
54     MARCH 1996   Visual B

R E M O T E  D A T A  O B J E C T S

Forget ODBC’
Remote Data 
give VB4 clien
front ends a s
simpler data
interface.

William R. Vaughn is t
Hitchhiker’s Guide to V
sion 4.0 and SQL Server 6,
Microsoft Press. He works 
on the Visual Basic team a
specializing in client/serv
access issues. Bill can
billva@microsoft.com, an
fax at Beta V, 206-556-920

Click & Retrieve
Source

CODE!
A Walking Tour
 of RDO

B Y  W I L L I A M  R .  V A U G H N
s API.
Objects
t/server
afer,
was just nodding off in my big blue
chair when the phone rang. “Hello?”
I said in my this-had-better-be-a-I

good-reason-to-bug-me-on-Saturday
voice. I figured MCI was calling me with
another pitch but it turned out to be Fred
in trouble again. Fred, one of my
daughter’s soccer team parents, thinks
that because I work at Microsoft I must
be a computer guru. I should have told
him I was an IRS agent.

Fred’s office had just installed SQL
Server, but a few problems still loomed
over a Monday morning deadline to go
online. I said, “You know this is Saturday,
right?” He knew.

The database had been built and the
data loaded, but the front end had be-
come troublesome. Fred had read my
book, and I assumed he had taken some of
my advice.

“So, your VBSQL applications aren’t
working?” I queried.

“Actually, we decided to use the new
asic Programmer’s Jo

he author of A
isual Basic Ver-
 due in April from
as a senior writer
t Microsoft Corp.,
er and other data
 be reached at
d by telephone or
5.
Remote Data Objects instead.” I provided
a pregnant pause. Finally he broke the
silence. “Ah...does RDO have a problem
we should know about? Should we have
used VBSQL instead? Or maybe Jet DAO?
A consultant I know had argued for that.”

“No, no.” I replied. “I’m just surprised
you used RDO. It’s fairly new and not
many people have tried it yet. VBSQL
would have been the conventional choice.
However, you would have had a tougher
time coding it. As for DAO, certainly a lot
of people still use that, especially if they
have a background in dBASE. But you
chose the right technology for the long
run. RDO suits the size of the system
you’re working with, especially since you
depend so heavily on secure stored pro-
cedures. On the other hand, this call tells
me that being the pioneers caught you a
few arrows.”

“You got that,” Fred said. “We set up
the new server using stored procedures
all right, but we haven’t been able to get
them working properly. Could you come
over and take a look?”

“I’ll be there in twenty minutes.” My
spouse shook her head in resignation.
She knew I’d be gone for most of the
weekend. I pushed the stopwatch button
on my watch. Fred was now on the clock,
and at my double-time weekend rate.

WRESTLING WITH THE RESULT SET
It turned out that Fred had the problems
I’ve come to expect from sites that mi-
grate from ISAM-based systems to true
relational client/server. In many cases,
these sites must convert older applica-
tions that perform many of the tasks now
done entirely by the intelligent back end.
Examples include maintaining indexes,
finding data subsets, and performing bulk
operations on those subsets.

In systems based on ISAM (IBM’s
nonrelational, hardware-dependent In-
dexed Sequential Access Method which
urnal ©1991–1996 Fawcette Tech
permits both direct and sequential ac-
cess to file records), apps work directly
with the base tables. Such apps often
handle system maintenance tasks such
as compression or repair routines.

Relational systems rarely permit rou-
tine access to the base tables, much less
let you add indexes or new tables on the
fly. You can create applications that work
directly with the indexes and tables, but
in most serious systems—especially
large enterprise installations—their ad-
ministrators prevent access to base
tables. Instead they create SQL views or
stored procedures that extract data in
carefully orchestrated ways. Administra-
tors appreciate this, along with the abil-
ity to assign permissions to procedures
and views that cannot be assigned to the
base tables.

Fred’s team had done a pretty good
job of setting up the database. They used
the Access Upsizing Wizard for the initial
conversion, and hired a consultant to
build a number of intelligent stored
procedures to return and update the data.
The consultant completed the task and
then went off to Australia.

The errant consultant’s procedures
asked a series of questions that returned
a varying number of result sets based on
the answers. Fred’s group was having
trouble with the complexity of the result
sets. For example, the front-end applica-
tion queries the database to find available
hotel rooms that match a set of criteria.
Since the hotel rooms vary so much in
type and suitability, the agent using the
application was permitted to walk through
a decision tree to permit faster selection
of the room best matching the requested
features. The result sets provide answers
to the questions:

• What hotels in the area chosen have
available rooms? Once a hotel is chosen…
• How many rooms does the chosen ho-
http://www.windx.comnical Publications



R E M O T E  D A T A  O B J E C T S

i
b
h
q
m
d
a
m
a

a
t
m
t

p
v
s
r
o

•
INT value from the procedure.

back from your API calls.
tel have for the date given? If more than
zero, then…
• How many of these available rooms are
the right type, with the right number of
beds?
• Does the cost of  these rooms fall within
the requested price range?

If the stored procedure discovers a
“no” answer to any of these questions, it
doesn’t go to the next step. This design
separated each question into a separate
procedure. This way, given appropriate
parameters, the base procedure can call
subsequent procedures down the line. In
other situations, lower-level questions
can be asked by calling the subordinate
queries directly from the app. And to
Fred’s consternation, he discovered that
each SQL operation  returns a result set,
so one procedure might return two or
more result sets.

In both VBSQL and RDO you can eas-
http://www.windx.com ©1991–1996 Fawcette
ly capture the returned arguments sent
ack by each step. In DAO, on the other
and, you must execute a make-table
uery to build a permanent Jet table that
ust be dealt with once the operation is

one with the result set. DAO users must
lso deal with name collisions and other
ultiuser concerns that RDO handles

utomatically.
Note that if the procedure performed

ction queries, and you need to capture
he rows affected by the Update state-
ents, ODBC does not support this func-

ionality for multiple result set queries.
Don’t be surprised if your own stored

rocedure implementation rivals the con-
olution of Fred’s hotel query plan. Con-
ider this technique to examine result set
eturn values. Basically, a query—especially
ne using stored procedures—can return:

 A “return status” set by passing back an
Visual Ba Technical Publications
• Zero or more sets of data rows—one for
each select statement that returns rows.
• Zero or more output parameters.
• A “rows affected” value for non-select
queries like update, insert, or delete
statements.

All but the rows-affected value can be
retrieved from procedures that return
one or several sets of results (see Listing
1). The code in Listing 1 comprises a test
procedure that makes use of most of
these return arguments. The procedure
accepts the name of a city, and finds any
hotels with available rooms. It also re-
turns the range of prices for those rooms
and the total number of vacant rooms in
the city’s hotels. Try to ignore the way
Fred wrote the select statement and fo-
cus on the mechanism used to pass argu-
ments to and from the procedure. The
procedure accepts an input parameter
and returns two output parameters as
ServerName = GetSetting(appname:="RDO _

	 Sample App", _

	 section:="Settings", _

	 Key:="Server _

	 Name", Default:="Unknown")



Driver = GetSetting(appname:="RDO 

	 Sample App", section:="Settings", _

	 Key:="Driver", _

	 Default:="{SQL Server}")

Keys to the Kingdom. Windows 95’s RegEdit program lets you display the registry keys used in the application. These keys
were created manually at first and filled in with code from the application. The Get Setting function pulls out the information

based on app name, section and key, with a single function for each entry. This process uses less than half the code it would have taken
to use the Windows API registry functions, and eliminates the risk of blowing up your app by overlaying memory when the values come

FIGURE 1
sic Programmer’s Journal   MARCH 1996     55



R E M O T E  D A T A  O B J E C T S

m

a
n
a
c
i
a
a

t
n
a
o

p
t
d

“Sure, on the server. But that system is across town in the

ure,
ced

roo ts a
sin lso
ret  the
ho

LI

)

VB4

well as a row set.

Next you need techniques to call stored procedures. RDO lets
you call stored procedures in a variety of ways, but if you want to
have RDO help you pass parameters back and forth, you really
should use the rdoParameters collection associated with the
rdoPreparedStatement object. This also permits you to set a
number of important options like MaxRows and RowsetSize, and
access the RowsAffected property after it executes. But before
exploring these nuances, look at your options. In each case, a
connection (Cn) has been established to the back-end server:

Dim Cn as rdoConnection
Set Cn = rdoEnvironments(0)._

OpenConnection(dsname:=" ", _
prompt:=rdDriverNoPrompt, _
connect:=”UID=;PWD=;_
Database=Workdb;"_
Driver={SQL Server};_
Server=SeQueL;" )

This hard-codes the driver and server name into the connect
string, so you don’t have to install and manage a data source
name (DSN) on every workstation that runs the app. As an
alternative, I also showed Fred how to capture registered DSNs
from the registry and choose one from the list.

A better approach, however, saves the server name in the
registry. Because the VB4 help example for registry functions is
dysfunctional, I had to give him a nudge in the right direction. In
his case we set up the registry when the application was
installed and used this setting thereafter. Establishing a registry
setting was straightforward:

' Place the settings in the registry.
SaveSetting "RDO _

Sample App", "Settings", "Server Name", "SeQueL"
SaveSetting “RDO _

Sample App", "Settings", "Driver", "{SQL Server}"

I run this code when I’m first setting up the program. Later
in the initialization routine, we simply read in the registry
settings. Note these are all stored in a special registry loca-
tion (see Figure 1). Fred wanted to know if he could use
another registry path. He also wanted to know why he had to
use the registry instead of an INI file. I told him that his path
must use \HKEY_CURRENT_USER\Software\VBasic and VBA
program settings. “Of course,” I added, “you could use the
Windows API settings.” Fred looked like my four-year-old
when she finds brussels sprouts heaped on her plate. He
didn’t exactly enjoy using the APIs directly.

The registry is the new de facto-standard location for
storing program settings such as these. By doing so, Win-
dows 95 and Windows NT can help manage the settings as
part of the registry security mechanism. Other applications
can also locate these settings more easily; they don’t get
confused about what INI file is used or where it’s saved. And
users have a harder time accidentally erasing or munging the
registry. This happens all the time when you use INI files.

To get the settings out of the registry, you pull up the
server name and ODBC driver to use from their correspond-
ing registry slots:

Dim ServerName As Variant
Dim Driver As Variant

ServerName = GetSetting(appname:="RDO _
Sample App", section:="Settings", Key:="Server _
Name", Default:="Unknown")
56     MARCH 1996   Visual Basic Programmer’s Journal ©199
Driver = GetSetting(appname:="RDO _
Sample App", section:="Settings", Key:="Driver", _
Default:="{SQL Server}")

Then you stick the settings into the RDO OpenConnection
ethod to gain access to the specific server and driver:

Dim Cn as rdoConnection
Set Cn = rdoEnvironments(0).OpenConnection _

(dsname:="", prompt:=rdDriverNoPrompt, _
connect:="Server=" & ServerName & ";Driver=" & _
Driver & ";" & "UID=;PWD=;Database=Workdb;" )

Both methods assume that the SQL Server has domain-man-
ged (integrated) security enabled, and that as a result users don’t
eed to provide a password or user name. As long as they get
ccess to the workstation and can log into the network domain
ontroller, they can gain access to SQL Server. The Windows logon
nterface captures both the UID and PWD values and passes the UID
long to the SQL Server security manager, as long as you code them
ccording to the method I showed to Fred.

Fred wanted to know if he had to use the new coding syntax
hat kept appearing in my examples. I told him that I like the new
amed-argument syntax because I don’t have to put in commas
s placeholders for missing arguments. But you can still use the
ld comma-delimited syntax if you are into commas.

Once Fred’s application was connected, he needed to call the
rocedure we had set up. Fred had been using ISQL to manage
hese procedures, but found it a pain to have to remember to
rop the procedure each time.

“Aren’t you using SQL Enterprise Manager?” I asked.
1–
Get the Best Rate. A Transact SQL stored proced
FindHotelInCity, returns the highest- and lowest-pri

m at any hotel in an indicated city. The procedure accep
gle input parameter and returns two output parameters. It a
urns a set of rows for each hotel in the desired city indicating
tel and a count of its rooms.

STING 1

CREATE PROCEDURE FindHotelInCity

@CityWanted  Varchar(128),
@MaxPrice Money OUTPUT,
@MinPrice Money OUTPUT

AS

declare @cnt int
Select Hotel, Count(*) "Available Rooms"
from Hotels H, Rooms R
Where H.ID = R.HotelID and
City = @CityWanted and
R.Vacant = 0
group by Name

Select @cnt = Count(*)
from Rooms R
where HotelID in(select ID from hotels _

where City = @CityWanted)c
and R.Vacant = 0

Select @MaxPrice = Max(Price) , @MinPrice = Min(Price
from Hotels H, Rooms R
Where H.ID = R.HotelID and
City = @CityWanted and
R.Vacant = 0

Return @cnt
http://www.windx.com1996 Fawcette Technical Publications



R E M O T E  D A T A  O B J E C T S
central IS facility.”
I asked, “Why don’t you install it here

on your Windows 95 system?”
“You can?”
We spent the next few minutes run-

ning Win95’s SQL Server setup utility.
Before long we had registered into his
remote server and were doing mainte-
nance on his stored procedures. By keep-
ing one window open for SQL Enterprise
Manager we could keep an eye on the
connections being used and tune the pro-
http://www.windx.com ©1991–1996 Fawcet
cedures while working on the new Visual
Basic app simultaneously.

Then we created an rdoPrepared-State-
ment to execute the procedure and manage
the various input and output parameters.

“Where are the input arguments for
the procedure coming from?” I asked.
“The stuff going into the procedure—are
you going to get them from a drop-down
list box or from a text-box control?

“They’re coming from a text box for
now,” Fred said. “We might use a list box
Visual Bate Technical Publications
later. The old application filled a list box
from data we read in from a separate
initialization file, but we don’t plan to use
that file anymore. Now we put the data in
a new database table.”

I suggested we use RDO to set up a new
database table, and bind one of the new
DBList or DBCombo controls to the data-
base table. But Fred declined the offer. “I
think I can handle that later,” he said. “For
now, let’s just use the text boxes.”

CAREFUL SYNTAX
I showed Fred how to code the
CreatePreparedStatement function. He
tried to do it earlier, but he received
object reference errors due to faulty SQL
syntax. When RDO asked the ODBC driv-
ers to execute SQLPrepare, he’d get an
rdoPreparedStatement, but no
rdoParameters collection. I showed him
the right syntax for his procedure. As we
worked through the coding for
CreatePreparedStatement we failed not
on the create statement itself, but on the
first reference to the rdoParameters col-
lection. If the process of checking the
syntax of the SQL argument fails, few
outward signs will tip you off.

“Shouldn’t the rdoErrors collection
have an entry to show that the syntax was
wrong?” Fred wondered.

“You’d think so, but no, bad syntax is
not caught at the Visual Basic level, so
there are no entries we can test for.” I
answered. “You just have to be careful.
Look here. We left out the ‘call’ keyword.
That’s the problem.”

To show Fred I had not made up this
answer, I added several lines of code to
examine the rdoErrors collection. We did
find the informational messages returned
by the driver to indicate that SQL Server
had changed databases and set the de-
fault language:

Sub ShowErrors()
Dim er As rdoError
For Each er In rdoErrors

Debug.Print er.Description
Next
End Sub

This code dumped three errors that
were really just informational messages.

We made sure to clear the rdoErrors
collection after having opened the con-
nection, to see if errors popped up. We
refocused on CreatePreparedStatement
again.

“”Why did you add the database name
to the SQL statement?” Fred wanted to
know.

“Without it, the ODBC driver can’t al-
ways find the procedure.”

“Doesn’t it just send down the proce-
sic Programmer’s Journal   MARCH 1996     57

dure to be executed?”



R E M O T E  D A T A  O B J E C T S

c
t
c
s
(
i

a
A
u
don’t expect to move around in the cur-
“Not really. The ODBC driver and RDO
must determine the data type of each
parameter sent and received. This way it
can bind to the variables and properly
format subsequent calls that reference
the returned arguments. To do this, the
ODBC driver queries the SQL Server for
specific information about each param-
eter specified. Without explicit address-
ing, especially for those procedures in
the master database, the driver can’t
locate the procedure. To be safe, I al-
ways add the full path to the procedure.
If you want to see details about how this
is done, check out the ODBC logs.”

But he wanted to get the form-load
procedure written, so we did it (see
Listing 2).

Fred didn’t notice that I had selected
the ODBC cursor driver. This simplifies
the process of handling multiple result-
set stored procedures. While you can
execute multiple result-set procedures
(procedures with more than one select
statement) using the server-side cursor
library, you must create a single-row,
forward-only, read-only cursor.

We can use rdoPreparedStatement
later in the application as well. The next
step involves coding the command pro-
cedure that runs the query and returns
the rows. We just have to set the param-
eter and use either the Refresh method
to rebuild the existing rdoResultset or
the OpenResultset method to create a
new rdoResultset.

“Can’t we just create a new
rdoResultset each time?” Fred asked?

“Sure. But RDO, unlike DAO, keeps
the old rdoResultset objects when you
don’t explicitly close them. To avoid fill-
ing up memory, you must remember to
close them down when you’re done. But
your design doesn’t let us know if we’re
done until we need to create another. So
we need to tell VB to close the old
rdoResultset before we create another:

While rdoResultsets.Count
rdoResultsets(0).Close

Wend

This routine closes down all
rdoResultset objects, so you might not
want to use it as is. Since the rdoResultset
rs  is a global variable, you could just
say:

rs.Close

REFRESH SPEEDS UP SQL SERVER
However, one of the faster strategies that
leverages the existing rdoResultset uses
the Refresh method: you simply change
the rdoPreparedStatement parameter and
use the Refresh method to re-run the
query, which not only makes program-
58     MARCH 1996   Visual Basic Programmer’s Jo
ming easier, but it improves performance.
This way SQL Server does not have to
rebuild and recompile the procedure each
time it runs. That’s the whole idea behind
an rdoPrepared-Statement. It builds a cus-
tom stored procedure for you, designed
to accept parameters.

“OK, let’s use the Refresh method.”
Fred was caught up in the process now.

“Fine. But if we do that, we need to
add a line or two to create the first
rdoResultset based on the query.”
urnal ©1991–1996 Fawcette Tech
We needed to add code that either
reated the first rdoResultset or executed
he Refresh method. The rdoResultset is
reated using rdOpenStatic (like a DAO
napshot) and the rdConcurReadOnly
which makes the result set read-only) to
mprove performance.

Generally, don’t ask for features such
s updatability if you don’t need them.
s a matter of fact, you could probably
se rdOpenForwardOnly because you
http://www.windx.comnical Publications



R E M O T E  D A T A  O B J E C T S

VB4

.
Us
an

LI

e
e

th y
re .

L

VB4

from MCI….” 
sor once it is built: we move forward as we fill a list-box
control with the row. But I’ll just leave it as static for now. We
then extracted the contents of the first and second output
parameters and the return value, which were placed in text-
box controls on the form (see Listing 3).

The ShowRows subroutine simply dumps the rows we found to
a list box. RDO is coded so much like DAO, this was easy:

Sub ShowRows()
List1.Clear

While Not rs.EOF
List1.AddItem rs(0)
rs.MoveNext

Wend

End Sub

“But doesn’t the procedure return more than one set of
results?” Fred asked.

“Sure, but output parameters handled all the results of the
internal procedures,” I answered. “Look at every select state-
ment in the stored procedure. They assign values to stored
procedures variables like @MaxPrice and @cnt; they don’t
http://www.windx.com ©1991–1996 Fawcette Technical Publicatio
return rows. If you run a select statement like this from ISQL or
SQL Enterprise Manager, you don’t get the results of the query
at all. You just get the error message, ‘number of rows af-
fected,’ because the results are stored internally and not
returned as a row.

“If you add a select statement that returns a value and makes
sure there is a column name, you’d be able to capture the results
as the second or “nth” result set. Suppose you add a select
statement to the procedure:

Select ID,Name,Zip, Substring(City,1,2) CityCode _
From Hotels Where City = @CityWanted

Note that when you issue a select statement that includes a
function (like Min, Max, or Substring), SQL Server doesn’t assign
a column name, making it hard for the interface (like the ODBC
driver) to recognize and manage the column. To help, I always
label the columns using the TSQL aliasing syntax.

“Now, we can adapt the code to deal with this extra result set
if you want to,” I said. I’ll set up a new stored procedure that
returns another result set using our little select statement, with
a bit extra:

r = rs.MoreResults
' Get the next set of results.
If r Then

List2.Clear
Do Until rs.EOF

List2.AddItem rs(0) & ":" & rs(1) & " - " & rs(2)
rs.MoveNext
Loop

End If

The first line asks the RDO interface if there are more result
sets to deal with. If MoreResults returns True, the code pulls
down the result rows and puts them into a list box. When you
move to the next result set, you lose access to the previous
result set. It does not remain in the rdoResultsets collection for
later examination.

By the time I got home, Fred had most of his app put back
together and one of our cats had burrowed into a throw cushion
on my blue chair. I lifted her, pillow and all, and put her on the
floor at my feet. I had just settled back into the blue chair when
the phone rang. I didn’t answer it.

My daughter called down from upstairs. “Dad! It’s some guy
Private Sub Form_Load()

Set en = rdoEnvironments(0)
en.CursorDriver = rdUseOdbc

ServerName = GetSetting(appname:="RDO Sample App", _
section:="Settings", _
Key:="Server Name", Default:="Unknown")

'
Driver = GetSetting(appname:="RDO Sample App", _

section:="Settings", _
Key:="Driver", Default:="{SQL Server}")

'
' Next, we stick them into the RDO OpenConnection method
' to gain access to the specific server and driver:
Connect = "Server=" & ServerName & ";Driver=" _

& Driver & ";" & "UID=;PWD=;Database=Workdb;"
Debug.Print Connect
Set Cn = rdoEnvironments(0).OpenConnection(dsname:="", _

Prompt:=rdDriverNoPrompt, Connect:=Connect)

rdoErrors.Clear_
SQL = "{ ? =  call Workdb..FindHotelInCity (?,?,?)};"
Set ps = Cn.CreatePreparedStatement("", SQL)
If rdoErrors.Count > 0 Then ShowErrors

If ps.rdoParameters.Count > 0 Then
ps(0).Direction = rdParamReturnValue

' ps(1) does not have to be set.
' The default direction is rdParamInput

ps(2).Direction = rdParamOutput
ps(3).Direction = rdParamOutput

Else
MsgBox "Could not create _

prepared statement query. Call Fred at home"
End If

End Sub

Prepare a Statement. Sub Form_Load gathers the
current server name and driver from the registry

ing these parameters, the procedure then opens a connection
d tries to build an rdoPreparedStatement to be used later.

STING 2
n

Reservation, Please? The Sub ShowHotels procedur
opens an rdoResultset based on the chosen hotel. Onc

e result set has been created, subsequent executions simpl
build it using the rdoPreparedStatement and the Refresh method

ISTING 3

Private Sub ShowHotels_Click()
ps(1) = Text1.Text
'While rdoResultsets.Count
'rdoResultsets(0).Close
'Wend
If rs Is Nothing Then

Set rs = ps.OpenResultset(rdOpenStatic, _
rdConcurReadOnly)
Else

rs.Requery
End If
Text2.Text = ps(2) ' Output parameter 1
Text3.Text = ps(3) ' Output parameter 2
Text4.Text = ps(0) ' Return Value
ShowRows
Visual Basic Programmer’s Journal   MARCH 1996     59s


