
PROGRAMMING
TECHNIQUES

Click & Retrieve
Source

CODE!
Build your own Progress Bar class
to use in both 16- and 32-bit
versions of VB4.

Making Progress
by Karl E. Peterson
VB4, even when running in 32-bit operating systems. This month
I will present a VB4 class module that re-creates the new
ProgressBar control. You can use it in both 16- and 32-bit
versions of VB4, or modify the same general technique to
operate in VB3, without regard to which operating system your
application is running under.

In the VBPJ January 1996 Programming Techniques column,
I showed how to add capabilities to an existing control by
encapsulating “type-amatic” searches for list boxes within a
class module. In this month’s technique, a class module empow-
ers one standard control to emulate another. Hopefully, the
finished class also will prove useful for those of you writing 16-
bit code, or conditionally compiling to both 16- and 32-bit
executables. Those of you who’ve already committed com-
pletely to 32-bit may wonder if there’s any value in re-creating
the ProgressBar. Consider that it’s one less OCX you’ll need to
distribute if your project doesn’t use any of the other Windows
95 common controls.

The general idea behind the CProgressBar class is that a
picture box on a form will be used as a canvas upon which the
class can draw a progress indicator. You will need a number of
private member variables within the class to track its internal
data. After you insert a new class module in your project, enter
these declarations in its General section:

'
' Set aside storage for private member
' variables.
'
Private m_Bar As PictureBox
Private m_Val As Long
Private m_Min As Long

indows 95 and Windows NT offer many new standard
controls for Visual Basic programmers. Unfortunately,
you cannot use these controls in the 16-bit version of
132 MARCH 1996 Visual Basic Programmer’s Journal

Karl E. Peterson is a GIS analyst with a regional
transportation planning agency in Vancouver,
Wash., and a member of the VBPJ Technical
Review Board. Karl coauthored Visual Basic 4
How To, from Waite Group Press. Online, he’s
the 32-Bit Bucket section leader in the VBPJ
Forum and a Microsoft MVP in the MSBASIC
Forum. Contact Karl in either CompuServe
location at 72302,3707.

©199
Private m_Max As Long
Private m_fColor As Long
Private m_bColor As Long
Private m_CellWidth As Integer
Private m_CellHeight As Integer
Private m_xMargin As Integer
Private m_yMargin As Integer
Private m_Cells As Integer

Use the class’ Initialize event to set default values into
several of the member variables. Set the default minimum and
maximum property values to match those of the real
ProgressBar control, zero and 100. Likewise, set the initial
value to zero. Set m_Bar, the canvas upon which drawing will
take place, to Nothing because you do not know what picture
box you will use at this point. Set the foreground and back-
ground colors to match the operating system’s default col-
ors. Use the x and y margin values to calculate the number
and size of cells to draw.

Private Sub Class_Initialize()
'
' Set default values for class
' properties.
'
Set m_Bar = Nothing
m_Val = 0
m_Min = 0
m_Max = 100
m_fColor = vbHighlight
m_bColor = vb3DFace
m_yMargin = 2
m_xMargin = 3

End Sub

The CProgressBar class exposes a Canvas property, which
you will use to set or retrieve the picture box object used for
the emulated progress bar (see Listing 1). Download
PT0396.ZIP for demo projects using the CProgressBar class,
as well as other code from this column, from the Magazine
Library of the VBPJ Forum on CompuServe. In the Property
Set routine, the new value for this property is received As
Object. This allows the class to detect what type of object the
routine passed, should an object besides a picture box be
assigned to the Canvas property.

If a picture box was received, a reference to it is stored in the
m_Bar member variable, and new ForeColor and BackColor
values are assigned to it. You also set it to use Pixels as its
ScaleMode, so that you can perform later drawing operations
more easily. If the passed object is not a picture box, the routine
generates a runtime error with appropriate explanation, and the
client application is left to handle it.

For consistency, use standard property names for your

FIGURE 1
classes, especially when they’re emulating something else. The

http://www.windx.com1–1996 Fawcette Technical Publications

PROGRAMMING
TECHNIQUES

c

E

n
m
m
R
t
f
I
w
I

M
a
P
t
t
c
b
c
e
V
M
v
t
m

m
p
e
d

P

W

in, Max, and Value properties each have their respective Let
nd Get routines (these listings are posted in the VBPJ Forum).
roperty procedures have an advantage over Public variables in
hat you can validate the incoming values. For these properties,
he rules are simple and follow those used by the real ProgressBar
ontrol. The Min must be less than the Max, and the Max must
e greater than the Min. If you do not meet either of these
onditions, the routine generates a runtime error, with an
xplanation detailing the source of the error and its cause. The
alue property must fall somewhere between the Min and the
ax, but is simply set to either extreme should an out-of-range

alue be received. When a client application alters any of these
hree properties, that Let procedure calls the public Refresh
ethod.

The Refresh method repaints the emulated progress bar, and
ay be called directly by the client application. If the optional
arameter ClearFirst is set to True, the Canvas (m_Bar) will first be
rased using its Cls method. Then, the private RedrawMe proce-
ure is called to do the actual drawing of the progress bar cells:

ublic Sub Refresh(Optional ClearFirst)
'

LISTING 1 Preparing the Class’ Canvas. The Canvas property
sets and returns the picture box you will use for your

ustom progress bar.

http://www.windx.com

P
u
R
n
C
n
l

' Update display, clearing

indows 95 does.

w
c
t

©1991–1996 Fawcette Technical Publicatio
' it if requested.
'
If Not m_Bar Is Nothing Then

If Not IsMissing(ClearFirst) Then
If ClearFirst Then

m_Bar.Cls
End If

End If
RedrawMe

End If
nd Sub

Before any drawing can take place, you need to make a
umber of calculations. You may have noticed that a ResizeEx
ethod was called from the Set Canvas procedure. The ResizeEx
ethod, being public, is also available to the client application.
esizeEx calls the CalcCellSize private method, which provides

he dimensions for each cell and the number of cells required to
ill the progress bar (this method is posted in the VBPJ Forum).
t uses margins defined in the class Initialize event, and a 2:3
idth-to-height ratio to determine individual cell sizes. So far,

’ve directly emulated the real ProgressBar control.
ResizeEx takes things one step further, though. The real

rogressBar control behaves in a non-integral manner, often
sing a partial cell to indicate final completion (see Figure 1).
esizeEx determines whether this last partial cell is wider or
arrower than half a whole cell. If wider, ResizeEx resizes the
anvas object again, enlarging it to include the entire last cell. If
arrower, ResizeEx shrinks the Canvas object to exclude the
ast cell, and it decreases the number of cells to paint by one.
Public Property Set Canvas(NewObj As Object)
'
' Set new PictureBox as Canvas property.
'
If TypeOf NewObj Is PictureBox Then

Set m_Bar = NewObj
m_Bar.ForeColor = m_fColor
m_Bar.BackColor = m_bColor
m_Bar.ScaleMode = vbPixels
ResizeEx

Else
Err.Raise Number:=vbObjectError + 1, _

Source:="CProgressBar.Canvas", _
Description:="Canvas property must be _
of type PictureBox."

End If
End Property

Public Property Get Canvas() As Object
'
' Return PictureBox as Canvas property.
'
Set Canvas = m_Bar

End Property
CProgressBar “Control” Outsmarts the Win95
Custom Control. This illustration shows how the

CProgressBar class is actually smarter than the Windows 95 custom
control. By using the ResizeEx method, the programmer specifies
that an exact number of whole indicator cells are drawn, rather
than accepting the default behavior of a partial last cell as

FIGURE 1
LISTING 2 Drawing the Emulated Progress Bar. This private
method is called from within the CProgressBar class

henever the progress bar needs to be refreshed. It first draws “live”
ells to indicate completion progress, then draws “dead” cells using
he background color to erase the remainder of the progress bar.

Private Sub RedrawMe()
Dim i As Long
Dim x As Long
Dim y As Long
Dim n As Long
'
' Calc number of live cells to draw.
'
n = (m_Val / (m_Max - m_Min)) * m_Cells
'
' Draw live cells.
'
m_Bar.ForeColor = m_fColor
y = m_yMargin + m_CellHeight - 1
x = m_yMargin
For i = 1 To n

m_Bar.Line (x, m_yMargin)-_
(x + m_CellWidth, y), , BF

x = x + m_xMargin + m_CellWidth
Next i
'
' Draw dead cells.
'
If n < m_Cells Then

m_Bar.ForeColor = m_bColor
For i = n + 1 To m_Cells

m_Bar.Line (x, m_yMargin)-_
(x + m_CellWidth, y), , BF

x = x + m_xMargin + m_CellWidth
Next i

End If
End Sub
Visual Basic Programmer’s Journal MARCH 1996 133ns

Because the Canvas object will likely be resized, you must
prevent recursion in case its Picture_Resize event itself calls the
ResizeEx method. You can do this by setting a Static variable to
True immediately before resizing the Canvas object. Upon en-
tering the ResizeEx method, if this Static variable is found to be
True, it is then assumed that a recursive call has been made, and
the method is exited without further action. After the Canvas
object has been resized, the Refresh method is called to repaint
it using its current Value.

A private RedrawMe method is called from the public Re-
fresh method, and this is where the actual drawing takes place
(see Listing 2). Knowing the cell dimensions, you need just one
calculation to determine the number of “live” cells—those in the
highlight color—to be drawn based on the Value property. It’s
then a fairly simple task of drawing each cell using VB’s Line
method with the filled box option.

First, the program draws each “live” cell in the foreground
color, then it draws the remaining “dead” cells using the back-
ground color. The extra “dead” cells need to be drawn because
progress may not be positive in all cases. A progress bar may not
in fact move steadily from zero to 100, but may be monitoring
something where occasional setbacks occur. In these cases, the
program must now redraw the previously “live” cells as “dead.”

Using the CProgressBar class in your projects is extremely
simple; it requires only a few more steps than are required when
using the ProgressBar control itself. When designing the form,
place a picture box where you want the progress bar to be. In the
General section of the form, include this declaration to create a
new instance of CProgressBar named pBar:

134 MARCH 1996 Visual Basic Programmer’s Journal

PROGRAM
TECHNIQ

©199
Private pBar As New CProgressBar

Then, in the Form_Load event, pass a reference to the picture
box as the Canvas property of the CProgressBar instance:

Set pBar.Canvas = Picture1

From this point on, you can call CProgressBar’s methods and
set its properties at will. For example, to run it through its paces,
use a loop such as this:

For i = 0 To 100 Step 4
pBar.Value = I
‘ Win32 API function to delay
‘ 100 milliseconds
Sleep 100

Next I
pBar.Value = 0

If your form is resized, and you want to resize the progress
bar to fit the new space, first resize the picture box then call
the ResizeEx method for an integral number of cells (if exact
fit is more important than the distraction of a partial last cell,
CProgressBar also contains a Resize method that simply
recalculates cell dimensions, but doesn’t adjust the Canvas
object’s size). You can accomplish this most easily by placing
the call to Resize(Ex) in the Picture_Resize event. Likewise, a
call to the Refresh method would be prudent within the
Picture_Paint event.

MING
UES

http://www.windx.com1–1996 Fawcette Technical Publications

