better approximate the scaling
required.

10.2.46 TORUS

PolygonType TORUS( VectorType Center, VectorType Normal,
NumericType MRadius, NumericType mRadius )

Create a TORUS polygonal object, defined by Center as TORUS center, Normal as main
TORUS plane normal, MRadius as major radius, and mRadius as minor.
See RESOLUTION for accuracy of TORUS approximation as polygonal model. Example:



Irit Solid modeler G. Elber 26

T = TORUS( vector( 0.0, 0.0, 0.0), vector( 0.0, 0.0, 1.0), 0.5, 0.2 );

constructs a torus with major plane as the XY plane, major radius of 0.5, and minor radius of
0.2.

10.3 Object transformation functions

All the routines in this section constructs a 4 by 4 homogeneouos matrix representing the required
transform. These matrices may be concatenated to achieve a more complex transforms using the
matrix multiplication operator . For example the expression

m = trans( vector( -1, 0, 0 ) ) * rotx( 45 ) * trans( vector( 1, 0, 0 ) );

constructs a transform to rotate an object around the X = 1 line, 45 degrees. A matrix
representing the inverse transform can be computed as:

InvM = m = -1

See also overloading the - operator.

10.3.1 ROTX

MatrixType ROTX( NumericType Angle )

Creates a rotation transformation matrix (around X) with Angle degrees.

10.3.2 ROTY

MatrixType ROTY( NumericType Angle )

Creates a rotation transformation matrix (around Y) with Angle degrees.

10.3.3 ROTZ

MatrixType ROTZ( NumericType Angle )

Creates a rotation transformation matrix (around Z) with Angle degrees.

10.3.4 SCALE

MatrixType SCALE( VectorType ScaleFactors )

Creates a scaling transformation matrix of ScaleFactors scaling factors.

10.3.5 TRANS

MatrixType TRANS( VectorType TransFactors )

Creates a translation transformation matrix of TransFactors translating amounts.



Irit Solid modeler G. Elber 27

10.4 General purpose functions
10.4.1 ALIAS
ALIAS( StringType Name, StringType Value )

Defines a text substitution: each occurrence of Name will be replaced by the given Value.
Unlike the rest of the system, this is CASE SENSITIVE. It is a good practice, therefore, to defines
the aliases names to be upper case, and rest of program including alias values in lower case. For
example:

ALTAS("ED", "edit(\"file.irt\");");

defines the alias "ED” to be ’edit("file.irt”);”. Note the way the double quotes are being escaped.

Using ”ed” instead of "ED” above will cause infinite loop since "ed” will be expanded for ever...
The aliases will be expanded until line is too long or 100 expansions occurred in line.

If Name is empty string, a list of all defined aliases is printed.

If Name is not empty, but Value is, that alias is deleted. This is the only case you need
to specify the alias Name in LOWER case (otherwise it will be expanded...) - the alias Name
comparison is case insensitive.

10.4.2 ATTRIB

ATTRIB( GeometricType Object, StringType Name, StringType Value )

Provides a mechanism to add a string attribute to a geometric Object, with name Name and
value Value.

These attributes may be used to pass information to other programs about this object and are
saved with the objects in data files. For example

ATTRIB(Glass, "rgb", "255,0,0");

sets the rendered color of the Glass object. This specific attribute provides a finer control on
color setting than provided by the color command, for external programs.
10.4.3 BEEP
BEEP( NumericType Frequency, NumericType Time )

Generates a tone with the given Frequency (in Hz), for the given period of Time (in millisec-
onds). This command is system dependent and may work differently or not work at all on some
systems.

10.4.4 CHDIR
CHDIR( StringType NewPath )
Change current working directory to NewPath (if exists). The entry directory is recovered on
exit from program.
10.4.5 CLOSED

CLOSED( NumericType Set )

If Set is non zero (see TRUE/FALSE and ON/OFF') then every polygonal object drawn is
assumed to be closed. If a polygonal model is closed every edge is basically drawn twice - once for
each adjacent polygon. If the object is assumed closed, every such edge will be drawn once only.
By default this option is TRUE.



Irit Solid modeler G. Elber 28

10.4.6 COLOR

COLOR( GeometricType Object, NumericType Color )

Set the color of the object to one of the specified below. Note that an object has a default
color (see IRIT.CFG file) according to his origin - loaded with LOAD command, PRIMITIV,
or BOOLEAN operation result. The system internally supports colors (although you may have
B&W system) and the colors recognized are: BLACK, BLUE, GREEN, CYAN, RED, MA-
GENTA, YELLOW, and WHITE.

See attrib command for more fine control on colors.

10.4.7 COMMENT
COMMENT

Two types of comments are allowed:

1. One lines comment: starts anywhere is a line at the ’#’ char up to the end of the line.

2. Block comment: starts by the COMMENT keyword follows by a unique character (anything
but white space), up to the second occurrence of that character. This is a fast way to comment
out large blocks. For example:

COMMENT $
This is a comment

10.4.8 DIR

DIR( StringType MatchPattern )

Print the files match the MatchPattern in the current working directory. MatchPattern may
have wild characters as in regular dos DIR - "7, 77,
This command is only supported under the MSDOS implementation. FExample:

DIR( "x.irt" );

lists all the ’.irt’ files in the current directory.

10.4.9 EDIT

EDIT( StringType FileName )

Invoke the editor (defined in the IRIT.CFG configuration file) as a child process if the solid
modeler. Only one parameter is passed to the editor which is the FileName to edit. As the solid
modeler is still resident, the child process (the editor) will get only the remained memory - as seen
by the core left.

This command is only supported under the MSDOS implementation.

10.4.10 EXIT

EXITQ);

Exits from the solid modeler. NO warning is given!



Irit Solid modeler G. Elber 29

10.4.11 FOR

FOR( NumericType Start, NumericType Increment, NumericType End, AnyType Body )

Execute the Body (see below), while the FOR loop conditions hold. Start, Increment, End
are evaluated first and the loop will be executed while <= End if Increment > 0 or while >=
End if Increment < 0. If Start is of the form ”(Variable = Expression)” then that variable is
updated on each iteration, and can be used within the body. The body may consist of any number
of regular commands, separated by COLONs, including nesting FOR loops to arbitrary level. No
new variables should be introduced in loops - Use only old variables and/or the iteration variable
defined in Start (that makes it a feature now...). Example:

FOR ( (b = 100), 100, 300,
FOR ( (a = 100), 100, 2000,
(
beep(a, b)
)

)

exercises the BEEP function in different durations and different frequencies. This will best work
under MSDOS systems.

10.4.12 FREE
FREE( GeometricType Object )

Because of the usually huge size of geometric objects, this procedure may be used to free
them. Note however that reassigning a value (even of different type) will automatically release old
allocated space as well.

10.4.13 HELP
HELP( StringType Subject )
Provides help on the specified Subject. Example:
HELP("");
will list all IRIT commands.
10.4.14 1IF
IF( NumericType Left, StringType Cond, NumericType Right, AnyType Body )

Executes Body (group of regular commands, separated by COLONs - see FOR) if the condition
holds: Left and Right are evaluated and tested against the specified condition Cond which may
be: 77:777 77>777 77<777 77<>777 77>:777 77<:77‘ EXample:

resolution = 10;
IF ( machine, "=", msdos, ( resolution =5 ) );

sets the resolution to be 10 unless running on an MSDOS system in which the resolution variable
will be set to 5.



Irit Solid modeler G. Elber 30

10.4.15 INCLUDE

INCLUDE( StringType FileName )

Executes the script file FileName. Nesting of include file is allowed up to 10 levels deep.
If error occurs, all open files in all nested files are closed and data is expected at the top level
(standard input).

A script file can contain any command the solid modeler supports. Example:

INCLUDE( "general.irt" );

includes the file "general.irt”.

10.4.16 INTERACT

INTERACT( GeometryTreeType Object, NumericType UpdateViewMat )

Invoke interactive mode to manipulate (transform) the given (geometric) Object. Object may
be any GeometricType or a list of other GeometryTypes nested to an arbitrary level. Object is
displayed as a wire frame. ON SGI 4D systems a rendered display is also available.

If UpdateViewMat is non zero (see TRUE/FALSE and ON/OFF) then the global viewing
matrix VIEW_MAT is updated to the last view from INTERACT.

INTERACT open an interactive menu to rotate/translate/scale an object(s). Each transfor-
mation has zero influence in middle of its box, and maximum (and opposite) on the box left and
right ends.

Screen transformation transforms according to the screen - X is horizontal, Y vertical, Z into
screen. Object transformation transform in object own coordinate system - you probably want to
display AXES object with it (see AXES).

Left mouse button (return) is used to EXECUTE transformation. Right mouse button (space
bar) is used to ABORT long display in the middle.

On MSDOS, use the numeric keyboard pad (with/without shift) to move if no mouse available.

If Object is a GeometricType, that object is being displayed. If however it is an ListType the
list is recursively traversed and all geometric objects within the list are displayed. Non geometric
object in the list are ignored.

INTERACT( list( Axes, Obj ), FALSE );

displays and interact with the object Obj and the predefined object Axes. VIEW_MAT will
not be updated once INTERACT is done.

10.4.17 LIST
ListType LIST( AnyType Eleml, AnyType Elem2, ... )

Constructs an object as a list of several other objects. Only a reference is made to the Elements,
so modifying Elem1 after being included in list, will affect Elem1 in that list, next time list is used!
Each inclusion of an object in a list increases its internal used reference. The object is freed iff
in used reference is zero. As a result, attempt to delete a variable (using FREE) which is referenced
in a list will remove the variable, but the object itself will be freed only when that list will be freed.



Irit Solid modeler G. Elber 31

10.4.18 LOAD

AnyType LOAD( StringType FileName )

Load the object from the given FileName. The object may be any object defined in the system,
including lists, in which the structure is loaded recursively and reconstructed as well (internal
objects are inserted into the global system object list if have names defined). If no file type is
provided, ”.dat” is assumed.

10.4.19 LOGFILE

LOGFILE( NumericType Set )

If Set is non zero (see TRUE/FALSE and ON/OFF) then everything printed in the input
window, will go to the log file specified in IRIT.CFG configuration file. This file will be created the
first time logfile is turned ON.

10.4.20 NORMAL

NORMAL( NumericType Set, NumericType Size, NumericType Color )

If Set is non zero (see TRUE/FALSE and ON/OFF) then the normals to the objects are also
displayed. Normals should always point INTO the object.

Size sets the length of the normals, and Color their color. See COLOR command for legal
colors.

10.4.21 NTH
AnyType NTH( ListType ListObject, NumericType Index )
Returns the Index (base count 1) element of the list ListObject. Example:

Lst = list( a, list( b, c ), d );
Lst2 = NTH( Lst, 2 );

and now Lst2 is equal to ’list( b, ¢ ).

10.4.22 PAUSE

PAUSE( NumericType Flush )

Waits for a keystroke. Nice to have if temporary stopping in middle of included file (see
INCLUDE) is needed. If Flush is TRUE then the input is first flushed to guarantee we will wait.
The implementation of this function is machine dependent and is geared mainly for MSDOS.

10.4.23 SAVE

SAVE( StringType FileName, AnyType Object )

Saves the provided Object into specified file FileName. No extension type is needed (ignored
if specified), and ”.dat” is always used. Object can be any object type including list, in which
structure is saved recursively. See also LOAD.



Irit Solid modeler G. Elber 32

10.4.24 SNOC

SNOC( AnyType Object, ListType ListObject )

Similar to the lisp cons operator but puts the new Object in the end of the list ListObject
instead of the beginning, in place. Example:

Lst = 1list( axes );
SNOC( Srf, Lst );

and now Lst is equal to the list 'list( axes, Srf ).

10.4.25 SYSTEM

SYSTEM()

Invoke the current command processor (usually COMMAND.COM) as defined by the COM-
SPEC environment variable. As the solid modeler is still resident, the child process (the command
processor) will get only the remained memory - as seen by the core left.

This command is only supported under the MSDOS implementation.

10.4.26 TIME

TIME( NumericType Reset )

Returns the real time (in seconds) from the last time TIME was called with Reset TRUE. Note
this is real time and not cpu time so running in a multi tasked system will return values, which not
necessarily reflects this program execution time. As mentioned above if Reset is non zero the time
count is reset. The time is automatically reset to beginning of execution of this program, when the
program is first invoked.

Since this is real type, it may be unusable for multitasked systems. Example:

Timel = TIME( TRUE );
Timel = TIME( FALSE );
DumpLvl = 1;

Timel;

prints the time in seconds between the above two time function calls.

10.4.27 VARLIST
VARLIST()
List all the currently defined objects in the system.

10.4.28 VECTOR

VectorType VECTOR( NumericType Operandl, NumericType Operand?2,
NumericType Operand3 )

Creates a vector type object, out of 3 NumericType scalars.



Irit Solid modeler G. Elber 33

10.4.29 VIEW

VIEW( GeometricTreeType Object, NumericType ClearWindow )

Display the (geometric) object(s) as given in Object. See INTERACT for more on Object.

If ClearWindow is non zero (see TRUE/FALSE and ON/OFF) the window is first cleared
(before drawing the objects).

The global viewing matrix VIEW_MAT is used as the transformation matrix. Example:

VIEW( Axes, FALSE );

displays the predefined object Axes in the viewing window on top of what was drawn there.

10.5 System variables

System variables are predefined objects in the system. Any time IRIT is executed, these variable
will exist and be set to values which are sometimes machine dependent. These are regular objects
in any other sense including the ability to delete or overwrite them. One can modify, delete or
introduce other objects by the use of the IRITINIT.IRT file.

10.5.1 AXES

Predefined polyline object (PolylineType) that holds XYZ axes system. May be viewed.

10.5.2 DRAWCTLPT

Predefined Boolean variable (NumericType) controlling whether curves control polygons and sur-
faces control meshes will be drawn (TRUE) or not (FALSE).

10.5.3 DUMPLVL

Content of objects assigned to variables may be displayed by executing the command ’objname;’
where objname is the name of the object. This variable (NumericType) control the way the data
is dumped as follows:

DumpLvl >= 0 | Only object names/types are printed.
DumpLvl >= 1 | Non geometric object values are dumped.
DumpLvl >= 2 | Curves and Surfaces are dumped.
DumpLvl >= 3 | Polygons/lines are dumped.

DumpLvl >= 4 | List objects are traversed recursively.

10.5.4 ECHOSRC

Predefined Boolean variable (NumericType) controlling echoing of interpreted commands to screen

(TRUE) or not (FALSE).

10.5.5 FLAT4PLY

Predefined Boolean object (NumericType) controlling the way almost flat surface patches are con-
verted to polygons: four polygons (TRUE) or only two polygons (FALSE).



Irit Solid modeler G. Elber 34

10.5.6 INTERCRV

Predefined numeric object (NumericType) that if TRUE the Boolean geometry operators return
the intersection curves instead of the result model.
Its default value is FALSE.

10.5.7 INTERNAL

Predefined Boolean object (NumericType) that if not zero enables displaying internal polygon edges
(edges created by the convex polygon splitting for example). One usually does not want to see these
edges, and its default value is FALSE.

10.5.8 MACHINE

Predefined numeric object (NumericType) holding machine type as one of the following constants:

MSDOS, SGI, HP, SUN, APOLLO, UNIX.

10.5.9 RESOLUTION

Predefined numeric object (NumericType) that sets the accuracy of the primitive geometric objects
generated. Holds the number of divisions a circle is divided into (with minimum value of 4). If, for
example, is set to 6, then a CONE generated, will effectively be 6 sided pyramid.

Also controls the fineness freeform curves and surfaces are approximated as piecewise linear
polylines (for display purposes for example), and the fineness freeform surfaces are approximated
as polygons.

10.5.10 VIEW_MAT

Predefined matrix object (MatrixType) to hold the viewing matrix used/set by VIEW and/or
INTERACT.

10.6 System constants

The following constants are used by the various functions of the system to signal certain conditions.
Internally, they are represented numerically although, in general, their exact value is unimportant
and may be changed in future versions. In the rare situation you would like to know their values,
here is a sequence that will allow you to do so:

DumpLvl = 1;
A = BLUE;
A;

in other words, assign the constant to a variable and display its content.

10.6.1 APOLLO
A constant designates an APOLLO system in the MACHINE variable.

10.6.2 BLACK
A constant defining a BLACK color.

10.6.3 BLUE
A constant defining a BLUE color.



Irit Solid modeler G. Elber 35

10.6.4 COL

A constant defining the COLumn direction of a surface mesh.

10.6.5 CYAN
A constant defining a CYAN color.

10.6.6 E2

A constant defining an E2 (X and Y coordinates) control point type.

10.6.7 E3

A constant defining an E3 (X, Y, and Z coordinates) control point type.

10.6.8 FALSE

A zero constant. May be used as Boolean operand.

10.6.9 GREEN
A constant defining a GREEN color.

10.6.10 HP

A constant designates an HP system in the MACHINE variable.

10.6.11 KV_FLOAT

A constant defining a floating end condition uniform knot vector.

10.6.12 KV_OPEN

A constant defining an open end condition uniform knot vector.

10.6.13 MAGENTA
A constant defining a MAGENTA color.

10.6.14 MSDOS
A constant designates an MSDOS system in the MACHINE variable.

10.6.15 OFF
Synonym of FALSE.

10.6.16 ON
Synonym for TRUE.

10.6.17 P2

A constant defining an P2 (X, Y, and W coordinates) rational control point type.



Irit Solid modeler G. Elber 36

10.6.18 P3

A constant defining an P3 (X, Y, Z, and W coordinates) rational control point type.

10.6.19 PI
The constant of 3.141592...

10.6.20 RED
A constant defining a RED color.

10.6.21 ROW

A constant defining the ROW direction of a surface mesh.

10.6.22 SGI
A constant designates a SGI system in the MACHINE variable.

10.6.23 SUN
A constant designates a SUN system in the MACHINE variable.

10.6.24 TRUE

A non zero constant. May be used as Boolean operand.

10.6.25 UNIX
A constant designates a generic UNIX system in the MACHINE variable.

10.6.26 WHITE
A constant defining a WHITE color.

10.6.27 YELLOW
A constant defining a YELLOW color.

11 poly3d - A Data Display Program

11.1 Introduction

poly3d is a display program for data files created by the IRIT solid modeler. Data can be displayed
on almost any IBMPC graphic device that has Borland’s BGI support, for the MSDOS BC++
port, or using any device driver that is supported by DJGPP, in the MSDOS DJGPP port. Under
UNIX systems both MIT’s X11 and SGI’s GL are supported.

On SGP’s, solid smooth shading is available via normal computation support. Displayed images
may be saved as postscript files as well as GIIF images (if poly3d was built with GIF support).



Irit Solid modeler G. Elber 37

11.2 Command Line Options

poly3d [-c] [-m] [-i] [-e #Edges] [-n] [-N] [-M] [-I n] [-P] [-S n]
[-f FineNess] [-4] [-z] DFiles

e -c: Closed object - if an object is closed (such as objects created by IRIT solid medeller) each
edge is actually displayed twice - once for each adjacent polygon. This flag will ensure every
edge will be displayed only once.

e -m: More - provide some more information on the data file(s) parsed.

e -i: Internal edges (created by IRIT) - default is not to display them, and this option will force
displaying them as well.

e -e n: # Edges to use from each given polygon (default all). Very handy to do -e 2 -4-" or "-e
1 -4’ on polygons created from a freeform surface.

e -n: Draw vertex normals if data file has them.

e -N: Draw polygon normals if data file has them (PLANE definition).
e -M: Draw the surfaces control mesh/curves control polygons as well.
e -I n: Specify number of isolines per surface.

o -P: Generate polygonal approximation for surfaces instead of isolines.
e -S n: Specify the log based 2 of number of samples per curve.

e -f FineNess: Controls the fineness of the surface to polygon subdivision. This number is log
based 2 of roughly the number of subdivisions of the surface in each axes (see cagd._lib for
more).

e -4: Force four polygons per flat bilinear in surface to polygon conversion. Otherwise two
polygons only.

e -7z: Print version number and current defaults.

Some of the options may be turned on in poly3d.cfg. They can be then turned off in the
command line as -7-.

11.3 Configuration

The program can be configured using a configuration file named poly3d.cfg. The appropriate
configuration file should be copied into poly3d.cfg: Under MSDOS BC++ its poly3dms.cfg, under
MSDOS DJGPP its poly3ddj.cfg, and under UNIX its poly3dun.cfg. This is a plain ascii file you
can edit directly and set the parameters according to the comments there. Executing 'poly3d -z’
will show the current configuration as read from the configuration file.

MSDOS version only:

The configuration file in MSDOS BC++ system can be in any directory which is in your path
- the same place as the executable is probably a good choice. The program supports SuperVGA,
VGA/EGA, CGA & HERCULES graphics card, and uses the Turbo C autodetect feature. If this
fails you can always coerce it to a specific card - see the poly3d.cfg file. For a SuperVGA you will
need to provide your own BGI driver. The program will use 80x87 if it detects one - again uses the
Turbo C 80x87 autodetect, or will run (much!) slower without it... The MSDOS DJGPP port can be
used with any graphics driver that DJGPP support. If not 80x87 is present, the emulator, emu387,



Irit Solid modeler G. Elber 38

must be used. In both the BC++4 and DJGPP ports, a mouse or a joystick may be used if properly
selected in poly3d.cfg configuration file. A windowing library, called intr_lib is used (for both BC++
and DJGPP) for the interaction and windows which can be resized/moved/poped/pushed etc. via
a default setting as selected by the configuration file and modified via a pop up menu during a
session. see Irit solid modeler for more on intr_lib and the interface.

UNIX version only:

The configuration file is being searched in the IRIT_PATH environment variable under UNIX
hosts. For example 'setenv IRIT_PATH /u/gershon/irit/bin/’. Note IRIT_PATH must terminate
with 7/, If the variables is not set only the current directory is being searched. Add the following
options to your .Xdefaults if you use X11. Most options set are self explanatory. The Trans
attributes control the transformation window, while View control the view window. SubWin control
the subwindows within the Transformation window:

poly3d*Trans*Back Ground: NavyBlue
poly3d*Trans*BorderColor: Red
poly3d*Trans*BorderWidth: 3
poly3d*Trans*TextColor: Yellow
poly3d*Trans*SubWin*BackGround: DarkGreen
poly3d*Trans*SubWin*BorderColor: Magenta
poly3d*Trans*Geometry: =150x5004-500+0
poly3d*Trans*CursorColor: Green
poly3d*View*BackGround: NavyBlue
poly3d*View*BorderColor: Red
poly3d*View*BorderWidth: 3
poly3d*View*Geometry: =500x500+0+0
poly3d*View*CursorColor: Red

Note the above options are the same as for the irit solid modeler itself.
If poly3d is used under SGI gl library, you can set the prefered windows location in poly3d.cfg.
No color control is provided at this time.

11.4 Usage

The program is controlled via a transformation menu. The object can be rotated, translated, or
scaled in screen or object based corrdinate system and with orthographic or perspective projected.
Two operations are fundamental to the operation of poly3d:

EXECUTE <Return> key on the keyboard, or left mouse button if exists.
ABORT

<Space> key on the keyboard, or right mouse button if exists.

The cursor may be moved via a mouse (if exists) or using the numeric keypad/arrows (shifted
for faster movement). The ABORT may be useful in large data sets when another transformation
should be applied with no need to wait to the current one to complete.

If you click the EXECUTE button
once on a transformation subwindow, that transformation will be applied. Most transformation
subwindows have vertical bars in the middle.

The menus work in two modes in all implementations.

If the cursor is on the vertical bar the amout of
transformation applied is zero. If the cursor is on the leftmost side of the subwindow, the amount
will be maximized and if the cursor is on the rightmost side, the transformation amount will be
maximized to the other direction (inverse transform). In addition, if one clicks the mouse (with the
affect as above) but hold the EXECUTE button while dragging, continuous transformation will be



Irit Solid modeler G. Elber 39

applied. Altough implemented in all systems, you would probably like to try this on very simplistic
models on slow machines.
Keyboard control support is for MSDOS systems only.

11.5 Output Files

poly3d can save viewing matrices (to be used by poly3d-h, poly3d-r, or irit2ray for example),
postscript files of the current view and GIF images of the screen if poly3d was built with GIF
support.

The postscript file can be directly sent to a laser printer. The viewing matrix should be appended
after the data when any program is to use it. The last viewing matrix in the data will be the one
used. For example

irit2ray -1 -f 20 b58.dat genericO.mat

where generic0.mat is the matrix saved bu poly3d.
All files will be named genericX.EXT where EXT can be one of >.mat’, ".ps” and ’.gif’ respectively.
X is single digit so up to 10 distinguished files of each type can be saved each time.

12 poly3d-h - Hidden Line Removing Program

12.1 Introduction

poly3d-h is a program to remove hidden line of a given polygonal model. Freeform objects are
preprocessed into polygons with controlled fineness.

The program performes 4 passes over the input:

1. Preprocesses and maps all polgons in scene, and sorts them.

2. Generates edges out of the polygonal model and sorts them (preprocesing for the scan line
algorithm) into buckets.

3. Intersects edges, and splits edges with non homogeneous visibility (the scan line algorithm)

4. Applies a visibility test of each edge.

This programs can handle CONVEX polygons only. From IRIT one can ensure a model is
consisting of convex polygons only by the CONVEX command:

Cnvx0bj = convex( 0bj );

just before saving it into a file. Surfaces are always decomposed into triangles only.

poly3d-h output is of the form of polylines. It is a regular IRIT data file that can be viewed
using poly3d, for example.
12.2 Command Line Options

poly3d-h [-b] [-m] [-i] [-e #Edges] [-f FineNess] [-4] [-z] DFiles [> OutFile]

o -b: BackFacing - if object is closed (such as most models created by IRIT) back facing
polygons will be deleted, and therefore speed up the process by at list factor of two.

e -m: More - provide some more information on the data file(s) parsed.

e -i: Internal edges (created by IRIT) - default is not to display them, and this option will force
displaying them as well.

e -e n: # Edges to use from each given polygon (default all). Very handy as -e 1 -4’ for
freeform data.



Irit Solid modeler G. Elber 40

e -f FineNess: Controls the fineness of the surface to polygon subdivision. This number is log
based 2 of roughly the number of subdivisions of the surface in each axes (see cagd._lib for
more).

e -4: Force four polygons per flat bilinear in surface to polygon conversion. Otherwise two
polygons only.

e -7z: Print version number and current defaults.

Some of the options may be turned on in poly3d-h.cfg. They can be then turned off in the
command line as -7-.

12.3 Configuration

The program can be configured using a configuration file named poly3d-h.cfg. This is a plain
ascii file you can edit directly and set the parameters according to the comments there. executing
'poly3d-h -z” will show the current configuration as read from the configuration file.

UNIX and MSDOS DJGPP versions only:

The configuration file is being searched in the IRIT_PATH environment variable. For example
‘setenv IRIT_PATH /u/gershon/irit/bin/’. Note IRIT_PATH must terminate with ’/’. If the
variables is not set only the current directory is being searched.

MSDOS BC++ version only:

The configuration file in MSDOS system can be in any directory which is in your path - the
same place as the executable is probably a good choice. The program will use 80x87 if it detects
one - uses the Turbo C 80x87 autodetect, or will run (much!) slower without it...

12.4 Usage

As this program is not interactive, usage is quite simple, and only control available is using the
command lines options.

13 poly3d-r - A Simple Data Rendering Program

13.1 Introduction

poly3d-r is a simple rendering program for data files created by the IRIT solid modeler. poly3d-r
generates GII images with 8 bits per pixel. As a result rendered images are of medium quality.
Although reasonably fast, one should use one of several raytracing public domain programs available
(such as RAYSHADE which irit2ray can generate data to) for high quality images.

poly3d-r uses cosine shading approximation, and flat/Gouraud interpolation. The program
performes 4 passes over the input:

1. Process the input (parsing.)

2. Prepare the polygons by sorting them by their Y after mapping then into screen space.

3. Evaluate colors for vertices (using polygon normals if flat shading, or by vertex normals for
Gouraud shading).

4. Scan the data by scan line basis and dump out image.

This programs can handle CONVEX polygons only. From IRIT one can ensure a model is
consisting of convex polygons only by the CONVEX command:

Cnvx0bj = convex( 0bj );

just before saving it into a file. Surfaces are always decomposed into triangles only.



Irit Solid modeler G. Elber 41

13.2 Command Line Options

poly3d-r [-a Ambient] [-c N] [-1 X Y Zz] [-2] [-m] [-s Xsize Ysize]

[-S SubSample] [-g] [-b] [-M Mask] [-f FineNess] [-z] DFiles > Image.gif

-a Ambient: Sets the ambient intensity (must be in [0.0..1.0] range).
-¢ N: number of bits per pixel N (must be in [1..8] range).

-1 X Y Z: specify the light source normal direction. This vector does not to be unit vector.
Only one light source is supported.

-2 : Force emulation of 2 light sources at opposite directions as selected via [-1]. This may
be useful for models that has no plane specified (i.e. model has no PLANE attribute for its
polygons), as the program guess the equation from the points themselves, and which can be
to the opposite direction.

-m: More - provide some more information on the data file(s) parsed.

-s Xsize Ysize: specify image dimensions. As the models created by IRIT are mapped to a
unit domain (X in [-1..1], Y in [-1..1]) by the viewing matrix, objects must be scaled up. The
scaling up factor is MIN(Xsize, Ysize), which guarantee nothing of the original image will be
clipped.

-b: Purge back facing polygons. If the scene contains closed objects (such as the ones usually
created by IRIT), the back facing polygons can be deleted. This would not change the image,
but will speed up the process at about objects with polygons with no PLANE specified would
almost definitely create wrong image.

-g: Use Gouraud shading interpolation (flat shading is used by default). This is somewhat
slower, but gives nicer results.

-S SubSample: sub sample, and uses box filter to low pass filter the image, using SubSample
as grid side of SubSample by SubSample. This obviously make things slower, but guess what
- it looks much better.

-M Mask: Create a new GIF file named Mask that is a binary image set to 1 at any pixel
covered by one of the objects or 0 otherwise. As a color of an object can become equal to
the background at some point, there is no way to find whether pixel is background or an
object in the background color. The Mask can be used instead. This Mask can be used
when combining images (such as gifcomp utility in the gif_lib). This image is a binary alpha
channel.

-f FineNess: Controls the fineness of the surface to polygon subdivision. This number is log
based 2 of roughly the number of subdivisions of the surface in each axes (see cagd._lib for
more).

-z: Print version number and current defaults.

The image is dumped to stdout as a GIF image which can be redirected to a file or to be piped
to any program that reads GIF images from stdin.

Some of the options may be turned on in poly3d-r.cfg. They can be then turned off in the
command line as -7-.



Irit Solid modeler G. Elber 42

13.3 Configuration

The program can be configured using a configuration file named poly3d-r.cfg. This is a plain
ascii file you can edit directly and set the parameters according to the comments there. executing
'poly3d-r -z” will show the current configuration as read from the configuration file.

UNIX and MSDOS DJGPP versions only:

The configuration file is being searched in the IRIT_PATH environment variable. For example
‘setenv IRIT_PATH /u/gershon/irit/bin/’. Note IRIT_PATH must terminate with ’/’. If the
variables is not set only the current directory is being searched.

MSDOS BC++ version only:

The configuration file in MSDOS system can be in any directory which is in your path - the
same place as the executable is probably a good choice. The program will use 80x87 if it detects
one - uses the Turbo C 80x87 autodetect, or will run (much!) slower without it...

13.4 Usage

As this program is not interactive, usage is quite simple, and only control available is using the
command lines options.

Some Remarks:

1. If the input file is degenerate (2 vertices are identical etc.) they will be ignored is the next
passes. Use [-m] if you want to know about them.

2. The color of the object can be extract via the COLOR attribute as set via the IRIT COLOR
command. In addition to this fixed set of colors, one can specify the color in RGB space using the
ATTRIB command. For example:

attrib( Srf17, "rgb", "255,155,55" );

Fach of R G B must be integer is the range [0..255].

14 Irit2Ray - IRIT To RAYSHADE filter

14.1 Command Line Options

irit2ray [-1] [-4] [-G GridSize] [-f FineNess] [-o OutName] [-g] [-z] DFiles

o -1: Linear - forces linear (degree two) surfaces to be approximated as a single polygon along
their linear direction. Although most of the time, linear direction can be exactly represented
using a single polygon, even a bilinear surface can have a free form shape (saddle like) that
is not representable using a single polygon. Not using this option will better emulate the
surface shape but will create unnecessary polygons in cases where one is enough.

e -4: Four - Generate four polygons per flat patch. Default is 2.

e -G GridSize: Usually objects are grouped as lists of polygons. This flags will coerce the
usage of RAYSHADE grid constructure, with GridSize being used as the grid size along the
object bounding box largest dimension.

e -f FineNess: An integer value controling the fineness of surface to polygons process. Roughly
speaking it will set to the number of polygons along one Bezier patch direction. A Bezier
patch will have order of FineNess? polygons then. The Order of the surface also affect the
amount of polygons; The higher the order is, more polygons are created. A B-spline surface
is first converted into piecewise Bezier to make sure C1 discontinuities will show up in the
polygonal approximation.



Irit Solid modeler G. Elber 43

e -0 OutName: Name of output files. By default the name of the first data file from DFiles
list is used. See below on the output files.

o -g: Generates the geometry file only. See below.

e -7z: Print version number and current defaults.

14.2 Usage

Irit2Ray converts freeform surfaces into polygons in format that can be used by RAYSHADE. Two
files are created, one with ’.geom’ extension and one with ’.ray’. Since the number of polygons can
be extremely large, the geometry is isolated in the .geom’ and is included (via '#include’) in the
main ".ray’ file. The later holds the surface properties for all the geometry as well as viewing and
RAYSHADE specific commands. This allows changing shading or viewing properties while editing
small (".ray’) files.

If ’-g’ is specified, only the ’.geom’ file is created, preserving the current ’.ray’ file.

In practice it may be useful to create a low resolution approximation of the model, change
viewing/shading parameters in the .ray’ file until a good view and/or surface quality is found and
then run Irit2Ray once more to create a high resolution approximation of the geometry using ’-g’.

Here is a simple example:

irit2ray -1 -f 5 b58.dat

creates b58.ray and b58.geom with low resolution (FineNess of 5). At such low resolution it can
very well may happen that triangles will have normals ”"over the edge” since a single polygon may
approximate a highly curves surface. That will cause rayshade to issue an ”Inconsistant triangle
normals” warning. This problem will not exist if high fineness is used. One can ray trace this scene
using a command similar to:

rayshade -p -W 256 256 bb58.ray > b58.rle

Once done with parameter setting for rayshade, a fine approximation of the model can be
created with:

irit2ray -1 -g -f 25 b58.dat

which will only recreate b58.geom (becuase of the -g option).
Each time a data file is saved in IRIT, it can be saved with the viewing matrix of the last

INTERACT by saving the VIEW _MAT object as well. Le.:
save( "b58", list( view_mat, b58 ) );

However one can overwrite the viewing matrix by appending a new matrix in the end of the
command line, created by poly3d:

poly3d bb8.dat
irit2ray -1 -f 5 b58.dat genericO.mat

where generic0.mat is the viewing matrix created by poly3d.



Irit Solid modeler G. Elber 44

14.3 Advanced Usage

One can specify surface qualities for individual surfaces of a model. Several such attributes are
supported by Irit2Ray and can be set within IRIT. See also the ATTRIB IRIT command.

If a certain surface should be finer than the rest of the scene, one can set a "resolution” attribute
which specifies the relative FineNess resolution of this specific surface. For example:

attrib( srfl, "resolution", 2 );

will force srfl to have twice the default resolution, as set via the *-f” flag.

Almost flat patches are converted to polygons. The rectangle can be converted into two polygons
(by subdividing along one of its diagonals) or into four by introducing a new point at the patch
center. This behaviour is controlled by the ’-4’ flag, but can be overwritten for individual surfaces
bu setting "twoperflat” or "fourperflat”.

RAYSHADE specific properties are controlled via the following attributes: “specpow”, "reflect”,
“transp”, "body”, 7index”, and "texture”. Refer to RAYSHADE manual for their meaning. For
example:

attrib( srfl, "transp", "0.3" );
attrib( srfl, "texture", "wood" );

Surface color is controlled in two levels. If the object has an RGB attribute it is used. Otherwise
a color as set via IRIT COLOR command is being used if set. The later allowes you to specify only
the 3 additive, 3 substractive and white and black and so is very limited for rendering purposes.
Example:

attrib( tankBody, "rgb", "244,164,96" );

Current implementation allows white spaces in neither the attribute name nor in the attribute
value.

15 Irit2Nff - IRIT To NFF filter

15.1 Command Line Options

irit2nff [-1] [-4] [-c] [-f FineNess] [-o OutName] [-g] [-z] DFiles

o -1: Linear - forces linear (degree two) surfaces to be approximated as a single polygon along
their linear direction. Although most of the time, linear direction can be exactly represented
using a single polygon, even a bilinear surface can have a free form shape (saddle like) that
is not representable using a single polygon. Not using this option will better emulate the
surface shape but will create unnecessary polygons in cases where one is enough.

e -4: Four - Generate four polygons per flat patch. Default is 2.

e -c: Output files should be filtered by cpp. By doing so, the usually huge geometry file is
seperated from the main nff file that contains the surface properties and view parameters. By
default all data, including the geometry, is saved into a single file with type extension .nff’.
Use of ’-¢” will pull out all the geometry into a file with the same name but ’.geom’ extension
and which will be included using ’#include’ command. The ’.nff” file should, in that case, be
preprocessed using cpp before piped into the nff renderer.



Irit Solid modeler G. Elber 45

e -f FineNess: An integer value controling the fineness of surface to polygons process. Roughly
speaking it will set to the number of polygons along one Bezier patch direction. A Bezier
patch will have order of FineNess? polygons then. The Order of the surface also affect the
amount of polygons; The higher the order is, more polygons are created. A B-spline surface
is first converted into piecewise Bezier to make sure C1 discontinuities will show up in the
polygonal approximation.

e -0 OutName: Name of output files. By default the name of the first data file from DFiles
list is used. See below on the output files.

o -g: Generates the geometry file only. See below.

e -7z: Print version number and current defaults.

15.2 Usage

Irit2NAT converts freeform surfaces into polygons in format that can be used by NFF renderer.
Usually one file is created with ’.nff” type extension. Since the number of polygons can be extremely
large, a ’-¢’ option is provided and which separate the geometry from the surface properties and view
specification but requires preprocessing by cpp. The geometry is isolated in a file with extension
".geom’ and included (via ’#include’) in the main ’.nff’ file. The later holds the surface properties
for all the geometry as well as the viewing specification. This allows changing shading or viewing
properties while editing small (".nff”) files.

If °-g’ is specified, only the ’.geom’ file is created, preserving the current *.nff’ file. The *-g’ flag
can be specified only with ’-c¢’.

In practice it may be useful to create a low resolution approximation of the model, change
viewing/shading parameters in the ".nff’ file until a good view and/or surface quality is found and
then run Irit2N{F once more to create a high resolution approximation of the geometry using ’-g’.

Here is a simple example:

irit2nff -c -1 -f 5 b58.dat

creates b58.nff and b58.geom with low resolution (FineNess of 5).
Once done with parameter setting, a fine approximation of the model can be created with:

irit2nff -c -1 -g -f 25 b58.dat

which will only recreate b58.geom (becuase of the -g option).
Each time a data file is saved in IRIT, it can be saved with the viewing matrix of the last

INTERACT by saving the VIEW _MAT object as well. Le.:
save( "b58", list( view_mat, b58 ) );

However one can overwrite the viewing matrix by appending a new matrix in the end of the
command line, created by poly3d:

poly3d bb8.dat
irit2nff -1 -f 5 b58.dat genericO.mat

where generic0.mat is the viewing matrix created by poly3d.



Irit Solid modeler G. Elber 46

15.3 Advanced Usage

One can specify surface qualities for individual surfaces of a model. Several such attributes are
supported by Irit2Nff and can be set within IRIT. See also the ATTRIB [RIT command.

If a certain surface should be finer than the rest of the scene, one can set a "resolution” attribute
which specifies the relative FineNess resolution of this specific surface. For example:

attrib( srfl, "resolution", 2 );

will force srfl to have twice the default resolution, as set via the *-f” flag.

Almost flat patches are converted to polygons. The rectangle can be converted into two polygons
(by subdividing along one of its diagonals) or into four by introducing a new point at the patch
center. This behaviour is controlled by the ’-4’ flag, but can be overwritten for individual surfaces
bu setting "twoperflat” or "fourperflat”.

NFF specific properties are controlled via the following attributes: "kd”, "ks”, ”shine”, "trans”,
”index”. Refer to NFF manual for detail. For example:

attrib( srfil, "kd4", "0.3" );
attrib( srfl, "shine", "30" );

Surface color is controlled in two levels. If the object has an RGB attribute it is used. Otherwise
a color as set via IRIT COLOR command is being used if set. The later allowes you to specify only
the 3 additive, 3 substractive and white and black and so is very limited for rendering purposes.
Example:

attrib( tankBody, "rgb", "244,164,96" );

Current implementation allows white spaces in neither the attribute name nor in the attribute
value.

16 Dat2Irit - Data To IRIT file filter

16.1 Command Line Options

dat2irit [-z] DFiles

e -7z: Print version number and current defaults.

16.2 Usage

It may be sometimes desired to convert .dat data files into a form that can be fed in back to IRIT
- a .irt’ file. This filter will do exactly that. Example:

dat2irit b58.dat > b58-new.irt

17 Data File Format

This section describes the data file format used to exchange data between IRIT and its accompanied
tools.



Irit Solid modeler G. Elber

[0BJECT {ATTRS} OBJNAME
[NUMBER n]

| [VECTOR x y z]
| [CTLPT POINT_TYPE {w} x y {z}]

| [STRING "a string"]

| [MATRIX mOO ... mO3
ml0 ... ml3
m20 ... m23
m30 ... m33]

;A polyline should be drawn from first point to last. Nothing is drawn
;from last to first (in close polyline last pt is equal to first).
| [POLYLINE {ATTRS} #PTS ; #PTS = number of points.
[{ATTRS} x y z]
[{ATTRS} x y z]

[{A%TRS} Xy z]

;Defines a closed region boundary. Last point is NOT equal to first
;and a line from last point to first should be drawn when the polygon
;boundary is drawn.
| [POLYGON {ATTRS} #PTS
[{ATTRS} x y z]
[{ATTRS} x y z]

[{ATTRS} x y z]

;Defines a cloud of points. This entry is not supported by IRIT.
| [POINTLIST {ATTRS} #PTS
[{ATTRS} x y z]
[{ATTRS} x y z]

[{A%TRS} Xy z]

;Defines a bezier curve with #PTS control points. If the curve is
;rational, the rational component is introduced first.
| [CURVE BEZIER {ATTRS} #PTS POINT_TYPE

47



Irit Solid modeler G. Elber 48

[{ATTRS} {w} x y z ...]
[{ATTRS} {w} x y z ...]

[{ATTRS} (v} x y 2 ...]

;Defines a bezier surface with #UPTS * #VPTS control points. If the
;surface is rational, the rational component is introduced first.
;Points are printed raw after raw (#UPTS per raw), #VPTS raws.
| [SURFACE BEZIER {ATTRS} #UPTS #VPTS POINT_TYPE
[{ATTRS} {w} x y z ...]
[{ATTRS} {w} x y z ...]

[{ATTRS} {w} x y z ...]

;Defines a BSPLINE curve of order ORDER with #PTS control points. If the
;curve is rational, the rational component is introduced first.
;Note length of knot vector is equal to #PTS + ORDER.
| [CURVE BSPLINE {ATTRS} #PTS ORDER POINT_TYPE
[KV {ATTRS} kvO kvl kv2 ...] ;Knot vector
[{ATTRS} {w} x y z ...]
[{ATTRS} {w} x y z ...]

[{ATTRS} {w} x y z ...]

;Defines a BSPLINE surface with #UPTS * #VPTS control points, of order
;UORDER by VORDER. If the surface is rational, the rational component

;is introduced first.
;Points are printed raw after raw (#UPTS per raw), #VPTS raws.

| [SURFACE BSPLINE {ATTRS} #UPTS #VPTS UORDER VORDER POINT_TYPE
[KV {ATTRS} kvO kvl kv2 ...] ;U Knot vector
[KV {ATTRS} kvO kvl kv2 ...] ;V Knot vector
[{ATTRS} {w} x y z ...]
[{ATTRS} {w} x y z ...]

[{ATTRS} {w} x y z ...]

POINT_TYPE -> E2 | E3 | P2 | P3



Irit Solid modeler G. Elber 49

ATTRS -> [ATTRNAME ATTRVALUE]
| [ATTRNAME ATTRVALUE] ATTRS

Some notes:

1. This new definition for the text file is design to minimize the reading time and space. All
information can be read without backward or forward referencing (as used to be in the old format).

2. An OBJECT can hold any number of geometry entities such as POLYGONs or CURVEs.
It is not recommended at this time to have more than one curve or one surface in an object since
this feature is not fully implemented for free form objects.

3. An OBJECT must not hold different geometry or other entities. l.e. CURVEs, SURFACEs,
and POLYGONs must all be in different OBJECTs.

4. Attributes should be ignored if not needed. The attribute list may have any length and is
always terminated by a token that is NOT "[’. This simplified and disambiguous the parsing.

5. Comments may appear between "[OBJECT ...]° blocks, or immediatelly after OBJECT
OBJNAME, and only there.

A comment body can be anything not containing the [’ or the ']’ tokens (signals start/end of
block). Some of the comments in the above definition are illegal and appear there only of the sake
of clarity.

6. It is prefered that geometric attributes such as NORNALs will be saved in the geometry
strurcture level (POLYGON, CURVE or vertices) while graphical and others such as COLORs will
be saved in the OBJECT level.

7. Objects may be contained in other objects to any level.

Here is an example that exercises most of the data format:

This is a legal comment in a data file.
[OBJECT DEMO
[OBJECT REAL_NUM
And this is also a legal comment.
[NUMBER 4]

[0BJECT A_VECTOR
[VECTOR 1 2 3]

[0BJECT CTL_POINT
[CTLPT E3 1 2 3]
]

[OBJECT STR_OBJ
[STRING "string"]

]
[OBJECT UNIT_MAT
[MATRIX
1000
0100
0010
0001



Irit Solid modeler G. Elber

[OBJECT [COLOR 4] POLY10BJ
[POLYGON [PLANE 1 0 0 0.5] 4
[-0.5 0.5 0.5]
[-0.5 -0.5 0.5]
[-0.5 -0.5 -0.5]
[-0.5 0.5 -0.5]
]
[POLYGON [PLANE O -1 0 0.5] 4
[0.5 0.5 0.5]
[-0.5 0.5 0.5]
[-0.5 0.5 -0.5]
[0.5 0.5 -0.5]

[OBJECT [COLOR 63] ACURVE
[CURVE BSPLINE 16 4 E2
[KV0 000111234567 89 10 11 11 11 11]
[0.874 0]
[0.899333 0.0253333]
[0.924667 0.0506667]
[0.95 0.076]
[0.95 0.76]
[0.304 1.52]
[0.304 1.9]
[0.494 2.09]
[0.722 2.242]
[0.722 2.318]
[0.38 2.508]
[0.418 2.698]
[0.57 2.812]
[0.57 3.42]
[0.19 3.572]
[0 3.572]

[OBJECT [COLOR 2] SOMESRF
[SURFACE BEZIER 3 3 E3
[0 0 0]
[0.05 0.2 0.1]
[0.1 0.05 0.2]

[0.1 -0.2 0]
[0.15 0.05 0.1]
[0.2 -0.1 0.2]

50



Irit Solid modeler G. Elber 51

[0.2 0 0]
[0.25 0.2 0.1]
[0.3 0.05 0.2]

18 Bugs and Limitations

Like any program of more than one line it is far from been perfect. Some limitations as well as
simplifications are layed out below.

1. No intersection of co-planar polygons is allowed. Such case results are undefined. Most of the
time, one can move one of the operands in the Boolean operation by an EPSILON. Such EPSILON
should be in the order of 10-3 if the system uses float and and 10-6 if doubles are used. (the UNIX
and MSDOS DJGPP version uses doubles, MSDOS BC++ uses floats).

2. If the intersection curve of two objects falls exactly on polygon boundaries, for all polygons,
the system will scream that the two object do not intersect at all. Again, try to move one by
EPSILON into the other. I probably should fix this one - that suppose to be relatively easy.

3. Avoid degeneracies - intersection that results with a point or a line will probably cause wrong
propagation of the inner and outer part of one object relative to the other. Always extend your
object beyond the other object.

4. If two objects have no intersection in their boundary, IRIT assumes they are disjoint: a
union simply combines them, and the other Boolean operators return NULL object. One should
find FAST way (3D Jordan theorem) to find the relation between the two (A in B, B in A, A
disjoint B) and according to that make a decision.

5. Sweep of a circular curve along circular curve does not create an exact piece of a torus. This
is probably due to the fact that both curves are rationals.

6. No degree raising for Bspline surfaces of order larger than two.



