
DATABASE DESIGN
Sure you can keep using DAO. But
you’re better off with Jet SQL—
once you get the hang of it.

by Andrew J. Brust

Exploit Jet SQL
programmers, while its useful extensions go unexplored. Most
of us would rather write a query in a familiar SQL dialect, then
tweak it until Jet stops tossing error messages at us. Eventually
we’ll get that inner join syntax right. Right?

Still, you ought to learn Jet SQL. That time you spend debug-
ging queries, or designing them visually in Access and copying
the generated SQL, could be better spent doing real program-
ming. And what about upsizing? You may need to convert your
Jet SQL queries to your server’s SQL to implement passthrough
queries. If you don’t remember exactly what that strange Jet SQL
meant, your translation task becomes even more arduous.
Further, for certain data definition tasks, such as creating and
maintaining tables and indexes, SQL can provide a more effi-
cient and terse coding vehicle than DAO provides. Basically,
whether you’re using VB3 or VB4, 16- or 32-bit, getting a firm grip
on Jet’s SQL pays off.

If you now know standard SQL pretty well, adding Jet SQL’s
unique aspects to your repertoire doesn’t represent an over-
whelming learning curve. For example, the GROUP BY, HAVING,
and ORDER BY clauses, and subqueries in general, work in the
same manner either way—unlike the WITH OWNERACCESS
OPTION, PARAMETERS, TRANSFORM, and PIVOT clauses, which
bear discussion.

In addition, some of Jet’s standard SQL features get
underutilized because users haven’t ventured beyond the
procedural DAO code they already know. So we should also
take a look at the SQL Data Definition Language (DDL) re-
served words CREATE, DROP, and ALTER. These provide a
great way to create and modify the structure of tables, in-
dexes, and referential integrity relationships. They can often
perform these tasks with much less code than you’d need to
create and define TableDef, Field, and Index objects and
modify their corresponding collections.

For the sake of clarity I’ll present all SQL commands and
keywords in CAPS, although Jet’s SQL interpreter doesn’t care
about case. Also, I’ve terminated all SQL queries with a semico-

et’s version of SQL strays far afield from “standard” SQL
in places, and I’ve found that few people take the time to
master Jet SQL. Its annoying quirks still blindside VB
Andrew J. Brust is president of Progressive Systems Consulting Inc.,
a New York City-based firm specializing in the development of, and
developer training in, client/server and other custom business
applications.Reach Andrew on the Internet at abrust@progsys.com
or on CompuServe at 70274,1746.

90 MARCH 1996 Visual Basic Programmer’s Journal ©199
lon, in keeping with the formal, preferred syntax, although Jet
SQL doesn’t care about this either.

I recommend starting your study of Jet SQL’s unique outlook
on life with its most prominent syntax deviation, the JOIN
clause. Most SQL dialects (including SQL Server’s Transact SQL)
make you express joins as logical expressions in a query’s
WHERE clause. But Jet allows for a JOIN subclause in the query’s
FROM list. A SQL Server inner join query:

SELECT tblCustomers.*, tblOrders.*
FROM tblCustomers, tblOrders
WHERE tblCustomers.iCustId =

tblOrders.iCustId

becomes:

SELECT tblCustomers.*, tblOrders.*
FROM tblCustomers INNER JOIN tblOrders
ON tblCustomers.iCustId =

tblOrders.iCustId;

in Jet SQL. You can use similar syntax for outer joins. Just
substitute LEFT JOIN or RIGHT JOIN in place of INNER JOIN. Note
that in certain cases you can nest JOIN clauses in Jet SQL (for
example, table 1 inner-joins to table 2, which inner-joins to table
3). By the way, Jet does allow you to express inner joins in the
WHERE clause as you would in standard SQL, but the INNER
JOIN syntax is preferred. Outer joins must be expressed with the
LEFT JOIN or RIGHT JOIN syntax. Interestingly, Jet SQL’s JOIN
syntax is close to that of ANSI-92 SQL, although it seems different
from most widely used SQL dialects.

SELECTIVE EVOLUTION
Jet’s SELECT command also deviates from garden variety SQLs.
Look at the square bracketed components in the schematic
syntax:

SELECT [predicate] { * | table.* |
[table.]field1 [, [table.]field2.[,
...]]}

[AS alias1 [, alias2 [, ...]]]
FROM tableexpression [, ...] [IN

externaldatabase]
[WHERE...]
[GROUP BY...]
[HAVING...]
[ORDER BY...]
[WITH OWNERACCESS OPTION]

Our first component, the predicate, defines the records in
your query, if any, that will be filtered out of the result set that
Jet gives back to you. Jet predicates consist of ALL, DISTINCT,
DISTINCTROW, and TOP n [PERCENT]. ALL returns all records
that meet the criteria outlined in the rest of your query. It is
http://www.windx.com1–1996 Fawcette Technical Publications

DATABASE DESIGN
impliedsupplying the ALL predicate is like supplying no predi-
cate at all.

Distinguishing between the next two predicate elements,
DISTINCT and DISTINCTROW, has confused me more than any
other element of Jet SQL. For example, take a simple database
consisting of tables tblCustomers and tblOrders, with this struc-
ture and (very carefully chosen) data:

tblCustomers:

tblOrders:

Now make three queries and consider their result sets:

SELECT tblCustomers.cFirstName
FROM tblCustomers INNER JOIN tblOrders
ON tblCustomers.iCustId =

tblOrders.iCustId;

SELECT DISTINCTROW
tblCustomers.cFirstName

FROM tblCustomers INNER JOIN tblOrders
ON tblCustomers.iCustId =

tblOrders.iCustId;

SELECT DISTINCT tblCustomers.cFirstName
FROM tblCustomers INNER JOIN tblOrders
ON tblCustomers.iCustId =

tblOrders.iCustId;

cFirstName

Harry
Harry

iCustld cFirstName cLastName

1 Harry Smith
2 Harry Jones

iCustld iOrderld iAmount cQuarter

1 1 50 Q195
1 2 50 Q295
1 3 75 Q295
2 1 44 Q194
2 2 55 Q395

cFirstName

Harry
Harry
Harry
Harry
Harry

cFirstName

Harry
http://www.windx.com ©1991–1996 Fawcette Technical Publicatio
All three queries return rows containing “Harry” as the
only result set field value, but the number of rows returned
varies. The first query performs a join across tblOrders and
returns five rows (one for each order). The second query
returns two rows because with DISTINCTROW Jet returns
exactly one result row for each row in the table where fields
are actually being selected from (tblCustomers), and which
the INNER JOIN clause does not filter out. In the third query,
the DISTINCT predicate filters out all “visibly” duplicate
rows, returning only one row in the result set.

Note that DISTINCTROW only works in queries that list
more than one table in the FROM clause and where at least
one of those tables is not represented in the SELECT list. In
queries that don’t meet these criteria, Jet SQL permits the
DISTINCTROW predicate but ignores it. Given the obscure
context in which DISTINCTROW has any effect, I wonder why
Microsoft chose to place DISTINCTROW in Access queries by
default. One more comment on these two predicates: in many
cases DISTINCT and DISTINCTROW return the same result
data, but DISTINCT always forces the return of a Jet snapshot,
while DISTINCTROW avoids that limitation.

The last predicate, TOP, lets you select the records with
the first n values of the ORDER BY expression. Alternately,
you can select the records with ORDER BY expression values
fitting in the first nth percentile. For example, you can select
the 10 employees with the highest salaries and salaries com-
posing the top 10 percent of all salaries, respectively. You do
so by selecting the highest salaries first (using the DESC
reserved word in the ORDER BY clause) so that the first 10
records will be the highest salaries:

SELECT TOP 10 [cLastName], [cFirstName],
[lSalary]

FROM tblEmployees
ORDER BY lSalary DESC;

SELECT TOP 10 PERCENT [cLastName],
[cFirstName], [lSalary]

FROM tblEmployees
ORDER BY lSalary DESC;

You’re not yet done with SELECT’s deviant tendencies. You
need to consider the AS and IN keywords, which are not to be
confused with the IN operator used in the WHERE clause. AS lets
you define field names for both calculated and even uncalculated
columns. Other SQL syntaxes usually do this by preceding the
expression with an alias name and an “equals” symbol. The
standard SQL query:

SELECT cFullName = cLastName + ', ' +
cFirstName

FROM tblEmployees;

becomes:

SELECT cLastName & ', ' & cFirstName AS
cFullName

FROM tblEmployees;

in Jet SQL. The IN Keyword lets us include tables in our
SELECT list that exist in other databases, whether they are
MDBs, ISAMs (xBASE, Paradox, Btrieve, and others), or ODBC
databases. With one keyword Jet lets you seize the power of
its heterogeneous joins features. Don’t miss the subtle sleight
of handyou can write heterogeneous join queries dynami-
Visual Basic Programmer’s Journal MARCH 1996 91ns

DATABASE DESIGN
cally that don’t require the external tables to be attached
tables in the MDB. Also, you never have to do an OpenDatabase
on the external data. Jet will do one implicitly during the
CreateDynaset or CreateSnapshot method call. For example,
you can do heterogeneous joins between tblEmployees and
both a FoxPro table or an ODBC table:

SELECT [CustomerID]
FROM Customer IN "C:\FOXPRO\DATA\SALES"

"FoxPro 2.0;"
WHERE CustomerID Like "A*";

SELECT [CustomerID]
FROM Customer IN ""

"ODBC;DSN=SQLS;UID=sa;PWD="
WHERE CustomerID Like "A*";

Of course, Jet lets you SELECT more than just the fields in the
tables: you can use its built-in aggregate mathematical functions
or your own expressions in the SELECT list. Aggregate functions
are the mathematical functions, defined by Jet SQL itself, that
you can use in calculated fields.

YOU NEVER HAVE TO DO AN OPENDATABASE

 ON THE EXTERNAL DATA.

Jet doesn’t have many aggregate functions, and fortunately
their names pretty well describe them: SUM, AVG, COUNT, MIN,
MAX, STDEV, and VAR. Two more, the population functions
STDEVP (population standard deviation), and VARP (popula-
tion variance), are nonstandard SQL aggregates provided by Jet.

In addition to Jet SQL’s functions, you can use any VB3/
Access Basic/VBA function in calculated fields. This gives Jet
SQL lots of horsepower. Additionally, when running your query
in Access, any functions you create and store in MDB module
collections become valid functions in calculated fields. How-
ever, you can’t run queries referencing these user-defined func-
tions from VB.

And as soon as you use a nonstandard aggregate, a Basic
function, user-defined function, or any other Jet-specific SQL
feature in your query, you make that query unintelligible to an
ODBC database engine. If you run Jet-specific queries against an
ODBC database, Jet must send a portion of your query to the
server, then evaluate the intermediate result set and calculate
the results of your non-SQL calculated fields locally.

QUERYING MINDS WANT TO KNOW
Jet SQL’s JOIN and SELECT commands contain the core of this
SQL flavor’s idiosyncrasies. But wait, there’s more—espe-
cially regarding queries and Jet MDB database maintenance.

Queries can be challenging on secure databases. Perhaps
you have a table that only certain users can read, but you’d
like to create a query on that table and let all users access the
query and see its result set. They can as long as the query
contains Jet SQL’s WITH OWNERACCESS OPTION keywords.

You’ve probably used Access to design parameter queries,
but did you know you can create these objects from Visual
Basic? Access lets you implicitly create parameters by using
field names that don’t exist in your database And you can
specify these parameters’ data types by choosing Query/Param-
92 MARCH 1996 Visual Basic Programmer’s Journal ©199
eters... from the Access main menu. However, this dialog box is
just a front end to Jet’s PARAMETERS clause table. The clause
simply needs to list each parameter and its data type, with
multiple parameters separated by commas, and end with a
semicolon.

To see how this works in practice, take the first query from
the discussion of predicates:

SELECT tblCustomers.cFirstName
FROM tblCustomers INNER JOIN tblOrders
ON tblCustomers.iCustId =

tblOrders.iCustId;

and tweak it to add a parameter text field—prmcOperator—to
accompany the other fields in the result set:

PARAMETERS prmcOperator TEXT;
SELECT prmcOperator,

tblCustomers.cFirstName,
tblCustomers.cLastName

FROM tblCustomers INNER JOIN tblOrders
ON tblCustomers.iCustId =

tblOrders.iCustId;

You can use parameters in a query’s WHERE clause as well as
its SELECT list (see Table 1).

You may see crosstab queries as just another Access “user”
tool, but they are actually useful and easy to implement from VB.
Crosstab queries result from creating regular GROUP BY que-
ries and adding TRANSFORM and PIVOT clauses to them. With-
out crosstabbing, a conventional GROUP BY query produces
rather vanilla-flavored results:

SELECT First(tblCustomers.cFirstName) AS
FirstOfcFirstName,

First(tblCustomers.cLastName) AS FirstOfcLastName,
tblOrders.cQuarter,
Sum(tblOrders.iAmount) AS SumOfiAmount

FROM tblCustomers INNER JOIN tblOrders
ON tblCustomers.iCustId = tblOrders.iCustId
GROUP BY tblCustomers.iCustId, tblOrders.cQuarter;

You get a summary view of the total purchases made by each
customer in each quarter stored in the database. That’s fine, but
you probably want to see the information presented this way
instead:

A superior result set like this takes only a little more effort in
your Jet SQL query:

FirstOfcFirstName FirstOfcLastName Q194 Q195 Q295 Q3

Harry Smith 50 125
Harry Jones 44 55

FirstOfcFirstName FirstOfcLastName cQuarter SumOf¡Amount

Harry Smith Q195 50
Harry Smith Q295 125
Harry Jones Q194 44
Harry Jones Q394 55
http://www.windx.com1–1996 Fawcette Technical Publications

DATABASE DESIGN
TRANSFORM Sum(tblOrders.iAmount) AS
SumOfiAmount
SELECT First(tblCustomers.cFirstName)
AS FirstOfcFirstName,
First(tblCustomers.cLastName) AS
FirstOfcLastName
FROM tblCustomers INNER JOIN tblOrders
ON

tblCustomers.iCustId =
http://www.windx.com ©1991–1996 Fawcet
tblOrders.iCustId
GROUP BY tblCustomers.iCustId
PIVOT tblOrders.cQuarter;

Notice that I removed the
Sum(tblOrders.iAmount) AS SumOfi-
Amount expression from the SELECT list
and placed it in the TRANSFORM clause
to make it into the value data used in the
Visual Bate Technical Publications
crosstab. Then I pulled tblOrders.c-
Quarter from the SELECT list and the
GROUP BY clause and placed it in the
PIVOT clause to specify its results to be
used as the column headers in the
crosstab. In all other respects the two
queries match. Comparing them should
help you get the hang of crosstab queries.

MAINTENANCE ISSUES
Now that you can create great Jet SQL
queries, let’s turn to the unglamorous but
essential task of maintaining tables, in-
dexes, and relationships. Here you can
really leverage your productivity by us-
ing Jet SQL’s DDL against Jet MDB data-
bases. For example, you need only one
SQL query to create a brand new table
with indexes. To build the table
tblCustomers, write:

CREATE TABLE tblCustomers
([cFirstName] TEXT,
[cLastName] TEXT,
iCustId INTEGER

CONSTRAINT ndxCustId PRIMARY KEY);

You must specify the data type for
each field listed in the CREATE TABLE
command. The data types used in the
DDL queries have a close, but not exact,
correspondence with the data type name
listed when you create tables interac-
tively in Access (see Table 1).

The CONSTRAINT clause in the
iCustId specification in the above query
Choose Your Weapon. If
you’re writing a SELECT query

using the PARAMETERS clause or a DDL
query using the CREATE or ALTER TABLE
commands, you’ll need to specify data
types using Jet SQL reserved words. Here’s
a list of those reserved words and how they
correspond to the more familiar combo
box choices in the Access Table Design
and Query Parameter dialogs.

TABLE 1

Access Combo Box Option Jet SQL DDL data
type reserved word

Text TEXT
Memo LONGTEXT
Number: Byte BYTE
Number: Integer SHORT
Number: Long Integer LONG
Number: Double DOUBLE
Number: Single SINGLE
Date/Time DATETIME
Currency CURRENCY
Counter COUNTER
Yes/No BIT
OLE Object LONGBINARY
Value (Variant data — for VALUE
parameter queries only)
sic Programmer’s Journal MARCH 1996 93

DATABASE DESIGN
creates ndxCustId, a primary key index,
on that field. For PRIMARY KEY you can
swap in UNIQUE (or nothing at all, for a
non-unique, nonprimary index) where
it’s appropriate.

For multiple-key indexes, you can use a
standalone CONSTRAINT clause that names
multiple fields (for details, see the help file
or printed documentation in VB4, Access 2,
or Access 7). Both single- and multiple-field
CONSTRAINT clauses can also use the FOR-
EIGN KEY subclause. This creates referen-
tial integrity relationships between tables
(though you cannot use SQL to set the
cascade update and delete attributes). You
can add constraints after creating the table
by using the ALTER TABLE command in
place of CREATE TABLE.

JET ASSUMES THAT

A FOREIGN KEY

SHOULD REFERENCE THE

PRIMARY KEY IN

THE FOREIGN TABLE.

To demonstrate some of these con-
cepts, consider a typical ALTER TABLE
query in DDL. It uses ALTER TABLE with
a FOREIGN KEY specification to assure
referential integrity between tblOrders
and tblCustomers:

ALTER TABLE tblOrders
ADD CONSTRAINT ndxCustId FOREIGN KEY

(iCustId)
REFERENCES tblCustomers (iCustId);

I used an explicit specification of the
tblCustomers.iCustId field at the end of
the above query, though I could have
skipped it. Jet assumes that a foreign key
should reference the primary key in the
foreign table. You can build nonprimary
key references when the field is specifi-
cally listed.

You can also use ALTER TABLE with
the ADD COLUMN, DROP COLUMN, and
DROP CONSTRAINT reserved words to
add and delete fields or indexes. You can
also create indexes with CREATE INDEX
and delete them with DROP INDEX. You
can delete a whole table and all of its
indexes with DROP TABLE.

Unlike the CREATE TABLE and ALTER
TABLE commands, CREATE INDEX lets
94 MARCH 1996 Visual Basic Programmer’s Jo
you create indexes with descending ex-
pressions as well as with IGNORE NULL
and DISALLOW NULL validation rules
(again, see the help file or printed docu-
mentation in VB4, Access 2, or Access 7
for details).

This concludes our crash course in Jet
SQL. If you followed this discussion, you
have almost completely mastered what
urnal ©1991–1996 Fawcette Tech
you need to know about Jet’s JOIN clause,
predicates, aggregates, AS and IN clauses,
the WITH OWNER ACCESSOPTION fea-
ture, parameter and crosstab queries, and
DDL commands. Now you have at your
disposal a powerful facility for making
your applications adept at data manipula-
tion and definition, and folks will be com-
ing to you for help with their queries.
http://www.windx.comnical Publications

