
68 MARCH 1996 Visual Basic P

M A P I W O R K F L O W

Peter Vogel is the applications su
Champion Road Machinery, a
Certified Solution Developer, th
two terrific boys, and Jan’s hus
necessarily in that order). He can
at peter.vogel@odyssey.on.ca.

Use VB3, the MAP
VBX, and compon
of Microsoft Offic
create a complet
Workflow Autom
application for
both in-house an
remote use.

Click & Retrieve
Source

CODE!
Reading the
Mail

B Y P E T E R V O G E L
I
ents
e to

e
ation

d

ould you like to have your com-
puter request that processing
be done by another computerW

on the network? Would you like to be noti-
fied when jobs running on an unattended
computer run to completion? How about
getting “almost workflow” benefits with
minimal changes to your Excel, Word, and
Access applications? Maybe these features
should come with built-in fault tolerance,
auditing, administration, and logging capa-
bilities. And of course, you want to get all
these features for free. I did, too, and I didn’t
have to look any further than Microsoft’s
Mail API (MAPI) as implemented in VB’s
MAPI.VBX.

To take advantage of mail technology
from within your VB application, you need
to start with a generic program to read
your mail (if e-mail terminology is new to
you, look at the accompanying sidebar, “A
Brief Introduction to Mail Systems”).
rogrammer’s J

pervisor at
 Microsoft
e father of
band (not

 be reached
Let’s call this program MailHandler
(MAILHAND.EXE) and create it as a single
form with two controls, MAPISESSION.VBX
and MAPIMESSAGES.VBX.

MailHandler’s code starts by logging
onto the mail session of the computer it is
running on:
ournal ©1991–1996 Fawcette Techn
Sub LogInMail
'pick up any new mail on startup
MAPISESSION.DownloadMail = True
'piggyback on existing mail session
MAPISESSION.NewSession = False
'start session
MAPISESSION.Action = 1
No

Display AttachmentDisplay NotificationRun Program

Other Functionality

Parse Text
Build Command Line

for Macro and
Document

Build Command Line
for Data

Access?

Word or Excel?

Add to
Command Line

Add to
Command Line

with Swich

Update
Document with
OLE Automation

Yes

Yes

No

Check Keywords in
Subject

Process A Message

Mail Automation from Start to Finish. Processing mail consists of logging
onto the existing Mail session and repeatedly building lists of new mail. Each

list must be processed, looking for messages to be handled by MailHandler. When a new
mail list adds no new messages, processing ends.

FIGURE 1
http://www.windx.comical Publications

M A P I W O R K F L O W

 _

as

The Check is in the Mail? The routine charged with checking for interesting
mail, CheckType is called from within ProcessMail and returns the type of mail

just read. This is passed to ProcessMessage, which finds the message and calls the
appropriate routine to process it.

LISTING 1
'pass session ID to message VBX
MAPIMESSAGES.SessionID = _

MAPISESSION.SessionID
End Sub

Working with MAPISESSION estab-
lishes the mail session. All handling of the
mail is done through MAPIMESSAGE,
which is passed the ID for the session
from MAPISESSION. This code assumes
that the user has already logged onto the
mail system. If your standard is to include
mail in your users’ startup groups, it’ll
work. Otherwise, you must set the logon
information in your code:

MAPISESSION.UserName = "MailUser"
MAPISESSION.Password = "UserPassword"

Microsoft Mail gives you a third option:
put UserId and Password information in
the user’s INI file for automatic logon at
startup (an unattended computer at my
office is configured in this manner). The
last thing you need to do is shutdown the
mail session you created using:

Sub LogOutMail
MAPISESSION.Action = 2

End Sub

STRATEGY, FAILURE, RECOVERY
In my opinion, you have three usable
strategies for processing mail. The first
method requires that you start
MailHandler in the StartUp Group and log
on at startup, check for Mail in a Timer
event and process any messages that re-
quire it, log out, and shut down.

In this scenario, the logon code goes in
your form’s Load event and the logout
code goes in the form’s Close event. This
strategy consumes the most resources
over the longest period of time, but it also
has the smallest performance hit when
mail is actually processed. You will need
to add the timer control to your form in
order to use this strategy.

To use the second method, you also
place the MailHandler program in the
StartUp Group, log onto mail in the Timer
event, process mail, and log out. The logon
and logout code go in the Timer event.

This consumes fewer resources over a
shorter period of time, but it also causes a
bigger memory hit when it’s time to pro-
cess mail. As with the first strategy, you’ll
need to add a timer control to your form.

The third method causes MailHandler
to start automatically when new mail is
received, log on, process mail, and log
out. The logon code goes in the Load
event and the logout code goes in the
Close event. This method consumes the
least amount of resources and does so
the least frequently, but causes the big-
gest resource hit when it is time to
http://www.windx.com ©1991–1996 Fawcett
process new mail.
Initially, I went with the first method

for implementation at my company. How-
ever, at the time we implemented the
system, we were having some problems
with our network and this method turned
out to be unreliable: I’d leave the com-
puter alone for a while and return to find
Visual Bae Technical Publications
an “Unable to read from device NET-
WORK” message on the screen.

Converting to the third method from
the first consisted of putting an End state-
ment after the mail processing and a line
in the MSMAIL.INI file. It seemed simple
enough, so we went with it. Actually, we
left both processes in with a command-
'define what the keywords to look for
'in the subject line of the messages
Global Const RUNPROGRAM = "RUN PROGRAM"
Global Const DISPLAYATTACHMENT = "DISPLAY ATTACHMENT"
Global Const DISPLAYNOTIFICATION = "NOTIFY MESSAGE"
Declare Function GetModuleUsage% Lib "Kernel" (ByVal hModule As Integer)
Declare Function FindExecutable% Lib "shell.dll" (ByVal lpszFile$, ByVal

lpsDir$, ByVal lpszResult$)
Sub ProcessMail

'read all unread mail and respond to
'mail needing processing
Dim stzType As String
Dim stzId As String
Dim ing As Integer, ingUnRead As Integer

MAPIMessages.FetchUnreadOnly = True
MAPIMessages.Action = 1
ingUnRead = MAPIMessages.MsgCount
While ingUnRead > 0

For ing = 0 To ingUnRead - 1
MAPIMessages.MsgIndex = ing
stzType = CheckType((MAPIMessages.MsgSubject))
 If stzType > " " Then

ProcessMessage MAPIMessages, stzType, ing
ingUnRead = ingUnRead - 1

 End If
Next ing
'check to see if any new mail recieved
MAPIMessages.FetchUnreadOnly = True
MAPIMessages.Action = 1
If MAPIMessages.MsgCount > ingUnRead Then

ingUnRead = MAPIMessages.MsgCount
Else

ingUnRead = 0
End If

WendEnd ProcessMail
Function CheckType (stzSubject as string) as string
If Instr(UCase(stzSubject),RUNPROGRAM) Then

CheckType = RUNPROGRAM
ElseIf Instr(UCase(stzSubject),DISPLAYNOTIFICATION) Then

CheckType = DISPLAYNOTIFICATON
ElseIf Instr(UCase(stzSubject),DISPLAYATTACHMENT) Then

CheckType = DISPLAYATTACHMENT
Else

CheckType = " "
Endif
End Function
Sub ProcessMessage(cntMailControl as control ,stzType as string, ingPos

integer)
'passed the type of mail,
'call the routine to process it
Select Case (stzType)

Case DISPLAYNOTIFATION
DisplayNotification cntMailControl, ingPos

Case RUNPROGRAM
RunProgram cntMailControl, ingPos

Case DISPLAYATTACHMENT
DisplayAttachment cntMailControl, ingPos

Case Else
MsgBox "Mail Type " & stzType & " is recognized _

but no routine exists to process it."
End Select
End If
sic Programmer’s Journal MARCH 1996 69

7

M A P I W O R K F L O W

l :

S
'
'
I

E

E
E
S

E
S

E

w
t
c

A

A
t
i
c
c

End Sub

LISTING 2 Looking for Keywords. The ParseText routine provides a standard way for each message-type routine to find its keywords.
With VB4’s improved variants, you can implement this as a function. RunProgram is the workhorse routine in MailHandler

and shows how the ParseText routine is used. WaitForCompletion uses a Windows API call to pause MailHandler until the program
completes.
ine option to switch between them

ub Form_Load()
 check to see if MailHandler
 already running and exit if so.
f App.PrevInstance Then
End

nd If
0 MARCH 1996 Visual Basic Programmer’s Jo
LogInMail
If Command() = "/T"

'strategy 1
Timer.Enabled = True

Else
'strategy 2
Timer.Enabled = False
ProcessMail
urnal ©1991–1996 Fawcette Techn
End
nd If
nd Sub
ub Timer_Timer()
ProcessMail

nd If
ub UnLoad(Cancel as integer)
LogOutMail

nd Sub

To get MSMAIL to run MailHandler
henever it received new mail, we added

his line to the MSMAIL.INI file on the
omputer that was to process the mail:

UTO=3.0;;;;APPEXEC.DLL;C:MAILHAND.EXE;_
0 010000000000000;_
Process application system mail;;;

We also had to ensure that
PPEXEC.DLL was in the Windows/Sys-

em directory of the computer. APPEXEC
s supposed to be a custom DLL that you
reate to pass parameters to the program
alled when new mail is received. Be-
Sub RunProgram (cntMail as control, ingPos as integer)
'passed a mail control, load the keywords
'array with the keyword to search for,
'get the name of the program and any parameters.
'check for special EXE’s that require funny
'formatting of their command lines
Dim stzKeywords(4,2)
Dim stzCommandline as string
stzKeywords(1,1) = "Program:"
stzKeywords(2,1) = "Document:"
stzKeywords(3,1) = "Macro:"
stzKeywords(4,1) = "CommandLine:"
ParseKeywords stzKeywords(), cntMail.Text
If stzKeywords(1,2) > " " Then

If stzKeywords(2,2) > " " Then
stzCommandLine = stzKeywords(2,2)

Endif
If stzKeywords(3,2) > " " Then

If Instr(stzKeywords(1,2), "MSAccess.Exe") > 0 _
Then
stzCommandLine = stzCommandLine & "/X " & _

stzKeywords(3,2)
ElseIf Instr(stzKeywords(1,2), "WinWord.Exe") > _

0 Then
stzCommandLine = stzCommandLine & "/m" & _

stzKeywords(3,2)
ElseIf Instr(stzKeywords(1,2), "Excel.Exe") > 0 _

Then
SetExeclMacro stzKeywords(3,2), _

stzKeywords(2,2)
Else

stzCommandLine = stzCommandLine & " " _
& stzKeywords(3,2)

End If
Endif
If stzKeywords(4,2) > " " Then

If Instr(stzKeywords(1,2), "MSAccess.Exe") > 0 _
Then
stzCommandLine = stzCommandLine & "/C " & _

stzKeywords(4,2)
ElseIf Instr(stzKeywords(1,2), "WinWord.Exe") > _

0 Then
SetWordCommand stzKeywords(4,2) ,_
stzKeywords(2,2)
ElseIf Instr(stzKeywords(1,2), "Excel.Exe") > 0 _

Then
SetExcelCommand stzKeywords(4,2),_

stzKeywords(2,2)
Else

stzCommandLine = stzCommandLine & " " _
& stzKeywords(4,2)

End If
Endif
WaitForCompletion Shell(stzKeywords(1,2) & " " _

& stzCommandLine,4)
Endif
End Sub
Sub ParseText (stzKeywords() as string,stz as string)
' passed a 2-D array of keywords and a
' string, add the value found for the
' keyword to the array
Dim stzWork as string
Dim ing as integer
stzWork = Trim(stz)
For ing = 0 to UBound(stzKeywords())

ingWordPos = Instr(stzWork,stzKeywords(ing,1))
If ingWordPos > 0 Then

ingTabPos = Instr(ingWordPos,stzWork,Chr(9))
ingCRPos = Instr(ingWordPos,stzWork,Chr(13))
stzKeyWords(ing,2) = Mid$(stzWork,ingTabPos _

+ 1,ingCRPos-ingTabPos -1)
End If

Next ing
End Sub
Sub WaitForCompletion(ingTaskId as Integer)
Sub RunProgram(cntMail as Control)
'passed a taskid, do not return until one of
'the instances of the task’s module stop
Dim ingInitialUsage As Integer
If ingTaskId <> 0 Then

ingInitialUsage = GetModuleUsage%(ingTaskId)
If ingInitialUsage > 0 Then

While GetModuleUsage%(ingTaskId) >= _
ingInitialUsage
DoEvents

Wend
End If

End If
It’s a First. This is a standard first message for any new tool. The displayed date
and time let the recipient know if the message had been received on time.FIGURE 2
http://www.windx.comical Publications

M A P I W O R K F L O W

i
a

R
D
s

User Tip
cause MailHandler doesn’t need any pa-
rameters, you can use APPEXEC, a dummy
DLL supplied with MSMail.

Now you’re ready to have MailHandler
see what’s in the mail. The trick is to
recognize which messages can be pro-
cessed automatically, and which mes-
sages are intended to be read by the user
(see Listing 1).

Define three types of mail to be pro-
cessed automatically: display a message,
run a program, and display an attachment.
All three types will make their appearances
in this article and, as you will see, defining
new types would be easy (see Figure 1).

You can use the MailType property to
identify the mail to be processed. When
you create your mail, set the MailType
property of your message to any value
(its default value is to be unset).

When reading the mail, you can check
the MailType property of each message
to identify your “system managed” mail.
Setting MailType also converts the mail
to noninterpersonal mail so that it does
not appear in your user’s in-box.

I chose not to use MailType because I
http://www.windx.com ©1991–1996 Fawcet
wanted to be able to create and read
MailHandler messages on the fly from within
the regular mail client. In case things went
wrong, I also wanted to be able to audit the
system just by reading the mail in our com-
puters’ in-boxes and sent-mail folders.

In addition, Microsoft’s documentation
suggests that MailType is not supported
for all mail services providers. Finally, the
receipt of non-IPM mail will not trigger the
automatic execution of a program.

To deal with these situations,
MailHandler checks for keywords in the
subject line of mail messages using the
InStr() function. These keywords deter-
mine if a message should be processed
and what routine should be used to handle
the message. InStr() allows the subject
line of the message to contain other infor-
mation (for audit purposes) and allows
forwarded and reply mail to be processed
by MailHandler.

Once MailHandler finds a message with
a keyword heading, it opens the message
and reads it, looking for more keywords.
This means that when MailHandler wakes
up and reads the mail, it can ignore mail
Visual Bate Technical Publications
that is already read because it’s already
been processed.

The ProcessMail routine creates a list
of unread mail and runs through it looking
for interesting subject headings. It pro-
cesses the subject headings by calling an
appropriate handler routine. When all the
unread mail is checked, ProcessMail
checks to see if any new mail has been
received while it was busy and checks it.
If none has, ProcessMail ends.

THE GOOD STUFF
Now that MailHandler can read the mail,
what do you want it to do with the mes-
sages? The simplest action you probably
want the program to take is to display a
notification on the screen.

The DisplayNotification routine reads
the text of the mail message looking for
the keyword “Notify:” followed by a tab.
Whatever follows the tab and precedes
the next carriage return is displayed in a
message box on the screen. A message
with the Subject “Notify Message - a test
message” with the text:

Notify: Hello World

will cause MailHandler to display “Hello
World” on whatever computer it is run-
ning on (see Figure 2). Here’s the
DisplayNotification routine:

Sub DisplayNotification(cntMail as _
Control, ingPos as integer)

'passed a mail control, load the
'keywords array with the keyword to
'search for, get the value of the
'message and display it
Dim stzKeywords(1,2)
MAPIMessages.Index = ingPos
stzKeywords(1,1) = "Notify:"
ParseKeywords stzKeywords(), _

(cntMail.Text)
If stzKeywords(1,2) > " " Then

MsgBox Now() & ": " & _
stzKeywords(1,2),16

End If
End Sub

Now you might ask, “What possible use
could this routine be?” We have MailHandler
running on a computer in our security guard-
house. Several jobs running on unattended
computers at night send Notify-type mail to
our guards when they reach check points
(see Listing 2).

If the appropriate notification message
doesn’t appear on schedule, our guards
call the appropriate people. A number of
jobs also send mail when they abend or
run into various other problems.

Our convention in MailHandler mes-
sages is to load the text with the repeating
quartets of keywords, tabs, text, and car-
riage returns. The main reason for such
UNREGISTER A DLL WITH THE RIGHT
MOUSE BUTTON IN WIN95
Create a file called UNREGDLL.REG, and add this to the file:

REGEDIT4

[HKEY_CLASSES_ROOT\dllfile\shell]
@="open"

[HKEY_CLASSES_ROOT\dllfile\shell\open]
@=""

[HKEY_CLASSES_ROOT\dllfile\shell\open\command]
@="C:\\windows\\system\\regsvr32.exe %1"

[HKEY_CLASSES_ROOT\dllfile\shell\Unregister]

[HKEY_CLASSES_ROOT\dllfile\shell\Unregister\command]
@="C:\\windows\\system\\regsvr32.exe /u %1"

Run the file in Windows 95. Now, when you right-click on a DLL or OCX file
n Explorer, the Unregister command will appear, allowing you to unregister
 DLL quickly. You can delete the REG file after you run it the first time.

To register and unregister a DLL or OCX from the command line, use
egSvr to register a 16-bit DLL or OCX and use RegSvr32 to register a 32-bit
LL or OCX. To unregister a DLL, use the same command with the /u
witch. For example:

RegSvr32 msrdo.dll registers the RDO dll
RegSvr32 /u msrdo.dll unregisters the RDO dll

—A. Nicklas Malik
received by e-mail

SEND YOUR TIP
If it’s cool and we publish it, we’ll pay you $25. If it includes code, limit code length to
10 lines if possible. Be sure to include a clear explanation of what it does and why it
is useful. Send to 74774.305@compuserve.com or Fawcette Technical Publications,
209 Hamilton Ave., Palo Alto, CA, USA, 94301-2500.
sic Programmer’s Journal MARCH 1996 71

M A P I W O R K F L O W

CommandLine: P:\TRANSFER\BINFILE.TTO
simple messages is that they were simple
to create. Not only was a function to create
these messages simple to write, but we
can also create messages on an ad-hoc
basis from within our normal mail client.

When reviewing either the in-box or
sent-mail folders of any computer, it’s
easy to check sent and received mes-
sages, and whether each message was
formatted correctly. Finally, we could
write a simple ParseText routine that
would accept an array of keywords and
fill it with the corresponding values be-
fore returning it to the calling routine.

From within a program, creating a
message consists of setting the Text prop-
erty of your message. About the only
thing you have to watch out for here are
carriage returns (Chr(13)). If you’re cre-
ating a message using the MAPI.VBX, don’t
ever begin the text of a message with a
carriage return. VB will simply refuse to
send your mail if you do.

RPC AND LICENSEE MANAGEMENT
A more interesting example consists of re-
questing another computer to run a pro-
gram for you: sort of a postal Remote Proce-
dure Call. One of our systems required our
users to enter daily status information and
then click on a button to process this infor-
mation against a table of 2 million records.
This processing tied up the user’s com-
puter for 10 minutes. We altered the pro-
gram to send this message with the subject
“Run Program—Do Update”:

Program: P:\MASYSTEM\UPDATE.EXE

Recognizing that the subject contained
the keywords “Run Program,” MailHandler
would call the RunProgram routine to
process the message.

The simplest version of the RunProgram
routine parses the keyword “Program:” and
runs the program named after the tab. We
enhanced the program by adding a routine
to prevent MailHandler from moving to the
next piece of mail until the program that was
started had run to completion.

Not every process can use this facility
due to the time lag between request and
performance. Our mail clients can wait as
long as 10 minutes to send mail to the
server and, at the other end, our
MailHandler computer can wait an addi-
tional 10 minutes before retrieving its
mail. If either computer is busy, the delay
can be even longer.

MailHandler won’t respond to new mail
until it has finished processing its current
job. All these considerations mean that time-
sensitive jobs can’t be naively implemented
using Mail. In this case, the job would be
done in time if it finished before midnight, so
it was a perfect candidate for MailHandler.
72 MARCH 1996 Visual Basic Programmer’s J

It’s also important to recognize this
store-and-forward process as a benefit. If
the network is down, the mail client will
hang on to the mail until it can be sent
over the network. At the other end, if the
receiving computer is down, the mail sys-
tem will hang on to the mail until it can be
sent. This fault tolerance ensures that the
mail will get through.

Passing the command-line parameters
to the program required a more compli-
cated format. Our LAN-based applications
often needed to transfer data to the AS/400,
ournal ©1991–1996 Fawcette Tech
which was unable to handle ODBC access.
We wanted to limit the number of com-

puters we installed the upload-to-AS/400
program on, so we installed it on a single
computer along with MailHandler. Mail
sent to this computer still uses the
RunProgram message, but we enhanced
the routine to handle a command-line
keyword. The message:

Program: S:\SOFTWARE\TRANSFER.EXE
http://www.windx.comnical Publications

M A P I W O R K F L O W

, _

 _

End Sub

E

Sub DisplayAttachment (cntMail As Control, ingPos _
As Integer)

Dim stzAttachment As String, stzDefaultDir As String
Dim stzExecutable As String * 128
Dim ingResult As Integer
Dim obj As object
Dim ingEndPos As Integer
cntMail.MsgIndex = ingPos
stzAttachment = cntMail.AttachmentPathName
stzDefaultDir = "C:\"
ingResult = FindExecutable%(stzAttachment, _

stzDefaultDir, stzExecutable)
If ingResult > 32 Then

ingEndPos = InStr(stzExecutable, ".EXE")
ingResult = Shell(Left$(stzExecutable, ingEndPos + _

3) & " " & stzAttachment & Mid$(stzExecutable, _
ingEndPos + 4, 20), 1)

Else
MsgBox "Unable to find program to open " & _
http://www.windx.com

part of their feature

A Brief Introduction

LISTING 3 All Set! SetExcel and SetWord provide a standard way to pa
to Nothing before ending the routines. If you don’t do this,

xcel’s case, not shut down at all.

©1991–1996 Fawcette Technical Publicatio
stzAttachment & "."
End If
End Sub
Sub SetExcelCommand (stzCommandLine as string

stzDocument as string)
Dim obj As object
Set obj = CreateObject("Excel.Application.5")
obj.workbooks.open stzDocument
obj.Range("Command").value = stzCommandLine
obj.activeworkbook.[Close] True
obj.quit
Set obj = Nothing
End Sub
Sub SetWordCommand (stzCommandLine as string,

stzDocument as string)
Dim obj As object
Set obj = CreateObject("word.basic")
obj.fileopen stzDocument
obj.setdocumentvar "Command", stzCommandLine
obj.fileclose 1
Set obj = Nothing
set. The ability to

to the MAPI Family

ss data to Word and Excel. It’s important to set the object variables
 both applications are prone not to give up their resources or, in
The MAPI family consists of three sib-
lings: Simple MAPI, Extended MAPI,
and Common Messaging Calls (CMC).
The MAPI.VBX rests on Simple MAPI,
which has unfortunately become the
family’s black sheep. CMC is the
younger, more favored half-sister,
while Extended MAPI is the more ca-
pable big brother.

MAPI is designed to allow Windows
to do for electronic mail what it has
already done for printing—remove
device dependence. If you use MAPI
calls in your program to implement
electronic mail, your application
should be able to work with any combi-
nation of vendors’ address books, mes-
sage stores, and transport services. Like
printing, MAPI is a complete subsystem
within Windows with a set of front-end
interfaces for your application to use
and back-end interfaces for e-mail ser-
vices. In the same way that the printing
subsystem makes plotters and printers
look alike to your application, MAPI
makes fax services and bulletin boards
appear the same. Like the printing sub-
system, the MAPI subsystem has its
own spooler. MAPI also breaks e-mail
down into four separate kinds of ser-
vices—address books, message stores,
transport services, and profile services
(which allow users to specify which
combination of services they require).
MAPI allows application developers to
work with any combination of MAPI-
compliant service providers.

MAPI was created by Microsoft in
consultation with industry vendors as
part of the Windows operating system
and services. CMC was developed later,
in conjunction with the X.400 API Asso-
ciation. Because it is based on X.400
specification, it’s a platform- and OS-
independent specification. Microsoft’s
recommendation is that you use Simple
MAPI only if you have legacy Simple
MAPI applications to support.

CMC is designed to allow developers
access to basic mail functions from a wide
set of tools—from application macro lan-
guages to C++. Unlike ODBC, MAPI has no
conformance levels other than the dis-
tinction between the minimum level rep-
resented by the 10 CMC calls and the full
functionality of Extended MAPI. It is the
developer’s responsibility when work-
ing with Extended MAPI to determine
what functionality is available from the e-
mail services.

From within Visual Basic, MAPI VBX
represents the easiest access to the func-
tions of CMC. Similarly, within Access
and Excel it’s easy to use the SendObject
action and SendMail method, respec-
tively. The Word Resource Kit provides
functions for using MAPI within Word,
or you can use the workarounds sug-
gested in the article. Microsoft may
choose to implement the functionality
of these high-level objects through any
of the MAPI family without impact on
your applications. However, in other
environments you may have to choose
between CMC and Extended MAPI calls.

Microsoft distinguishes between
three kinds of mail-enabled applica-
tions. Mail-aware applications are those
that make mail operations available as
Visual Bans
route a Word document through sev-
eral users is a typical example. These
applications will probably find all their
needs met with CMC. Mail-reliant ap-
plications need mail to perform their
functions, while workgroup applica-
tions are, in many ways, high-level
mail processors. These applications
should probably look to Extended
MAPI. The distinction often comes
down to whether the application needs
to read mail. If it does, more often
than not it is going to require Ex-
tended MAPI.

In addition to being object oriented,
Extended MAPI provides many features
that CMC does not. Three of the more
important are:

• Access to the hierarchy of folders.
CMC allows the developer to view only
the contents of the user’s in-box. The
developer cannot view, create, or de-
lete other folders, or move messages
between folders.
• Search capabilities. The search capa-
bilities within Extended MAPI allow the
developer to build complicated cross-
folder searches and display the results
of the searches in a new “search folder.”
• Event notification. Extended MAPI
lets applications request that MAPI
notify them when certain events oc-
cur, eliminating the need for polling.

A similar initiative is the VIM (Ven-
dor Independent Mail) specification
developed by Borland, Lotus, Apple,
and IBM. Many mail-service providers
support both specifications.—P.V.
sic Programmer’s Journal MARCH 1996 73

M A P I W O R K F L O W
launches the transfer program pass-
ing the name of the transfer specifica-
tion file (BINFILE.TTO) on the com-
mand line. Needless to say, the first
version of this new routine worked
well when a command line was speci-
fied, but crashed when it got one of the
old messages with no command-line
parameter.

ROAD WARRIOR SUPPORT
While the RunProgram routine would
74 MARCH 1996 Visual Basic Programmer’s Jo

handle a great many situations, we had to
add a new routine to handle Microsoft
Access. Perhaps your sales staff needs to
request from the database information
regarding sales to a customer, typically
before visiting that customer. While we
wrote an Access application to provide
the information, it runs too slowly over
dial-up links to be useful to salespeople
on the road. A program to create and mail
this message with the subject “Run Pro-
gram—Get Sales Status” takes about 20
minutes to write in VB, and less time in
urnal

Access:

©1991–1996 Fawcette Tech
Program: MSACCESS.EXE
Document: P:\MASYSTEM\ORDERS.MDB
CommandLine: 145678 Wbrimley
Macro: GetOrderInfo

Here, the command-line data consists of
the customer number and the e-mail ad-
dress of the salesperson requesting the
information. When a computer at corpo-
rate headquarters running MailHandler re-
ceives this mail, the RunProgram routine is
called. RunProgram parses the message,
starts Microsoft Access with the specified
database, and uses Access’s /X command-
line parameter to specify the macro to run.
It will also use the /C parameter to pass data
to Access on the command line.

The GetOrderInfo macro that the mes-
sage requested to run is three lines long
and consists of the actions:

• SetWarnings, to turn off Access’s warn-
ing messages.
• SendObject, to create and mail the re-
port as an Excel spreadsheet.
• Quit, to exit Access after the job is run.

The query that generates the report
must be altered to parse the first word of
the command line and use it as the crite-
ria to select the customer:

Left$(Command$(),Instr(Command$()," ")-1)

The SendObject action must parse the
second word in the command line to get
the address of the salesperson to mail the
report to:

Mid$(Command$(),Instr(Command$()," ")+1)

Your road warriors send their requests
and get their answers by return e-mail.

If several pieces of mail are to be sent
and processed in order, be careful. While
MAPI can sort the mail in order by time sent,
the precision of the time can’t be any finer
than to the minute. As a result, if two mes-
sages are sent in the same minute, their
processing order is not guaranteed. When
we needed to send more than one piece of
mail and needed the messages to be pro-
cessed in a specific order, we had to ensure
that they were sent at least a minute apart.

In Word, you specify the startup macro
with the /M switch. In Excel, you can specify
only one routine to be run when a work-
book is opened. For workbooks that have
several different routines, an Auto_Start
routine must parse the command-line infor-
mation and call the appropriate routine.

Neither Word nor Excel support the
Command() function from Access and Vi-
sual Basic, so data cannot be passed through
command-line parameters. The simplest
workaround is to use OLE Automation in
http://www.windx.com

the RunProgram routine of MailHandler to

nical Publications

M A P I W O R K F L O W

interface:
set a cell called Command in the Excel
worksheet to the passed values. In Word,
setting a document variable accomplishes
the same task (see Listing 3).

The RunProgram routine checks Ac-
cess, Excel, and Word as the specified
program to format their command lines
correctly and set the passed data. It might
have been better practice to create sepa-
rate routines with their own keywords
and message formats.

Creating return mail in both Excel and
Access is simple. The SendMail method in
Excel and the SendMail Action in Access
are the single commands required to mail
workbooks, forms, reports, or tables.

In Word, however, sending mail is more
difficult. One solution is to use the Word
Resource Kit, which includes a Word DLL
with the necessary MAPI routines. The
Word Resource Kit is available in The
Word Developer Kit, Second Edition, Ver-
sion 6.0 from Microsoft Press (ISBN 1-
55615-681-2) and in the Microsoft Office
Developer’s Kit. As a workaround, you
can create a Word macro using Word’s
MailMerge commands.

While the required Word macro is only
a few lines long, before you can use it you
must create a Word data document con-
taining the Address1 field. The Word
MailMerge Wizard lets you do this: create
a data document called MAILDUM.DOC.
Put a copy on each computer running
MailHandler. At mail time, the macro
opens MAILDUM.DOC and changes the
Address1 field to the e-mail address of the
person to be mailed to. It then closes
MAILDUM and mails the document:

Sub MailIt(address$, subjecttext$)
FileOpen .Name = _

"c:\msoffice\winword\maildum.doc"
NextCell
Insert address$
FileClose 1
MailMergeOpenDataSource

 .Name = "MailDum.doc"
MailMerge .Destination = 2,

.MailSubject = subjecttext$,

.MailMerge,

.MailAddress = "Address1"
End Sub

MailSubject can be set to any string you
like and will be used as the subject line of
your mail message. Using a menu selection
from Word’s General Options menu, you can
choose to have the document sent as the
body of your message or as an attachment.

THE USER INTERFACE
Having gone this far, the next step was to
move out of merely batch processing and
into an interactive world. We were al-
ready mailing various Access reports to
our users as Excel spreadsheets or at-
http://www.windx.com ©1991–1996 Fawcett
taching Word documents to our mail.
However, our users were having diffi-

culty finding and working with this output
when their in-boxes got full. Putting a
front end on MailHandler turned out to be
relatively easy and allowed our users to
find and process their computer-gener-
ated mail more easily.

The first step was to enhance the
Form_Load procedure to accept an-
other parameter to display the user
Visual Bae Technical Publications
Sub Form_Load
If command() = "/I"

frmUI.Show
ElseIf command() = "/T" Then
' etc.
End Sub

The second step was to add a line to
the MSMAIL.INI file to put “Process Mail”
on the Tools menu of the user’s Mail
client. When selected, this choice calls
MailHandler with the /I parameter:
sic Programmer’s Journal MARCH 1996 75

7

M A P I W O R K F L O W

P

c
l
p

w
f
s
c
s
a

t
m
t

p
w
c
r
a
t

m
t
r
d
m

p
f
b
o
m
p
b

P
C

w
r
t

m

c

WF=3.0;Mail;&Process Mail...;13;_
APPEXEC.DLL;C:\MAILHAND.EXE /I;;_
Process workflow mail;_
MSMAIL.HLP;0000

If the user needs to interactively pro-
ess received mail, you should remove the
ine in the MAIL.INI file that causes mail to
rocess automatically (see Figure 3).

With this housekeeping out of the way,
e began development on the workflow

ront end to MailHandler. Previously, the
ystem retrieved all unread mail and pro-
essed it immediately. The workflow
creen would have to retrieve all the mail
nd process it on request. To handle this,
6 MARCH 1996 Visual Basic Programmer’s Jo

ail it finds interesting.
he workflow screen retrieved the unread
ail with interesting keywords and loaded

he subject line to a standard grid control.
Along with the subject information, the

osition of the message in the mail queue
as stored in the grid. A double click on any
ell on the grid calls the standard ProcessMail
outine, passing the MAILMESSAGE control
nd the position of the selected message in
he queue as usual (see Figure 4).

Members of the systems group in
y organization were the first users of

he screen. When mail needed to be
eprocessed, or processed out of or-
er, the workflow screen made the job
uch easier.
urnal

f
t

t
y
t
e
h

t
t
o
t
n
a
s
t

h
T
m
a

c
d
i
h
u
a

e
k
m
T
s
r

h
c
l

t
h
m
(
c
p
m
r
F
t

©1991–1996 Fawcette Techn
The next application was for our order-
rocessing system. When an order requires

inancial approval, a mail message would
e sent from the order-entry application to
ur finance manager. Once received, the
ail message opens the application dis-

laying the sales order whose order num-
er was passed on the command line:

rogram: Ordentry.Exe
ommandLine: 17406

We added a “Display Attachment” key-
ord to the system to allow our users to

eview e-mailed reports without having
o search them out in their mailboxes,
ulfilling the original objective in adding
he interactive processing.

Now that you’ve started sending mail
o particular users, it’s important that
ou do not use their e-mail addresses as
he “To:” line of the message. If you do,
ach time someone changes jobs you will
ave to rewrite your code.

Instead, set up recipient lists named for
he job that is to be done and direct the mail
o the list name. While most lists will have
nly one member, this practice allows you
o have mail sent to multiple users where
ecessary. As people change jobs and jobs
re reassigned, you can use your mail
ystem’s administration facility to change
he person who belongs to the job.

At the very least this saves you from
aving to develop the facility yourself.
he only documentation that must be
aintained is a list of which job streams

re associated with which recipient lists.
This is only a small peek at what mail

an do for you. We are starting to keep our
ocumentation and company guidelines

n Windows help files. At the top of each
elp screen is a button that allows the
ser to mail comments, corrections, and
dditions to the help file’s manager.

A database of reviewers and inter-
sted parties for each help file helps
eep track of who should be notified (by
ail, of course) when the file is updated.
he interactive screen allows the respon-
ible person to manage and track these
equests.

I keep a schedule of what jobs are to
ave been run at what times over the
ourse of the day. MailHandler writes to a
og file every time it performs an activity.

Periodically the system runs a job
hat checks to see if some scheduled job
asn’t run on time and mails a “Notify”
essage to the responsible person

note: many mail systems will automati-
ally forward the mail to a delegate if a
erson is away). Also, we can run a
onthly report comparing MailHandler

ecorded activity against the schedule.
or a lot of problems, the answer is in
he mail.
The Process for Processing Mail. A single line in the user’s MSMAIL.INI file
allows the user to start an interactive session with MailHandler. Clicking on

“Process Mail” starts MailHandler with the /I option, causing it to display a list of all the

FIGURE 3
Junk Mail? The workflow screen allows the user to review his or her computer-
generated mail and process it. In addition to processing the message, the user

an delete the mail, read it, forward it, and add annotations.

FIGURE 4
http://www.windx.comical Publications

