
The MouseTrap Librar

High & Low Level Mouse Contro
Functions for 'C' Program

Version 1.

By James M. Curra
By James M. Curran.

24 Greendale Roa
Cedar Grove, N

07009-131

Table of Contents

1. Introduction .
Registration .
Warranty .

2. Basic Mouse Control Functions
Check_Mouse .
Show_Mouse .
Hide_Mouse .
Get_Mouse_Position .
Set_Mouse_Position .
Get_Mouse_Press . 1
Get_Mouse_Release . 1
Set_Mouse_Limit . 1
Set_Mouse_Limit_Horiz . 1
Set_Mouse_Limit_Vert . 1
Set_Mouse_Region . 1
Set_Mouse_Text_Cursor . 1
Set_Mouse_Graphic_Cursor 1

3. Advanced Mouse Control Functions 1
Activate_Mouse_Page . 1
Add_Mouse_Page . 1
Add_Mouse_Button . 1
Add_Mouse_Hot_Spot . 2
Clear_All_Mouse_Definitions 2
Clear_Mouse_Pages . 2
DeActivate_Mouse_Page . 2
Define_Mouse_System . 2
Delete_Mouse_Button . 2
Delete_Mouse_Hot_Spot . 2
Delete_Mouse_Page . 2
Get_Char_Mouse_Kbd . 2
Read_Mouse . 2
Read_Mouse_Kbd . 2

4. Using the MouseTrap Library 2

5. Technical Specification 3

Appendix . 3
MOUSTRAP.H . 3
Global Variables . 3
Error Codes. 3
Reference . 4
Support . 4
Revision History . 4
Index . 4

MouseTrap Library, Rel 1.0
February 12, 198

Introduction

The MouseTrap library is a collection of functions to
control a mouse, designed to be called from a 'C' program. They
provide easy access to the low-level functions of the mouse
interrupt, as well as a simplified system for high-level control
over the mouse. The basic functions are mostly self explanatory
and are described in chapter 2 of the document. The high-level
functions are a bit more complicated. They are described in
Chapter 3 with a tutorial in Chapter 4.

Registration

The MouseTrap Library is copyrighted by James M. Curran.
You are granted a limited license to use MouseTrap, fo
noncommercial programs. You may, and are in fact encouraged, to
copy and distribute it, provided that the following conditions
are met: (a) No fee may be charged for copying or distributing,
and (b) only the library files (*.LIB) and accompanying
documentation are distributed, and only in their original,
unmodified form.

Sending a voluntary contribution of $15.00 will appease your
guilt, and earn you my undying gratitude. It will also get you a
copy of the source code, the Compact (CMOUSE.LIB) & Medium
(MMOUSE.LIB) memory model libraries, the missing chapter from
this booklet, and other assorted related files. Microsoft C 5.1
& MASM 5.1 are needed to recompile the source files, (unless
modified by the user).

Contributions, (and requests for information on commercial
licenses) should be sent to:

James M. Curran
24 Greendale Road
Cedar Grove, NJ 07009-1313

Finally, there's only one thing you can say for sure about a
"Version 1.0" release of software--- That it will soon be
followed by a "Version 1.01" Bug-Fix release. So, all registered
user will be sent that version when it's ready. (That's merely
cautionary; there are no known bugs at this time).

Warranty

Warranty ? We make no promises that the MouseTrap library
will do anything useful for you. Nor do we promise that it WON'T
do anything harmful. (Life's Tough; "Want do you want for
nothing ? Rubber Biscuit ?")

- Page 3 -

MouseTrap Library, Rel 1.0
February 12, 198

Chapter 2:

Basic Mouse Control Functions

The eleven primitives that make up the low-level support
functions are almost direct calls to the mouse driver interrupt,
and are written in 8086 assembler. They were originally derived
from a set of 'C' functions given in an article in "The 'C'
Gazette" (see references at end), but since then numerous
revisions have transformed them. The only thing left are th
names of two functions.

Check_Mouse() Get_Mouse_Press()
Show_Mouse() Get_Mouse_Release()
Hide_Mouse() Set_Mouse_Text_Cursor()
Get_Mouse_Position()
Set_Mouse_Position()
Set_Mouse_Limits()

- Page 4 -

MouseTrap Library, Rel 1.0
February 12, 198

Check_Mouse - Check for the existence and type of Mouse.

Syntax:
#include <moustrap.h>

mouse_t Check_Mouse(void);

Description:
This function initialized the mouse interrupt driver, and

must be the first low-level function called (but see
Define_Mouse_System()). It checks to see if a mouse is attache
(or to be exact, if a mouse device driver is loaded into memory),
and if one is present, determines how many buttons it has. This
information is return by the function, and is also stored in the
global variable "_mouse_there".

Returns Value:
If no mouse is detected, the Check_Mouse function returns 0.

If a mouse IS detected, the number of buttons on it is returned.
These values are also stored in the global _mouse_there. This can
also be used as a TRUE/FALSE indicator.

See Also:
Define_Mouse_System, _mouse_there

Example:
#include <moustrap.h>
#include <stdio.h>
main()
{
Check_Mouse();
if (_mouse_there)

printf("A %d-button Mouse was detected.\n",_mouse_there);
else

printf("No mouse was found.\n");
}

- Page 5 -

MouseTrap Library, Rel 1.0
February 12, 198

Show_Mouse - Display Mouse Cursor.
Hide_Mouse - Hide Mouse Cursor.

Syntax:
#include <moustrap.h>

void Show_Mouse(void);
void Hide_Mouse(void);

Description:
Show_Mouse causes the mouse cursor to be displayed on the
screen. Hide_Mouse cause the mouse cursor to disappear.
Neither will have any effect if there is no mouse or
Check_Mouse has not been executed yet.

Returns Value:
There is no return value.

See Also:
Check_Mouse, _mouse_there

Example:
#include <moustrap.h>
#include <stdio.h>
main()
{
Check_Mouse();

Show_Mouse();
printf("Look, Ma! A mouse !");
getch(); /* Mouse visible until a key is pressed */
Hide_Mouse();

}

- Page 6 -

MouseTrap Library, Rel 1.0
February 12, 198

Get_Mouse_Position

Syntax:
#include <moustrap.h>
mouse_t Get_Mouse_Position(mouse_t *X, mouse_t *Y);

Description:
Get_Mouse_Position places the X (Horizontal) and Y
(Vertical) coordinates of the present location of the mouse
cursor into the locations given by X & Y. The locations are
given using graphic coordinates in the range (0,0) to
(639,199). It also returns the binary sum of the buttons
pressed. If _mouse_there indicates that no mouse was
detected, the values of X & Y are left unchanged, and the
function returns 0.

Return Value:
The binary sum of the buttons pressed, where the Left button
equals 1, the Right button equals 2, and the Middle
button, 4. These values are added together if more than one
button is pressed. For example, pressing the Left &
Middle buttons would have Get_Mouse_Position return a value
of 5.

See Also:
_mouse_there, Set_Mouse_Position

Example:
#include <moustrap.h>
#include <stdio.h>
main()
{

int X,Y,m;

Check_Mouse();
do {

m = Get_Mouse_Position(&X, &Y);
if (m & 1)

printf("Left Button, ");

if (m & 2)
printf("Right Button, ");

if (m & 4)
printf("Middle Button, ");

if (m)
printf("pressed at (%d, %d)\n",X,Y);

- Page 7 -

MouseTrap Library, Rel 1.0
February 12, 198

} while (m==0);
}
Pressing the Left & Right buttons would print something

similar to:
Left Button, Right Button pressed at (120, 85)

- Page 8 -

MouseTrap Library, Rel 1.0
February 12, 198

Set_Mouse_Position

Syntax:
#include <moustrap.h>

void Set_Mouse_Position(mouse_t X, mouse_t Y);

Description:
The function Set_Mouse_Position moves the mouse cursor to
the screen location given by the graphic coordinates (X,Y).
X must be in the range (0-639) and Y in the range (0-199).

Return Value:
None.

See Also:
Get_Mouse_Position

Example:
#include <moustrap.h>
#include <stdio.h>

main()
{

int X,Y,m;

Check_Mouse();

Show_Mouse();
Get_Mouse_Position(&X, &Y);

X++;
Y--;

Set_Mouse_Position(X, Y);

}

The above program would move the mouse cursor, "Up" and to
the "Right", without the mouse physically being moved.

- Page 9 -

MouseTrap Library, Rel 1.0
February 12, 198

Get_Mouse_Press
Get_Mouse_Release

Syntax:
mouse_t Get_Mouse_Press(mouse_t Button, mouse_t Status,

mouse_t *X, mouse_t *Y);

mouse_t Get_Mouse_Release(mouse_t Button, mouse_t Status,
mouse_t *X, mouse_t *Y);

Description:
Get_Mouse_Press returns information about the last press of
one of the mouse buttons, given by the code "Button". The
coordinates of the location of the mouse cursor the last
time that button was pressed are returned in X & Y. The
Function itself returns the number of times that button was
pressed since the last time Get_Mouse_Press was called. The
binary sum of the buttons currently pressed, as described in
Get_Mouse_Position, is returned in Status.

Get_Mouse_Release works exactly the same way, with X and Y
giving the location of the last position the button was
released.

Return Value:
The number of time Button was pressed (released) since the
last call to Get_Mouse_Press (Get_Mouse_Release).

See Also:
Get_Mouse_Position

Example:
#include <moustrap.h>
#include <stdio.h>

main()
{

mouse_t s,x,y;
if (Check_Mouse()) {

getch(); /* pause of while */
if (Get_Mouse_Press(M_Left,&s,&x,&y))
printf("Left buttom was pressed at %d,%d\n", x,y);
}

}

- Page 10 -

MouseTrap Library, Rel 1.0
February 12, 198

Set_Mouse_Limit (v1.0)
Set_Mouse_Limit_Horiz (v1.1)
Set_Mouse_Limit_Vert (v1.1)
Set_Mouse_Region (v1.1)

Syntax:
void Set_Mouse_Limits(Direction, Min, Max);
mouse_t Direction; /* M_HORIZ -or- M_VERT */
mouse_t Min;
mouse_t Max;

void Set_Mouse_Limits_Horiz(Left, Right);
void Set_Mouse_Limits_Vert(Top, Bottom);
void Set_Mouse_Region(Top, Left, Bottom, Right);

mouse_t Top;
mouse_t Left;
mouse_t Bottom;
mouse_t Right;

Description:
These functions give a variety of ways to forces the mouse
cursor's movements to remain within specified limits. The
various edges are given using graphic coordinates (0-629)
(0-199).

"That seems like a fairly simple concept", you should
now be saying, "So, why does it take -FOUR- separate
functions ?" Funny you should ask. In release 1.0, only
Set_Mouse_Limit existed. It was functional, but inelegant,
since it required two calls to properly limit the cursor. It
was written that way mainly because the function it was
adapted from was written that way. Realizing that this was a
particularly poor reason to do something badly,
Set_Mouse_Region was added. It accomplishs the task with
just one call, and maintains the format of the other
function in the library. However, it's not as flexible as
the original, so Set_Mouse_Limits_Horiz, and
Set_Mouse_Limits_Vert were added. Set_Mouse_Limits hung
around to maintain upward compatiblity with release 1.0

Return Value:
None

- Page 11 -

MouseTrap Library, Rel 1.0
February 12, 198

Example:

#include <moustrap.h>
#include <stdio.h>

main()
{

Check_Mouse();

Set_Mouse_Region(50,160,150,480);
/* Mouse is now limited to the center of the screen */

Read_Mouse();

}

- Page 12 -

MouseTrap Library, Rel 1.0
February 12, 198

Set_Mouse_Text_Cursor

Syntax:
void Set_Mouse_Text_Cursor(Type, P1, P2);

mouse_t Type; /* 1 = Hardware Cursor | 0 = Software Cursor *
mouse_t P1 /* Start scan line | Screen Mask *
mouse_t P2; /* Stop scan line | Cursor Mask *

Description:
Set_Mouse_Text_Cursor describes how the mouse cursor

will appear on the screen while in text modes. This can be
done in either of two way: by using the Hardware cursor, or
the Software cursor. The Hardware cursor is the same one
that the keyboard uses, that is, it looks just like the
keyboard cursor, and can be moved using the BIOS "move
cursor" functions. If the hardware cursor is used, P1 &
P2 give the scan lines for that cursor. For normal screen
uses that is 6 & 7.

The Software cursor is a little more complex. There, P
is the "Screen mask" and P2 is the "Cursor Mask", and they
are given in the form of a color attribute and character.
When the software cursor is drawn on the screen, the
character and color attribute originally at that location is
first ANDed with the screen mask, then the result of that is
XORed with the cursor mask. If the screen mask is 0, the net
effect is that the current value at that location is
replaced by the cursor mask. If the screen mask is
nonzero, the current value at the screen location WILL
affect of character or color of the mouse cursor.

For example, if the screen mask was 0x0800, the color
intensity bit (controlling brightness of the foreground)
would be preserved. Hence, the mouse cursor would become
bright of it passed throught an area of bright text. Or, if
the screen mask was 0xF000, and the background color of the
cursor mask was 0 (ie in the form 0x0---), the current
background color will always be maintained underneath
the mouse cursor. The effects become very strange if you
use nonzero values in the character portion of the screen
mask (the last two digits), which causes the screen characte
to affect the look of the mouse cursor. This is best left t
private experimentation.

Return Value:
None.

See Also:
TC() macro Set_Mouse_Graphic_Cursor

- Page 13 -

MouseTrap Library, Rel 1.0
February 12, 198

Set_Mouse_Graphic_Cursor

Syntax:
void Set_Mouse_Graphic_Cursor(mouse_t Hot_X, mouse_t Hot_Y,

mouse_t Cursor[2][16]);

Description:
Set_Mouse_Graphic_Cursor changes how the mouse cursor

will appear on the screen, while in graphic modes. The
graphic cursor can be used in any of the graphic modes.
The graphic cursor is defined by two 16 bit by 16 bit
arrays, the screen mask, and the cursor mask. This defines
a 16 by 16 pixel square in high-resolution or EGA mode, an 8
by 16 pixel block in medium resolution 4-color mode, and a 4
by 16 pixel block in low resolution 16 color mode.

When a graphic cursor is displayed on the screen,
three operations take place. First, the screen image "under
the cursor is saved, Then, the screen mask is logically ANDe
with the screen image. Finally, the cursor mask is logic-
ally XORed with the result of the first operation.

The logically result of these operations is:
Screen mask Cursor Mask Result

0 0 0
0 1 1
1 0 Same as original bit
1 1 Inverse of original bit.

Remember, in CGA color modes, more than one bit is
required for each pixel.

Return Value:
None

See Also:
Set_Mouse_Text_Cursor Peace[][] CrossHair[][] Lightening[

- Page 14 -

MouseTrap Library, Rel 1.0
February 12, 198

Example:
#include <moustrap.h>
#include <stdio.h>

mouse_t Lightening[2][16] = {
{
0xFFF7, /* 11111111 11110111b */
0xFFCF, /* 11111111 11001111b */
0xFF9F, /* 11111111 10011111b */
0xFF3F, /* 11111111 00111111b */
0xFE7F, /* 11111110 01111111b */
0xFCFF, /* 11111100 11111111b */
0xF9FF, /* 11111001 11111111b */
0xF803, /* 11111000 00000111b */
0xFFE3, /* 11111111 11100111b */
0xFFCF, /* 11111111 11001111b */
0xFF9F, /* 11111111 10011111b */
0xFF3F, /* 11111111 00111111b */
0xFE7F, /* 11111110 01111111b */
0xFCFF, /* 11111100 11111111b */
0xF9FF, /* 11111001 11111111b */
0xF7FF}, /* 11110111 11111111b */

{0x0008, /* 00000000 00001000b */
0x0030, /* 00000000 00110000b */
0x0060, /* 00000000 01100000b */
0x00C0, /* 00000000 11000000b */
0x0180, /* 00000001 10000000b */
0x0300, /* 00000011 00000000b */
0x0600, /* 00000110 00000000b */
0x03F8, /* 00000111 11111000b */
0x0018, /* 00000000 00011000b */
0x0030, /* 00000000 00110000b */
0x0060, /* 00000000 01100000b */
0x00C0, /* 00000000 11000000b */
0x0180, /* 00000001 10000000b */
0x0300, /* 00000011 00000000b */
0x0600, /* 00000110 00000000b */
0x0800} /* 00001000 00000000b */
};

main()
{

mouse_t s,x,y;

if (Check_Mouse()) {
Set_Mouse_Graphic_Cursor(4,15,Lightening);
Show_Mouse();
}

}

- Page 15 -

MouseTrap Library, Rel 1.0
February 12, 198

Chapter 3
Advanced Mouse Control Functions

These thirteen functions simplify the process of interpretin
the users input using a mouse. They work on the assumption
that most of the time a mouse is used by "clicking" a
specific button at a specific place on the screen. They were
written using Microsoft's C v5.1.

Activate_Mouse_Page()
Add_Mouse_Button()
Add_Mouse_Hot_Spot()
Add_Mouse_Page()
Clear_All_Mouse_Definition()
Clear_Mouse_Pages()
DeActivate_Mouse_Page()
Define_Mouse_System()
Delete_Mouse_Button()
Delete_Mouse_Hot_Spot()
Delete_Mouse_Page()
Get_Char_Mouse_Kbd()
Read_Mouse()
Read_Mouse_Kbd()

- Page 16 -

MouseTrap Library, Rel 1.0
February 12, 198

Activate_Mouse_Page

Syntax:
#include <moustrap.h>
mouse_t Activate_Mouse_Page(mouse_t Page_ID)

Description:
The Activate_Mouse_Page function sets active one of the

previously defined mouse pages. In Single Page mode, the
currently active page is cleared, and the mouse cursor is
limited to the area of that page. In Overlaid mode, the curr
pages remain active, and the mouse cursor area is widened, i
necessary, to accommodate the new page.

Return Value:
MNOERROR if there was no problem, otherwise
MERROR with M_Error set to the specific error.

See Also:
M_Error, DeActivate_Mouse_Page, Add_Mouse_Page

Example:

See Chapter 4.

- Page 17 -

MouseTrap Library, Rel 1.0
February 12, 198

Add_Mouse_Page
Syntax:

#include <moustrap.h>

mouse_t Add_Mouse_Page(Page_Type, Top, Left, Bottom, Right);

mouse_t Page_Type; /* M_Text_Coord or */
/* M_Graphic_Coord */

mouse_t Top;
mouse_t Left; /* Coordinates of corners */
mouse_t Bottom; /* of the page. */
mouse_t Right;

Description:
Defines a new mouse page which is added to the

system. Page_Type tells if the corner points are given usin
text coordinates (80x25) or Graphic coordinates (640x200).
Coordinates of Hot Spots for this page are also assumed to
be given using that system.

Return Value:
Returns a Page ID number, which is to be used to

reference this page in the future, or, MERROR if there was
problem, with it's cause given in M_Error.

See Also:
Delete_Mouse_Page, Add_Mouse_Button, Add_Mouse_Hot_Spot
M_Error, Activate_Mouse_Page, DeActivate_Mouse_Page

Example:

See Chapter 4.

- Page 18 -

MouseTrap Library, Rel 1.0
February 12, 198

Add_Mouse_Button
Syntax:

#include <moustrap.h>

mouse_t Add_Mouse_Button(Page_ID, Button, Return_Value);
mouse_t Page_ID;
mouse_t Button;
mouse_t Return_Value;

Description:
Add_Mouse_Button lets you tell the system how to react

to a certain button being pressed. Page_ID is the page
which this definition refers to, or if 0, the definition is
valid in all pages. Button is either M_Left, M_Right, or
M_Center. If the Return_Value is 0, it's assumed the Hot
Spots are associated with this button in this page. Otherwis
the Return_Value is any value the user wished to assign.
It's return by Read_Mouse and Get_Char_Mouse_Kbd if that
button is pressed while that page is active. In Overlaid
mode, if more than one page, with conflicting definitions,
are active the most recent Add_Mouse_Button has precedence.
Any definition of a particular Page/Button combination
replaces any previous definition of that combination.

Return Value:
MNOERROR if there was no problem; otherwise
MERROR with the specific error given in M_Error

See Also
M_Error, Add_Mouse_Page, Add_Mouse_Hot_Spot

Example:
See Chapter 4.

- Page 19 -

MouseTrap Library, Rel 1.0
February 12, 198

Add_Mouse_Hot_Spot
Syntax:

#include <moustrap.h>

mouse_t Add_Mouse_Hot_Spot(Page_ID, Button, Top, Left,
Bottom, Right, Return_Value);

mouse_t Page_ID;
mouse_t Button;
mouse_t Top; /* corner of the area */
mouse_t Left;
mouse_t Bottom;
mouse_t Right;
mouse_t Return_Value;

Description:
Add_Mouse_Hot_Spot defines an area such that if the

appropriate Button is pressed while the mouse cursor is
within the area given while the page given by Page_ID is
active, Read_Mouse will return Return_Value. A maximum of
65535 hot spots can be defined.

Return Value:
An ID number for this hot spot, if there was no

problem; otherwise MERROR with the specific error given in M

See Also:
M_Error, Delete_Mouse_Hot_Spot

Example:
See Chapter 4.

- Page 20 -

MouseTrap Library, Rel 1.0
February 12, 198

Clear_All_Mouse_Definitions
Syntax:

#include <moustrap.h>

mouse_t Clear_All_Mouse_Definitions(void);

Description:
Erases everything. Removes all Page, Button, and Hot

Spot definitions. Reset various internal variables. Must be
done before switching between Single Page & Overlaid modes.

Return Value:
MNOERROR if there was no problem; otherwise
MERROR with the specific error given in M_Error

See Also:
M_Error, Define_Mouse_System

Example:
See Chapter 4.

- Page 21 -

MouseTrap Library, Rel 1.0
February 12, 198

Clear_Mouse_Pages
Syntax:

#include <moustrap.h>

mouse_t Clear_Mouse_Pages(void);

Description:
Deactivates all mouse pages. Hides cursors. Resets

cursor limits.

Return Value:
MNOERROR if there was no problem; otherwise
MERROR with the specific error given in M_Error

See Also:
M_Error, DeActivate_Mouse_Page, Activate_Mouse_Cursor

Example:
See Chapter 4.

- Page 22 -

MouseTrap Library, Rel 1.0
February 12, 198

DeActivate_Mouse_Page
Syntax:

#include <moustrap.h>

mouse_t DeActivate_Mouse_Page(Page_ID);
mouse_t Page_ID;

Description:
Deactivates the referenced mouse page. Button and Hot Spot
definitions linked to that page will no longer function unti
restarted with Activate_Mouse_Page. On Single page mode,
this is done automatically when another page is activated.

Return Value:
MNOERROR if there was no problem; otherwise
MERROR with the specific error given in M_Error

See Also:
M_Error Activate_Mouse_Page, Clear_Mouse_Pages

Example:
See Chapter 4.

- Page 23 -

MouseTrap Library, Rel 1.0
February 12, 198

Define_Mouse_System
Syntax:

#include <moustrap.h>

mouse_t Define_Mouse_System(Page_Type);
mouse_t Page_type;

Description:
Define_Mouse_System declares how mouse pages are to be used
through the program. Page_Type must be either M_Overlaid_Pa
or M_Single_Pages. Automatically initializes mouse by
executing Check_Mouse. Can only be done once in a program
unless reset with Clear_All_Mouse_Definitions.

Return Value:
MNOERROR if there was no problem; otherwise
MERROR with the specific error given in M_Error

See Also:
M_Error, Clear_All_Mouse_Definitions, Check_Mouse

Example:
See Chapter 4.

- Page 24 -

MouseTrap Library, Rel 1.0
February 12, 198

Delete_Mouse_Button
Delete_Mouse_Hot_Spot
Delete_Mouse_Page

Syntax:
#include <moustrap.h>

mouse_t Delete_Mouse_Button(mouse_t Page_ID, mouse_t Button)
mouse_t Delete_Mouse_Hot_Spot(mouse_t HS_ID);
mouse_t Delete_Mouse_Page(mouse_t Page_ID);

Description:
Removes the indicated item from the system.

Return Value:
MNOERROR if there was no problem; otherwise
MERROR with the specific error given in M_Error

See Also:
M_Error

Example:
See Chapter 4.

- Page 25 -

MouseTrap Library, Rel 1.0
February 12, 198

Get_Char_Mouse_Kbd
Syntax:

#include <moustrap.h>

mouse_t Get_Char_Mouse_Kbd(void);

Description
Get_Char_Mouse_Kbd acts much like the standard library
function GETCH, but will accept input from either the
keyboard or the mouse. Will return only when some input is
received from the keyboard or mouse.

Return Value:
The value inputted if there was no problem; otherwise
MERROR with the specific error given in M_Error

See Also:
M_Error, Read_Mouse

Example:
See Chapter 4.

- Page 26 -

MouseTrap Library, Rel 1.0
February 12, 198

Read_Mouse
Syntax:

#include <moustrap.h>

mouse_t Read_Mouse(void)

Description:
Checks mouse for input.

Return Value:
The Return_value assigned to a Button or Hot Spot, if that
item was "clicked" on, or
MERROR if an error occured, or
0 if no button was pressed.

See Also:
M_Error, Get_Char_Mouse_Kbd

Example:
See Chapter 4.

NOTE:
Remember, a non-zero return value does not necessarily mean
a button was pressed; it could also indicate an error
condition. (MNOINIT or MNOACTIVE).

- Page 27 -

MouseTrap Library, Rel 1.0
February 12, 198

Read_Mouse_Kbd
Syntax:

#include <moustrap.h>

mouse_t Read_Mouse_Kbd(void)

Description:
Something between Read_Mouse and Get_Mouse_Kbd_Char.
Checks mouse and the keyboard for input.

Return Value:
The Return_value assigned to a Button or Hot Spot, if that
item was "clicked" on, or
a key pressed on the keyboard.
MERROR if an error occured, or
0 if no button or key was pressed.

See Also:
M_Error, Get_Char_Mouse_Kbd

Example:
See Chapter 4.

NOTE:
Remember, a non-zero return value does not necessarily mean
a button was pressed; it could also indicate an error
condition. (MNOINIT or MNOACTIVE).

- Page 28 -

MouseTrap Library, Rel 1.0
February 12, 198

Chapter 4

Using the MouseTrap Library

The basic concept of the MouseTrap is the "Mouse Page". A
Mouse Page is one set of button and "Hot spot" definitions. Any
character can be assigned to a button or hot spot. Pages can be
used in either of two ways: You can have up ot 65,000 single pages,
which can only be used one at a time, or up to 16 page "overlaid"
pages, any combination of which can be active at once. You choose
this by using the Define_Mouse_System function, with either
M_Single_Pages or M_Overlaid_Pages.

The next step is to define a page, by using the Add_Mouse_Page
function, passing to it the "type" of page it is, either M_Graphic_Coo
or M_Text_Coord; and the 4 corner points for that page using the
appropriate set of coordinates (either 80x25 or 640x200). Using "0"
for each corner will have it using the entire screen. Add_Mouse_Page
will return an ID number for the page, which you will be using in all
references to this page.

Next, you must define the buttons you will be using. This is don
with Add_Mouse_Button. You tell it which for which page and button
this definition is to apply, and the value to return if that button wa
clicked while that page was active. If you use "0" for the Page ID,
this definition will apply to all pages. If you use "0" for the
return value, you can have that button return different values for
being clicked at different "hot spots" within the page.

If you are using hot spots in a page, you must next call Add_Mous
_Hot_Spot, passing to it the page ID and button code, the corner
points, and the return value for the spot.

Now, we get to the fun part. Choose a page using the Activate-
_Mouse_Page function. Using overlaid page, you can have several
pages active at once; remove them with the DeActivate_Mouse_Page or
Clear_Mouse_Pages function. In single page mode, activating a new pag
automatically deactivates the last one.

Finally, simply call Read_Mouse(). It will return either the
value for the button or Hot spot clicked or 0 if no button was
clicked. Or simpler still, use Get_Char_Mouse_Kbd(), which waits
until some input is entered by either keyboard or mouse.

- Page 29 -

MouseTrap Library, Rel 1.0
February 12, 198

To further exemplify the process let's examine the sample
program MICETEST.C:

#include <stdio.h>
#include "moustrap.h"

#include <graph.h>

main ()
{

mouse_t y,z,c;

The data type "mouse_t" is defined in MOUSTRAP.H. All variables
used with the MouseTrap library should be define as this type.

The first group of lines setup the screen so it's easier to
understand what's happening with the mouse. But by themselves they
do nothing of interest to this discussion. Ignore them and skip down
bit.

Define_Mouse_System(M_Single_Pages);

For the first step, we going to be using single pages; only one
of the pages we're about the define can be active at only given time.

y=Add_Mouse_Page(M_Text_Coord,15,20,24,40);

z=Add_Mouse_Page(M_Text_Coord,5,10,15,20);

Next, we define two mouse pages, Y & Z. Y is limited to the
rectangle from row 15, column 20 to row 24, column 40. Similarly, Z
is the area from (5,10) to (15,20).

Set_Mouse_Text_Cursor(0,0,TC(' ',4,4));

Now, we describe how the mouse cursor will look. We start with
something simple. We'll use a software cursor, with no screen mask.
We use the macro TC(), defined in MOUSTRAP.H, to build a cursor

which is just a space, with a red foreground (color 4) on a red
background.

Add_Mouse_Button(0,M_Middle,'2');

For our first button definition, we'll say that anytime the
Middle button is pressed, Read_Mouse will return an ASCII
character '2', regardless of what page is active (provided at
least one page IS active).

Add_Mouse_Button(z,M_Left,'1');

Next we'll have pressing the Left button return an ASCII
'1' whenever page Z is active.

- Page 30 -

MouseTrap Library, Rel 1.0
February 12, 198

Add_Mouse_Button(z,M_Right,0);
Add_Mouse_Hot_Spot(z,M_Right,7,13,13,18,'C');

Now, we add our first Hot Spot. Here, we must first declare
the Right button in Page Z, then we declare the area in the rectangle
(7,13) - (13,18) as a hot spot returning the character 'C' when that
button is pressed while page Z is active. Since no other hot spot is
defined, clicking the right button outside that area will return 0,
just as if no click had occurred.

Add_Mouse_Button(y,M_Left,0);

Add_Mouse_Hot_Spot(y,M_Left,15,20,24,30,'L');
Add_Mouse_Hot_Spot(y,M_Left,15,30,24,40,'R');

Continuing in a similar vein, we define two hot spots in page Y.
When the Left button is pressed, if the cursor is in the left side
we'll get the character 'L', while the right side return the character
'R'.

do {

Activate_Mouse_Page(z);

As we enter the loop, we activate page Z. The mouse cursor is
"turned on" with it's movement limited to the edges of the page.

c=Get_Char_Mouse_Kbd();
printf("Page Z: Character \"%c\"",c);

We stop, and get a character from either the keyboard (which is
not much fun), or via the mouse; and print it.

Activate_Mouse_Page(y);
c=Get_Char_Mouse_Kbd();
printf("Page Y: Character \"%c\"",c);

Now, we activate page Y (which automatically deactivates page
Z). The mouse cursor moves into the new area, and it's motion is
limited to that range. We get another character and print it.

} while (c!='Q');

Clear_All_Mouse_Definitions();

Define_Mouse_System(M_Overlaid_Pages);

Now, we want to start over, so we clear all the old definitions,
and restart, but this time using overlaid pages.

y=Add_Mouse_Page(M_Text_Coord,15,20,24,40);
z=Add_Mouse_Page(M_Text_Coord,5,10,15,20);

- Page 31 -

MouseTrap Library, Rel 1.0
February 12, 198

Add_Mouse_Button(0,M_Middle,'2');
Add_Mouse_Button(z,M_Left,'1');
Add_Mouse_Button(z,M_Right,0);
Add_Mouse_Hot_Spot(z,M_Right,7,13,13,18,'C');
Add_Mouse_Button(y,M_Left,0);
Add_Mouse_Hot_Spot(y,M_Left,15,20,24,30,'L');
Add_Mouse_Hot_Spot(y,M_Left,15,30,24,40,'R');

Set_Mouse_Text_Cursor(0,0,TC('+',4,2));

We'll redefine all of our pages, buttons, and hot spots, exactly
as we did the first time. We'll also change the mouse cursor, this
time to something a bit more exciting than before, a red plus sign
on a green background (color 2).

do {
Activate_Mouse_Page(z);
c=Get_Char_Mouse_Kbd();
printf("Page Z: Character \"%c\"",c);

Again, we activate page Z, and get a character from it. This
works exactly as it did in the first loop using single page mode.

DeActivate_Mouse_Page(z);
Activate_Mouse_Page(y);
c=Get_Char_Mouse_Kbd();
printf("Page Y: Character \"%c\"",c);

And again, we activate page Y, and get a character from it. The
only difference is that we had to first deactivate page Z.

Activate_Mouse_Page(z);
c=Get_Char_Mouse_Kbd();
printf("Page Y & Z: Character \"%c\"",c);

Now we get flashy. Without deactivate page Y, we'll reactivate
page Z. You will notice that the mouse can now move within a much
larger area, specifically the rectangle which circumscribes both of
the smaller rectangle. Notice that if you click the left button in
the area that is not within the boundaries of either page, "1" will
be return. This is because the button definition says to return "1"
whenever page Z is active, regardless of where the cursor is, even
if it is outside the stated area of Page Z. However, notice that
the Hot Spots of the left button in page Y, take precedence over this.
This is because the BUTTON definition on page Y was give after the
button definition off page Z, and therefore overrules it.

DeActivate_Mouse_Page(y);

Now, we deactivate page Y, leaving only page Z. Notice that the
mouse's movements are once again restricted to the area of page Z.
(See..I told you that I would fix this problem with release 1.01)

- Page 32 -

MouseTrap Library, Rel 1.0
February 12, 198

}
}

- Page 33 -

MouseTrap Library, Rel 1.0
February 12, 198

You should also remember that, although we always used ASCII
characters for return values in the example, ANY character or integer
value, in the range of 1 to 65534, can be used.

- Page 34 -

MouseTrap Library, Rel 1.0
February 12, 198

Chapter 5

Technical Specification

This chapter is provided only to those who have paid to become
registered uses. This was done because I assumed that it would be of
little use to anyone who didn't have the source code (which also comes
with registration). This method also gives me a few extra weeks to
write it.

- Page 35 -

MouseTrap Library, Rel 1.0
February 12, 198

Chapter 6

Appendix

A. MOUSTRAP.H
B. Global Variables
C. Error Codes
D. Reference
E. Support
F. Release History

- Page 36 -

MouseTrap Library, Rel 1.0
February 12, 198

Appendix A : MOUSTRAP.H

The header file, MOUSTRAP.H should be included in every C
program which uses the MouseTrap Library functions. It includes
complete function prototypes for each of the MouseTrap Library functio
In addition, it defines a number of constants which are to be used
with the functions. These include:

M_Overlaid_Pages -and- M_Single_Pages, which are used
with the function Define_Mouse_System.

M_Text_Coord -and- M_Graphic_Coord, which are used with the
Add_Mouse_Page function, to tell which system screen coordinates
are being given in.

M_Left, M_Right, M_Center, -and- M_Middle, which are used to
refer to the mouse buttons whenever necessary. Note that M_Center
and M_Middle are equivalent, and you may use whichever holds
your fancy.

M_HORIZ -and- M_VERT, which are used with Set_Mouse_Limits.

MERROR -and- MNOERROR, (-1 and 0, respectively), which are
return by various functions to indicate whether an error
occurred. Also defined are a large number of error codes, which
are discussed further in appendix C.

The macro TC() is used to create an integer value in the for
BFCC, where B is the background color, F, the foreground color,
and CC is a character. This value is used by Set_Mouse_Text_Curs
(and by other routines outside of the MouseTrap Library
which perform direct screen writes). The macro require that yo
give it the character, foreground and background color code. Th
statement TC('A',14,5) would produce the code 5E41h, which mean
the letter 'A' in bright Yellow on a Magenta background.

It also declared three global variables, which are described
in Appendix B.

Also defined is the data type "mouse_t" which is used to define
vitually every variable used in the MouseTrap functions. Also
included are the structure definitions for Pages, buttons, and
hot spots. I'll not should what you can use them for, but I
thought you might be interested.

The last group of lines will"force" LINK to include the proper
version of the MouseTrap library, without being explicitly told
to. This will only work with Microsoft C 5.1. Other compliers
will probable generate a warning for these lines.

- Page 37 -

MouseTrap Library, Rel 1.0
February 12, 198

Appendix B : Global Variables

There are three global variables used with the MouseTrap
Function. They are:

_mouse_there: This is initialized to 0, meaning no mouse
available, and is set by calling either Check_Mouse or
Define_Mouse_System. After a call to either of those
functions it is set to either 0, meaning that there is STILL
no mouse on this system, or, 2 or 3, giving the number of
buttons on the mouse. Since "no mouse" is zero, and "mouse
present" is nonzero, this variable can also be used as a
TRUE/FALSE value.

M_Paging_Method: This simply holding the value you used with
Define_Mouse_System, and is either M_Overlaid_Pages or
M_Single_Pages.

M_Error: This holds the error code of the last error that occurre
Full description of the error codes is given in Appendix C.

And, there are three predefined graphic cursors:

Lightening : A Lightening Bolt, use hot spot
PeaceSign : A peace sign. use hot spot.
CrossHair : A cross hair, use hot spot

- Page 38 -

MouseTrap Library, Rel 1.0
February 12, 198

Appendix C : Error Codes.

Error conditions are indicated by a function returning the value
MERROR (-1) with the error code given in the global variable M_Error.
The error code remains in M_Error until either cleared manually by the
user or altered by another error.

The error code are:

MNOINIT An attempt was made to use one of the advanced fu
without first calling Define_Mouse_System

NOMOUSE An attempt was made to use a function while no
mouse was attached to the system.

NOSPACE An attempt to add a new Page, Button, or hot
spot failed because there was not enough availabl
RAM. Since these definitions use so little
memory, this error should rarely occur.

MTOOMANY An attempt was made to define more than 16 pages
in Overlaid mode, or more than 65536 pages in
single page mode, or more than 65536 hot spots
(in either mode). Remember, that all hot spots
defined, even those later deleted, count towards
this limit. (Deleted pages, however, do not.)

MNOREINIT An attempt was made to call Define_Mouse_System,
after pages were added. All pages (and buttons,
and hot spots) must be removed before a second
call to Define_Mouse_System may be made.
Use Clear_All_Mouse_Definitions().

MNOTPAGE An attempt was made to reference a page which had
not yet been defined.

MNOTBUTTON An attempt was made to reference a button which ha
not yet been defined.

MNOTHOTSPOT An attempt was made to reference a hot spot which
had not yet been defined.

MBUTTONRET An attempt was made to tied a hot spot to button
which already has it's own return value.

MNOACTIVE An attempt was made to call Read_Mouse with no pag
active.

NOTE: The MouseTrap library does not display any form of
error message. The only way it alerts you that it feels somethin
has gone awry is throught these flags.

- Page 39 -

MouseTrap Library, Rel 1.0
February 12, 198

- Page 40 -

MouseTrap Library, Rel 1.0
February 12, 198

Appendix D : Reference

Much of the information used to create this manual was taken from

Mouse System Corporation, Optimouse Reference Manual,
version 4.0, Copyright 1984, 1985.

Cort, Nigel. "How to Handle a Mouse, part 1." The C Gazette.
2:4, March 1988.

Cort, Nigel. "How to Handle a Mouse, part 2." The C Gazette.
3:1, Summer 1988.

- Page 41 -

MouseTrap Library, Rel 1.0
February 12, 198

Appendix E : Support

James M. Curran is the author of the MouseTrap Functions and
is solely responsible for it's content. Any comments, problem,
suggestions, marriage proposals, or death threats stemming from this
library should be directed to him at:

James M. Curran
24 Greendale Road
Cedar Grove, NJ 07009-1313

Don't forget the "M." since the family is just swarming with
"James Curran"'s

He can also be reached via Compuserve at [72261,655].

And for the more adventurous, he's also a regular on several
northern New Jersey BBS's under the handle "The Perfect Stranger"

Special Note for version 1.0: Because of the painfully short time
between the original inspiration for this, and my leaving on a Europea
trip (which, I assume will do much to help me forget said pain), this
entire project was written, debugged, and documented in 10 days (while
still working at the day job). Obviously, there HAS to be some bugs
lurking out there somewhere, if not in the functions themselves, in
this documentation (there are, by the way, three functions in the
library that are not described here). Any feedback from users will be
of great assistance in putting out version 1.1 when I get back.

- Page 42 -

MouseTrap Library, Rel 1.0
February 12, 198

Appendix F : Revision History

9/21/88: Original Release!

10/22/88: Revision 1.01: Corrected typo's and clarified areas
of the documentation. Rewrote the Set_Mouse_Limits function
Finally documented Get_Mickeys, and Set_Mouse_Graphic_Curs
and added the sample cursors (Peace, Lightening, CrossHair).
Eventually wrote Chapter 5.

2/89 : Converted documentation to WordPerfect. (May actually be
updated in a timely fashion now) Corrected Table of Contents
and added Index, and did all kinds of things one can do when
I finally gets a REAL word processor. (Note how I carefull
avoid slandering my last word processor).

- Page 43 -

MouseTrap Library, Rel 1.0
February 12, 198

Appendix I : Index

Activate_Mouse_Page() . 1
Add_Mouse_Button() . 1
Add_Mouse_Hot_Spot() . 1
Add_Mouse_Page() . 1
Check_Mouse() . 4-7, 9-11, 1
Clear_All_Mouse_Definition() . 1
Clear_Mouse_Pages() . 1
DeActivate_Mouse_Page() . 1
Define_Mouse_System() . 5, 1
Delete_Mouse_Button() . 1
Delete_Mouse_Hot_Spot() . 1
Delete_Mouse_Page() . 1
Functions . 4
Get_Char_Mouse_Kbd() 16, 29, 31, 3
Get_Mouse_Position() .
Get_Mouse_Press() .
Get_Mouse_Release() .
Hide_Mouse() . 4,
Read_Mouse() . 1
Set_Mouse_Limits() .
Set_Mouse_Position() .
Set_Mouse_Text_Cursor() .
Show_Mouse() . 4, 6,
Activate_Mouse_Page() . 1
Add_Mouse_Button() . 1
Add_Mouse_Hot_Spot() . 1
Add_Mouse_Page() . 1
Check_Mouse() . 4-7, 9-11, 1
Clear_All_Mouse_Definition() . 1
Clear_Mouse_Pages() . 1
DeActivate_Mouse_Page() . 1
Define_Mouse_System() . 5, 1
Delete_Mouse_Button() . 1
Delete_Mouse_Hot_Spot() . 1
Delete_Mouse_Page() . 1
Functions . 4
Get_Char_Mouse_Kbd() 16, 29, 31, 3
Get_Mouse_Position() .
Get_Mouse_Press() .
Get_Mouse_Release() .
Hide_Mouse() . 4,
Read_Mouse() . 1
Set_Mouse_Limits() .
Set_Mouse_Position() .
Set_Mouse_Text_Cursor() .
Show_Mouse() . 4, 6,

- Page 44 -

