
PROGRAMMING
WITH CLASS

PROGRAMMING
WITH CLASS

Click & Retrieve
Source

CODE!

Creating OLE Servers
Using VB4 to create an OLE server
is easy, if you follow a few tips and
tricks.

by Deborah Kurata

to other applications. You can develop a centralized inventory-
control OLE server, for example, and any application that needs
to adjust inventory can simply use your precompiled compo-
nent. Or you can write a pricing-model server, or a to-do-list
server, or an API wrapper, or a standard login screen, or … the
possibilities are endless!

Using Visual Basic 4.0 to create an OLE server is easy, if you
know a few tips and tricks. Once you’ve created the OLE server,
any application that supports OLE Automation (called an OLE
client application) can use it, including applications developed
in Visual Basic 3.0 or 4.0, Visual C++, Excel, and Access.

TIP 1: DESIGN THE OLE SERVER
This tip seems obvious enough, but is frequently overlooked or
abbreviated. The trick to a good design is first to clearly identify
the objects your server will provide and the properties and
methods of those objects. An easy way to do this is with CRC
cards, which are simply index cards used to document your
object design (see Programming with Class, “Designing Objects
for VB4,” by Kathleen Dollard-Joeris, in the December 1995 issue
of VBPJ).

After you have identified the objects, you need to establish
the relationships between the objects. This involves creating an
object hierarchy for an inventory-control OLE server (see Figure
1). Be sure to have one object at the top of the hierarchy. If you
have more than one at the top, you will need to define an
additional object that will reside above the other objects at the

ne of the exciting things you can do with classes is
create OLE servers. OLE servers expose your
application’s objects and their properties and methods
80 MARCH 1996 Visual Basic Programmer’s Journal

Deborah Kurata is principal consultant and cofounder of InStep
Technologies, a consulting group that designs and develops object-
oriented Microsoft Windows applications.
She is the author of Doing Objects in
Microsoft Visual Basic 4.0, published by
Ziff-Davis Press, which focuses on a prag-
matic approach to object-oriented design
and development of Visual Basic applica-
tions. Reach her at InStep Technologies,
5424 Sunol Blvd. #10-229, Pleasanton, CA
94566; or on CompuServe at 72157,475.
You can also find her leading the Beginner’s
Corner section of the VBPJ Forum on
CompuServe.

©1991
top of the hierarchy. This top-level object will own the other
objects in the application. If there is more than one top-level
object, it is not clear which object owns the others.

To keep your code simple, keep the hierarchy relatively flat.
Don’t add too many levels to your design. Because Visual Basic
4.0 supports containment (“has a”) relationships instead of
inheritance (“is a”) relationships, each higher-level object must
expose the lower-level objects. If the hierarchy gets over three
or four levels high, managing the composition relationships
becomes much more difficult.

Another trick to OLE server design is good naming conven-
tions. Because the OLE server can be used from any other
application that supports OLE Automation (including the execu-
tives’ Excel spreadsheets), you want to give the properties and
methods of the OLE server good names. In an inventory-control
OLE server, for example, instead of a property with a techie
name such as gsInvProdName, the property could simply be
ProductName. Instead of a method called iAddInv, the method
could simply be AddInventory.

TIP 2: SEPARATE FORM AND FUNCTION
During the design stage, think carefully about the functionality
of your OLE server separate from any user interface. In most
cases, your OLE server does not need its own user interface.
Rather, a client application can provide the interface and the
OLE server can provide the functionality required for that
interface.

For example, in developing an inventory-control OLE server,
you’ll provide methods for incrementing inventory when prod-
ucts are received, decrementing inventory when products are
sold, and adjusting inventory when physical counts are taken.
The OLE server could provide screens for each of these func-
tions, but a better implementation allows the OLE client appli-
cations to control the user interface. You can then easily
change, localize, port, or replace the user interface without
affecting the OLE server. Likewise, you can modify the busi-
ness rules in the OLE server without affecting the client
application’s user interface.
Inventory

Items

Drawing the Object Hierarchy. The object hierarchy
depicts the containment, or composition, relationships.

In case, the inventory “has a” set of items.

FIGURE 1
http://www.windx.comhttp://www.windx.com–1996 Fawcette Technical Publications

PROGRAMMING
WITH CLASS

PROGRAMMING
WITH CLASS

Initialize It. Notice the trick with the Set Item = Nothing
statement in the CollectProducts routine within the

Initialize event. This clears the object reference in preparation for
creating another object. Without this statement, the new assignments

LISTING 2
This is even more important if you are planning to provide
the OLE server as a remote automation server, a server installed
on a system separate from the OLE client applications. If the OLE
server does have a user interface, it will appear to the system it
is installed on. So if your Receive Inventory form is part of the
OLE server, the form will appear on the remote server computer
instead of the local computer requesting the OLE server.

TIP 3: PROTOTYPE THE SERVER
Once the design of the server is complete, the next logical (and
fun) step is to prototype the server. This step involves actually
writing the outline of the code for the server. You can create the
class modules, add the Property procedures, and define the
subroutines and functions for the methods. Because this is a
prototype, you don’t need to develop any real code to access the
data or process information. You can simply hard-code values
in the Initialize events and add comments where the real code
will need to go.

For the inventory-control OLE server, an Item class will track
the information required for each item in inventory. As with
every class, begin the code with a header, meeting the coding
standards you follow:

' Class Name: CItem
' Author: Deborah Kurata, InStep

Technologies
' Date: December 10, 1995
' Description: Track inventory item
' Revisions:
' NOTE:
' This is currently a prototype!

The Declarations section of the class contains the definition
of the properties of this class. Define these properties to be
private and local to this class. They will be exposed publicly
through the Property procedures:

' Private data members
Private m_lProductID As Long
Private m_sProductName As String
Private m_sProductNumber As String

Private m_iQuantity As Integer

E

would simply be updating the prior object.
' Removes inventory from the system
' This is used when inventory is sold,
' damaged, or adjusted
' Parameters:
' sInvItem Product Number of the
' item
' iNumRemoved Number of the
' product removed from
' inventory
' Returns:
' iTotal Total number in
' inventory
Public Function _
RemoveInventory(sInvItem As _
String, iNumRemoved As Integer) As _
Integer

Dim iCurrentTotal

' Retrieve the current inventory
' count from the collection
http://www.windx.comhttp://www.windx.com

Take Them Away. The RemoveInventory method of the inve
for the defined inventory item, decrements the total, updates thLISTING 1

©1991–1996 Fawcette Technical Publications
iCurrentTotal = _
Me.Item(sInvItem).Quantity

' Perform the subtraction
iCurrentTotal = iCurrentTotal - _

iNumRemoved

' Code here should ensure the total
' number in inventory is never < 0

' Code here could also check the
' reorder point and automatically
' reorder when an order point is
' reached

' Update the collection
Me.Item(sInvItem).Quantity = _

iCurrentTotal

' Return the total amount
RemoveInventory = iCurrentTotal

nd Function
Private Sub Class_Initialize()
' Create the collection of inventory
' items
CollectProducts

End Sub

' Fills the collection with the products
Private Sub CollectProducts()
' This is the prototype code
' to create the data in the collection
' Normally this information would
' exist in a database
Dim Item As New CItem

Item.ProductID = "1"
Item.ProductNumber = "WD-123"
Item.ProductName = "Widgets"
Item.Quantity = 16

' Add this one to the collection
' Using the product number
' as the key
m_colItems.Add Item, _

Item.ProductNumber

' Clear the reference
Set Item = Nothing

' Set another one
Item.ProductID = "2"
Item.ProductNumber = "GG-123"
Item.ProductName = "Gagets"
Item.Quantity = 120

' Add this one to the collection
' Using the product number
' as the key
m_colItems.Add Item, _

Item.ProductNumber

End Sub
Visual Basic Programmer’s Journal MARCH 1996 81

ntory-control OLE server retrieves the current inventory count
e inventory count, and returns the current number of the item.

P

E
P

PROGRAMMING
WITH CLASS
The prototype of the Property procedures simply assigns
and retrieves the value of the private data members. In the real
application, you would add code to these to validate the data
before assigning the value and to format the data before retriev-
ing the value. A trick for making these easier to find later is to put

them in alphabetical order:

'
'
'
'
'
'
'
'
'
'
'
O

'
P

'
C
C
C

P

E

P
D
D

)

Tracking Your Inventory. The code for this inventory-con
hierarchy, then exercise the properties and methods provid

to the Click event of the command buttons on the form.

LISTING 3

E

82 MARCH 1996 Visual Basic Programmer’s Journal ©1991
ublic Property Let ProductID(lID As Long)
m_lProductID = lID

nd Property
ublic Property Get ProductID() As Long
ProductID = m_lProductID
C

End
End S

Priva
Dim c
Dim l

' C
' i
Set
If

End

' F
For

nd Property
 Form Name: frmInventory
 Author: Deborah Kurata, InStep

Technologies
 Date: December 10, 1995
 Description: Inventory form.
 This is a little test form for the OLE
 server and NOT a good design for an
 inventory form!

 Revisions:

ption Explicit

 Private member variables
rivate m_Inventory As CInventory

 Constants for the command butons
onst iCLOSE = 0
onst iRECEIVE = 1
onst iSELL = 2

rivate Sub cboItems_Click()
' If the user selects an item
' clear the number received
txtReceived.Text = ""

' Set the total in inventory as
' appropriate
If cboItems.ListIndex <> -1 Then

txtTotal.Text = m_Inventory.Item_
(cboItems.ListIndex + 1).Quantity

End If

' Ensure the button is disabled
' until a quantity is entered
cmdInventory(iRECEIVE).Enabled = False
cmdInventory(iSELL).Enabled = False
nd Sub

rivate Sub cmdInventory_Click(Index As Integer)
im iTotal As Integer
im sProductNumber As String

Select Case Index

Case iCLOSE
Unload Me

Case iRECEIVE
' Product number for the
' inventory item
' NOTE: combo's are 0 based,
' collections are 1 based
sProductNumber = _

m_Inventory.Item_
(cboItems.ListIndex + 1).ProductNumber

' Add the defined amount to
' the inventory
iTotal = m_Inventory.AddInventory_

(sProductNumber, Val(txtReceived.Text)
If Err.Number <> 0 Then

' A more friendly error
trol te
ed by

–1996
' message would be
' displayed to the user
' here
' With a more detailed
' message printed to a
' log file
MsgBox Err.Description

End If

' Display the revised
' inventory amount on the
' screen
txtTotal.Text = iTotal

ase iSELL
' Product number for the
' inventory item
' NOTE: combo's are 0 based,
' collections are 1 based
sProductNumber = _

m_Inventory.Item_
(cboItems.ListIndex + 1).ProductNumber

' Remove the defined amount
' from the inventory
iTotal = m_Inventory.RemoveInventory_

(sProductNumber, Val(txtReceived.Text))
If Err.Number <> 0 Then

' A more friendly error
' message would be
' displayed to the user
' here
' With a more detailed
' message printed to a
' log file
MsgBox Err.Description

End If

' Display the revised
' inventory amount on the
' screen
txtTotal.Text = iTotal

 Select
ub

te Sub Form_Load()
olItems As New Collection
Count As Long

reate only one instance of the
nventory class
 m_Inventory = New CInventory
Err.Number <> 0 Then
' A more friendly error message
' would be displayed to the user
' here
' With a more detailed message
' printed to a log file
MsgBox Err.Description
Unload Me
GoTo EXIT_Form_Load
 If

ill the combo box with values
 lCount = 1 To m_Inventory.Count
CONTINUED ON PAGE 84.

st form would create the top-most level object in your object
 the OLE server classes. The majority of this code responds

http://www.windx.com Fawcette Technical Publications

Public Property Let ProductName(sName As String)
m_sProductName = sName

End Property
Public Property Get ProductName() As String

ProductName = m_sProductName
End Property

Public Property Let ProductNumber(sNumber As String)
m_sProductNumber = sNumber

End Property

P

E

P

E
P

E

PROGRAM
WITH CL

With m_Inventory.Item(lCount)
cboItems.AddItem .ProductNumber & _

Space(5) & .ProductName
End With

Next lCount

EXIT_Form_Load:
End Sub

Private Sub Form_Unload(Cancel As Integer)
' Clear the instance
Set m_Inventory = Nothing

End Sub

Private Sub txtReceived_Change()
' If there is an amount entered and
' the command button is disabled,
' enable it
If txtReceived.Text <> "" And _

cmdInventory(iRECEIVE).Enabled _

CONTINUED FROM PAGE 82.

http://www.windx.com ©1991–1996 Fawcette Technical Publicatio
ub

nd

ub

nd
ub

nd

M
A

E

P

E

ns
lic Property Get ProductNumber() As String
ProductNumber = m_sProductNumber
 Property

lic Property Let Quantity(iQuantity As Integer)
m_iQuantity = iQuantity
 Property
lic Property Get Quantity() As Integer
Quantity = m_iQuantity
 Property

ING
SS

= False Then
cmdInventory(iRECEIVE).Enabled _

= True
cmdInventory(iSELL).Enabled _

= True
End If
nd Sub

rivate Sub _
txtReceived_KeyPress(KeyAscii _
As Integer)
If (Chr$(KeyAscii) <> vbBack) And _

(Not IsNumeric(Chr$(KeyAscii))) _
Then
Beep
KeyAscii = 0

End If
nd Sub

Visual Basic Programmer’s Journal MARCH 1996 83

PROGRAMMING
WITH CLASS

P

E

w
l
l
n
p

PROGRAMMING
WITH CLASS

c
p
a
c
e
w
c
b

'

The Inventory class owns the collection
of inventory items. Define this containment
relationship in the code by declaring the
collection within the Inventory class:

' Class Name: CInventory
' Author: Deborah Kurata, InStep

Technologies
' Date: December 10, 1995
' Description: Track inventory
' Revisions:
' NOTE:
' This is currently a prototype!

Option Explicit

' Private data members
Private m_colItems As New Collection

The AddInventory method retrieves
the current inventory count for the de-
fined inventory item, increments the to-
tal, updates the inventory count, and
returns the current number of the item:

' Add inventory when product is
' received
' Parameters:
' sInvItem Product Number
' of the item
' iNumReceived Number of the
' product received
' Returns:
' iTotal Total number in
' inventory
Public Function AddInventory(sInvItem _

As String, iNumReceived As _
Integer) As Integer

Dim iCurrentTotal

' Retrieve the current inventory
' count from the collection
iCurrentTotal = _

Me.Item(sInvItem).Quantity

' Perform the addition
iCurrentTotal = iCurrentTotal + _

iNumReceived

' Update the collection
Me.Item(sInvItem).Quantity = _

iCurrentTotal

' Return the total amount
AddInventory = iCurrentTotal

End Function

You could enhance the AddInventory
code to ensure the amount in inventory
does not exceed the storage capacity for
that item. It could also generate receipt
information, perform accounting trans-
actions, and so on.

Because the collection of inventory
items is private to this class, other appli-
84 MARCH 1996 Visual Basic Programmer’s Jou
ations cannot access the methods or
roperties of the collection. To provide
ccess to the method or property, you
an develop wrappers. The Count Prop-
rty procedure in this class is simply a
rapper for the Count property of the
ollection and provides the current num-
er of inventory items in the collection:

 Wrapper for collection count
rnal ©1991–1996 Fawcette Techn
ublic Property Get Count() As Integer
Count = m_colItems.Count

nd Property

The Item method of this class is a
rapper for the Item method of the col-

ection. It provides access to the lower-
evel object. This provides the mecha-
ism for other applications to reference a
roperty of the lower-level object, in this
http://www.windx.comical Publications

PROGRAMMING
WITH CLASS

c

'
'
'
'
'
P

E

t
t

n
m
a
t
a
b

c
i
(
s
t
j
p

ase the inventory item:

 Wrapper for the collection
 Parameters:
vIndex string to find by key

numeric to find by
position

ublic Function Item(ByVal vIndex As Variant) As CItem
Set Item = m_colItems.Item(vIndex)

nd Function

The RemoveInventory method retrieves the current inven-
ory count for the defined inventory item, decrements the
otal, updates the inventory count, and returns the current
http://www.windx.com

c
t
w

M
(
d

©1991–1996 Fawcette Technical Publicatio
umber of the item (see Listing 1). You could add code to this
ethod to ensure the inventory does not drop below zero for

n item or to automatically define a back order. In addition,
his could check a predefined reorder point for an item and
utomatically generate an order if the inventory count drops
elow the defined amount.

The Initialize event for the class would normally fill the
ollection of items from a database. For the prototype, this
nformation is hard-coded into the CollectProducts routine
see Listing 2). Notice the trick with the Set Item = Nothing
tatement shown between the two assignments. This clears
he object reference in preparation for creating another ob-
ect. Without this statement, the new assignments would sim-
ly be updating the prior object. The collection would then
ontain multiple references to the same object. (Try this and
hen display the ProductID of each item in the collection. They
ill all be the same!)

Finally, don’t forget to add that standard module with a Sub
ain routine. This routine does not have to contain any code

the prototype didn’t need anything here), but you need to
efine the Sub Main so the OLE server will start up.

OLE SERVERS EXPOSE YOUR APPLICATION’S

OBJECTS AND THEIR PROPERTIES

AND METHODS TO OTHER APPLICATIONS.

TIP 4: DEVELOP A STANDALONE APPLICATION
Once you have the prototype code in place, you will want to
run your OLE server. But an OLE server serves up objects, so
unless something is requesting objects, the server doesn’t
appear to do anything. You need to write an OLE client appli-
cation that will create objects from your OLE server.

However, testing and debugging an OLE server is a lot
harder than testing and debugging a normal standalone appli-
cation. The trick here is to perform the first set of tests on the
OLE server as if it were a normal standalone application.

To do this, simply add a form to the application that will act
as the client for the server. Make this form the startup form for
this application. For the inventory-control OLE server, I added
a simple data-entry form (see Figure 2). It is often easier to test
the server by providing access to all server functionality from
one form. This test form need not be part of the actual user
interface of your application.

The code for this inventory-control test form would create
the top-most level object in your object hierarchy, then exer-
cise the properties and methods provided by the OLE server
classes (see Listing 3).

One of the benefits of developing a prototype and testing it
in this manner is that you will find out, after only a few hours,
if your design will provide the results you need. You will also
learn about some of the rules of creating classes and accessing
OLE servers. For example, you can’t pass user-defined types
(UDTs) as parameters to a method in a class module and you
can’t return a UDT from a method of a class module.

TIP 5: MAKE THE APPLICATION AN OLE SERVER
When you are confident of the basic operation of your classes,
you’ll want to make the application into a real OLE server. To
Inventory Test Form. Test the operation of your OLE
server with a simple, multipurpose form. This test form

doesn’t need to be part of the actual user interface of your
application.

FIGURE 2
Visual Basic Programmer’s Journal MARCH 1996 85ns

8

PROGRAMMING
WITH CLASS

d
t
T
c
l
t
i
t
c

l
e
o
c
t
O
y

t
t
N
t
V
a
t
t
O
w
c
s

O
t
t
r

i
i
a

T
N
i
u
s
W
a

c
F
s
s
m
r

s
r
i
h
a
c

r
s
t

o this, first remove the test form from the project and then set
he Public property on each class that will expose objects to
rue. The tricky part here is to be sure to set all exposed
ontained classes to Public as well. So if you expose a lower-
evel object, the class for that lower-level object needs to have
he Public property set to True as well. For example, in the
nventory-control OLE server, the Item object is exposed
hrough the Item method of the Inventory class, so the Item
lass must have the Public property set to True.

If you don’t want any application creating objects from the
ower-level contained classes, simply set the Instancing prop-
rty of the lower-level classes to None. This will prevent any
ther application from creating objects from these lower-level
lasses. However, be sure to set the Instancing property of the
op-most class to Creatable SingleUse or Creatable MultiUse.
therwise the form will not be able to create any objects from
our server.

After you’ve set the correct Public and Instancing proper-
ies for your classes, you can use the Make EXE File command
o make an executable. This executable is your OLE server.
ote that because this executable is a Visual Basic applica-

ion, it still needs all of the associated DLLs such as
B40016.DLL or VB40032.DLL. Keep this in mind when you
ttempt to install this OLE server on another computer. The
rick to installing the components is to use the SetupWizard
o install your OLE server and in Step 6, to set the “Install as
LE Automation shared component” deployment model. This
ill ensure all correct files are located, compressed, and
opied to the diskette, then installed correctly on another
ystem.

Once you’ve created the EXE, you can use the Compatible
LE Server text box in the Project tab of the Options dialog box

o set this EXE as a Compatible OLE Server. This will allow you
o make changes to the server later without affecting the
eference to the server. I’ll discuss this in more detail in Tip 6.

If your application is ultimately going to be an OLE DLL
nstead of an EXE, you may want to follow this process to make
t an EXE first. After testing the EXE, you can remake the
pplication into an OLE DLL.

IP 6: TEST, TEST, TEST
ow that you have a prototype of your OLE server, you can test

t in all environments where it will ultimately be used. Will it be
sed from VB4, VB3, or Excel? If so, try all three to ensure the
erver works appropriately. Will it be used under Windows 3.1,
indows 95, or Windows NT? Again, try the server in each

nticipated environment.
So how do you test the server? The easiest approach is to

reate a new project and add the form described in Tip 4 (see
igure 2). Before this test OLE client application will run
uccessfully, you need to define where it will find the OLE
erver. Do this using the References option in the Tools
enu. You can select the OLE server from the list of available

eferences.
You can then run this OLE client application. The OLE

erver will be accessed appropriately. Notice that when you
un the OLE server, it will appear in your system’s task list. This
s because the OLE server runs in its own separate task. To
ave the server run in the same process as the OLE client
pplication, remake the OLE server using the Make OLE DLL
ommand.

Now you are ready to add the real code to the OLE server and
epeat these last three tips for running and debugging the
erver. Whether you’re building an OLE EXE or OLE DLL, these
6 MAR 96 VBPJ

ips and tricks should serve you well.

©1991–1996 Fawcette Technical Publications

