vmem.library AutoDocs(tm)

vmem.library AutoDocs(tm)

COLLABORATORS

TITLE :

vmem.library AutoDocs(tm)

ACTION

NAME DATE

SIGNATURE

WRITTEN BY

February 6, 2023

REVISION HISTORY

NUMBER

DATE DESCRIPTION

NAME

vmem.library AutoDocs(tm) iii

Contents

1 vmem.library AutoDocs(tm) 1
LI main e e e 1
1.2 background 1
1.3 wvmallocblock e 3
1.4 wvmallocdata e e e 4
1.5 wvmallocmem e e e 5
1.6 vmflush 0L 6
1.7 wvmfreeblock e 7
1.8 vmfreedata e 7
1.9 vmfreemem e e 8
1.10 vmlock . . . 9
111 vmlockdata e e e 10
1.12 vmunlock 11

1.13 vmunlockdata e 12

vmem.library AutoDocs(tm) 1/12

Chapter 1

vmem.library AutoDocs(tm)

1.1 main

TABLE OF CONTENTS

——-background—-—-
vmAllocBlock
vmAllocData
vmAllocMem
vmFlush
vmFreeBlock
vmEFreeData
vmEFreeMem
vmLock
vmLockData
vmUnLock

vmUnLockData

1.2 background

?vmem. library/--background—-—- vmem. library/—-— <«
background—-—-

THE x+ VIRTUAL MEMORY x* LIBRARY

vmem.library AutoDocs(tm) 2/12

(VERSION 1)

COPYRIGHT (c) 1994 BY LEE BRAIDEN

These are the autodocs for programming vmem.library. VMem is a very
simple set of six (6) functions, and four (4) macros. All you need to do
to use VMem is

* Call
vmAllocBlock
(or use the macro
vmAllocData
) to get a control
handle. (This is used by VMem to keep track of what’s happening
to your data).

* Call
vmLock
(or use the macro
vmLockData
) to get a lock on the
data you wanna use at that time.

* Access your data.

* Call
vmUnLock
(or use the macro
vmUnLockData
) to unlock the data
again.

* Call

vmFreeBlock

(or use the macro
vmEFreeData
) to free the control

handle you got by calling

vmAllocBlock

(or using
vmAllocData
)

The macro versions of the four functions just a simple way to alloc
one element of data without the extra args required by the functions.
(The functions have extra options to cope with array use.

The other two (2) functions are replacements for exec.library’s
AllocMem () and FreeMem() functions. They provide a few more functions
than exec’s versions, including flushing Virtual Memory if exec’s
AllocMem would normally fail.

See the individual autodocs below for a more detailed explanation.

vmem.library AutoDocs(tm) 3/12

1.3 vmallocblock

?vmem. library/vmAllocBlock vmemn.library/ <
vmAllocBlock
NAME
vmAllocBlock
SYNOPSIS
vmBlock *vmb = vmAllocBlock (ULONG size,ULONG nels, ULONG memflags)
do do dil d2
FUNCTION
Allocates a vmBlock for control of data which will use virtual
memory.
INPUTS
size:
- size of each element in array
nels:
- number of elements in array
memflags:
- standard exec.library/AllocMem() memory attribute flags
RESULT
vmb :
- Virtual memory control handle (vmBlock) .This block stores
information about your data,and is passed to the other
virtual memory functions to let them know what state your
data is in.
EXAMPLE

vmBlock *vmb;

struct Preferences *prefs_ptr;/+largest structure I could think ofx/
ULONG 1i;

if (! (vmb =
vmAllocBlock
(sizeof (struct Preferences), 10,MEMF_PUBLIC)))

/* vmAllocBlock failed - you’re either »VERYx low on memory,
or the the path that vmem.library is using is full =/

}else
{
for (i=0; i<NUM_ELS; i++)
{
if (! (prefs_ptr =
vmLock
(vmb,1)))

vmem.library AutoDocs(tm) 4/12

/* data lock failed - disk error , or VERY low on mem =*/

}else
{

/+ you’ve got your data,do whatever you want with it */

/* unlock the data when you’ve finished with it,so vmem
will know when it’s not in use =*/

vmUnLock
(vmb, 1) ;

bi
}i

/+ when you’ve finished with all the data, free the control
block x/

vmmFreeBlock
(vmb) ;
}i

NOTES

BUGS

Doesn’t handle saving across multiple disks/devices yet.

SEE ALSO

vmFreeBlock

4

vmLock

4

vmUnLock

14

vmAllocData
exec.library/AllocMem autodoc (for memory flag definitions)

1.4 vmallocdata

?vmem. library/vmAllocData

vmem.library <4
/vmAllocData

NAME

vmem.library AutoDocs(tm) 5/12

vmAllocData (MACRO)
SYNOPSIS
vmBlock *b = vmAllocData (ULONG blocksize, ULONG memflags) ;
FUNCTION
This is defined in Libraries/VMem.h as
vmAllocBlock
(blocksize, 1, memflags)

It just Allocates a vmBlock which isn’t an array,i.e. Only contains
one element.See that function’s autodoc for details.

INPUTS
RESULT
EXAMPLE
NOTES
BUGS

SEE ALSO

vmAllocBlock

14
vmLockData

4

vmUnLockData

14

vmEFreeData

1.5 vmallocmem

?vmem. library/vmAllocMem vmem. <=
library/vmAllocMem
NAME
vmAllocMem
SYNOPSIS
VOID xmemptr = vmAllocMem (ULONG size, ULONG attrs)
do do dl
FUNCTION

Identical to exec.library/AllocMem except does extra checking
and vmem flushing if needed.

vmem.library AutoDocs(tm) 6/12

INPUTS
Indentical to exec.library/AllocMem. See that function’s autodoc
for more information.
RESULT
result:
- Pointer to memory which was allocated,or NULL if something went
wrong.
EXAMPLE
NOTES
BUGS

SEE ALSO

vmE reeMem
, exec.library/AllocMem.

1.6 vmflush

?vmem. library/vmFlush vmem. <=
library/vmFlush
NAME
vmFlush
SYNOPSIS
ULONG memflushed = vmFlush (ULONG memneeded, ULONG memflags);
do do dl
FUNCTION
Flushes required amount unused virtual memory from the system.
INPUTS
memneeded:
- Amount of *ADDITIONALx free memory you need in bytes.
memflags:
- Type of memory to flush (standard exec.library/AllocMem
memory attributes)
RESULT
memflushed:
- Amount of memory you got (in bytes).
EXAMPLE
NOTES
memflushed is the memory that was freed into the free memory
list by this function - by the time it returns,another program
might have pulled it from under you, so check results of

vmAllocMem
even if this function tells you there’s enough mem.

vmem.library AutoDocs(tm) 7/12

BUGS

SEE ALSO

1.7 vmfreeblock

?vmem. library/vmFreeBlock vmem. library <
/vmFreeBlock
NAME
vmFreeBlock
SYNOPSIS
void vmFreeBlock (vmBlock =xDb)
ao
FUNCTION
Frees a virtual memory control block when you have finished with
it.
INPUTS
b:
- pointer to the virtual memory block to free.
RESULT

Frees all memory used for this virtual memory data,deletes any
virtual memory files which exist on disk,and does other general
cleanup stuff.

EXAMPLE
See
vmAllocBlock
()'s example above.
NOTES
BUGS
SEE ALSO

vmAllocBlock

4

vmLock

’
vmUnLock

4

vmFreeData

1.8 vmfreedata

vmem.library AutoDocs(tm) 8/12

?vmem. library/vmFreeData vmem. <
library/vmFreeData

NAME

vmFreeData (MACRO)
SYNOPSIS

void vmFreeData (vmBlock =) ;
FUNCTION

This is defined in Libraries/VMem.h as
vmFreeBlock
(b) .It does exactly
the same as
vmFreeBlock
,and is only provided to make the macros

vmAllocData
14
vmLockData
, and
vmUnLockData
more programmer—-friendly.
See
vmFreeBlock
()’s autodoc for usage.
INPUTS
RESULT
EXAMPLE
NOTES
BUGS
SEE ALSO

vmFreeBlock

4

vmAllocData

14

vmLockData

14
vmUnLockData

1.9 vmfreemem

vmem.library AutoDocs(tm) 9/12

?vmem. library/vmFreeMem vmem. <
library/vmFreeMem

NAME
vmF reeMem

SYNOPSIS
VOID vmFreeMem (VOID xmemptr, ULONG size)
do dl

FUNCTION
Identical to exec.library/FreeMem except does extra checking.

INPUTS
Indentical to exec.library/FreeMem. See that function’s autodoc
for more information.
RESULT
EXAMPLE
NOTES
BUGS

SEE ALSO

vmAllocMem
, exec.library/FreeMem

1.10 vmlock

?vmen. library/vmLock vmem. <=
library/vmLock
NAME
vmLock
SYNOPSIS
VOID xptr = vmLock (vmBlock xb,ULONG el)
do a0 do
FUNCTION
Locks a particular element of virtual memory data for use.
INPUTS
b:
- Virtual Memory control block which required data belongs to.
el:
- Particular element of data that you want to access.
RESULT

ptr:

vmem.library AutoDocs(tm) 10/12

- Actual memory address of data element which is now safe to

access.
EXAMPLE
See
vmAllocBlock
()’s example above.
NOTES
BUGS
SEE ALSO

vmAllocBlock

4

vmUnLock

14

vmFreeBlock

14
vmLockData

1.11 vmlockdata

?vmem. library/vmLockData vmem. <=
library/vmLockData
NAME
vmLockData (MACRO)
SYNOPSIS

VOID xmemptr = vmLockData (vmBlock =*blk)
FUNCTION
This is defined in Libraries/VMem.h as vmLock (blk,0).
It just locks a block of memory for a vmBlock with one element.
See that function’s autodoc for details
INPUTS
RESULT
EXAMPLE
NOTES

BUGS

SEE ALSO

vmem.library AutoDocs(tm) 11/12

vmLock

4

vmAllocData

14

vmUnLockData

4

vmEFreeData

1.12 vmunlock

?vmem. library/vmUnLock vmem. <
library/vmUnLock
NAME
vmUnLock
SYNOPSIS
void vmUnLock (vmBlock xb,ULONG el)
a0 do
FUNCTION
Unlocks a virtual memory data element which was locked by
vmLock
().
INPUTS
b:
- pointer to the virtual memory control block for the data.
el:
- The number of the element to unlock.
RESULT

Unlocks the data.When data has no more locks on it,
and real memory gets low,the data will be saved to a vmem file,
and the real memory is freed.

EXAMPLE
See
vmAllocBlock
()’'s example, above.
NOTES

Note that this function takes the NUMBER of the element you
wish to unlock,and not a pointer to the data as you might expect.

BUGS

SEE ALSO

vmAllocBlock

4

vmem.library AutoDocs(tm) 12/12

vmLock

4

vimFreeBlock

4

vmUnLockData

1.13 vmunlockdata

?vmem. library/vmUnLockData vmem. library/ <«
vmUnLockData

NAME

vmUnLockData (MACRO)
SYNOPSIS

void vmUnLockData (vmBlock =xblk);

FUNCTION

This is defined in Libraries/VMem.h as

vmUnLock

(b1lk,0). It just
unlocks a block of memory for a vmBlock with one element. See that
function’s autodoc for details.

INPUTS
RESULT
EXAMPLE
NOTES
BUGS

SEE ALSO

vmUnLock

14

vmAllocData

4

vmLockData

4

vmEFreeData

	vmem.library AutoDocs(tm)
	main
	background
	vmallocblock
	vmallocdata
	vmallocmem
	vmflush
	vmfreeblock
	vmfreedata
	vmfreemem
	vmlock
	vmlockdata
	vmunlock
	vmunlockdata

