
62 MARCH

3 2 - B I T T H U N K I N G

Flat t
techn
callin
from
appli
time a

Steve Jackso
nia aerospa
work-based
a section lea
forum and c
Code for thi
Magazine Li

Click & Retr
Source

CODE
 B Y S T E V E J A C K S O N

Thunk Before You
Port

ieve

!

hunking
iques for
g 16-bit DLLs
32-bit Win95
cations save
nd money.
n the well-publicized push to move
custom development to Windows 95
and VB4, an important technical trade-I

off has been overlooked by many pro-
grammers and the press. The move to a
flat memory model in Windows 95 comes
at a price: a 32-bit VB program cannot call
a 16-bit DLL.

Consequently, developers face the
daunting task of rewriting 16-bit DLLs as 32-
bit DLLs. If you’re on tight project deadlines
like I am, you should seriously consider
thunking as a technique for saving time and
salvaging the hard work you’ve put into 16-
bit DLLs. What’s more, if you have third-
party 16-bit DLLs without the source code,
you can’t rewrite them. Your options are to
purchase 32-bit upgrades, or use the
thunking techniques I’ll describe to tap 16-
bit third-party DLLs from 32-bit Win95 apps.

Here’s the crux of the 16-/32-bit DLL
dilemma. The way Windows 95 loads a DLL
and passes function arguments is quite
different in 16-bit and 32-bit modes. The 32-
bit code uses data pointer types, stacks,
CPU register settings, and function-calling
1996 Visual Basic Programmer’s Jo

n works at a Southern Califor-
ce company, developing net-
applications in VB and C. He is
der on the VBPJ CompuServe
an be reached at 72040,1640.
s article is available from the
brary of the VBPJ Forum.
conventions that differ from 16-bit code.
Porting a 16-bit DLL to 32-bit requires

code changes to function declarations,
pointer definitions, and memory-handling
routines that will stretch your project dead-
lines if you attempt a rewrite. If you try to
call your 16-bit DLL from a 32-bit VB pro-
gram, you’ll quickly find that VB (or any 32-
bit Windows program) fails with an “Error
loading DLL” message.

However, you can salvage the hard work
you’ve put into 16-bit DLLs by calling them
from your 32-bit applications using a Win-
dows 95 technique called flat thunking.
Thunking allows your 32-bit VB app to call
a 32-bit DLL which in turn calls your 16-bit
DLL through the thunking layer—a kind of
hyperspace leap where code reaches
through a 32-bit thunking layer to grab 16-
bit DLL functions.

I’ll show you how to create a simple 16-

bit DLL, and then cre-
ate a 32-bit DLL that
calls the 16-bit func-
tions using thunking.
I’ll explain all the code
you need, saving you
days’ or weeks’ worth
of searching for the
right tools. Along the
way I’ll correct a few
errors and omissions
in the Microsoft
instruct ions.The
project requires C
compilers, assembly
language, several
utilities, and of
course VB4.

Flat thunking con-
verts flat 32-bit param-
eter memory ad-
dresses of Windows 95
to the 16-bit segment/
offset equivalent
of Windows 3.x.
Thunking also does
urnal ©1991–1996 Fawcette Tech
special fixes to the DLL loading code to
create a 16-bit stack, switch stacks on the fly,
and translate return values.

Unfortunately, Windows NT uses a dif-
ferent thunking model called generic
thunking that allows 16-bit code to call 32-
bit code, but generic thunking does not
allow 32-bit code to call 16-bit code. Ge-
neric thunking loads a 32-bit DLL into the
Virtual DOS Machine (VDM) where NT runs
16-bit applications. Flat thunking is not
supported in Windows NT—it works only
in Windows 95.

For information on the various thunk
permutations, read the Knowledge Base ar-
ticle Q125710 on the MSDN Level 1 CD, “Types
of Thunking Available in Win32 Platforms.”
Also read the Microsoft MSDN article Q125715
on the MSDN Starter Kit that comes with
VB4, “Calling 16-bit Code from Win32-based
Apps in Windows 95.” While it’s a good
//MYDLL16.C
#include <windows.h>
// The standard 16 bit DLL opening
int FAR PASCAL LibMain (HANDLE hInstance, WORD

wDataSeg, WORD wHeapSize, LPSTR lpszCmdLine)
{

if (wHeapSize > 0)
UnlockData (0) ;

return 1 ;
}
// Later add Thunking code here

WORD __export FAR PASCAL AddNums16(WORD a, WORD b)
{

return (a + b);
}
void __export FAR PASCAL Beep16(void)
{

MessageBeep(MB_OK);
}
void __export FAR PASCAL Ucase16(LPSTR pString)
{

AnsiUpperBuff(pString, (UINT) lstrlen(pString));
}

Build a Simple 16-Bit DLL. This 16-bit DLL contains a
few simple 16-bit functions called from the 32-bit thunking

DLL. Thunking code will be added right after the standard LibMain
entry routine. The three functions illustrate different types of
parameter usage that must be handled by the thunk compiler.

LISTING 1
http://www.windx.comnical Publications

3 2 - B I T T H U N K I N G

in the C projects that produce the thunking layer.
tutorial, it contains a number of errors and
omits an important declaration. For example,
Q125715 leaves out the semicolon in some
code (such as: enablemapdirect3216 = true;)
but I noticed that other statements ended
with C-style semicolons, so adding one solved
the problem.

Before starting a thunking project you
must have the right tools. It took me longer
to determine which tools and utilities I
needed, to find them, and to figure out when
to use them, than it took to create the code.
Of course the results of my search make
your job much easier.

To compile the code in this article you’ll
need 16-bit and 32-bit C compilers that are
compatible with Microsoft OBJ and LIB
formats, and a number of utility programs
to create the thunking DLLs (see Figure 1).
I spent quite a bit of time searching the
MSDN CDs while posting and re-posting
CompuServe messages looking for the right
assembler and resource compiler.
http://www.windx.com ©1991–1996 Fawcet
Because you are creating 32-VB apps,
you’ll need 32-bit tools for thunking. Obvi-
ously you need Windows 95 and a 32-bit C
compiler. I used Microsoft Visual C++ 2.0 for
the 32-bit compiler, and Visual C++ 1.51 for
the 16-bit compiler, which both come on
the same CD. You do not need the subscrip-
tion versions or Visual C++ 4.0 to create the
DLL thunking code I’ll discuss. The other
major C compilers on the market should
compile the code properly, provided they
are compatible with the THUNK32.LIB file
and can assemble the code produced by
the thunk compiler.

The thunk compiler is on the Win32 SDK
CD, which comes in the MSDN Level 2 set of
CDs. The Win32 SDK is not on the single CD
Level 1 MSDN. Also, you will need the 16-bit
resource compiler from the Win32 SDK, and
the Macro Assembler from the Device Driver
Kit CD in the MSDN Level 2 CD. I’ll explain
the directory names and file names as I
discuss their use.
Visual Bate Technical Publications
For the sake of illustrating thunking tech-
niques, I’ll discuss only the 32-bit-to-16-bit
thunk in this article. However, I have added
a 16-bit-to-32-bit thunk example in the code
available for download on the VBPJ Forum
on CompuServe.

CREATE YOUR 16-BIT DLL
When creating a thunking system it’s best
to start simple. To illustrate thunking tech-
niques, I created a simple 16-bit DLL that
doesn’t have a thunking layer. It’s impor-
tant to ensure that the 16-bit functions work
properly before adding the thunking layer.

I created this simple 16-bit DLL purely
to demonstrate thunking techniques (see
Listing 1). To build this DLL—called
MYDLL16.C—start 16-bit Visual C++ 1.5x,
start a new project, and select DLL from
the project type list. Be sure the Microsoft
Foundation Classes check box is off. Ac-
cept all defaults including the large
memory model default, and let Visual C++
ML.EXE: Macro assembler —
creates16-bit and 32-bit OBJ

modules to be included in
each DLL project

32-bit application
with calls to 16-bit

DLL functions

RC.EXE:
Resource compiler 4.0 or

greater — marks DLL

32-bit VB4

32-bit DLL

16-bit Windows
application

32-bit
C Compiler

16-bit
C Compiler

16-bit VB4

16-bit DLL

Thunk script — defines the
16-bit functions to be called

Third-party 16-bit DLL
(optional)

THUNK.EXE & THUNK32.LIB:
Thunk compiler — creates

assembler code to establish
the thunking layer

Thunking layer changes 32-bit
flat pointers to 16-bit segmented
pointers, switches stacks, and

converts return values

Assemble Your Tools. You’ll need 32-bit and 16-bit C compilers, a thunk compiler, MASM, and a number of utilities. The
middle column shows the tools and process for creating the thunking layer. The thunk script is an ASCII text file placed into

the thunk compiler. Assembler code produced from the thunk compiler is placed in the assembler, which produces OBJ files included

FIGURE 1
sic Programmer’s Journal MARCH 1996 63

3 2 - B I T T H U N K I N G
create the DEF file. Later you’ll need to
modify the DEF file to add thunking.

MYDLL16.C consists of four functions.
LibMain() is the standard entry point found
in all 16-bit DLL programs. The other three
functions are trivial ones that will be called
from 16-bit VB, and later from the 32-bit DLL
after thunking is added. Specifically, Beep16
simply causes the speaker to beep,
AddNums16 adds two integers together
64 MARCH 1996 Visual Basic Programmer’s Jo
and returns the result, and Ucase16 con-
verts a string to upper case. These func-
tions demonstrate how thunking works with
different parameter types.

To test the 16-bit DLL, start the 16-bit
version of VB and open a new project.
Remove the Form1 file and insert a new
module to create a simple formless project
that consists of declarations and the code
in Sub Main (see Listing 2). Notice the use of
urnal ©1991–1996 Fawcette Tech
the #If Win32 statement to change the DLL
declarations for 16- and 32-bit modes. The
16-bit version will call the 16-bit DLL, and
the 32-bit version will call the 32-bit DLL I’ll
describe later.

After compiling, move the compiled
MYDLL16.DLL into your WIN-
DOWS\SYSTEM directory. Alternatively,
you can fully qualify the DLL path in the
Declaration statement, but this will cause
LISTING 2 Call 16-Bit Functions. This VB code calls 16-bit DLL functions from either 16-bit or 32-bit VB4. The #If Win32 statement
changes the declarations so 16-bit VB programs will call the 16-bit DLLs, but 32-bit programs will call the same functions in

the 32-bit DLL with thunking added. Hence the same VB code can be used for both 16-bit and 32-bit projects.

VB4 Sub Main()
Dim x As Integer, s As String
#If Win32 Then

MsgBox "We are in 32 bit mode."
' Call 32 bit DLL
x = AddNums32(2, 3)
MsgBox "2 + 3 = " & Str$(x)

#Else
MsgBox "We are in 16 bit mode."

#End If
' Call 16 bit DLL
Call Beep16
x = AddNums16(3, 4)
MsgBox "3 + 4 = " & Str$(x)
s = "My String"
MsgBox "Before call: " & s
Call Ucase16(s)
MsgBox "After call: " & s

End Sub

Attribute VB_Name = "Module1"
Option Explicit
#If Win32 Then

Declare Sub Beep16 Lib "MYDLL32.DLL" ()
Declare Function AddNums16 Lib "MYDLL32.DLL" (ByVal a _

As Integer, ByVal b As Integer) As Integer
Declare Sub Ucase16 Lib "MYDLL32.DLL" _

(ByVal s As String)
Declare Function AddNums32 Lib "MYDLL32.DLL" (ByVal a _

AsLong, ByVal b AsLong) As Long
#Else

Declare Sub Beep16 Lib "MYDLL16.DLL" ()
Declare Function AddNums16 Lib "MYDLL16.DLL" _

(ByVal a As Integer, ByVal b As Integer) As Integer
Declare Sub Ucase16 Lib "MYDLL16.DLL" _

(ByVal s As String)
#End If
SEND YOUR TIP
If it’s cool and we publish it, we’ll pay
you $25. If it includes code, limit code
length to 10 lines if possible. Be sure
to include a clear explanation of what
it does and why it is useful. Send to
74774.305@compuserve.com or
Fawcette Technical Publications, 209
Hamilton Ave., Palo Alto, CA, USA,
94301-2500.

CLOSING ALL OPEN
FILES IN AN
APPLICATION
Use the Close statement without a
file number and Visual Basic will
close all files opened by your
application.

—Douglas Haynes,
received on CompuServe

User Tip

VB3 VB4
http://www.windx.comnical Publications

3 2 - B I T T H U N K I N G
problems later when the 32-bit DLL needs
to find the 16-bit DLL, so I recommend that
for your first thunking effort you copy all
the DLLs to WINDOWS\SYSTEM.

COMPILE THE THUNK SCRIPT
Now that the 16-bit functions are finished,
create a script for the thunk compiler.
The thunk compiler uses script statements
to generate a file containing assembler
code functions. The assembler language
functions are the core of thunking—they
do the segment and stack fixes that let the
32-bit DLL call 16-bit functions. Although
the assembler code could theoretically
be coded by hand, it is quite complex and
best left to the thunk compiler.

The parameters and return types of
each 16-bit function are defined in the
thunk script so the thunk compiler can
generate the appropriate code for each
function. Create a file with these script
statements using Notepad or any ASCII
text editor, and save it as 32TO16.THK:

enablemapdirect3216 = true;
typedef char *LPSTR;
void Beep16(void)
{
}
int AddNums16 (int a, int b)
{
}
void Ucase16 (LPSTR lpString)
{

lpString = inout;
}

The first statement, enablemapdir-
ect3216 = true;, indicates mapping from 32-
bit to 16-bit. The typedef statement creates
a long string pointer type that is used in the
Ucase16() parameter list. The functions are
declared C-style starting with return type,
then function name, argument list, and a
pair of braces.

Return type void indicates there is no
return value—a SUB in Basic. The
lpString=inout; statement tells the thunk
compiler that data in the string will be passed
to and from the 16-bit DLL, so the segment/
offset conversions must occur both ways.

The 32-bit thunk compiler program
THUNK.EXE can be found on the Win32
SDK CD of MSDN Level 2, in directory
WIN32SDK\MSTOOLS\BIN\I386. Direc-
tory names sometimes change in SDKs,
so if you have trouble finding this direc-
tory, do a file search and be sure you
select the 32-bit Intel version that is
usually in an I386 subdirectory.

While you have the Win32 SDK CD
loaded, you should also copy
THUNK32.LIB because you will need it
later in your 32-bit DLL project.
THUNK32.LIB is in the\WIN32SDK\
MSTOOLS\LIB\I386 directory. To com-
http://www.windx.com ©1991–1996 Fawcett
pile the thunk script, open a DOS Prompt
window (yes, it’s still there in Windows
95) and run the thunk compiler with this
command line:

thunk -t thk 32to16.thk -o 32to16.asm

The -t thk option will prefix all the
assembler routines with a thk_ prefix.
The -o 32to16.asm option (lowercase
“o”) indicates the output file name for
the assembly language routines.
Visual Bae Technical Publications
ASSEMBLE THE THUNK OUTPUT
Now that you have an assembler language
output file, you need to assemble the file
into OBJ object code modules that can be
included in each DLL project. Assemble the
single ASM file twice with different com-
mand line switches to produce separate 32-
bit and 16-bit OBJ files. You must use
Microsoft Macro Assembler (MASM) 6.11
or later—MASM 5.0 won’t do. When I got to
this step, I found that, lo and behold, Visual
C++ does not come with a separate assem-
sic Programmer’s Journal MARCH 1996 65

3 2 - B I T T H U N K I N G

c
D
c
T

s
y
d
a
t
r

Create 16-Bit Thunking. Add this code to any 16-bit
DLL that will be called through the flat thunking layer.

DllEntryPoint is called by the 32-bit thunking layer. The
thk_ThunkConnect16 function completes the link to and from the
32-bit DLL.

LISTING 4
bler. And an inline assembler won’t cut it for this either.
Time to dig out the MSDN CD set again. Fortunately, MASM 6.11

can be found on the Device Driver Kit CD as ML.EXE in directory
\DDK\BIN\I386\FREE. Again, directory names may change.

To confirm the version number, simply execute ml at the DOS
prompt with no command-line arguments. I created a simple two-
line BAT file to execute the assembler twice so the assembler will
produce the THK32.OBJ and THK16.OBJ files that I added to the
DLL projects (the underscore should be removed and the two lines
combined into one):

ml /DIS_32 /c /W3 /nologo /coff /Fo thk32.obj 32to16.asm
ml /DIS_16 /c /W3 /nologo /Fo _ thk16.obj 32to16.asm

Now create the 32-bit DLL called MYDLL32.C (see Listing 3). It’s
quite different from a 16-bit DLL. The LibMain entry point is
replaced by DllMain. The 32-bit standard entry point contains a
switch statement that checks whether the DLL is being loaded or
unloaded for a new process or a new thread within a process.

For this program, simply break out of the switch in all cases. The
DllMain entry code starts with a call to thk_ThunkCon-nect32().
This assembly-language function was produced by the thunk
compiler. It loads the 16-bit DLL into memory and calls the corre-
sponding 16-bit thunk code to establish the flat thunking layer.

If the 16-bit DLL cannot be loaded, the call returns a non-zero
code, and MYDLL32 produces a beep and returns FALSE so the 32-
bit DLL will not load. When this happens, VB reports it was unable
to load the 32-bit DLL but does not indicate why. I added
MessageBeep() so I know the 32-bit DLL loaded, but I get a beep if
there is a problem loading the 16-bit DLL.

Function thk_ThunkConnect32() starts with the thk_ prefix speci-
fied on the thunk compiler command line -t switch. A declaration has
been added for the function, with an “extern” keyword to tell the
linker that this function can be found in an external module. This
important declaration is missing from the MSDN Q125715 article,
and if you leave it out the compile will fail with an “unresolved
external reference” message. I also added a simple 32-bit function,
AddNums32(), to illustrate the Win32 __declspec(dllexport) DWORD
WINAPI keywords for exported functions.

You also need to modify the EXPORTS section of the
default MYDLL32.DEF file created by Visual C++ to add
thk_ThunkData32 and all the 16-bit functions your code will
call. The ASM code produced by the thunk compiler con-
tains 32-bit stubs with exported names that match the real
16-bit functions. These stubs do fix-up code, and then call
the real 16-bit function. The new EXPORT section in
MYDLL32.DEF is:
66 MARCH 1996 Visual Basic Programmer’s Journal

Add a 32-Bit Thunking Layer. Use this 32-bit DLL to call
thunk compiler. The thk_ThunkConnect32 function creates

the DLL beeps and fails to load.

LISTING 3

©199
EXPORTS
thk_ThunkData32
Beep16
AddNums16
Ucase16
AddNums32

To compile the 32-bit DLL, start 32-bit Visual C++ 2.0 or later and
reate a new project (File, New, Project) and choose project type
LL. Add file MYDLL32.C from Listing 3, add THK32.OBJ, which you
reated with the thunk compiler and assembler, and add
HUNK32.LIB, which you copied from the Win32 SDK.

After your compile is complete, MYDLL32.DLL will be in a
ubdirectory named WINDEBUG created by Visual C++ under
our project directory. Move this DLL to your WINDOWS\SYSTEM
irectory. If you get any “unresolved external” messages, recheck
ll the function names, recheck your thunk script, recheck that
he OBJ and LIB files were properly added to the project, and
echeck the thk_ThunkConnect32() function declaration.

MODIFY THE 16-BIT DLL
You must add code to MYDLL16.C to complete the 16-bit thunking
layer (see Listing 4). DllEntryPoint calls function
thk_ThunkConnect16() created by the thunk compiler. You can
add the DllEntryPoint declaration and function anywhere to
MYDLL16.C—a good place is right after LibMain. Notice that the
standard LibMain function is unchanged. No other changes are
needed in the C code, although some changes are required in the
r
}
_

{

}

// MYDLL32.C
#include <windows.h>
extern BOOL WINAPI thk_ThunkConnect32(LPSTR, LPSTR,
HINSTANCE, DWORD);
__declspec(dllexport) DWORD WINAPI AddNums32 (DWORD,
DWORD);
// The standard 32 bit opening, with thunking added
BOOL WINAPI DllMain (HINSTANCE hDLL, DWORD dwReason,
LPVOID lpReserved)
{

if (!thk_ThunkConnect32 ("MYDLL16.DLL",
"MYDLL32.DLL",
hDLL,
dwReason))

{
MessageBeep(MB_ICONEXCLAMATION);
return FALSE;

} // end if
 t
 t

1

switch (dwReason)
{

case DLL_PROCESS_ATTACH:
break;

case DLL_THREAD_ATTACH:
break;

case DLL_THREAD_DETACH:
break;

case DLL_PROCESS_DETACH:
break;

} // end switch
eturn TRUE;

_declspec(dllexport) DWORD WINAPI AddNums32
(DWORD a, DWORD b)

return (a + b);
// declaration for function from thunk compiler
extern BOOL PASCAL thk_ThunkConnect16(LPSTR, LPSTR,

WORD, DWORD);
// required for thunking
BOOL FAR PASCAL __export DllEntryPoint(DWORD dwReason,

WORD hInst, WORD wDS, WORD wHeapSize,
DWORD dwReserved, WORD dwReserved2)

{
if (!thk_ThunkConnect16("MYDLL16.DLL",

"MYDLL32.DLL", hInst, dwReason))
{

return FALSE;
}
return TRUE;

}

http://www.windx.com

he 16-bit functions through the thunking stubs linked in from the
he thunking link to the 16-bit DLL. If this critical function call fails,

–1996 Fawcette Technical Publications

3 2 - B I T T H U N K I N G
MYDLL16.DEF file. The EXPORTS section
must be modified, and an IMPORTS section
must be added. This code is identical for
adding thunking to all 16-bit DLLs:

IMPORTS
C16ThkSL01 = KERNEL.631
ThunkConnect16 = KERNEL.651

EXPORTS
WEP PRIVATE
THK_THUNKDATA16 @1 RESIDENTNAME
DllEntryPoint @2 RESIDENTNAME

Finally, you must modify the 16-bit DLL
project (click on Project, then Edit) to add
THK16.OBJ that was produced by the thunk
compiler and assembler. Compile
MYDLL16 and you should get no errors
and no warnings.

By now you’re probably more than
ready to test your thunking calls. The
last step should take you five minutes
(although it took me several days to find
the right resource compiler necessary to
complete this step). You must run the
resource compiler program RC.EXE to
mark the 16-bit DLL version as 4.0. Other-
wise, the 32-bit DLL will not be able to
load it. The trick is to find the right re-
source compiler.

The 16-bit and 32-bit resource compil-
ers that come with VB4 won’t do—you
need a resource compiler version 4.0 or
later that supports the “-40” command-
line argument. The Win32 SDK CD con-
tains five different copies of
RC.EXE—you need the 16-bit version,
which is located in \WIN32SDK\
MSTOOLS\BINW16.

To confirm the version, run RC.EXE
from the DOS prompt with no arguments,
or with /? to be sure it supports the “-40”
command- line argument. Then run it to
mark your 16-bit DLL. You must repeat
this step every time you recompile the 16-
bit DLL:

rc -40 MYDLL16.DLL

Be sure to move both compiled DLLs to
your WINDOWS\SYSTEM directory, or
MYDLL32.DLL may have problems trying to
load MYDLL16.DLL.

It’s time to test! Start 32-bit VB4 and open
the project created using Listing 2. Thanks
to the #If Win32 statement, the code now
calls the 32-bit DLL, and also calls an extra
function, AddNums32(), which is in the 32-
bit DLL only. VB loads both DLLs on the first
call to AddNums32. If MYDLL32 is unable to
load MYDLL16, it will fail at this point.

If you hear the beep, you know that
MYDLL32 loaded, but was unable to load
MYDLL16. If MYDLL16 fails to load, be sure
you ran RC.EXE to mark it after your last
compile, recheck the code to
http://www.windx.com ©1991–1996 Fawcett
thk_ThunkConnect16(), and recheck all the
DEF files in both DLLs, making sure all your
16-bit functions are in the EXPORTS section
of the 32-bit DLL.

A good source of information for de-
bugging thunks is the Microsoft Knowl-
edge Base article Q133722 (GO MSKB on
CompuServe). After VB loads a 32-bit
DLL it only unloads it when the project is
closed or you modify the Declare state-
ment. If you recompile the 32-bit DLL,
you won’t be able to replace the DLL file
Visual Bae Technical Publications
until you close and reopen the VB project.
Well, there you have it. You can now

call your 16-bit DLL from a 32-bit DLL.
And here’s one last tip. What if you don’t
have the source code for the 16-bit DLL
you’re trying to call? You can’t add the
needed thunk connect function, or link
in the OBJ files, but you could write a 32-
bit DLL that thunks to your own 16-bit
DLL that in turn calls the third-party 16-
bit DLL with normal 16-bit calls. But be
careful with those pointers.
sic Programmer’s Journal MARCH 1996 67

