Visual Basic 5 Tutorial

Many of us have used BASIC in some form or another, perhaps many years ago on a
Commodore 64 or Sinclair Spectrum. As you might remember, the computer
executed each line of your program in sequence, beginning with the first line and then
working downwards towards the bottom of the program.

Programs running in the Windows environment are less predictable; the flow of
execution is determined by the user who interacts with your program. For example,
the user might make a choice from a menu and then click a button, or perhaps drag a
scroll bar to view more of a document. Since it is not possible to predict the order in
which the user will choose the various options, the traditional, sequential-style
programming is not appropriate. Instead, another method of programming is used,
called event-driven programming. Unlike other environments for example DOS,
where programs are constantly busy, programs under Windows spend most of their
time waiting for the user to do something. When the user carries out an action such
as clicking a button, the button informs your program via an event. It is then up to
your program to carry out the appropriate operation depending on what event it
received

Where do these events come from? The answer is, the controls themselves. If a
control causes an event to occur, it is said to have raised the event. If you click on a
control, the control raises a click event.

To respond to these events, you write event handlers, pieces of code that Visual Basic
will execute whenever the event occurs. If you write an event handler for the click
event on a button control, the code contained in the handler will be executed every
time the user clicks on the button. If any events occur that you didn’t write event
handlers for, no action is taken and the events go unprocessed.

Right, that’s enough theory, let’s see this in action. We will create a simple project
that will let us convert inches to centimetres. Assuming you have installed VBSCCE,
start it by choosing Start->Programs->Visual Basic 5 CCE->Visual Basic 5 CCE.
Please note that if you are using the full VBS retail product, you might see additional
information not mentioned here. If this is the case, simply disregard it and continue
throughout.

VB will display a dialog asking you whether you want to create an ActiveX Control,
or a Standard EXE. Double click on the Standard EXE icon since we want to create
an application (ActiveX controls will be covered in further tutorials). Ironically,
creating an EXE is one thing VBSCCE can’t do because you cannot create stand-
alone applications using it. Perhaps Microsoft should have worded things differently
in the case of VB5CCE.

You are now looking at a project called Projectl that contains a form called Form1.
This is the default project that VB provides for us. You can see this hierarchy in the
Project Explorer on the upper-right hand side of the screen.

Look at the Properties Window at the right-hand edge of the screen, below the Project
Explorer. This window lists the properties (attributes) of the currently-selected
object, which in our case, is Form1. The names of each of the properties are listed
down the left-hand side of the window, and their corresponding values are shown to
the right. Every object in VB has a set of properties associated with it. Some
properties are specific to each type of object and so only appear when that particular
type of object is selected. Other properties, such as name, are relevant to all objects
and are always present in the properties window. You can change the various
characteristics of an object by altering its properties.

Let’s change the name of our project (Projectl) to something more meaningful; click
on Project(Project 1) in the Project Explorer. The properties window has changed
and is now displaying (Name). The only property of a project you can change is its
name, which is why (Name) is the only entry in the properties window. Click on the
text Projectl that appears next to (name), replace it with Units and press Enter.
Notice how the name of the project in the project explorer has changed to Units,
along with the title bar of the window containing Form1 to reflect the new project
name. Now, we want to change the name of our form as well. Click on Form1 and
observe that the properties window has now changed back to displaying the properties
for Form1 since we have just selected it. Click on the text Form1 next to (Name),
replace it with frmUnits and press enter. We chose the three-letter prefix frm to
remind us that the object is a form. VB doesn’t enforce this naming convention, but
it is a very useful habit to have, particularly when dealing with larger projects.
Notice that VB has updated the project explorer to show the new name. Our form,
frmUnits still has the default title — Form. The title is different from the name, in
that the title is just the descriptive text that appears in the form’s title bar. The
property that controls the descriptive text associated with an object, be it a form or
control, is normally called Caption. Scroll down the properties window until you can
see the Caption property. Replace the default caption, FormI with the text Units
Conversion. Notice how VB immediately updates the form’s title as you type so that
you can see your changes straight away.

Now it’s time to add some controls. Choose the 7TextBox control and then move the
mouse cursor over Form1. Notice how the cursor is now a set of cross hairs to
indicate that you’re about to draw a control. Drag a rectangle out on the form,
approximately eight dots wide by three dots high. VB creates a textbox using the
dimensions of the rectangle you dragged. If you look in the properties window,
you’ll notice that the available properties have changed since the textbox is now
selected. Now drag the textbox so that it is about half-way across the form, but close
to the top. Change the name property of the textbox to txt/nches. Next, create a
similar textbox below the first one and set its name to txtCM. The prefix #xt is used
because we are dealing with a textbox. Change the Text property of both textboxes to
be blank, since we want both textboxes to be initially empty. The Text property
holds whatever the user types into the textbox when our program is running.

We should add some descriptions to the textboxes so that the user will know that they
represent. Choose the /abel control from the toolbox and create a label to the left of

the txtInches textbox, approximately eleven dots wide by three dots high. Change the
label’s Caption to Inches. If the caption is chopped off you’ll need to resize the label
so that all of its text is visible. Next, create a similar label beneath the first, next to the
txtCM textbox and set its caption to Centimetres. If there isn’t enough room, you
might need to drag the controls around to make room for the new labels.

Let’s add the final control, a CommandButton, which will cause the actual conversion
to occur. Create a CommandButton control to the right of the textboxes,
approximately nine dots wide by three dots height. Change its name to cmdConvert
and its caption to Convert. Now, all the controls are in place. Choose the pointer
tool from the toolbox, click on a blank area of frmUnits to show its handles, and then
drag the lower right-hand handle towards the top left-hand corner of the screen, so
that the form fits the controls better.

Okay, we’re nearly done. Now we just need to add the code that will cause the actual
conversion to take place. We will place the code to accomplish this in the Click event
handler for the button, so that the conversion will take place whenever the Convert
button is clicked. Double-click on the button. VB displays the Code Window which
shows the code in the events behind the controls. There are two combo boxes — the
one on the left shows the name of the object we are writing the code for. The one on
the right shows which event for that object we’re dealing with. VB has correctly
assumed that we wanted to create a handler for the click event. Notice that VB has
already entered some code for us, Private Sub cmdConvert Click() and End Sub.
These lines tell VB which control and event combination we’re dealing with. Type
the following code between those two lines:

txtCM.Text = txtInches.Text * 2.52

That tells VB to multiply the contents of the txtInches textbox (held in its Text
property) by 2.52 and place the result into the Text property of the txtCM textbox.
The dot seperates the control name from its property. Now we can leave design mode
and enter run mode so that we can try out the new form. Click the Play button on
VB’s toolbar. You can now interact with the form — type a number into the Inches
textbox, click the Convert button, and watch the result appear in the Centimetres text
box. That wasn’t so hard to do, was it? Now close the form by clicking on its close
box.

Can you see how the program works? When you click on the Convert
CommandButton control, it raises a click event. The code that we wrote for the click
event then performs the conversion and displays the appropriate result.

The form is far from complete, however. If you type letters into the Inches textbox,
the program will fail because you can’t multiply using letters of the alphabet! Next
month, we’ll make this more robust and add extra features using some new controls.
Until then, if you want to know what so-and-so does, then try it/

Have fun,

Nick.

Nicholas Scott is a freelance columnist who currently works for MIS Computer
Services in Northwich. Nick can be contacted via email at nicks@miscs.com.

(ED: Please place the following four pictures around the text as you see fit. Please
keep them in the order I present them here since they follow on from each other)

(ED: The filename for this .BMP is “Form with just a text box.bmp”)

w5, Units - Microsoft Visual Basic [design]

Eile Edit Wew Project Format Debug Run Tools Add-Ins wWindow Help

[B-a-FESHE 2BeH o) | « HEEER

1680, 120

=138 Units (Units)
=-E5 Farms

------ B frmUnits (FrmUnits)

8 EB

E

Ay B
= |txtlnches TexkBox ;l
=) Alphabetic ICategorized I
ol ExtInches
B 0 - Left Justify
#,:J Appearance 1-3D

Eackcolor [&Hz0noo000s
Baorderstyle 1 - Fixed Single _I
-

{Name)
Returns the name used in code to
identify an object.

4
iamaﬂl I% Units - Microsol...

frmUnits with the txtInches textbox added to it

(ED: The filename for this image is “Form with everything on it.bmp”)

=155 Units (Units)
=-E5 Farms

------ B4 FrrUnits (FrmUnits)

o Inches

- Centimetres

frmlnits

L e

|frmUnits Form

Alphabetic ICategorized I

Appearance 1-3D

AukoRedraw False

EackColor [&Hz000000F

2 - Sizable

Units Coreersio
|

Triim

Ll |

Caption
Returns/sets the text displaved in an
ohject's title bar or below an object's

Immediate

4
| Slalll I% Units - Microsolt Yisu...

frmInches with all the controls added to it

(ED: The filename for this image is “Code Window.bmp”)

w5, Units - Microsoft Visual Basic [design]
Fil

le Edit View Project Format Debug Run Tools Add-Ins Window Help

B -ia-H2H B8 o, 2 HEGE R s

oE|a

=155 Units (Units)
=-E5 Farms

" Inches s : T e B4 Frmbnits (FrmUniits)

- Centimetres

=R =8

a M Units - frmUnits [Code)
KT e
i [emadconvert =] ciick E
&) =
Private Sub cwdConvert Click() |cdeonvert CommandButton x|
B txtCM.Text = txtInches.Text * 2.52 Alphabetic ICategorized I
End Sub
@ . (Mame) crdConevert ﬂ
Appearance 1-30
l?':'j BackColar [&Hs000000F

False
Convert

Falze LI

Caption
Returns/sets the text displaved in an
ohject's title bar or below an object's

Immediate

4
| Slalll I% Units - Microsolt Yisu...

The code which performs the actual conversion, in the Click event of the CommandButton
cmdConvert

(ED: The filename for this image is “Runtime.bmp”)

im. Unitz Conversion =]
Inzhes

Centimetres

The finished application in action

	txtCM.Text = txtInches.Text * 2.52

