
µ §

TSDI for Netware

Issue 1.4 3/1//94

Table of Contents

µ1. Introduction 2

1.1. Overview 3

1.2. Terminology 5

1.3. Related Documents 5

2. Document Updates 6

2.1. Reason for Reissue 6

2.2. Change History 6

3. Description 6

3.1. Telephony Server Architecture 6

3.2. Telephony Server Communication Model 8

3.3. PBX Driver Tasks and Responsibilities8

3.3.1. Driver Initialization 8

3.3.2. Message Based Interface 8

3.3.3. Driver Termination 8

3.4. Telephony Server Multiplexing 9

3.5. CSTA Tserver Security 9

3.5.1. Client Access Security Levels 9

3.5.2. Security Issues and Class of Service 9

3.6. Driver OA&M 10

3.6.1. Using the Tserver as a Transport 10

3.7. Error Log Interface 11

4. Functional Description 11

4.1. PBX Driver to Tserver Interface 11

4.1.1. Driver Registration 11

4.1.1.1. Registration Mechanism 11

4.1.1.2. TSDI Memory Allocation 12

4.1.1.3. Driver Registration and Recovery 13

4.1.1.4. Driver Registration Security Level 13

4.1.2. TSDI Version Control13

4.1.3. Receiving Requests and Responses 14

4.1.4. Sending Requests and Responses 14

4.1.5. Driver to Tserver Heartbeat Message 14
2/3/2023 TSDI for Netware

1.5 3/1/94

4.1.6. Unregistering the Driver 15

4.1.7. Telephony Services Driver Interface Monitoring 15

4.1.7. Telephony Server Flow Control Of TSDI Messages 15

4.2. PBX Driver to Client Interface 15

4.2.1. Advertising Driver Services 15

4.2.2. The Stream to the Client Workstation 16

4.2.3. The Message Format Between the PBX Driver and the Client
18

4.2.3.1. The Driver Control Block 19

4.2.3.2. The Driver Control Block Field Definition 19

4.2.3.3. DC Block / Message Class Mapping 22

4.2.3.3.1. Tserver to Driver Messages 22

4.2.3.3.2. Driver to Tserver Messages 23

4.2.3.3. The Protocol on the Client Stream 24

4.2.3.3. TSDI Session ID to ACS Handle Mapping 24

4.2.3.3. Scope of Monitor and Routing Cross Reference IDs
24

4.2.3.3. Scope of Invoke IDs 25

4.3. ACS Messaging Interface 25

4.3.1. Application Control Services 25

4.3.2. Processing ACS Control Messages 26

4.3.2.1. Processing an acsOpenStream Message 26

4.3.2.2. Processing a Close Request 26

4.3.2.2.1. Processing an acsCloseStream() 27

4.3.2.2.2. Processing an acs AbortStream() 27

4.3.2.3. Asychronously Closing a Stream from the Driver 27

4.3.2.4. When To Use ACSUniversalFailureConfEvent 27

4.3.2.5. When To Use ACSUniversalFailureEvent 27

4.3.2.6. Failure Codes To Use in ACSUniversalFailure Type
Messages 27

4.4. CSTA Messaging Interface 28

4.4.1. Request-Response Protocol 29

4.4.2. Processing CSTA Messages 29

4.4.3. CSTA Control Services Functions 30

4.4.4. CSTA Security Services Functions 30
2/3/2023 TSDI for Netware

1.5 3/1/94

4.4.5. Switching Function Services 30

4.4.5.1. Basic Call Control Services 30

4.4.6. Status Reporting Services 31

4.4.7. CSTA Snapshot Services 32

4.4.8. CSTA Computing Function Services 32

4.4.8.1. Routing Registration Functions and Events32

4.4.8.2. Routing Functions and Events 32

4.4.9. CSTA Escape/Maintenance Services 34

4.4.9.1. Escape Services : Application as Client 34

4.4.9.2. Escape Service : Driver/Switch as the Client 34

4.4.9.3. Maintenance Services 35

4.4.9.3.1. Device Status 35

4.4.9.3.2. System Status - Application as the Client35

4.4.9.3.3. System Status : Driver/Switch as the Client
35

4.5. OA&M Interface 36

4.5.1. OA&M Interface Control Services 36

4.6. Private Data Definition 36

4.7. Error Log Interface 37

5. Compiling and Linking a Driver 37

6. TSDI Coding Examples 38

6.1. Initializing the Driver with the Tserver 38

6.2. Processing an ACSOpenStream() Request 40

6.2.1. Returning an ACSOpenStreamConfEvent 42

6.2.2. Returning an ACSUniversalFailureConfEvent 43

6.3. Processing an AcsCloseStream() Request 43

6.4. Creating a CSTAConferenceCallConfEvent 45

6.5. Private Data 48

6.6. Processing a Monitor Request 48

7. Telephony Services Driver Interface Manual Pages 51

7.1. tdiDriverRegister () 52

7.2. tdiDriverUnregister () 56

7.3. tdiAllocBuffer() 57

7.4. tdiFreeBuffer ()61
2/3/2023 TSDI for Netware

1.5 3/1/94

7.5. tdiSendToTserver() 64

7.6. tdiReceiveFromTserver() 67

7.7. tdiDriverSanity() 69

7.8. tdiQueueSize () 70

7.9. tdiMemAllocSize() 71

7.8. tdiQueueSize () 73

7.8. tdiQueueSize () 75

7.9. tdiMemAllocSize() 76

7.10. tdiGetSessionIDInfo() 78

7.11. tdiMapInvokeID() 79

8. TSDI Header Files 81

8.1. tdi.h 81

9. ACS and CSTA Message Interface Header Files 81

9.1. acs.h 81

9.2. acsdefs.h81

9.3. csta.h 81

9.4. cstadefs.h 81

10. OA&M API Manual Pages 81

10.1. tsrvDriverRequest() 81

10.2. TSRVDriverOAMConfEvent 85

10.3. TSRVDriverOAMEvent 87

11. OA&M Header Files 89

11.1. drvrdefs.h 89

11.2. tdrvr.h 89

12. Error Log Manual Pages 89

13. References89

2/3/2023 TSDI for Netware
1.5 3/1/94

1. Introduction

This document is the external specification of the Telephony Services Driver Interface for the
NetWareâ Telephony Services product. The Telephony Server provides service for Computer-
Supported Telecommunications Applications (CSTA) in a Novell NetWareâ environment. The
Telephony Server consists of three parts, the Application Programming Interface (API), the Tserver,
and the PBX Driver.

The API supported by the Telephony Server is based on the European Computer Manufacturers
Association (ECMA) CSTA standard. The Telephony Server software supporting the API exchanges
messages that represent the API function calls and parameters over the Novell network with the
Tserver.

The Tserver is a NetWare Loadable Module (NLM) that is responsible for routing messages
between the application workstations on the network and the PBX Driver. The PBX Driver is an
NLM that implements the CSTA services via a switch vendor specific Computer Telephony
Integration (CTI) link to a PBX. The Telephony Services Driver Interface is an open interface that
specifies how messages are passed between the Tserver NLM and any vendor's Driver NLM.

This document specifically covers the function call interface to pass the messages between the
NLMs, the structure of the messages, and requirements for vendors that must be followed when
writing a PBX Driver that adheres to the interface.

TSDI for Netware
Issue 1.5 3/1/94

Section {1} describes how the Telephony Services Driver Interface relates to the Telephony Server
and the Computer-Supported Telecommunications Applications (CSTA) API, defines terminology
used throughout this document, and includes a list of documents that are prerequisites for this
document.

Section {3} describes the architecture of the Telephony Server and the communication between its
major components, provides a high level description of the tasks and responsibilities of the PBX
Driver, and describes services provided by the Telephony Server for the PBX Driver.

Section {4} gives a detailed description of the Telephony Services Driver Interface from the PBX
Driver perspective.

Section {5} discusses compiling and linking the Driver.

Section {6} provides coding examples which can be used as the basic skeletal outline of a Driver
which will be using the TSDI to process CSTA messages.

The remaining sections define the specifics of the Telephony Services Driver Interface.

1.1. Overview

 The Telephony Server provides the desktop integration of telephones and personal computers by
exporting a Computer-Supported Telecommunications Applications (CSTA) API over a
Novellâ NetWareâ network. Figure 1 provides a high level view of a simple Telephony
Server configuration. Each phone and associated computer represents a workstation on
someone's desktop, and workstations can run applications that are integrated with the local
phone. The application will use the CSTA API supported by a native library loaded on the
workstation. The CSTA API supported by the Telephony Server is based on the European
Computer Manufacturers Association (ECMA) CSTA standard. The library supporting the
CSTA API exchanges messages that represent API function calls and parameters over the
Novell network with the Tserver. The Tserver is a NetWare Loadable Module (NLM) that
resides on the Telephony Server. The Tserver is responsible for routing messages between the
applications on workstations connected to the network, and the PBX Driver. The PBX Driver is
an NLM that resides on the Telephony Server and implements the CSTA services via a switch
vendor specific Computer Telephony Integration (CTI) link to a PBX. A CTI link is a logical
link between the computing environment (Telephony Server) and the switching environment
(PBX). Each Driver which supports CTI links via the TSDI must define the physical
implementation for a CTI link (i.e., the CTI link could be one or more physical links). The
Telephony Services Driver Interface is an open interface that specifies how messages are
passed between the Tserver NLM and any vendor's Driver NLM. Figure 1 shows one link to
one switch. Note that the Telephony Server (actually, the PBX driver) can have multiple links,
possibly terminating on different switches.

µ §
TSDI for Netware

Issue 1.5 3/1/94

Figure 1: Telephony Server Connectivity

TSDI for Netware
Issue 1.5 3/1/94

Since the Telephony Services Driver Interface is based on messages that represent the CSTA-API
function calls and parameters, this document should be read in conjunction with the CSTA API
specification TSAPI.

1.2. Terminology

API Applications Programming Interface. The API specifies the
access methods a programmer can use to exercise functionality
provided by a kernel or library. An example of an API for this
product is the “C” language interface used to access CSTA
capabilities supported by the Telephony Server.

CSTA Computer-Supported Telecommunications Applications.

CTI Computer Telephony Integration.

NLM NetWare Loadable Module - This is a module that can be
dynamically loaded on the NetWare Operating System.

TSDI for Netware
Issue 1.5 3/1/94

 OA&M Operations, Administration and Maintenance. A module that
provides the maintenance and administration interface.

PBX Driver The vendor dependent software specific to switch control. The
PBX Driver is the service provider portion of the Telephony
Server.

PDU Protocol Data Unit. A data object exchanged between the
Telephony Server and the client application.

Tserver The specific module that manages the routing of CSTA requests
and responses between a client application and the appropriate
PBX driver. The Tserver NLM is part of the Telephony Server.

Telephony
Server

The Telephony Server supports CSTA in a Novell NetWare
environment. The Telephony Server may also refer to a Novell
file server that has been loaded with and runs the Telephony
Server software.

TSDI for Netware
Issue 1.5 3/1/94

TSDI Telephony Services Driver Interface: A connection between a
Driver NLM and the Tserver NLM using a function call interface
to pass messages between modules.

1.3. Related Documents

This document assumes that the reader is familiar with the documents listed below.

TSAPI API Definition and Specification for the R1.0 NetWareâ
Telephony Server, T.A. Anschutz, and J.R. Garcia.

[ECMA/52] Technical Report ECMA/52, Computer Supported
Telecommunications Applications (CSTA), European Computer
Manufacturers Association.

[ECMA-179] STANDARD ECMA-179, Services For Computer Supported
Telecommunications Applications (CSTA), European Computer
Manufacturers Association.

[ECMA-180] STANDARD ECMA-180, Protocol For Computer Supported
Telecommunications Applications (CSTA), European Computer
Manufacturers Association.

2. Document Updates

2.1. Reason for Reissue

Issue 1.2 has been updated to include more information for use by outside PBX Driver vendors. The
TSDI for Netware

Issue 1.5 3/1/94

TSDI function calls have remained the same. Discussions have been added on processing ACS
and CSTA messages, how to handle private data, and some basic coding examples are also
included.

2.2. Change History

Issue 1.1 of the TSDI is the result of design changes during the initial development of the Telephony
Server. Issue 1.1 document discusses primarily the AT&T G3 PBX Driver use of the TSDI.

3. Description

3.1. Telephony Server Architecture

The Telephony Server provides a platform for the desktop integration of telephones and personal
computers. The personal computers or workstations can run CSTA applications that are
integrated with their user's phones. The CSTA applications will use a library (the CSTA API)
as a client communicating with a Telephony Server running on a NetWareâ file server that has
advertised for CSTA services on the network. The Telephony Server will transport client
requests over a switch vendor specific link to provide switch integration. Multiple applications
may access Telephony Services on the same workstation simultaneously, and multiple
workstations may request services from the same Telephony Server. The Telephony Server
provides a separate set of generic OA&M services. The OA&M application will use a separate
native library (the OA&M API) as a NetWare client for communication with the Telephony
Server. The OA&M API provides a basic interface for passing, what to the Telephony Server
appears to be a character array, between the OA&M application and the Driver. The format and
interpretation of these messages is defined entirely by the OA&M and the Driver. The
Telephony Server supports one or more OA&M interfaces per PBX Driver (this is defined by
the Driver). Figure 2 shows a block diagram of the Telephony Server architecture.

Figure 2: Block Diagram of Telephony Server

The Telephony Server runs under NetWare (the large box in Figure 2). The two main Telephony
Server modules that run under NetWare include:

Tserver Manages 'Telephony' and 'OA&M' requests from clients (over the LAN). The
Tserver will confirm that each client is administered for the requested service,
CSTA or OA&M messages and authenticate some CSTA (but not OA&M)
requests, and route the requests to the appropriate PBX Driver.

PBX Driver The PBX driver handles CSTA or OA&M requests for a specific vendor's PBX.
The PBX Driver may choose to provide OA&M services through the Telephony
Server, or the Driver may choose to provide their own OA&M interface.

TSDI for Netware
Issue 1.5 3/1/94

The interface between the Tserver and the PBX Driver is a function call interface referred to in this
document as the Telephony Services Driver Interface (or TSDI). The Telephony Services Driver
Interface is used to pass messages that represent (CSTA or OA&M) requests and responses between
the Client Application and the PBX Driver.

The Telephony Server provides services to clients distributed over the NetWare network. The
Tserver handles service advertising, client authentication, connection setup and connection tear
down. Note that all CSTA client requests are multiplexed to a single stream per PBX driver
registration, i.e., each tdiDriverRegister generated a different driver ID which the Driver then uses
in tdiReceiveFromTserver calls and all CSTA client requests which come over ACS streams that
where opened up to the advertised name created on behalf of this registration are multiplexed to the
single stream of messages that a driver receives by using tdiReceiveFromTserver. A PBX driver
may register for CSTA or OA&M services one or more times. Each CSTA registration corresponds
to one logical CTI link supported by the driver.

3.2. Telephony Server Communication Model

The Telephony Server to telephony application communication is based on a client-server model.
The CSTA application behaves as a client requesting switching function and status reporting
services (as defined in [ECMA-179]) from the Telephony Server via the CSTA API function
calls defined in TSAPI. The Telephony Server will send responses for each client request, and
the client application will receive each response as a confirmation 'event' through the CSTA
API (see TSAPI). The event reports generated by the Telephony Server as part of the event
reporting services (see [ECMA-179]) are also received by the client application as 'events'
through the CSTA API.

 The client-server roles for the application and the Telephony Server are reversed for the computing
function services (routing services) defined in [ECMA-179]. The Telephony Server will format
computing function requests that the application will receive as 'events' through the API, and the
application will use CSTA API function calls to send the response back to the Telephony Server.
Note that this document often refers to the Telephony Server-application relationship as a server-
client relationship, even though these roles are reversed for the computing function services.

The OA&M application communication model is similar to the CSTA model, except that the
application always performs the role of the service requesting client. The PBX Driver defines the
OA&M services it will support; the Telephony Server (and the OA&M API) only enforce the client-
server messaging model as described in section {4.4}.

3.3. PBX Driver Tasks and Responsibilities

The design of a PBX Driver for the Telephony Server begins when the vendor determines the CSTA
and OA&M services the Driver will support. The CSTA switching function and status
reporting services require the PBX driver to act as a server for incoming requests from the
client application. The CSTA computing function (routing) services require the PBX Driver to
act as a client, generating requests for the server application.

NOTE: The PBX Driver must fail any CSTA client request that the Driver does not support.

TSDI for Netware
Issue 1.5 3/1/94

If the PBX Driver is supporting OA&M services through the Telephony Server, the set of supported
maintenance services, and the OA&M messages that support requests and responses for those
services must be defined by the PBX Driver authors. The following sections describe three tasks that
the PBX Driver must implement to support these services.

3.3.1. Driver Initialization
The PBX Driver must first register with the Tserver before CSTA or OA&M requests can be routed
to the driver. When the PBX Driver registers with the Tserver, NetWareâ resources are allocated
for the Telephony Services Driver Interface, and the Tserver will advertise on the network that the
Driver is available to handle CSTA (CTI Link) or OA&M application requests. The PBX Driver
must separately register for each CTI or OA&M Link the driver is going to support. These
registrations result in are completely separate interfaces, and message traffic across these interfaces
are completely independent.

3.3.2. Message Based Interface
The PBX Driver must be able to handle incoming requests from the CSTA or OA&M application
immediately after the driver has completed the registration process. The PBX Driver sends and
receives messages that represent the CSTA or OA&M requests and responses to the application
through a function call interface to the Tserver NLM. The PBX Driver must always be prepared to
negatively acknowledge client application requests that the Driver does not understand.
NOTE: Nearly every message in the CSTA API TSAPI that is sent by a client to the Driver is a
Request-Response type message. The Driver MUST always send a response message, either the
defined positive acknowledgment (i.e cstaMakeCallConfEvent in response to a cstaMakeCall
request) defined in the CSTA API or one of the two defined negative acknowledgment messages,
acsUniversalFailureConfEvent or cstaUniversalFailureConfEvent, to every client request. The
CSTA Routing messages flow in the opposite direction. Here the application acts as the routing
server and the PBX takes the role of the client. Routing is discussed in more detail in section 4.

3.3.3. Driver Termination
The PBX Driver should always unregister with the Tserver before exiting (unloading), or the Driver
can unregister with the Tserver any time it wants to stop handling CSTA or OA&M requests. The
Tserver will halt the advertisement of the Driver services and free all resources associated with the
Telephony Services Driver interface when the PBX Driver unregisters. The PBX Driver can not use
the Telephony Services Driver interface for the CTI or OA&M Link for which the register was
originally done after the unregister operation has completed. The Driver can, however, re-register
for CSTA or OA& M services.

3.4. Telephony Server Multiplexing

The telephony server Provides No Multiplexing Services for the Driver. An ACS stream is opened
to a Driver (i.e. CTI-LINK name as generated by a Driver registration), not to a device. The
application must know ahead of time which CTI-LINK to open a stream to. When CSTA
reqeuests are received for a device, the request is received by the Tserver over an ACS stream
that terminates at a CTI-LINK (driver). The request is forwarded to the driver if and only if the
security data base indicates the device in the request can be controlled by the user (login)

TSDI for Netware
Issue 1.5 3/1/94

which opened the ACS stream and that the CTI-LINK that the ACS stream terminates on can
control the device. If the security data base indicates that more than one CTI-LINK can be used
to control a device, the Tserver does not select a CTI-LINK to forward a CSTA request to.
The Tserver always forwards reqeusts to the CTI-LINK (driver) where the ACS stream
terminates.

The above description also applies to CSTA monitor requests. If an application or several
applications send requests to monitor the same device to the same CTI-LINK the driver must be able
to handle the multiple monitors. The Tserver will not multiplex these monitors to a single reqeust
for the driver.

In the security data base, users (logins) are given permission to control devices and all the CTI-
LINKs which can support (control) a device are indicated.

3.5. CSTA Tserver Security
The Tserver will provide telephony based security services for drivers registering for CSTA
functionality. Providing the security services within the Tserver allows applications to present a
uniform platform across multiple vendor's drivers. A driver that wants or needs to provide its own
security mechanism can override the telephony based security services, to a point, by indicating so
in the tdiDriverRegister() routine. A user wishing to open an ACS stream will always require at least
a NetWareâ Login on the file server the Tserver is loaded on. The lowest level of security a driver
can register with is TDI_NO_SECURITY which means the Tserver will only validate the login ID
and password provided in an acsOpenStream() call are valid according to the Bindery on the file
server. This may be useful when developing the driver. The next level of security a driver can
request during the registration is TDI_LOGIN_SECURITY which requires the same NetWareâ
Login and password on the file server and an entry in the TServer Security Data Base. This may be
useful for the driver OA&M support. The highest level of security, TDI_CSTA_SECURITY,
encompasses the requirements of the previous two levels and in addition validates CSTA requests
against the Security Data Base administration.

3.5.1. Client Access Security Levels
The Telephony Server supports a Security Database which allows the administration of users, groups of
users , users worktops, devices, list of devices, and list of CTI Links. Users are given names, unique login
IDs, passwords, pointers to their worktop records, security level permission to monitor and query, control
and route for some set of devices by specifying a group, and permission to perform OA&M functions on
Tservers and Drivers registered with Tservers. Worktop records include a LAN address of a PC, a pointer to
a device record for the primary telephone, and a pointer to a list of devices if more than one device (i.e.
telephone, fax, etc.) is associated with a worktop. Group records specify a list of devices that belong to that
group. Device records contain the type of device (PC, phone, etc.), a device ID, a security level permission,
location of the device and a list of Tservers/PBXs which support this device.

3.5.2. Security Issues and Class of Service

The Telephony Server defines four classes of service which can be granted to a user in the security database
for the Telephony Server.

TSDI for Netware
Issue 1.5 3/1/94

Home Worktop Class of Service
This class of service gives a user the privilege to control, device monitor or query the device or set of
devices associated directly with a users home worktop location and possibly the device or set of devices
associated with a worktop location a user may login from which is not the users home worktop location.
There are two flavors of the home worktop class of service. The first is based on the assumption that the
network and node field (LAN Address) of an SPX packet can be believed, the other assumes that these
fields are not secure and can easily be faked in a packet sent to the Telephony Server.

If the administration is setup to believe the LAN Address (by disabling the Tserver OA&M Restrict User
Access to Home Worktop option), the following algorithm is used to determine if a user has home worktop
privilege over a device:

When a user is logging in from their home workstation, they get privilege over the set of devices defined by
their worktop record. When a user logs in from a workstation other than their home workstation, they get
privilege over their home workstation set of devices as well as the set of devices associated with the
workstation they logged in from.

If the administration is setup to not believe the LAN Address (by enabling the Tserver OA&M Restrict User
Access to Home Worktop option), the following algorithm is used to determine if a user has privilege over
a device:

Regardless of which workstation a user is logging in from, they get privilege over the set of devices defined
by their worktop record.

Monitor Class of Service
Monitor class of service gives the user privilege to perform monitoring functions on a set of devices
specified by the administration of this user. There are three types of monitoring privileges which can be
granted to a user:

· Device monitoring on a device: A list of devices is defined on which this user can perform device
monitoring.

· Call monitoring on a device: A list of devices is defined on which this user can perform call monitoring.
· Call monitoring on a call: A user is can be given permission to call monitor calls. Because calls are not

known in advance, a specific list of calls which might be monitored can not be administered. The user either
has or does not have permission to do this type of monitoring.

Control Class of Service

Control class of service gives the user privilege to perform control functions only. A user must have some
type of monitoring class of service to monitor devices.

Routing Class of Service
Routing class of service gives the user privilege to perform routing functions on a set of devices.

3.6. Driver OA&M

3.6.1. Using the Tserver as a Transport
The PBX Driver vendors can implement a client or NLM based application using the generic
Telephony Server Driver OA&M API defined in section 10 for driver OA&M. The Tserver would
act as the transport mechanism in this case. To use the Tserver transport mechansim and OA&M

TSDI for Netware
Issue 1.5 3/1/94

API, the PBX Driver must register with the Tserver for OA&M functionality. The driver would then
use the TSDI routines to pass vendor defined OA&M messages analogous to CSTA messages for
CSTA functionality. The Tserver will treat an OA&M message as a block of data received from a
client, and the message will be passed directly to the PBX Driver that has registered for the OA&M
services. The data contained within the message block is to be defined by the PBX Driver authors
and is specific to each vendor's driver.
NOTE: The generic OA&M messages that the Tserver will transport for use in defining a driver
specific OA&M application are defined to be a simple character array (whose length is defined by
the Driver and OA&M application). The Driver and OA&M application must be very careful in
defining structures that will be overlaid on this byte array due to different byte ordering and
padding rules employed on different client and server machines.

The Tserver will provide administration options on User Records that will provide access to the
OA&M link for specific users. i.e. each user in the Tserver Security Database can be given
permission to open a stream to the Driver OA&M service (defined by the Driver registering for
OA&M services).

The PBX Driver vendor may also select to provide OA&M services directly from the Driver NLM,
from a seperate Driver OA&M NLM or through a client based application where the Driver
provides the transport mechanism. Regardless of how the PBX Driver vendor supports/supplies
Driver OA&M services, the Telephony Server OA&M client application must still be used to
administer and maintain the Telephony Server.

3.7. Error Log Interface

A common error log will serve both the Tserver and the PBX driver. The interface to the error log is
always through the Telephony Server OA&M client application. It will support a standard
function call interface so errors will have a uniform appearance in the error log. The error log
interface will provide six severity levels TRACE, CAUTION, AUDIT_TRAIL, WARNING,
ERROR, FATAL (see section {4.5} below) for errors, and will include the date, time, location
of the error, a specific error code and supporting text for each error. There are three possible
destinations for each severity level: the NetWareâ system console, the Tserver OA&M
application, and the error log file. These destinations can be set for each of the six severity
levels through the Tserver OA&M client. Whenever possible, the PBX driver should log errors
in the common error log with the appropriate severity. The PBX Driver authors are free to
ignore this error log interface and provide their own error logging mechanism, but their error
messages will not be integrated with the Telephony Server.

4. Functional Description

4.1. PBX Driver to Tserver Interface

The TSDI provides a function call interface providing a mechanism for the exchange of messages
representing CSTA requests and responses that map to the CSTA API (see TSAPI), or OA&M

TSDI for Netware
Issue 1.5 3/1/94

requests and responses that map to the OA&M API (see section {4.4}). The PBX Driver must first
register with the Tserver, and then the driver can send and receive these requests and responses
using Telephony Services Driver Interface routines. All messages exchanged with the Tserver must
be allocated via the tdiAllocBuffer() routine (See section 7.3) from the TSDI; they can not be
directly allocated from the NetWareâ Operating System. The PBX Driver should always unregister
with the Tserver before it is unloaded.

The following sections provide a brief description of the function call interface provided by the
Telephony Services Driver Interface routines. See Section 7 for a complete specification of the
interface routines.

4.1.1. Driver Registration

4.1.1.1. Registration Mechanism

A PBX Driver must establish a connection with the Tserver before it can provide the CSTA
services described in the CSTA API TSAPI, or OA&M services described in section {4.4}
below. A separate connection must be created for each type of service the PBX Driver will
provide (e.g. one for CSTA services and one for OA&M services). Each CTI Link
supported by the Driver for which the Driver wants services advertised for must be
registered seperately with the Tserver, i.e each TSDI registration supports one CTI or OAM
link.

NOTE: A CTI Link is a logical link connecting the Driver to the PBX. The CTI Link can be one or
more physicaly links. A Driver should register separately for each CTI Link that it will support.

The Driver must use the Telephony Services Driver Interface routine, tdiDriverRegister(), to
establish a connection between the Driver and the Tserver. When a PBX Driver registers via the
tdiDriverRegister() routine, the Tserver NLM creates a separate TSDI instance by allocating the
resources from the NetWareâ OS for this Telephony Services Driver Interface (TSDI), and begin
Service Advertising on behalf of the PBX Driver. The Telephony Server treats each
tdiDriverRegister(), or TSDI instance completly independently. From the Telephony Servers point
of view each tdiDriverRegister() represents a different Driver, even though multiple registrations
may have been done by the same Driver NLM.

The Tserver NLM will apply the vendor_name, service_name and service_type parameters provided
by the Driver in the tdiDriverRegister() routine to the NetWare AdvertiseService() routine (see
[NLMREF-II]). The AdvertiseService() routine will inform (CSTA or OA&M) clients that the
Driver is available to perform services. The Tserver NLM will also store the driver_name parameter
provided by the PBX Driver in the tdiDriverRegister() routine for maintenance purposes. Version
information must be specified in the tdiDriverRegister() routine so that the PBX Driver can guard
against version compatibility problems with the Tserver. Because only one version of the TSDI
currently exists, the version field must always be set to TSDI_VERSION. The Telephony Services
Driver Interface monitors TSDI buffer usage by both the PBX Driver and the Tserver NLMs. The
PBX Driver can specify a maximum number of bytes that can be allocated (by the PBX Driver and
the Tserver) for TSDI messages via the buffer_descriptor parameter of the tdiDriverRegister()
routine. See section 4.1.1.2 below for a detailed description of how memory is used by the TSDI.

TSDI for Netware
Issue 1.5 3/1/94

The tdiDriverRegister() routine returns a driverID to the PBX Driver that must be used to identify
this TSDI connection. All message buffer allocations, send requests, receive requests, and unregister
requests for this TSDI connection (registration) must use this driverID. The PBX Driver is not
allowed to interchange messages from one TSDI registration to another. The tdiDriverRegister()
routine is a blocking function that will return to the PBX Driver after the Tserver NLM has initiated
the Service Advertising procedures.

4.1.1.2. TSDI Memory Allocation

The Tserver will allocate space from the TSDI interface only for buffers that are used to
forward/send events to the driver. All other space allocated by the Tserver is not charged
against the total TSDI space.

4.1.1.4. Driver Registration Security Level

For a Driver to be certified, it must register with the TDI_CSTA_SECURITY option. The valid
security option a Driver can register with are defined below:

TDI_CSTA_SECURIT
Y

NetWare Login and Password will be
validated on the acsOpenStream()
request.

Entry in the Tserver's Security Database
must contain this login. This is also
checked at the time of the
acsOpenStream() request.

Each subsequent CSTA request will be
validated per the user's administered
permissions.

TDI_LOGIN_SECURI
TY

NetWare Login and Password will be
validated on the acsOpenStream()
request.

Entry in the Tserver's Security Database
must contain this login. This is also
checked at the time of the
acsOpenStream() request.

TDI_NO_SECURITY No validation is done on an
acsOpenStream() request.

TSDI for Netware
Issue 1.5 3/1/94

4.1.2. TSDI Version Control
The version field in the tdiDriverRegister() function is used to enforce version control of the TSDI.
Currently only one version, TSDI_VERSION, of the TSDI exists. The version field must be set to
TSDI_VERSION.

4.1.3. Receiving Requests and Responses
The tdiReceiveFromTserver() routine is used by the PBX Driver to receive incoming (CSTA or
OA&M) requests and responses from the Client. These Client requests and responses are encoded in
message buffers (see section {4.2.3} below) returned by the bufptr parameter to the
tdiReceiveFromTserver() routine. The tdiReceiveFromTserver() routine is a blocking routine that
will only return when a message buffer is ready for the PBX Driver, or an error has occurred. The
PBX Driver “owns” the message buffer returned by the tdiReceiveFromTserver() routine. The
message buffer should not be directly returned to the NetWare OS by the PBX Driver (via the
NetWare free() routine). The message buffer must be returned back to the Telephony Services
Driver Interface instance. Recall if a Driver wishes to, it is allowed to register CSTA or OA&M
services multiple times.
The tdiFreeBuffer() routine can be used to return the message buffer back to the TSDI, or the
message buffer may be populated with a request or response message and sent back across the
Telephony Services Driver interface to the (CSTA or OA&M) client (see section {4.1.3}). The
tdiFreeBuffer() routine is a non-blocking routine and the parameters include a pointer to the buffer
that will be released and a driverID. The same driverID that was used in the
tdiReceiveFromTserver() routine must be applied to the tdiFreeBuffer() routine.

4.1.4. Sending Requests and Responses
The tdiSendToTserver() routine is used by the PBX Driver to send outgoing (CSTA or OA&M)
requests and responses to a Client. These Client requests and responses are encoded in message
buffers (see section {4.2.3} below) pointed to by the bufptr parameter of the tdiSendToTserver()
routine. The message buffers must be “owned” by the PBX Driver, and they must be allocated from
the Telephony Services Driver Interface that will be used to send the messages to the Client. (The
driverID returned from the tdiDriverRegister() routine must be used to allocate the message buffer
and send the message buffer.) Message buffers are “owned” by the PBX Driver if the Driver has
received the message buffer from the Tserver (via the tdiReceiveFromTserver() routine as described
above in section {3.1.2}), or allocated the message buffer from the TSDI via the tdiAllocBuffer()
routine.
The tdiAllocBuffer() routine will return a BYTE aligned block of data as big as that requested by
the PBX Driver, or the routine will return a failure indication. The tdiAllocBuffer() routine will fail
the “request” if the size of the message buffer requested exceeds the maximum buffer size allowed
on the interface, or if the size requested plus the size of all message buffers currently allocated by
the PBX Driver and the Tserver (on this Telephony Services Driver interface) exceeds the limit
specified by the Driver during PBX Driver registration. The TSDI memory allocation for this driver
(or TSDI registration) will be charged the size of the data block allocated plus TDI_HDR_SIZE
(currently 12 bytes) bytes needed for a TSDI header which is used to track this piece of TSDI

TSDI for Netware
Issue 1.5 3/1/94

memory.
The tdiSendToTserver() routine supports a two-level message priority scheme. The PBX Driver can
send “priority” messages through the interface by setting the priority parameter to
“TDI_PRIORITY_MESSAGE”. The Telephony Services Driver Interface will always deliver
priority messages (in First-In-First-Out order) before delivering “normal” messages (also in First-In-
First-Out order).
The PBX Driver no longer “owns” a message buffer that was successfully passed to the Tserver (and
the Client) via tdiSendToTserver(), and the PBX Driver should no longer access this buffer. The
tdiSendToTserver() routine is a non-blocking routine that will fail only when the bufptr, priority, or
driverID parameters are invalid.
NOTE: The tdiReceiveFromTserver() routine is blocking because the it waits on a NetWare Local
Semaphore that is only signalled when the Tserver sends the Driver a message. The
tdiSendToTserver() routine, however, is non-blocking because it signals a different NetWare Local
Semaphore that the Tserver waits on for receiving messages from the Driver.

4.1.5. Driver to Tserver Heartbeat Message
The PBX Driver must inform the Tserver, once a minute, that it is still active by calling the
tdiDriverSanity() function. This routine requires one parameter, the driverID returned to the PBX
Driver by the tdiDriverRegister() routine. This is a non-blocking routine. If the Driver fails to call
this function, the Tserver will generate a high severity error message which by default is placed in
the error log file and sent to the Tserver's OA&M client. In the current version of the TSDI, no other
recovery action is taken.

4.1.6. Unregistering the Driver
The PBX Driver must unregister before unloading, or any time it needs to break the Telephony
Services Driver Interface connection. The tdiDriverUnregister() routine requires a single parameter,
the driverID returned to the PBX Driver by the tdiDriverRegister() routine. This routine will block
while waiting to send all messages sent from the Driver to the TServer via the tdiSendToTserver()
and clear all (NetWare) Threads from this Telephony Services Driver Interface. The resources
allocated for this interface will be released back to the NetWare OS, and control will be returned to
the PBX Driver. No resources allocated for this interface should be accessed by the PBX Driver
after the tdiDriverUnregister() routine completes successfully.

4.1.7. Telephony Services Driver Interface Monitoring
The Telephony Services Driver Interface provides two routines that the PBX Driver can access to
monitor the message flow for a specific interface. The tdiMemAllocSize() routine provides the
amount of memory (in bytes) allocated for message buffers on this interface by the PBX Driver and
Tserver NLMs, and the tdiQueueSize() routine provides the count of messages queued to the
Tserver and to the PBX Driver for this Telephony Services Driver Interface. The driverID that
identifies the interface is the only input to these routines. The tdiQueueSize() and
tdiMemAllocSize() routines return structures that describe the current state of the message queues
and the bytes allocated for message buffers for both the Tserver and the PBX Driver.
The PBX Driver can use this information to determine if some form of flow control is required for
messages exchanged between the PBX Driver and the Client. The Tserver provides no form of flow

TSDI for Netware
Issue 1.5 3/1/94

control across the TSDI. There is a form of flow control in that fact that once all the memory in a
given TSDI instance is allocated to TSDI buffers via tdiAllocBuffer() funcation calls, no more TSDI
buffers could be allocated (by the Tserver or Driver) to be passed through the TSDI.

4.1.7. Telephony Server Flow Control Of TSDI Messages

The Telephony Server will flow control messages sent to to the Driver via the
tdiSendToDriver() routine as follows: When the amount of TSDI memory allocated
reaches the hiwater_mark as defined in the buffer_descriptor which is part of the
tdiDriverRegister() call, the Tserver will reject all new requests (including
ACSOpenStream()) with an error code of TSERVER_DRIVER_CONGESTION. This
will prevent new requests from being sent to the driver and should allow the driver to catch
up on current requests. If the TSDI memory is has hit the max_bytes level, then the
Tserver will drop an ACS Stream when a new requeust comes in with an error code of
TSERVER_NO_TDI_BUFFERS. If the Server is out of short term memory, then the the
Tserver will drop an ACS Stream when a new requeust comes in with an error code of
TSERVER_NO_MEMORY.

 This means the driver should chose the max_bytes and hiwater_mark of the buffer_descriptor
argument to the tdiDriverRegister() very carefully.
There is no flow control of messages sent from the driver to the Tserver.

4.2. PBX Driver to Client Interface

4.2.1. Advertising Driver Services

The Tserver connection that was created when the PBX Driver registered via the
tdiDriverRegister() routine is used for exchanging messages between the Driver and
Clients. Clients using the CSTA API will attempt to create a CSTA stream to a PBX Driver
that had previously registered for CSTA services. Clients using the OA&M API (see
section 10) will attempt to open an OA&M stream to a PBX Driver that had previously
registered for OA&M services. The Tserver NLM will advertise the specific services
registered by the PBX Driver via the tdiDriverRegister() routine. The Tserver uses the
combination of the vendor_name, service_name and service_type parameters to
tdiDriverRegister() to create the advertised name. The name will look as follows:

Total length of advertised name is 48 Bytes

(including a NULL terminator and “#” delimiting each field)

TSDI for Netware
Issue 1.5 3/1/94

6 Bytes 10 Bytes 5 Bytes <= 23 Bytes

vendor_name service_name service_type Server Name

In the following examples, assume that the name of the server on which the Tserver NLM is running
is DAGOTTO.

Description Example Name

Tserver OA&M NOVELL#TSRV_OAM#OAM#DAGOT
TO

AT&T CSTA Simulator ATT#CSTASERV#CSTA#DAGOTTO

 The Tserver NLM also provides routing and security services for messages exchanged between the
PBX Driver and its Clients along these CSTA or OA&M Streams.

4.2.2. The Stream to the Client Workstation
The Stream between a Client workstation and the PBX Driver can only be created after the Driver
has registered with the Tserver for a specific service. Two service advertising types are allocated
from Novellâ, a CSTA service class and an OA&M service class. The PBX Driver must specify one
of these service classes during driver registration, and the combination of the vendor_name,
service_name and service_type parameters provided by the Driver is used to create a unique name to
advertise for the PBX Driver service on the internetwork. The tdiDriverRegister() routine.will
guarantee that no two Driver registrations result in the same advertised name.
µ §

Figure 3: CSTA and OA&M Streams

The CSTA Client will perform an acsOpenStream() for the advertised name to establish a CSTA
stream to the PBX Driver and set the streamType parameter to ST_CSTA. This acsOpenStream()
request will be mapped to a corresponding CSTA message (see the message class definition in
section {4.2.2} below) and sent over the Telephony Services Driver Interface to the PBX Driver
(see Figure 3). If the TServer does not reject the open request based on login and password the
request will be passed to the PBX Driver, which must then consider whether to honor this request or

TSDI for Netware
Issue 1.5 3/1/94

not, and a CSTA message must be sent back across the interface by the Driver either acknowledging
(ACSOpenStreamConfEvent) or failing (ACSUniversalFailureConfEvent) the open request. If the
PBX Driver acknowledged the CSTA open request, a (logical) CSTA stream or session has been
established between the PBX Driver and the Client application. CSTA requests and responses that
map to the CSTA API can be sent back and forth across the Telephony Services Driver Interface in
the form of CSTA messages (see section {4.3} below) until the stream is disconnected by the PBX
Driver (via the ACSAbortStream) or the Client (via the cstaCloseStream() or acsAbortStream()
function call).

The establishment of an OA&M stream is accomplished in the same way as the establishment of a
CSTA stream as described above except the streamType parameter is set to ST_OAM..
A Client Session ID is included in each message exchanged on the stream between the PBX Driver
and the CSTA or OA&M Client. This Client Session ID uniquely identifies a session. The Client
Session ID is initially provided to the PBX Driver in the message corresponding to the
acsOpenStream() performed by the Client application. The PBX Driver must include this Client
Session ID in each request or response sent across the Telephony Services Driver Interface for this
Client session. A Driver Control block (see {4.2.3} below) is always included as the first portion of
each message exchanged on the stream, and the Client Session ID is a mandatory field in the Driver
Control block

4.2.3. The Message Format Between the PBX Driver and the Client

All messages exchanged between the PBX Driver and the Client application (via the API) over
the TSDI conform to a format that consists of a Driver Control Block followed by (an
optional) Message Block followed by (an optional) private data block. The Driver Control
block is a fixed length structure starting at the first byte of the message buffer, and the
Driver Control block has the same format for all messages exchanged over the TSDI.

The first two fields of the Driver Control block specify the location and length of the Message
Block. The Message Block is a portion of the messages exchanged between the PBX Driver and the
Client over the TSDI. The Message Block is variable in length, and the format of the Message Block
depends on the messageClass and messageType defined in the Driver Control block portion of the
message.

The next two fields of the Driver Control block specify the location and length of the Private Block.
The Private Block is an a optional portion of the messages exchanged between the PBX Driver and
the Client over the TSDI. The Private Block is variable in length, and the format of the Private
Block is defined before hand between the client and the Driver.

The rest of the fields in the Driver Control block are defined in the following sections.

.

µ §

Figure 4: Message Format

4.2.3.1. The Driver Control Block

The first bytes of the messages exchanged across the Telephony Services Driver Interface must be
TSDI for Netware

Issue 1.5 3/1/94

the Driver Control Block. The Driver Control Block (DC Block) is the portion of the message
passed across the TSDI to the PBX Driver that provides control information to the Driver for it to
properly interpret and process Client requests and responses. The PBX Driver must always create a
Driver Control block as the first part of request or response messages sent across the TSDI so that
the Tserver can route the message to the appropriate Client, and the Client can receive the
appropriate event. The DC Block is populated by the Tserver with information received from the
Client. The DC is a C structure of fixed size that is located starting at the first byte of the message
buffer that is passed across the TSDI and received by the PBX Driver via the
tdiReceiveFromTserver() routine. The DC must also start at the first byte of the message buffer sent
to the Tserver via the tdiSendToTserver() routine. A Message Block and /or Private Data Block that
contains the formatted request or response message may immediately follow the DC in the message
buffer as defined by the message and private offset fields.
The DC, the Message Block and Private Data Block must be contained within one contiguous TSDI
buffer that was either received by the driver via the tdiReceiveFromTserver() routine or allocate by
the Driver via the tdiAllocBuffer() routine. There may be “holes” in the buffer between these three
blocks as long as the DC block starts at the first byte and the message and private data offset fields
are set correctly.

4.2.3.2. The Driver Control Block Field Definition

/* Driver Control Block Structure */
typedef struct {
 unsigned short messageOffset;
 unsigned short messageLength;
 unsigned short privateOffset;
 unsigned short privateLength;
 InvokeID_t invokeID;
 CSTAMonitorCrossRefID_t monitorCrossRefID;
 SessionID_t sessionID;
 EventClass_t messageClass;
 EventType_t messageType;
 short class_of_service;
} TDIDriverControlBlock_t;

messageOffset The messageOffset is a value that determines the start of
the request or response message associated with this
Driver Control block. The messageOffset must be added
to the address of the Driver Control block to get the start
of the message. This field should be set to 0 if no
message block is included with the Driver Control block.

TSDI for Netware
Issue 1.5 3/1/94

messageLength The messageLength is a value that provides the length of
the request or response message associated with this
Driver Control block. This field must be set to 0 if no
message block is associated with this Driver Control
block.

privateOffset The privateOffset is a values that determines the start of
the private data associated with this Driver Control
block. The privateOffset must be added to the address of
the Driver Control block to get to the beginning of the
private data. This field should be set to 0 if no private
data is included with the Driver Control block.

privateLength The privateLength is a value that provides the length of
the private data associated with this Driver Control
block. This field must be set to 0 if no private data is
associated with this Driver Control block.

invokeID The invokeID is a value that is used for pairing request-
response messages. The PBX Driver will receive an
invokeID in each request message, and this value should
be passed back unchanged in the DC block of any
response message. The invokeID is undefined for
requests or events that originated from the PBX Driver.

monitorCrossRefID The monitorCrossRefID is a value for pairing monitor
request-response messages. This monitorCrossRefID is
set only in unsolicted events sent by the Driver in
response to a previously opened monitor.

Note: The cstaMonitorStartConfEvent message includes
a monitorCrossRefID in the actual structure and this is
the place where a driver should indicate the cross
reference ID for that monitor, not here in the DC block.

sessionID The sessionID is used to properly route messages to the
appropriate client application. The PBX Driver will
obtain this ID when it receives a message corresponding
to an acsOpenStream() request from a client application,
and this sessionID must be included in the Driver
Control block for each message passed on the stream.

TSDI for Netware
Issue 1.5 3/1/94

The driver must populate this field of the DC with the
appropriate sessionID of the client whenever a
confirmation report or unsolicited event for a client is
sent via the tdiSendToTserver() routine.

messageClass The messageClass enumerates the message class for the
message. The tables in the following sections list the
possible values for messageClass depending on
messageType. Message classes fall in three general
categories: confirmation, solicited and unsolicited events.
See the table below for a list of all possible message
classes.

messageType The messageType indicates the type of message block
following the DC in the message buffer. The
messageType field defines each message within a
messageClass. See section {4.3} below for the
messageType definitions for CSTA messages, and
section {4.4} below for the messageType definitions for
OA&M messages.

class_of_service The class_of_service field is not used in this release of
the Tserver.

 The following table lists all messsageClass that a driver could receive.

MESSAGE CLASS DESCRIPTION

ACSREQUEST ACS request messages sent by a client to the driver (e.g
acsOpenStream, etc).
The API calls in chapter 4 of the [TSAPI] define the set
of messages that make up this class.

ACSUNSOLICITED ACS messages generated asynchronously by the Driver
or Tserver to be sent to a client (e.g
ACSUniversalFailureEvent,etc)
See the structure ACSUnsolicitedEvent in acs.h for a
complete enumeration of the messages that make up this
class.

TSDI for Netware
Issue 1.5 3/1/94

ACSCONFIRMATION ACS confirmation messages sent by the Driver to a
client in response to a previous ACS request message
(e.g ACSOpenStreamConfEvent,
ACSUniversalFailureConfEvent,etc).
See the structure ACSConfirmationEvent in acs.h for a
complete enumeration of the messages that make up this
class.

CSTAREQUEST CSTA request messages sent by a client to the driver (e.g
cstaMakeCall, etc), or CSTA request message sent by the
driver to a client (e.g, CSTARouteRequestEvent, etc).
See the structure CSTARequestEvent in csta.h for a
partial enumeration of the messages that make up this
class. The rest of the messages that make up this class
are defined by the API calls in [TSAPI].

CSTAUNSOLICITED CSTA messages generated asynchronously by the Driver
to be sent to a client (e.g CSTAEstablishedEvent ,
CSTADeliveredEvent,etc)
See the structure CSTAUnsolicitedEvent in csta.h for a
partial enumeration of the messages that make up this
class.

CSTACONFIRMATIO
N

CSTA confirmation messages sent by the Driver to a
client in response to a previous CSTA request message
(e.g CSTAMakeCallConfEvent,
CSTAClearConnectionConfEvent,etc) or a confirmation
message sent by a client to a Driver in response to a
previous CSTA request message (e.g cstaRouteSelect,
etc).
See the structure CSTAConfirmationEvent in csta.h for
a complete enumeration of the messages that make up
this class.

CSTAEVENTREPORT CSTA message sent by the Driver to a client which
reports on some CSTA event, but which does not require
the client to send a confirmation event in response.
See the structure CSTAEventReport in csta.h for a
complete enumeration of the messages that make up this
class.

TDRVRREQUEST Driver OA&M request messages sent by a client to the
driver (e.g TSRVDriverOAMReq, etc).
The API calls in chapter 10, OA&M API Manual Pages
of the this document define the set of messages that make

TSDI for Netware
Issue 1.5 3/1/94

up this class.

TDRVRUNSOLICITE
D

Driver OA&M messages generated asynchronously by
the Driver to be sent to a client (e.g
TSRVDriverOAMEvent,etc)
See the structure TSRVDriverUnsolicitedEvent in
tdrvr.h for a complete enumeration of the messages that
make up this class.

TDRVRCONFIRMATI
ON

Driver OA&M confirmation messages sent by the Driver
to a client in response to a previous Driver OA&M
request message (e.g TSRVDriverOAMConfEvent,etc).
See the structure TSRVDriverConfirmationEvent in
tdrvr.h for a complete enumeration of the messages that
make up this class.

4.2.3.3. DC Block / Message Class Mapping

Only certain fields in the DC Block are valid for each of the different messageClass defined in
the table above for messages sent from the Tserver to the Driver or from the Driver to the
Tserver (and then on to clients). The tables below detailed which fields a Driver should
expect are valid in messages sent by the Tserver and which fields a Driver must fill in for
messages sent by a Driver.

4.2.3.3.1. Tserver to Driver Messages

The tables below indicate with a X which fields are set by the Tserver when a message of this class
is sent to the Driver. The Driver should only consider these fields to be valid for this class of
message.

DC Block Field ACSREQUES
T

CSTAREQUEST CSTACONFIRMATI
ON

Note: the only
message sent from
the Tserver to the

Driver of this class is
a CSTARouteSelect()

message.

TDRVRREQUEST

messageOffset X X X X
TSDI for Netware

Issue 1.5 3/1/94

messageLength X X X X

privateOffset X X X X

privateLength X X X X

invokeID X X X X

monitorCrossRe
fID

sessionID X X X X

messageClass X X X X

messageType X X X X

class_of_service X X

TSDI for Netware
Issue 1.5 3/1/94

The following class of messages are never sent from the Tserver to a Driver: ACSUNSOLICITED,
ACSCONFIRMATION, CSTAUNSOLICITED, CSTAEVENTREPORT, TDRVRUNSOLICITED
and TDRVRCONFIRMATION.

4.2.3.3.2. Driver to Tserver Messages

The tables below indicate with a X which fields are set by the Driver when a message of this class is
sent to the Tserver. The Tserver should only consider these fields to be valid for this class of
message.

DC Block Field ACSCONFIRMATI
ON

ACSUNSOLICITE
D

TDRVRCONFIRMAT
ION

TDRVRUNSOLICI
TED

messageOffset X X X X

messageLength X X X X

privateOffset X X X X

privateLength X X X X

invokeID X X

monitorCrossRe
fID

TSDI for Netware
Issue 1.5 3/1/94

sessionID X X X X

messageClass X X X X

messageType X X X X

class_of_service X X

DC Block Field CSTAREQUE
ST

CSTACONFIRMATIO
N

CSTAUNSOLICITE
D

CSTAEVENTREP
ORT

messageOffset X X X X

messageLength X X X X

privateOffset X X X X

privateLength X X X X

invokeID X X

TSDI for Netware
Issue 1.5 3/1/94

monitorCrossRe
fID

X

(Validate in all
unsolicited messages

except
cstaPrivateStatusEve

nt and
cstaSysStatReqEvent)

sessionID X X X X

messageClass X X X X

messageType X X X X

class_of_service

The following class of messages are never sent from the Driver to a Tserver: ACSREQUEST,
TDRVREQUEST.

4.2.3.3. The Protocol on the Client Stream

The three distinct phases for the communication between the PBX Driver and the Client
application include: opening the stream (ACS messages), the request-response protocol (CSTA
or OA&M messages), and closing the stream (ACS messages). These phases are similar for both
the CSTA and OA&M streams connecting the PBX Driver and the Client application. Each phase
consists of a set of messages that define the phase, and each message maps to either a (CSTA or
OA&M) API function call issued by the Client application, or a (CSTA or OA&M) event that will
be presented to the Client.
Details on how to handle the opening and closing of a ACS stream are given in section 4.3 {ACS
Messaging Interface}. Details on how to handle the request-response protocol for CSTA messages is
given in section 4.4 {CSTA Messaging Interface} and details on handling the request-response
protocol for Driver OA&M messages is given in section 4.5 {OA&M Messaging Interface}.

TSDI for Netware
Issue 1.5 3/1/94

4.2.3.3. TSDI Session ID to ACS Handle Mapping

The Session ID in the DC block is used by the Tserver to route Driver messages (confirmation or
unsolicited) back to client applications. The Session ID is the actual SPX connection ID
(server side) back to the client workstation. The ACS Handle which is used at the client
API level to indicate which ACS Stream a message is to be sent out on or which stream a
message was received on is created and managed totally by the client API library
(Windows DLL or NetWare TLIB). The client API Library maintains a mapping between
the ACS Handle the SPX connection ID (client side).

There is no direct mapping between TSDI Session IDs and ACS Handles. The Driver receives the
Session ID in the DC Block with the ACSOpenStream message when the Stream is opened and will
receive the Session ID in the DC block in all subsequent messages received over this stream. The
Driver only needs to deal with Session IDs.

4.2.3.3. Scope of Monitor and Routing Cross Reference IDs

Monitor and Routing Cross reference IDs generated by a Driver must be unique within the scope of
a TDI Driver Registration. A TDI Driver Registration advertises a single logical CTI-LINK (the
physical implementation of a logical CTI-LINK is defined by the Driver) and corresponds to the set
of all ACS Streams opened to that CTI-LINK.

4.2.3.3. Scope of Invoke IDs

The Tserver gaurantes that invokeIDs passed to the driver will be unique within an ACS stream. The
Tserver actually saves the client generated invokeID (either application generated for library
generated) for each request and creates a new, unique invokeID that is passed to the driver. The
Tserver then tracks each confirmation event from a driver and replaces the invoke ID in the DC
Block with the saved invoke ID before the event is sent back to the application. A driver can use
exported TDI routine, tdiMapInvokeID() to determine the acutally client generated invokeID. A
driver should always use the client invokeID in any trace or debugging information it generates
related to a stream.

4.3. ACS Messaging Interface

This section illustrates the functions and events and their associated C structures of the Application
Control Services (ACS) that are presented to the driver across the TSDI. ACS functions deal
with the characteristics of the API interface (e.g. opening and closing the CSTA or OA&M
interface). They provide the ability to open, initialize, close and manage a virtual
communication channel (CSTA or OA&M stream) with any Telephony Server defined by the
system. See TSAPI for more details on the ACS API C Language function calls and events,
and see Section 9 for a definition of the associated C structures and message types.

ACS request, response and event messages transported across the Telephony Services Driver
Interface are presented in a C structure format and are used to establish and maintain ACS streams.
Each API call and event that needs to be passed across the TSDI maps directly to a C structure
defined in acsdefs.h (see Section 9). This C structure will be passed in the Message Block portion of
the buffer where messageOffset points. A driver writer needs only to map the correct C structure,

TSDI for Netware
Issue 1.5 3/1/94

based on the messageClass and messageType, onto the Message Block in order to access the
information contained in the ACS message.

Each of these categories has associated API calls and events that are illustrated below. The tables
indicate the function name of the ACS API call or the ACS event name, its associated C structure
name (a full C structure definition is included in acsdefs.h-Section 9), the message class and type of
the C structure, the associated C structure name of the confirmation event.

The naming conventions for the items in the tables are as follows:

acs<function name>() acs API function call name

ACS<function name>Event ACS Event (request, confirmation or
unsolicited)

<function name>_t C structure name corresponding to a ACS
API call, confirmation event or
unsolicited event.

<define name> message type name

4.3.1. Application Control Services

Application Control Services
API Call or ACS

 Event Name

C Language

Structure Name

Message Class MessageType C Language

Confirmation Event

Structure

acsOpenStream() ACSOpenStream_t ACSREQUEST ACS_OPEN_STREAM ACSOpenStreamConfEvent_t

ACSOpenStreamConfEvent ACSOpenStreamConfEvent_t ACSCONFIRMATION ACS_OPEN_STREAM_CONF NA

acsCloseStream() ACSCloseStream_t ACSREQUEST ACS_CLOSE_STREAM ACSCloseStreamConfEvent_t

TSDI for Netware
Issue 1.5 3/1/94

ACSCloseStreamConfEvent ACSCloseStreamConfEvent_t ACSCONFIRMATION ACS_CLOSE_STREAM_CONF NA

acsAbortStream() ACSAbortStream_t ACSREQUEST ACS_ABORT_STREAM NA

ACSUniversalFailureEvent ACSUniversalFailureEvent_t ACSUNSOLICITED ACS_UNIVERSAL_FAILURE NA

ACSUniversalFailureConfEvent ACSUniversalFailureConfEvent
_t

ACSCONFIRMATION ACS_UNIVERSAL_FAILURE_C
ONF

NA

4.3.2. Processing ACS Control Messages

4.3.2.1. Processing an acsOpenStream Message

The first thing that the PBX Driver will receive for a new Client session is the (CSTA or OA&M)
“open request” message. The open request is sent to the driver so that the driver has an oppurtunity
to accept or reject the open. This gives the driver control of how many streams it can handle and
allows the driver to implement any type of resource high water mark that may be appropriate. For
example a driver may wish to limit the amount of memory that is allocated based on the size of the
server machine which could translate into limiting the number of open streams. Sending the open
request to the driver also allows the driver to reject the open stream request if some error condition
exists that would prevent CSTA requests from being processed (i.e. the CTI-LINK is down).
NOTE: At this time there are no standard requirements on how drivers should the interaction
between the CTI-LINK being down and accepting new open stream requests or tearing down
existing ACS streams.
The “open request” message is created when the Client performs an acsOpenStream() function call
with streamType set to ST_CSTA for CSTA streams or ST_OAM for OA&M streams. The “open
request” message is a block of memory passed across the TSDI from the Tserver to the Driver and
contains the following: messageOffset, messageLength, messageClass, messageType,
privateOffset, privateLength, invokeID, monitorCrossRefID and a class_of_service. The
sessionID identifies the (new) Client session or stream. The messageClass will identify the message
as a CSTA, ACS or OA&M message. Each of these three classes is actually broken down into
several classes. In the case of an acsOpenStream(),the messageClass will be ACSREQUEST.
The message type defines which type of message within the indicated messageClass this message
is. In the case of an acsOpenStream(), the messageType will by ACS_OPEN_STREAM. The
messageType for all ACS, CSTA and OA&M messages is enumerated in the tables in sections 4.3,
4.4 and 4.5 respectively. The messageClass and messageType indicate what type of message (i.e.
C-structure) is in the Driver Control block. The invoke ID is used to implement the request-
response protocol from the Client application to the PBX Driver. The invoke ID is generated by the
(acsOpenStream()) API function call (it is also allowable for the application to specify the invoke
ID). This invoke ID must be returned in the “open response” message so that the application can

TSDI for Netware
Issue 1.5 3/1/94

match it to a previous “open request”.
 If the PBX Driver is intent on honoring the “open request”, it must generate an
ACSOpenStreamConfEvent message using the sessionID, and the invoke ID from the
acsOpenStream()message. The PBX Driver must set the messageClass and message type to the
values defined for an ACSOpenStreamConfEvent which would be ACSCONFIRMATION and
ACS_OPEN_STREAM_CONF respectively.
 If the PBX Driver is not intent on honoring the “open request”, it must generate an
ACSUniversalFailureConfEvent message using the sessionID, and the invoke ID from the
acsOpenStream()message. The PBX Driver must set the messageClass and message type to the
values defined for an ACSUniversalFailureConfEvent which would be ACSCONFIRMATION
and ACS_UNIVERSAL_FAILURE_CONF respectively.
 The “open response” message is sent back to the Client through the API as a confirmation event. A
successful exchange of the open request message and the positive open confirmation response
message between the PBX Driver and the Client application will result in the creation of an ACS
stream (for either CSTA or OA&M services) between the PBX Driver and the Client.

4.3.2.2. Processing a Close Request

The PBX Driver may receive a request from the Client application to close the ACS stream (CSTA
or OA&M). The “close request” message is created when the Client application performs an
acsCloseStream() function call (for CSTA streams), or a acsAbortStream() function call (the Tserver
might also generate an acsAbortStream() message for the driver in certain failure conditions). The
“close request” message contains the sessionID, the messageClass, the messageType, and possibly
an invokeID. The sessionID identifies the Client session or stream, and the message class will
identify the message as a CSTA or OA&M message.

4.3.2.2.1. Processing an acsCloseStream()
In the case of a acsCloseStream() the messageClass field will be ACSREQUEST and the
messageType field will be ACS_CLOSE_STREAM. The invoke ID is generated by the
acsCloseStream() API function call. This invoke ID must be returned in the “close response”
message, ACSCloseConfirmationEvent, so that the application can match it to a previous “close
request”. The PBX Driver must generate an ACSCloseConfirmationEvent message in response to
a acsCloseStream() using the sessionID, and the invoke ID from the acsCloseStream()message, with
messageClass and messageType set appropriately for an ACSCloseConfirmationEvent message,
i.e messageClass set to ACSCONFIRMATION and messageType set to
ACS_CLOSE_STREAM_CONF. Unlike the situation on an “open request” where the Driver can
chose to accept or reject the open request, a Driver must always accept a “close stream” request and
clean up any resources associated with that stream.

4.3.2.2.2. Processing an acs AbortStream()
In the case of a acsAbortStream() the messageClass field will be ACSREQUEST and the
messageType field will be ACS_ABORT_STREAM. There is no invoke ID on this message since
no reply from the Driver is required. The Driver must always accept a “abort stream” request and
clean up any resources associated with that stream.

TSDI for Netware
Issue 1.5 3/1/94

4.3.2.3. Asychronously Closing a Stream from the Driver

When the Driver wishes to terminate an ACS Stream it must send a ACSUniversalFailureEvent
with the errcode set to DRIVER_ACSHANDLE_TERMINATION. When the Tserver sees this
message (with this error code) from a Driver, the message will be delivered to the client and the the
ACS stream will be terminated.

4.3.2.4. When To Use ACSUniversalFailureConfEvent

An ACSUniversalFailureConfEvent should be always be used to negatively acknowledge an
ACS requests such as acsOpenStream().

An ACSUniversalFailureConfEvent can be also be use to NACK a CSTA or OA&M request such
as cstaMakeCall(), but only if the reason for the NACK is related to the allocating or maintaining
resources related to the ACS Stream the cstaMakeCall() was received on. If the Driver is not going
to positively acknowledge the CSTA or OA&M message with the defined Confirmation Event for
that message, and the problem is not related to the ACS Stream, then the Driver should use a
CSTAUniversalFailureConfEvent as defined by TSAPI, [ECMA/52] and [ECMA-179].

4.3.2.5. When To Use ACSUniversalFailureEvent

An ACSUniversalFailureEvent is an unsolicited, asynchronous message generated by the
Driver (or Tserver) and sent to a client to indicate a failure of an existing ACS Stream.

4.3.2.6. Failure Codes To Use in ACSUniversalFailure Type Messages

Both ACSUniversalFailureConfEvent and ACSUniversalFailureEvent share the same set of
error codes, and the Tserver and Driver must also share this set of error codes for use in
these messages. Error code values from 1-999 are reserved for Tserver and values from
1000 and above are available for Driver use. Currently, a small number of generic Driver
error codes are defined in Chapter 4, ACSUniversalFailureEvent Section of [TSAPI].

The relevant portions of this chapter are reproduced below.

typedef enum ACSUniversalFailure_t {

:

:

 DRIVER_DUPLICATE_ACSHANDLE = 1000,

 DRIVER_INVALID_ACS_REQUEST = 1001,

 DRIVER_ACS_HANDLE_REJECTION = 1002,

 DRIVER_INVALID_CLASS_REJECTION = 1003,

 DRIVER_GENERIC_REJECTION = 1004,

 DRIVER_RESOURCE_LIMITATION = 1005,

 DRIVER_ACSHANDLE_TERMINATION = 1006,
TSDI for Netware

Issue 1.5 3/1/94

 DRIVER_LINK_UNAVAILABLE = 1007

} ACSUniversalFailure_t;
Driver errors
Error values in this category indicate that the driver detected an error. This type includes one

of the following specific error values:

Driver Duplicate ACSHandle
The acsHandle given for an ACSOpenStream request is already in use for a session. The

already open session with the acsHandle is remains open.

Driver Invalid ACS Request
The acs message contains an invalid or unknown request. The request is rejected.

Driver ACS Handle Rejection
A CSTA request was issued with no prior ACSOpenStream request. The request is rejected.

Driver Invalid Class Rejection
The driver received a message containing an invalid or unknown message class. The request

is rejected.

Driver Generic Rejection
The driver detected an invalid message for something other than message type or message

class. This is an internal error and should be reported.

Driver Resource Limitation
The driver did not have adequate resources (i.e. memory, etc.) to complete the requested

operation. This is an internal error and should be reported.

Driver ACSHandle Termination
Due to problems with the link to the switch the driver has found it necessary to terminate the

session with the given acsHandle. The session will be closed, and all outstanding requests will
terminate.

Driver Link Unavailable
The driver was unable to open the new session because no link was available to the PBX.

The link may have been placed in the BLOCKED state, or it may have been taken offline.

4.4. CSTA Messaging Interface

CSTA request, response and event messages transported across the TSDI are presented in a C
structure format. Each API call and Event that needs to be passed across the TSDI maps
directly to a C structure defined in cstadefs.h (see Section 9). This C structure will be passed in
the Message Block portion of the buffer. A driver writer needs only to map the correct C
structure, based on the messageClass and messageType, onto the Message Block (whose

TSDI for Netware
Issue 1.5 3/1/94

location is indicated by the messageOffset field) in order to access the information contained in
the CSTA message.

There are three categories of CSTA API calls and Events:

· Switching Function Services

· Status Reporting Services

· CSTA Computing Function Services

Each of these categories has associated API calls and events that are illustrated below. The
tables indicate the function name of the CSTA API call or the CSTA Event name, its
associated C structure name (a full C structure definition is included in cstadefs.h-Section
9), the message class and type of the C structure, the associated C structure name of the
confirmation event.

The naming conventions for the items in the tables are as follows:

csta<function name> csta API function call name

CSTA<function name>Event CSTA Event (request, confirmation or
unsolicited)

<function name>_t C structure name corresponding to a
CSTA API call, confirmation event or
unsolicited event.

<define name> message type name

4.4.1. Request-Response Protocol
An open ACS stream for CSTA or OA&M is used to exchange messages that represent a request-
response protocol between the PBX Driver and the Client application. The (CSTA or OA&M) API
function calls map into requests sent in message format on the stream. Each message includes the
same DC block as the “open request” message contained: messageOffset, messageLength,
messageClass, messageType, privateOffset, privateLength, invokeID, monitorCrossRefID and
a class_of_service.
The combination of messageType and messageClass map to a specific (CSTA, ACS or OA&M)
API function call, and the invoke ID identifies a specific API function call invocation. The PBX

TSDI for Netware
Issue 1.5 3/1/94

Driver must include the sessionID and the invokeID from the request message in the response sent
back to the Client application. The messageClass and messageType sent back in the response
message to the Client request must correspond to an appropriate response message type (see sections
{4.3 , 4.4 and 4.5} below). This response message is mapped to a confirmation (or failure) event for
the Client application at the API.
Unsolicited events may also be generated by the PBX Driver for the (CSTA or OA&M) client. The
PBX Driver must include the sessionID, the messageClass, the messageType in event message sent
to the Client application. An invoke ID is not used for events that are originated by the PBX Driver.
Requests may also be generated by the PBX Driver for the (CSTA or OA&M) client. The PBX
Driver must include the sessionID, the messageClass, the messageType in the request sent to the
Client application. An invoke ID is used for requests (except for Routing Reqeusts- see 4.4.7) that
are originated by the PBX Driver. These request messages are mapped into events for the Client at
the (CSTA or OA&M) API. The Client must call an (CSTA or OA&M) API function to generate a
response back to the PBX Driver. The response message always contains a sessionID, and an
appropriate messageClass and messageType and possibly an .invoke ID.

4.4.2. Processing CSTA Messages
A Driver must respond in one of three ways for each CSTAREQUEST message a received:

Send back the appropriate CSTACONFIRMATION message indicating the the requested operation
has been initiated. Refer to [ECMA-179] for a description/definition of what each confirmation
event means.
Send back a UniversalFailureConfEvent messages indicating a CSTA type of failure and that the
requested operation has been failed. Refer to [ECMA-179] for a description/definition of what each
confirmation event means
Send back a ACSFailureConfEvent messages indicating an ACS type of failure (problem
maintaining the ACS Stream) and that the request operation has been failed. Refer to [TSAPI -
Chapter 4] for a list of failure codes for an ACSFailureConfEvent that a Driver is allowed to use.

4.4.3. CSTA Control Services Functions
CSTA Control Service Functions allow an application to determine which set of CSTA

functionality a Driver supports.

API Call or ACS

 Event Name

C Language

Structure Name

Message Class MessageType C Language

Confirmation Event

Structure

cstaGetAPICaps() CSTAGetAPICaps_t CSTAREQUEST CSTA_GETAPI_CAPS CSTAGetAPICapsConfEvent_t

CSTAGetAPICapsConfEvent CSTAGetAPICapsConfEvent_t CSTACONFIRMATIO
N

CSTA_GETAPI_CAPS_CONF NA

TSDI for Netware

Issue 1.5 3/1/94

4.4.4. CSTA Security Services Functions
CSTA Security Services functions allow an application to determine which set of devices can be

controlled as defined by the Telephony Server.
NOTE: These messages are always handled by the Telephony Server and are never sent to a Driver
and are listed here only for completeness, i.e. every API call in the [TSAPI] is listed in this
document to make clear which of these messages the Driver must deal with and which the Tserver
deals with.

API Call or ACS

 Event Name

C Language

Structure Name

Message Class MessageType C Language

Confirmation Event

Structure

cstaGetDeviceList() CSTAGetDeviceList_t CSTAREQUEST CSTA_GET_DEVICE_LIST CSTAGetDeviceListConfEvent_t

CSTAGetDeviceListConfEvent CSTAGetDeviceListConfEvent_
t

CSTACONFIRMATIO
N

CSTA_GET_DEVICE_LIST_CONF NA

cstaQueryCallMonitor() CSTAQueryCallMonitor_t CSTAREQUEST CSTA_QUERY_CALL_MONITOR CSTAQueryCallMonitorConfEvent_t

CSTAQueryCallMonitorConfEv
ent

CSTAQueryCallMonitorConfEv
ent_t

CSTACONFIRMATIO
N

CSTA_QUERY_CALL_MONITOR_CO
NF

NA

4.4.5. Switching Function Services
This section illustrates the functions and events of CSTA switching function services and their
associated C structures that are presented across the Telephony Services Driver Interface. Switching
function services are Telephony Services which operate on calls and activate switch related features
that are associated with the user desktop telephone or any other device defined by the switching
domain. See [ECMA-179] for more details on the switching function services, see TSAPI for more
information on the associated CSTA API C Language function calls and events, and see Section 9
for a definition of the related C structures and message types.

4.4.5.1. Basic Call Control Services

This section defines Telephony Services which deal with basic call control for the desktop or
call center environments. These functions provide services which allow client applications
to:

TSDI for Netware
Issue 1.5 3/1/94

· establish, control, and “tear-down” calls at a device or within the switch,

· answer incoming calls into a device, and

· activate/de-activate features and capabilities supported by the switch or the server.

API Call or ACS

 Event Name

C Language

Structure Name

Message Class MessageType C Language

Confirmation Event

Structure

 UniversalFailureConfEvent UniversalFailureConfEvent_t CSTACONFIRMATIO
N

CSTA_UNIVERSAL_FAILURE_CO
NF

NA

cstaAlternateCall() CSTAAlternateCall_t CSTAREQUEST CSTA_ALTERNATE_CALL CSTAAlternateCallConfEvent_t

CSTAAlternateCallConfEvent CSTAAlternateCallConfEvent_t CSTACONFIRMATIO
N

CSTA_ALTERNATE_CALL_CONF NA

cstaAnswerCall() CSTAAnswerCall_t CSTAREQUEST CSTA_ANSWER_CALL CSTAAnswerCallConfEvent_t

CSTAAnswerCallConfEvent CSTAAnswerCallConfEvent_t CSTACONFIRMATIO
N

CSTA_ANSWER_CALL_CONF NA

cstaCallCompletion() CSTACallCompletion_t CSTAREQUEST CSTA_CALL_COMPLETION CSTACallCompletionConfEvent
_t

CSTACallCompletionConfEvent CSTACallCompletionConfEvent
_t

CSTACONFIRMATIO
N

CSTA_CALL_COMPLETION_CON
F

NA

cstaClearCall() CSTAClearCall_t CSTAREQUEST CSTA_CLEAR_CALL CSTAClearCallConfEvent_t

CSTAClearCallConfEvent CSTAClearCallConfEvent_t CSTACONFIRMATIO
N

CSTA_CLEAR_CALL_CONF NA

cstaClearConnection() CSTAClearConnection_t CSTAREQUEST CSTA_CLEAR_CONNECTION CSTAClearConnectionConfEven
t_t

CSTAClearConnectionConfEve
nt

CSTAClearConnectionConfEve
nt_t

CSTACONFIRMATIO
N

CSTA_CLEAR_CONNECTION_CO
NF

NA

TSDI for Netware
Issue 1.5 3/1/94

cstaConferenceCall() CSTAConferenceCall_t CSTAREQUEST CSTA_CONFERENCE_CALL CSTAConferenceCallConfEvent
_t

CSTAConferenceCallConfEvent CSTAConferenceCallConfEvent
_t

CSTACONFIRMATIO
N

CSTA_CONFERENCE_CALL_CON
F

NA

cstaConsultationCall() CSTAConsultationCall_t CSTAREQUEST CSTA_CONSULTATION_CALL CSTAConsultationCallConfEven
t_t

CSTAConsultationCallConfEve
nt

CSTAConsultationCallConfEve
nt_t

CSTACONFIRMATIO
N

CSTA_CONSULTATION_CALL_C
ONF

NA

cstaDeflectCall() CSTADeflectCall_t CSTAREQUEST CSTA_DEFLECT_CALL CSTADeflectCallConfEvent_t

CSTADeflectCallConfEvent CSTADeflectCallConfEvent_t CSTACONFIRMATIO
N

CSTA_DEFLECT_CALL_CONF NA

cstaGroupPickupCall() CSTAGroupPickupCall_t CSTAREQUEST CSTA_GROUP_PICKUP_CALL CSTAGroupPickupCallConfEve
nt_t

CSTAGroupPickupCallConfEve
nt

CSTAGroupPickupCallConfEve
nt_t

CSTACONFIRMATIO
N

CSTA_GROUP_PICKUP_CALL_C
ONF

NA

cstaHoldCall() CSTAHoldCall_t CSTAREQUEST CSTA_HOLD_CALL CSTAHoldCallConfEvent_t

CSTAHoldCallConfEvent CSTAHoldCallConfEvent_t CSTACONFIRMATIO
N

CSTA_HOLD_CALL_CONF NA

cstaMakeCall() CSTAMakeCall_t CSTAREQUEST CSTA_MAKE_CALL CSTAMakeCallConfEvent_t

CSTAMakeCallConfEvent CSTAMakeCallConfEvent_t CSTACONFIRMATIO
N

CSTA_MAKE_CALL_CONF NA

cstaMakePredictiveCall() CSTAMakePredictiveCall_t CSTAREQUEST CSTA_MAKE_PREDICTIVE_CAL
L

CSTAMakePredictiveCallConfE
vent_t

CSTAMakePredictiveCallConfE
vent

CSTAMakePredictiveCallConfE
vent_t

CSTACONFIRMATIO
N

CSTA_MAKE_PREDICTIVE_CAL
L_CONF

NA

TSDI for Netware
Issue 1.5 3/1/94

cstaPickupCall() CSTAPickupCall_t CSTAREQUEST CSTA_PICKUP_CALL CSTAPickupCallConfEvent_t

CSTAPickupCallConfEvent CSTAPickupCallConfEvent_t CSTACONFIRMATIO
N

CSTA_PICKUP_CALL_CONF NA

cstaReconnectCall() CSTAReconnectCall_t CSTAREQUEST CSTA_RECONNECT_CALL CSTAReconnectCallConfEvent_t

CSTAReconnectCallConfEvent CSTAReconnectCallConfEvent_
t

CSTACONFIRMATIO
N

CSTA_RECONNECT_CALL_CONF NA

cstaRetrieveCall() CSTARetrieveCall_t CSTAREQUEST CSTA_RETRIEVE_CALL CSTARetrieveCallConfEvent_t

CSTARetrieveCallConfEvent CSTARetrieveCallConfEvent_t CSTACONFIRMATIO
N

CSTA_RETRIEVE_CALL_CONF NA

cstaTransferCall() CSTATransferCall_t CSTAREQUEST CSTA_TRANSFER_CALL CSTATransferCallConfEvent_t

CSTATransferCallConfEvent CSTATransferCallConfEvent_t CSTACONFIRMATIO
N

CSTA_TRANSFER_CALL_CONF NA

4.4.6. Status Reporting Services

This section illustrates the functions and events of the CSTA Status Reporting Services and their
associated C structures that are presented across the Telephony Services Driver Interface. Status
Reporting Services encompass the function calls and events that have to do with unsolicited event
messages coming from the Telephony Server. Unsolicited event messages can be generated as a
result of external telephony activity on the switch/device or activity generated by the users at the
physical telephone instrument. The status reporting request function allows the applications to turn-
on or turn-off status event reporting for an associated CSTA device (e.g. a desktop telephone). See
[ECMA-179] for more details on the status reporting services, see TSAPI for more information on
the associated CSTA API C Language function calls and events, and see Section 9 for a definition of
the related C structures and message types.

4.4.7.

µCSTA Snapshot Services

This section describes the CSTA Snapshot Services available to query the current state of a call
TSDI for Netware

Issue 1.5 3/1/94

or a device within the switching domain accessible by the application using this API. These
services provide the application with specific information about a call or a device object by
requesting that the switch query the object to determine its state. The information provided
by this service is a "snapshot" in time of the state of a call or device object. Due to the
dynamic nature of calls and Connection States at devices any snapshot information
provided to the application may become outdated as time elapses. This can occur because
of additional changes in the state of calls within the switching domain after the switch has
completed the call or device query.

API Call or ACS

 Event Name

C Language

Structure Name

Message Class MessageType C Language

Confirmation Event

Structure

cstaSnapshotCallReq() CSTASnapshotCall_t CSTAREQUEST CSTA_SNAPSHOT_CALL CSTASnapshotCallConfEvent_t

CSTASnapshotCallConfEvent CSTASnapshotCallConfEvent_t CSTACONFIRMATIO
N

CSTA_SNAPSHOT_CALL_CON
F

NA

cstaSnapshotDeviceReq() CSTASnapshotDevice_t CSTAREQUEST CSTA_SNAPSHOT_DEVICE CSTASnapshotDeviceConfEvent_t

CSTASnapshotDeviceConfEven
t

CSTASnapshotDeviceConfEven
t_t

CSTACONFIRMATIO
N

CSTA_SNAPSHOT_DEVICE_C
ONF

NA

4.4.8. CSTA Computing Function Services
 This section illustrates the functions and events of the CSTA Computing Function Services and
their associated C structures that are presented across the Telephony Services Driver Interface.
Computing Services allow the client/server role between the application and the switch to be
reversed where the application becomes the "server" for call routing requests being originated by the
switch. Call routing allows the switch to pass any available call related information to the
application and request routing information for the call from the application. See [ECMA-179] for
more details on the computing function services, see TSAPI for more information on the associated
CSTA API C Language function calls and events, and see Section 9 for a definition of the related C
structures and message types.

µ

4.4.8.1. Routing Registration Functions and Events

This section describe the service requests and events which are used by an application to register
TSDI for Netware

Issue 1.5 3/1/94

with the Telephony Server as a call routing server for a specific routing device.

API Call or ACS

 Event Name

C Language

Structure Name

Message Class MessageType C Language

Confirmation Event

Structure

cstaRouteRegisterReq() CSTARouteRegisterReq_t CSTAREQUEST CSTA_ROUTE_REGISTER_REQ CSTARouteRegisterReqConfEvent_t

CSTARouteRegisterReqConfEvent CSTARouteRegisterReqConfEvent_
t

CSTACONFIRMAT
ION

CSTA_ROUTE_REGISTER_REQ_CONF NA

cstaRouteRegisterCancel() CSTARouteRegisterCancel_t CSTAREQUEST CSTA_ROUTE_REGISTER_CANCEL CSTARouteRegisterCancelConfEve
nt_t

CSTARouteRegisterCancelConfEve
nt

CSTARouteRegisterCancelConfEve
nt_t

CSTACONFIRMAT
ION

CSTA_ROUTE_REGISTER_CANCEL_C
ONF

NA

CSTARouteRegisterAbortEvent CSTARouteRegisterAbortEvent_t CSTAEVENTREPO
RT

 CSTA_ROUTE_REGISTER_ABORT NA

4.4.8.2. Routing Functions and Events

This section defines the CSTA call routing services which can be utilized for application-based
call routing within the switching domain. Calls which are routed using these services are
queued at the routing device until the application provides a destination for the call or a
time-out condition occurs at the call routing queue within the switching domain.
Application-based call routing is handled using a routing dialogue between a routing client
(the driver/switch) and the routing server (the application). This dialogue is accomplished
using the functions and events defined in this section and is illustrated in Figure 8-1.

These functions and events can be used once the application has requested and has been granted call
routing capabilities for a specific device or Telephony Server (see "Routing Registration Functions
and Events" for more details on registering as a routing server). A CSTARouteRequestEvent will
be sent to the application for each call which requires a routing destination from the routing server,
i.e. the application. The route request response is issued by the application using the
cstaRouteSelect() function which provides the switch with the appropriate destination for the call
(e.g. a destination address - device id/telephone number). Once the routing information reaches the
switch, it will attempt to route the call to the destination provided by the application in the
cstaRouteSelect() function. The application should check the CSTARouteEndEvent and/or the
CSTARouteUsedEvent to insure that the route request has been completed by the switch. If a
routing destination is invalid within the switching domain the driver/switch may request additional

TSDI for Netware
Issue 1.5 3/1/94

routing information (a different destination than the one provided previously) using the
CSTAReRouteEvent. See Figure 8-1 for a typical sequence of these events and services requests.

Register Request ID vs. Routing Cross Reference ID.

The routing services described in this document use two new handles (identifiers) to refer to
different software objects within the Telephony Server. The register request identifier
(routeRegisterReqID) is used to identify the specific routing session over which routing requests
will be generated. This handle is specific to a routing device within the switch or to a specific ACS
Stream in the case of the default routing server. The routeRegisterReqID will exist after the
application successfully registers for routing services (cstaRouteRegisterReq()) and until the
registration is canceled (cstaRouteRegisterCancel()).

Within a specific routing session (routeRegisterReqID) there may be many routing dialogs created
by the driver/switch to identify the routing instance of a particular call. This routing dialog is
established for the duration of the call routing dialog between the driver/switch and the routing
server. The handle to this routing dialog is known as the routing cross reference identifier
(routingCrossRefID). This handle is valid after a new call arrives at the routing device and the
driver/switch sends a CSTARouteRequestEvent. The routingCrossRefID specified in the route
request event will be valid for the duration of the call routing dialog or until a route end event is sent
by either the driver/switch or the application.

The routing cross reference identifier (routingCrossRefID) will be unique within the same routing
session (routeRegisterReqID). Some driver/switch implementations may provide the additional
benefit of a unique routing cross reference identifier across the entire switching domain regardless of
the specific routing session. Routing session identifiers (routeRegisterReqID) will be unique within
the same ACS Stream (sessionID).

Both the routeRegisterReqID and routingCrossRefID are generated by the Driver.

Note: If a call is not successfully routed by the routing server this does not necessarily mean that
the call is cleared or not answered. Most switch implementations will have a default
mechanism for handling a call at a routing device when the routing server has failed to
provide a valid destination for the call.

API Call or ACS

 Event Name

C Language

Structure Name

Message Class MessageType C Language

Confirmation Routine Used

by Client

CSTARouteRequestEvent CSTARouteRequestEvent_t CSTAREQUEST CSTA_ROUTE_REQUEST cstaRouteSelect()

CSTAReRouteRequestEvent CSTAReRouteRequestEvent_t CSTAREQUEST CSTA_RE_ROUTE_REQUEST cstaRouteSelect()

TSDI for Netware
Issue 1.5 3/1/94

cstaRouteSelect() CSTARouteSelectRequest_t CSTACONFIRMATION CSTA_ROUTE_SELECT_REQUEST NA

CSTARouteUsedEvent CSTARouteUsedEvent_t CSTAEVENTREPORT CSTA_ROUTE_USED NA

CSTARouteEndEvent CSTARouteEndEvent_t CSTAEVENTREPORT CSTA_ROUTE_END NA

cstaRouteEnd() CSTARouteEndRequest_t CSTAREQUEST* CSTA_ROUTE_END_REQUEST NA (No confirmation event required

for this request message)

 4.4.9.

µCSTA Escape/Maintenance Services

There are two different types of maintenance services defined within the CSTA standard :

· the device status maintenance events which provide status information for device objects and

· bi-directional system status maintenance services which provides information on the overall
status of the system.

The device status events inform the application when a monitored device is placed in or out of
service. When a device object is placed out of service the application will be limited to monitoring
the device (e.g. cstaMonitorDevice() or cstaDevSnapshotReq()) and no active services are
allowed. For example, a cstaMakeCall() service request is not allowed when the device is out of
service). The device status events will include the CSTA association which is being used to monitor
the device, i.e. the monitorCrossRefID. The Driver must enforce this limitation.

4.4.9.1. Escape Services : Application as Client

This section defines escape services for cases where the application is the service requester in the
client/server relationship (see Figure 9-1). The services include an escape service request, a

TSDI for Netware
Issue 1.5 3/1/94

confirmation event to the request, and an unsolicited escape service event that originates at the
driver or switching domain.

API Call or ACS

 Event Name

C Language

Structure Name

Message Class MessageType C Language

Confirmation Event

Structure

cstaEscapeService() CSTAEscapeSvc_t CSTAREQUEST CSTA_ESCAPE_SVC CSTAEscapeSvcConfEvent_t

CSTAEscapeSvcConfEvent CSTAEscapeSvcConfEvent_t CSTACONFIRMATIO
N

CSTA_ESCAPE_SVC_CONF NA

CSTAPrivateEvent CSTAPrivateEvent_t CSTAEVENTREPORT CSTA_PRIVATE NA

CSTAPrivateStatusEvent CSTAPrivateStatusEvent_t CSTAUNSOLICITED CSTA_PRIVATE_STATUS NA

4.4.9.2. Escape Service : Driver/Switch as the Client

This section defines escape services for cases where the Driver/Switch is the service requester in
the client/server relationship. The services include an escape service request event, a
confirmation function for the request, and an unsolicited escape service event that
originates at the application domain.

API Call or ACS

 Event Name

C Language

Structure Name

Message Class MessageType C Language

Confirmation Event

Structure

CSTAEscapeSvcReqEvent CSTAEscapeSvcReqEvent_t CSTAREQUEST CSTA_ESCAPE_SVC_REQ CSTAEscapeSvcConfEvent_t

cstaEscapeServiceConf() CSTAEscapeSvcReqConf_t CSTAREQUEST CSTA_ESCAPE_SVC_REQ_CONF NA(No confirmation event required

for this request message)

cstaSendPrivateEvent() CSTASendPrivateEvent_t CSTAREQUEST CSTA_SEND_PRIVATE NA(No confirmation event required

for this request message)

TSDI for Netware
Issue 1.5 3/1/94

4.4.9.3. Maintenance Services

This section identifies those events which are associated with the CSTA maintenance capabilities
and the private event used as an escape mechanism to send implementation specific
unsolicited events.

4.4.9.3.1. Device Status

This section describes the CSTA Maintenance Services which provide device status
information. The device must be monitored by the application, with an active CSTA
monitor association (e.g. an active monitorCrossRefID), in order to receive this event.
These events are unidirectional and always originate in the driver/switch domain.

API Call or ACS

 Event Name

C Language

Structure Name

Message Class MessageType C Language

Confirmation Event

Structure

CSTABackInServiceEvent CSTABackInServiceEvent CSTAUNSOLICITED CSTA_BACK_IN_SERVICE NA

CSTAOutOfServiceEvent CSTAOutOfServiceEvent_t CSTAUNSOLICITED CSTA_OUT_OF_SERVICE NA

4.4.9.3.2. System Status - Application as the Client

This section defines the services which provide system level status information to the
application or the driver/switch. The System Status service is bi-directional and thus the
client/server relationship can be reversed.

API Call or ACS

 Event Name

C Language

Structure Name

Message Class MessageType C Language

Confirmation Event

Structure

cstaSysStatReq() CSTAReqSysStat_t CSTAREQUEST CSTA_REQ_SYS_STAT CSTASysStatReqConfEvent_t

CSTASysStatReqConfEvent CSTASysStatReqConfEvent_t CSTACONFIRMATIO
N

CSTA_SYS_STAT_REQ_CONF NA

TSDI for Netware
Issue 1.5 3/1/94

cstaSysStatStart() CSTASysStatStart_t CSTAREQUEST CSTA_START_SYS_STAT CSTASysStatStartConfEvent_t

CSTASysStatStartConfEvent CSTASysStatStartConfEvent_t CSTACONFIRMATIO
N

CSTA_SYS_STAT_START_CONF NA

cstaSysStatStop() CSTASysStatStop_t CSTAREQUEST CSTA_SYS_STAT_STOP CSTASysStatStopConfEvent_t

CSTASysStatStopConfEvent CSTASysStatStopConfEvent_t CSTACONFIRMATIO
N

CSTA_SYS_STAT_STOP_CONF NA

cstaChangeSysStatFilter() CSTAChangeSysStatFilter_t CSTAREQUEST CSTA_CHANGE_SYS_STAT_FILTER CSTAChangeSysStatFilterConfEven
t_t

CSTAChangeSysStatFilterConfEve
nt

CSTAChangeSysStatFilterConfEven
t_t

CSTACONFIRMATIO
N

 CSTA_CHANGE_SYS_STAT_FILTER_
CONF

NA

CSTASysStatEvent CSTASysStatEvent_t CSTAEVENTREPORT CSTA_SYS_STAT NA

CSTASysStatEndedEvent CSTASysStatEndedEvent_t CSTAEVENTREPORT CSTA_SYS_STAT_ENDED NA

4.4.9.3.3. System Status : Driver/Switch as the Client

This section defines the services which provide system level status information to the
driver/switch from the application. The System Status service is bi-directional and thus
the client/server relationship can be reversed.

API Call or ACS

 Event Name

C Language

Structure Name

Message Class MessageType C Language

Confirmation Routine Used

by Client

CSTASysStatReqEvent_t CSTASysStatReqEvent_t CSTAUNSOLICITED CSTA_SYS_STAT_REQ cstaSysStatReqConf()

cstaSysStatReqConf() CSTAReqSysStatConf_t; CSTAREQUEST CSTA_REQ_SYS_STAT_CONF NA

TSDI for Netware
Issue 1.5 3/1/94

cstaSysStatEventSend() CSTASysStatEventSend_t CSTAREQUEST CSTA_SYS_STAT_EVENT_SEND NA(No confirmation event required

for this request message)

4.5. OA&M Interface
The Tserver will serve as a pass through for driver OA&M facilities so that driver vendors can
implement a client based user interface for driver OA&M, and use the Tserver as a transport
mechanism to the driver. To use the Tserver to route driver OA&M messages a driver must register
with the Tserver via the tdiDriverRegister() routine for OA&M functionality. The Tserver will treat
messages received from the Client application as a block of data and pass the message directly to the
driver that has registered for the OA&M services. The data contained within the message block is to
be defined by the driver writer and is specific to each vendor's driver.
A client that wants to open an OA&M session with a driver must call acsOpenStream(). The
authentication of the client to perform OA&M functions for the driver will be accomplished via a
login id and a password. The login id provided must be administered on the Tserver to perform
OA&M for the registered driver. Blocks of data containing driver defined OA&M requests can be
sent to the driver via tsrvDriverRequest(). The corresponding confirmation event for this request is
TSRVDriverOAMConfEvent. The driver may also send unsolicited OA&M events using
TSRVDriverOAMEvent. An OA&M session must be terminated via the acsCloseStream() routine.

4.5.1. OA&M Interface Control Services

This section illustrates the functions and events of the OA&M Interface Control Services and their
associated C structures that are presented across the Telephony Services Driver Interface. OA&M
ICS functions deal with the characteristics of the API interface (e.g. opening and closing the OA&M
interface). They provide the ability to open, initialize, close and manage a virtual communication
channel (OA&M stream) with any advertised OA&M registered Telephony Server. See Sections 10
and 11 for a specification of the OA&M API C Language function calls and events.

OA&M Interface Control Services
API Call or

 CSTA Event Name

C Language Structure Name Message Class MessageType Confirmation Event

tsrvDriverRequest() NA TDRVRREQUEST TSRV_DRIVEROAM_REQ TSRVDriverOAMConfEvent

TSDI for Netware
Issue 1.5 3/1/94

TSRVDriverOAMConfEvent TSRVDriverOAMConfEvent_t TDRVRCONFIRMATION TSRV_DRIVEROAM_CONF NA

TSRVDriverOAMEvent TSRVDriverOAMEvent_t TDRVRUNSOLICITED TSRV_DRIVEROAM NA

4.6. Private Data Definition

Private data may be sent by the client application or Driver with (nearly) every message defined in
the [TSAPI]. Private data must always be sent by the client application (via the API interface)
and received by the Driver across the TSDI or sent by the Driver across the TSDI and received
by the client application as a PrivateData_t as defined in acs.h. The PrivateData has the
following structure:

typedef struct PrivateData_t {
 char vendor[32];
 unsigned short length;
 char data[1]; //actual length determined by application
} PrivateData_t;

The vendor field can be filled in any way the Driver and Application define. The length field must
indicate the size of the character array that starts at the pointer data. The length field must be set,
because this indicates to the transport layers how many bytes to transmit. The data field should be
interpretted as an array of characters of size length that starts at the char pointer data. The format of
the character array is defined entirely by the Driver and Application.

4.7. Error Log Interface

The Tserver exports a standard function call interface to the PBX Driver so that the Driver can log
errors to the Telephony Server log file. When a PBX Driver uses the tdiLogError() function,
the errors reported by the Driver and the Tserver will have a uniform appearance in the error
log. The error log interface will provide the following six severity levels through the level
parameter:

TRACE This level is used for logging a trace message (for
debugging transient problems).

CAUTION This level is used to log a non-service affecting
software condition that is not fatal.

TSDI for Netware
Issue 1.5 3/1/94

AUDIT_TRAI
L

This level is used to log important (normal) events:
driver loaded, link reset, etc.

WARNING This level is used to indicate a problem that of itself is
not service-affecting, but indicates a condition that
may become a problem (e.g., low resources).

ERROR This level is used to log a service-affecting condition
that is not fatal.

FATAL This level is used to log a fatal problem with the
logging NLM.

There are three possible destinations for each severity level:

· the Tserver's Error Log File

· the System Console Screen

· the Tserver's OA&M client

These destinations can be set through the Tserver's OA&M client. Because these destinations are set
through and the log if viewed through the Tserver OA&M application, and there is no provision
for defining a Driver OA&M destination.

The error message itself is specified via a printf-like format string in the format parameter, and a
variable number of parameters.

The manual page for this interface is in Section 12.

5. Compiling and Linking a Driver

The Telephony Server was been compiled using the WATCOM C/C++ 32 bit compiler, version 9.5
with the zp1 option. The zp1 causes the code to be compiled on a single byte ordering. This
means all drivers must be compiled with single (one) byte ordering so that the C-structures
passed across the TSDI have the same memory layout in the Tserver and the Driver.

The following is a variable from the makef ile used to build the TSRV.NLM which shows the
TSDI for Netware

Issue 1.5 3/1/94

compiler options used.

p_wcc386opt = -I..\..\..\hdrs -I..\..\hdrs -I..\hdrs -I.\hdrs /w4 /zp1 /3s /zl /od /d2

The TDI library routines defined in section 7 (i.e tdiDriverRegister, tdiAllocBuffer, etc) are export
by the TServer NLM using the NetWare export linker directive. A Driver must use the NetWare
import directive in the linking phase of building. When the Driver NLM is loaded, these TDI
functions will by dynamically linked to the Driver NLM.

6. TSDI Coding Examples

6.1. Initializing the Driver with the Tserver

This section contains coding examples for registering a driver with the Tserver, sending the Tserver
a sanity message every minute, uses of the tdiLogError() function and finally unregistering the
driver during an unload.

/**/

/* main: */

/* */

/**/

main()

{

int rc;

/*

 * Register an Unload cleanup function

 */

signal(myAtUnload, SIGTERM);

/*

 * Register the driver for CSTA Services

 */

TSDI for Netware
Issue 1.5 3/1/94

CstaTDIHandle = tdiDriverRegister("CSTASERV", "driver_name",

TDI_ST_CSTA, NULL, "ATT", TSDI_VERSION,

TDI_CSTA_SECURITY, NULL);

if (CstaTDIHandle < 0)

{

tdiLogError(DRIVER_NAME, FATAL, ERR_NO, 0,

"Call to tdiDriverRegister failed: %d",CstaTDIHandle);

return;

}

:

:

:

/*

 * Begin Thread that will send the sanity message

 * to the Tserver every minute.

 */

rc = BeginThreadGroup(sanity,NULL,8192,&CstaTDIHandle);

if (rc == EFAILURE)

{

tdiLogError(DRIVER_NAME, FATAL, ERR_NO + 1, 0,

"Couldn't begin thread group for sanity timer. Error number = %d",errno);

return;

}

:

:

:

}
TSDI for Netware

Issue 1.5 3/1/94

/**/

/* myAtUnload: Unregisters with the TSDI, cleans up resources */

/* */

/**/

myAtUnload()

{

int rc;

/*

 * Unregister the CSTA Driver

 */

if ((rc = tdiDriverUnregister(CstaTDIHandle)) != TDI_SUCCESS)

{

tdiLogError(DRIVER_NAME, FATAL, ERR_NO, 0,

"tdiDriverUnRegister failed : %d",rc);

}

/*

 * Clean up any other remaining resources

 */

}

/**/

/* This is the sanity thread which sends the sanity message to the */

/* Tserver once every minute. */

/* */

/**/

void sanity(TDIHandle_t *tdiHandle)

{

char threadName[30];
TSDI for Netware

Issue 1.5 3/1/94

sprintf(threadName,"DRIVERSANITY");

RenameThread(GetThreadID(),threadName);

while(TRUE)

{

tdiDriverSanity(tdiHandle);

delay(60000);

}

}

6.2. Processing an ACSOpenStream() Request

This section contains an example of handling the AcsOpenStream() request by either returning an
ACSOpenStreamConfEvent or an ACSUniverversalFailureConfEvent. This section illustrates
how to set up the Driver Control Block.

Set up a pointer to the buffer received from the Tserver to look at the DC Block.

TDIDriverControlBlock_t *idc; /* incoming DC Block */

tdiReceiveFromTserver(tsdiHandle, &buffer);

idc = (TDIDriverControlBlock_t *) buffer;

Allocate a buffer large enough to hold the DC block, any private data, and the confirmation event if
one is being returned or the ACSUniversalFailureConfEvent if the open request is being rejected.
The versions passed in the request should be verified, if any are not supported by the driver an
ACSUniversalFailureConfEvent should be returned.

TSDI for Netware
Issue 1.5 3/1/94

char *obuffer; /* outgoing buffer */

ACSOpenStream_t *iMsg; /* request msg */

ACSOpenStreamConfEvent_t *oEvent; /* conf event */

int rc;

TDIBuf_flag_t buf_flag;

/* alloc a buffer for the ACSOpenStreamConfEvent */

tdiAllocBuffer(tsdiHandle, &obuffer,

(sizeof(TDIDriverControlBlock_t) +

 idc->privateLength +

 sizeof(ACSOpenStreamConfEvent_t)),

&buf_flag);

or

/* alloc a buffer for the ACSUniversalFailureConfEvent */

tdiAllocBuffer(tsdiHandle, &obuffer,

(sizeof(TDIDriverControlBlock_t) +

 idc->privateLength +

 sizeof(ACSUniversalFailureConfEvent_t)),

&buf_flag);

/* set a ptr to the allocated buffer to fill in

 * the confirmation event or universal failure event

 */

oEvent = (ACSOpenStreamConfEvent_t *)

(obuffer + sizeof(TDIDriverControlBlock_t));

or

TSDI for Netware
Issue 1.5 3/1/94

ACSUniversalFailureConfEvent_t *oEvent; /* failure event */

oEvent = (ACSUniversalFailureConfEvent_t *)

(obuffer + sizeof(TDIDriverControlBlock_t));

Set a pointer to the open request structure in the buffer received from the Tserver. The request
message is located in the buffer specified by the messageOffset field in the DC block.

iMsg = (ACSOpenStream_t *)(buffer + idc->messageOffset);

6.2.1. Returning an ACSOpenStreamConfEvent

Fill in the parameters in the confirmation event. The driver version parameter must be set with the
version of your driver and the remaining version fields should be returned as they were received.

/*

 * Fill in the driver version and return

 * the other version fields.

 */

strcpy(oEvent->drvrVer, yourDriverVersionString);

strcpy(oEvent->apiVer,iMsg->apiVer);

strcpy(oEvent->libVer,iMsg->libVer);

strcpy(oEvent->tsrvVer,iMsg->tsrvVer);

/*

 * Fill in the DC Block for the return message.

 */

TSDI for Netware
Issue 1.5 3/1/94

dc->messageOffset = sizeof(TDIDriverControlBlock_t);

dc->messageLength = sizeof(ACSOpenStreamConfEvent_t);

dc->privateOffset = dc->messageOffset + dc->messageLength;

dc->privateLength = idc->privateLength;

dc->invokeID = idc->invokeID;

dc->sessionID = idc->sessionID;

dc->messageClass = ACSCONFIRMATION;

dc->messageType = ACS_OPEN_STREAM_CONF;

dc->class_of_service = idc->class_of_service;

dc->monitorCrossRefID = idc->monitorCrossRefID;

/* send the confirmation event to the Tserver */

rc = tdiSendToTserver(tsdiHandle,obuffer,TDI_NORMAL_MESSAGE);

if (rc != TDI_SUCCESS)

{

tdiLogError(DRIVER_NAME, ERROR, ERR_NO, 0,

 "tdiSendToTserver failed: rc = %d",rc);

}

6.2.2. Returning an ACSUniversalFailureConfEvent

Fill in the error code for the failure

oEvent->error = yourErrorCode;

/*

 * Fill in the DC Block for the return message.

 */

TSDI for Netware
Issue 1.5 3/1/94

dc->messageOffset = sizeof(TDIDriverControlBlock_t);

dc->messageLength = sizeof(ACSUniversalFailureConfEvent_t);

dc->privateOffset = dc->messageOffset + dc->messageLength;

dc->privateLength = idc->privateLength;

dc->invokeID = idc->invokeID;

dc->sessionID = idc->sessionID;

dc->messageClass = ACSCONFIRMATION;

dc->messageType = ACS_UNIVERSAL_FAILURE_CONF;

dc->class_of_service = idc->class_of_service;

dc->monitorCrossRefID = idc->monitorCrossRefID;

/* send the confirmation event to the Tserver */

rc = tdiSendToTserver(tsdiHandle,obuffer,TDI_NORMAL_MESSAGE);

if (rc != TDI_SUCCESS)

{

tdiLogError(DRIVER_NAME, ERROR, ERR_NO, 0,

 "tdiSendToTserver failed: rc = %d",rc);

}

6.3. Processing an AcsCloseStream() Request

TDIDriverControlBlock_t *idc; /* incoming DC */

char *obuffer; /* outgoing buffer */

TDIBuf_flag_t buf_flag;

Set up a pointer to the buffer received from the Tserver to look at the DC Block.
TSDI for Netware

Issue 1.5 3/1/94

TDIDriverControlBlock_t *idc; /* incoming DC Block */

tdiReceiveFromTserver(tsdiHandle, &buffer);

idc = (TDIDriverControlBlock_t *) buffer;

Allocate a buffer large enough to hold the DC block, any private data, and the confirmation event.

idc = (TDIDriverControlBlock_t *) ibuffer;

tdiAllocBuffer(tsdiHandle,&obuffer,

(sizeof(TDIDriverControlBlock_t) +

 idc->privateLength +

 sizeof(ACSCloseStreamConfEvent_t)),

&buf_flag);

/*

 * Fill in the DC Block for the return message.

 */

dc->messageOffset = sizeof(TDIDriverControlBlock_t);

dc->messageLength = sizeof(ACSCloseStreamConfEvent_t);

dc->privateOffset = dc->messageOffset + dc->messageLength;

dc->privateLength = idc->privateLength;

dc->invokeID = idc->invokeID;

dc->sessionID = idc->sessionID;

dc->messageClass = ACSCONFIRMATION;

dc->messageType = ACS_CLOSE_STREAM_CONF;

dc->class_of_service = idc->class_of_service;

dc->monitorCrossRefID = 0;
TSDI for Netware

Issue 1.5 3/1/94

rc = tdiSendToTserver(tsdiHandle,obuffer,TDI_NORMAL_MESSAGE);

if (rc != TDI_SUCCESS)

{

tdiLogError(DRIVER_NAME, ERROR, ERR_NO, 0,

 "tdiSendToTserver failed: rc = %d",rc);

}

6.4. Creating a CSTAConferenceCallConfEvent

This section contains the structures (taken from cstadefs.h) needed to create a
CSTAConferenceCallConfEvent and some hints on how to populate the buffer containing the
confirmation event.

typedef struct CSTAConferenceCallConfEvent_t {

 ConnectionID_t newCall;

 ConnectionList_t connList;

} CSTAConferenceCallConfEvent_t;

typedef struct ConnectionList_t {

 int count;

 Connection_t FAR *connection;

} ConnectionList_t;

typedef struct Connection_t {

 ConnectionID_t party;

 SubjectDeviceID_t staticDevice;

} Connection_t;

typedef struct ConnectionID_t {

 long callID;
TSDI for Netware

Issue 1.5 3/1/94

 DeviceID_t deviceID;

 ConnectionID_Device_t devIDType;

} ConnectionID_t;

typedef enum ConnectionID_Device_t {

 STATIC_ID = 0,

 DYNAMIC_ID = 1

} ConnectionID_Device_t;

typedef ExtendedDeviceID_t SubjectDeviceID_t;

typedef enum DeviceIDStatus_t {

 ID_PROVIDED = 0,

 ID_NOT_KNOWN = 1,

 ID_NOT_REQUIRED = 2

} DeviceIDStatus_t;

typedef enum DeviceIDType_t {

 DEVICE_IDENTIFIER = 0,

 IMPLICIT_PUBLIC = 20,

 EXPLICIT_PUBLIC_UNKNOWN = 30,

 EXPLICIT_PUBLIC_INTERNATIONAL = 31,

 EXPLICIT_PUBLIC_NATIONAL = 32,

 EXPLICIT_PUBLIC_NETWORK_SPECIFIC = 33,

 EXPLICIT_PUBLIC_SUBSCRIBER = 34,

 EXPLICIT_PUBLIC_ABBREVIATED = 35,

 IMPLICIT_PRIVATE = 40,

 EXPLICIT_PRIVATE_UNKNOWN = 50,

 EXPLICIT_PRIVATE_LEVEL3_REGIONAL_NUMBER = 51,

 EXPLICIT_PRIVATE_LEVEL2_REGIONAL_NUMBER = 52,

 EXPLICIT_PRIVATE_LEVEL1_REGIONAL_NUMBER = 53,

 EXPLICIT_PRIVATE_PTN_SPECIFIC_NUMBER = 54,
TSDI for Netware

Issue 1.5 3/1/94

 EXPLICIT_PRIVATE_LOCAL_NUMBER = 55,

 EXPLICIT_PRIVATE_ABBREVIATED = 56,

 OTHER_PLAN = 60,

 TRUNK_IDENTIFIER = 70,

 TRUNK_GROUP_IDENTIFIER = 71

} DeviceIDType_t;

typedef char DeviceID_t[64];

typedef struct ExtendedDeviceID_t {

 DeviceID_t deviceID;

 DeviceIDType_t deviceIDType;

 DeviceIDStatus_t deviceIDStatus;

} ExtendedDeviceID_t;

Allocate a buffer large enough to hold the DC block, any private data, the conference call
confirmation event structure and most importantly the number of connections supported on a
conference multiplied by the size of the Connection structure.

The buffer will look as follows:

µ §

The call to allocate the buffer may look like this:

tdiAllocBuffer(tdiHandle,

&buffer,

(sizeof(TDIDriverControlBlock_t) +

TSDI for Netware
Issue 1.5 3/1/94

 dc->privateLength +

 sizeof(CSTAConferenceCallConfEvent_t) +
(NumberOfConnectionsSupported *

sizeof(Connection_t))),

&buf_flag);

Before populating the confirmation event set a pointer to the location in the buffer after the DC
block.

ptr = (CSTAConferenceCallConfEvent_t *)

(buffer + sizeof(TDIDriverControlBlock_t));

Populate the newCall structure with the relevant information.

ptr->newCall.callID = ...

Set connList.count to the number of parties on the conference call.

ptr->connList.count = NumberOfConnectionsOnTheCall;

Set the connList.connection pointer to the position in the buffer after the
CSTAConferenceCallConfEvent by setting connList.connection to:

ptr->connList.connection = (Connection_t *)

((char *)ptr + sizeof(CSTAConferenceCallConfEvent_t));

Index into connList.connection and set the information for each connection

for(i=0; i < ptr->connList.count; i++)

{

ptr->connList.connection[i].party.callID = ...

:

}
TSDI for Netware

Issue 1.5 3/1/94

6.5. Private Data

There are two length fields to be set when sending and receiving private data. The first one is the
privateLength field in the DC block. It must be remembered that this field includes the size of
the user supplied data as well as the size of the PrivateData_t header. Therefore the driver must
expect to receive the size of the header in the privateLength field and must also include the size
of this structure in the privateLength field when sending a message to the Tserver.

The second length field that must be set is the length field in the PrivateData_t header structure.
This is the size of the user supplied data that is contained in the data field. The data field contains
the first byte of the user's data. Thus, privateLength is set by subtracting one from the size of the
header (since the data field in the header includes one byte of the user's data) and adding to it the
size of the actual private data.

/* defined in acs.h */

typedef struct PrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[1];

} PrivateData_t;

PrivateData_t *privateData;

privateData->length = sizeof(yourOwnDefinedPrivateDataStructure);

dc->privateLength = sizeof(PrivateData_t) - 1 +

privateData->length;

char pbuf[dc->privateLength];

p = (PrivateData_t *) pbuf;

TSDI for Netware
Issue 1.5 3/1/94

/* use the data field as you would any buffer */

p->data ...

6.6. Processing a Monitor Request

This section illustrates setting up a confirmation event to a monitor device request followed by one
of the unsolicited events that may result from a subsequent use of that device.

 Perform any validation of the request. If the request is to be denied, return a
CSTAUniversalFailureConfEvent. If the request is granted, return a CSTAMonitorConfEvent. Note
that ibuffer is the buffer received from the tserver containing the monitor device request.

TDIDriverControlBlock_t *odc, *idc;

char *obuffer; /* outgoing buffer */

CSTAMonitorConfEvent_t *oEvent; /* CSTAMonitorConfEvent */

CSTAMonitorCrossRefID_t crossRefID;

CSTAMonitorDevice_t *iMsg;

idc = (TDIDriverControlBlock_t *) ibuffer;

iMsg = (CSTAMonitorDevice_t *)(ibuffer + idc->messageOffset);

Allocate a buffer large enough to hold the confirmation event, any private data and the DC block.
This example shows the tdiAllocBuffer() call for the monitor confirmation event. The universal
failure would be allocated the same way by using “sizeof(CSTAUniversalFailureConfEvent)” .

rc = tdiAllocBuffer(tdiHandle,&obuffer,

(sizeof(TDIDriverControlBlock_t) +

 idc->privateLength +

 sizeof(CSTAMonitorConfEvent_t),

&buf_flag);

odc = (TDIDriverControlBlock_t *) obuffer;

TSDI for Netware
Issue 1.5 3/1/94

/* set the fields in the monitor confirmation event */

oEvent = (CSTAMonitorConfEvent_t *) (obuffer +
sizeof(TDIDriverControlBlock_t));

oEvent->monitorCrossRefID = ADriverCrossRefID;

oEvent->monitorFilter.call = x;

oEvent->monitorFilter.feature = x;

oEvent->monitorFilter.agent = x;

oEvent->monitorFilter.maintenance = x;

oEvent->monitorFilter.privateFilter = x;

/*

 * Fill in the DC Block for the return message.

 */

dc->messageOffset = sizeof(TDIDriverControlBlock_t);

dc->messageLength = sizeof(CSTAMonitorConfEvent_t);

dc->privateOffset = dc->messageOffset + dc->messageLength;

dc->privateLength = idc->privateLength;

dc->invokeID = idc->invokeID;

dc->sessionID = idc->sessionID;

dc->messageClass = CSTACONFIRMATION;

dc->messageType = CSTA_MONITOR_CONF;

dc->class_of_service = idc->class_of_service;

dc->monitorCrossRefID = oEvent->monitorCrossRefID;

/* send the confirmation event to the Tserver

 * using tdiSendToTserver.

 */

One of the unsolicited events that may be returned due to a monitor device request is the
TSDI for Netware

Issue 1.5 3/1/94

CSTA_DELIVERED event.

/* allocate a buffer large enough to

 * hold the DC block, any private data and the

 * unsolicited event.

 */

CSTADeliveredEvent_t *msg;

msg = (CSTADeliveredEvent_t *) (obuffer +
sizeof(TDIDriverControlBlock_t));

/* set the fields in CstaDeliveredEvent structure */

msg->connection =

msg->alertingDevice =

msg->callingDevice =

msg->calledDevice=

msg->lastRedirectionDevice =

msg->localConnectionInfo =

msg->cause =

/*

 * Fill in the DC Block for the return message.

 */

dc->messageOffset = sizeof(TDIDriverControlBlock_t);

dc->messageLength = sizeof(CSTADeliveredEvent_t);

dc->privateOffset = dc->messageOffset + dc->messageLength;

dc->privateLength = idc->privateLength;

dc->invokeID = idc->invokeID;

dc->sessionID = idc->sessionID;

dc->messageClass = CSTAUNSOLICITED;

dc->messageType = CSTA_DELIVERED;

dc->class_of_service = idc->class_of_service;
TSDI for Netware

Issue 1.5 3/1/94

dc->monitorCrossRefID = msg->monitorCrossRefID;

/* send the unsolicited event to the Tserver

 * using tdiSendToTserver.

 */

7. Telephony Services Driver Interface Manual Pages tc "Appendix 1: Tserver-Driver
Interface Manual Pages"§

The following manual pages describe the function call interface between the Driver
NLM and the Tserver NLM.

TSDI for Netware
Issue 1.5 3/1/94

µ

7.1. tdiDriverRegister ()

This function allows a Driver NLM (PBX or other) to register itself with the Tserver. It registers its
name with the Tserver, specifies some tags that will be maintained by the Tserver NLM for
maintenance queries, and requests parameters that specify the memory allocation limits that will be
imposed on the Tserver and Driver NLMs for this interface.

Syntax

#include <tdi.h>

TDIHandle_t tdiDriverRegister (

const char *service_name, /* INPUT */
const char *driver_name, /* INPUT */
int service_type, /* INPUT */
int channel_number, /* INPUT */
const char *vendor_name, /* INPUT */
const char *version, /* INPUT */
TDISecurity_t driver_security, /* INPUT */
TDIBuf_info_t *buffer_descriptor); /* INPUT */

Parameters

service_name
This is the NULL terminated ASCII string that the Driver will provide to the Tserver to be
used for service advertising. This parameter is mandatory and cannot be NULL (neither
NULL pointer nor NULL string). It also must not exceed the maximum length of
TDI_MAX_SERVICE_NAME. The service_name must be unique for every registration
done by a Driver (e.g. for every unique driver_name all service_name must be unqiue.
driver_name

This is the NULL terminated ASCII string that the Driver will provide to the Tserver to
identify the Driver for OA&M and debugging purposes. This parameter is mandatory and
cannot be NULL (neither NULL pointer nor NULL string). It also must not exceed the
maximum length of TDI_MAX_DRIVER_NAME. A Driver may register more than once
using the same driver_name. A Driver may also register more than once using different
driver_names.

service_type
TSDI for Netware

Issue 1.5 3/1/94

This parameter identifies the service class that will be advertised for the service_name. This
parameter should be set to TDI_ST_CSTA (for CSTA Services) or TDI_ST_OAM (for
OA&M Services).

channel_number

This parameter identifies the interface between the Tserver and the Driver. This parameter is
not mandatory and is not used for this release of the Tserver product.

vendor_name

This is the NULL terminated ASCII string that identifies the manufacturer's name of the
driver NLM. This parameter is mandatory and cannot be NULL (neither NULL pointer nor
NULL string). It also must not exceed the maximum length of
TDI_MAX_VENDOR_NAME.

version

This parameter is set to the version of the TSDI with which the Driver will function. This
parameter is mandatory. The registration will fail if this parameter is set to an invalid
version.

driver_security

This parameter indicates whether or not the driver wants the Tserver to provide security
checks from its security database for the CSTA non-private portion of each message from
the client. This parameter is mandatory and must be set to one of the following:

TDI_CSTA_SECURIT
Y

NetWare Login and Password will be
validated on the acsOpenStream()
request.

Entry in the Tserver's Security Database
must contain this login. This is also
checked at the time of the
acsOpenStream() request.

Each subsequent CSTA request will be
validated per the user's administered
permissions.

TDI_LOGIN_SECURI
TY

NetWare Login and Password will be
validated on the acsOpenStream()
request.

Entry in the Tserver's Security Database
must contain this login. This is also

TSDI for Netware
Issue 1.5 3/1/94

checked at the time of the
acsOpenStream() request.

TDI_NO_SECURITY NetWare Login and Password will be
validated on the acsOpenStream()
request.

buffer_descriptor

This is a pointer to a buffer descriptor structure containing the information about the memory
that can be allocated for this Telephony Services Driver interface. A NULL pointer will use
the default values listed below for each element of the buffer descriptor.

typedef struct
{

unsigned long max_bytes; /* Maximum number of bytes to
 * allocate for this interface
 */

unsigned long hiwater_mark;/* High water mark for buffer
 * allocation on this interface

*/
} TDIBuf_info_t;

Return Values

This function returns a driverID on success that must be used in all subsequent function calls
by the Tserver and the Driver to identify this specific Tserver-Driver interface. The driverID
is guaranteed to be a positive integer. On failure this function returns one of the following
(negative) values:

TDI_ERR_DUP_DRVR This error indicates that the combination of
vendor_name, service_name, and service_type provided
has already been registered with the Tserver.

TSDI for Netware
Issue 1.5 3/1/94

TDI_ERR_MAX_DRVR This error indicates that the maximum number of
registered drivers, TDI_MAX_REGISTRATIONS, has
been reached.

TDI_ERR_EINVAL This error indicates that an invalid parameter was
specified for the tdiDriverRegister() function call.

TDI_ERR_BAD_VERSION This error indicates that an invalid version number was
supplied in the version parameter.

TDI_ERR_ESYS This error indicates that some form of system error has
occurred. When this occurs the TSDI will place an entry
in the Error Log.

Comments

This function is issued by the Driver NLM to set up a communication path with the Tserver
NLM, identify the name that will be advertised by the Tserver NLM (the name is generated
from the vendor_name, service_name, and service_type parameters), and specify the
maximum amount of memory that may be used for message buffers used to exchange
messages between the Tserver and the Driver NLMs for this communication path. Both the

TSDI for Netware
Issue 1.5 3/1/94

Tserver NLM and the Driver NLM must allocate message buffers from the TSDI routines to
send a message across this Telephony Services Driver interface.

When a Driver registers with the TSDI, it must specify the maximum amount of memory
that can be allocated for message buffers by the Driver and the Tserver for this
communication path. Each message buffer allocated by the Driver or the Tserver NLMs
from the TSDI will include a (12 byte) header that will be used to implement the monitoring
and queueing of messages. (The message buffer header should not be accessed by the Driver
or the Tserver NLMs, it is used by the TSDI routines.) This header should is not charged to
the space allocated in the TSDI via the max_bytes field defined below.

The structure of type TDIBuf_info_t is defined as follows:

typedef struct

{

unsigned long max_bytes,

unsigned long hiwater_mark,

} TDIBuf_info_t;

Field definitions:

max_bytes

A non-negative integer indicates the maximum amount of memory that can be
allocated by the Tserver and the Driver NLMs for message buffers used on this
communication path between the Driver and Tserver. The tdiAllocBuffer() routine
will fail all requests when the amount of memory currently allocated for this interface
exceeds max_bytes. If the buffer_descriptor parameter is a NULL pointer, this value
will default to TDI_MAX_BYTES_ALLOCATED {0x100000}.

hiwater_mark

A non-negative integer indicates a high water mark for the memory allocated for this
Telephony Services Driver interface. When the amount of memory allocated for this
interface exceeds the high water mark, the tdiAllocBuffer() routine will return the
buffer to the "caller" (if a memory block can be allocated from the NetWareâ OS),
and include an indication that the high water mark has been exceeded. If the
buffer_descriptor parameter is a NULL pointer, this value will default to
TDI_BUFFER_HI_WATER_MARK.

TSDI for Netware
Issue 1.5 3/1/94

.

§

TSDI for Netware
Issue 1.5 3/1/94

µ

7.2. tdiDriverUnregister ()

This function allows a Driver NLM (PBX or other) to unregister itself with the Tserver. It must use
the driver_id that was returned by the tdiDriverRegister() routine.

Syntax

#include <tdi.h>

TDIReturn_t tdiDriverUnregister (
TDIHandle_t driverID); /* INPUT */

Parameters

driverID

This is the unique identification number given to the Driver when it registered with the
Tserver.

Return Values

This function returns TDI_SUCCESS on success, and on failure this function returns one of
the following (negative) values:

TDI_ERR_BAD_DRVRID This error indicates that the driverID specified in the
tdiDriverUnregister() function is not valid.

TDI_ERR_ESYS This error indicates that some form of system error has
occurred. When this occurs the TSDI will place an

TSDI for Netware
Issue 1.5 3/1/94

entry in the Error Log.

Comments

This routine is exported from the Tserver for use by Drivers that import the TSDI routines.
It will cause the Tserver to delete the Driver List entry that was created when the driver
originally registered with the Tserver via the tdiDriverRegister() routine. All memory that
was allocated for this Telephony Services Driver Interface will be given back to the
NetWareâ OS. All messages in the queues will be removed and the queues will be deleted.
If the driver unloads before calling this routine, the Tserver will attempt to deallocate all of
the resources associated with this Telephony Services Driver interface.

§

TSDI for Netware
Issue 1.5 3/1/94

 §

TSDI for Netware
Issue 1.5 3/1/94

µ

7.4. tdiFreeBuffer ()

This function is issued by the Tserver NLM or Driver NLM to free a buffer that was previously
allocated to transmit a message across the Telephony Services Driver Interface.

Syntax

#include <tdi.h>

TDIReturn_t tdiFreeBuffer (

TDIHandle_t driverID, /* INPUT */
char *bufptr); /* INPUT */

Parameters

driverID

This is the value of the handle returned by the tdiDriverRegister() function call. This
handle uniquely identifies the Telephony Services Driver interface.

bufptr

This parameter is a pointer to the start of the buffer returned by the tdiAllocBuffer() function
call (for either the Tserver NLM or the Driver NLM), a tdiReceiveFromDriver() function
call (for the Tserver NLM), or a tdiReceiveFromTserver() function call (for the Driver
NLM). After the tdiFreeBuffer() routine completes, the "caller" should no longer access the
buffer.

Return Values

This function returns TDI_SUCCESS on success, and on failure this function returns one of
the following (negative) values:

TSDI for Netware
Issue 1.5 3/1/94

TDI_ERR_BAD_DRVRID This error indicates that the driverID specified in the
tdiFreeBuffer() function is not valid.

TDI_ERR_BAD_BUF This error indicates that the memory block pointed to by
bufptr is not a currently allocated Telephony Services
Driver Interface buffer.

TDI_ERR_NOT_YOUR_BUFFER This error indicates that the driverID specified did not
match the driverID stored with this TSDI Buffer when
the buffer was created via the tdiAllocBuffer() call. A
Driver is only allowed to free TSDI Buffers that was
originally allocated for this Driver. Note: All TSDI
Buffers allocated by a Tserver to be sent across the TSDI
to a Driver are allocated with that Drivers ID.

 When this occurs the TSDI will place an entry in the
Error Log.

TDI_ERR_ESYS This error indicates that some form of system error has
occurred. When this occurs the TSDI will place an entry
in the Error Log.

Comments

TSDI for Netware
Issue 1.5 3/1/94

The tdiFreeBuffer() function returns a buffer to the NetWareâ OS that was previously
allocated to send a message between the Driver NLM and the Tserver NLM.

Warning

Memory allocated for message buffers via the tdiAllocBuffer() routine should not be directly
freed back to the NetWare OS by the Tserver or the Driver NLMs; the messages should be
released back to the Telephony Services Driver interface via the tdiFreeBuffer() routine.

Memory allocated from the NetWareâ OS directly may not be released back to the OS by
the tdiFreeBuffer() routine.

Driver NLM Notes

The Driver NLM is responsible for issuing a tdiDriverRegister() function call to specify the
maximum number of bytes that can be allocated for message buffers by the Tserver or the
Driver for this interface. The driverID returned by the tdiDriverRegister() routine must be
used to free buffers that have been allocated from the Telephony Services Driver interface.
The Driver NLM is not responsible for the memory resources allocated by the Telephony
Services Driver interface since they are allocated from the Novellâ NetWare OS in the
Tserver context. The Telephony Services Driver interface is responsible for freeing these
memory resources. The Driver NLM is responsible for giving the memory resources back
to the Telephony Services Driver Interface via the tdiFreeBuffer() routine or sending the
buffer to the Tserver via the tdiSendToTserver() routine.

Tserver NLM Notes

The driverID must be used to free buffers that have been allocated from this Telephony
Services Driver Interface. The Tserver NLM is responsible for giving the memory resources
back to the Telephony Services Driver Interface via the tdiFreeBuffer() routine after a
message has been processed, or sending the message to the Driver via the tdiSendToDriver()
routine. The Telephony Services Driver Interface is part of the Tserver NLM, and the
memory allocated for the Telephony Services Driver Interface must be released before the
Tserver NLM can unload.

TSDI for Netware
Issue 1.5 3/1/94

§

TSDI for Netware
Issue 1.5 3/1/94

µ

7.5. tdiSendToTserver()

This function allows the Driver NLM to send a message buffer to the Tserver NLM. The message
will be queued until a corresponding tdiReceiveFromDriver() routine is called by the Tserver
NLM. A priority parameter is provided to put a message at the front of the queue. This
routine is called by the Driver after a buffer has been allocated by the tdiAllocBuffer() routine
and populated by the Driver.

Syntax

#include <tdi.h>

TDIReturn_t tdiSendToTserver(

TDIHandle_t driverID, /* INPUT */
char *bufptr, /* INPUT */
TDIPriority_t priority); /* INPUT */

Parameters

driverID

This is the value of the handle returned by the tdiDriverRegister() function call. This
handle uniquely identifies the Telephony Services Driver Interface.

bufptr

This parameter is a pointer to the start of the buffer returned by the tdiAllocBuffer() function
call or a tdiReceiveFromTserver() function call. After the tdiSendToTserver() routine
completes, the Driver should no longer access the buffer.

priority

The priority is used to determine the priority class for the message. The default value,
TDI_NORMAL_MESSAGE, should be used for all non-priority messages, and
TDI_PRIORITY_MESSAGE indicates that this is a priority message. Messages will be
processed in FIFO order within their priority class, and "priority" messages will always be
received by the Tserver before normal messages.

TSDI for Netware
Issue 1.5 3/1/94

Return Values

This function returns TDI_SUCCESS on success, and on failure this function returns one of
the following (negative) values:

TDI_ERR_BAD_DRVRID This error indicates that the driverID specified in the
tdiSendToTserver() function is not valid.

TDI_ERR_BAD_BUF This error indicates that the memory block pointed to by
bufptr is not currently allocated from Telephony
Services Driver Interface by the Driver.

TDI_ERR_EINVAL This error indicates that the priority parameter contains
an invalid value.

TDI_ERR_NOT_YOUR_BUFFE
R

This error indicates that the driverID specified did not
match the driverID stored with this TSDI Buffer when
the buffer was created via the tdiAllocBuffer() call. A
Driver is only allowed to send TSDI Buffers that was
originally allocated for this Driver.

Note: All TSDI Buffers allocated by a Tserver to be sent
across the TSDI to a Driver are allocated with that
Drivers ID.

When this occurs the TSDI will place an entry in the
Error Log.

TSDI for Netware
Issue 1.5 3/1/94

TDI_ERR_ESYS This error indicates that some form of system error has
occurred. When this occurs the TSDI will place an entry
in the Error Log.

Comments

This function sends a message from the Driver NLM to the Tserver NLM. The message
will be queued until a corresponding tdiReceiveFromDriver() routine is called by the
Tserver NLM. Messages are queued in a First-In-First-Out manner, but a priority parameter
is provided to override this mechanism and place this message at the front of the queue. This
routine must specify a bufptr that has been allocated by the Driver NLM via the
tdiAllocBuffer() routine.

Driver NLM Notes

The Driver NLM is responsible for issuing a tdiDriverRegister() function call to specify the
maximum number of bytes that can be allocated for message buffers by the Tserver or the
Driver for this interface. The driverID returned by the tdiDriverRegister() routine must be
used to send a message to the Tserver via the tdiSendToTserver() function call. The Driver
NLM must allocate a message buffer via the tdiAllocBuffer() function call prior to calling
tdiSendToTserver(), and the Driver NLM is no longer responsible for that message buffer
after tdiSendToTserver() has completed successfully.

Tserver NLM Notes

The Tserver NLM is responsible for calling tdiReceiveFromDriver() to retrieve messages
from its queues in a timely manner, and the Tserver NLM must give the memory buffer back
to the Telephony Services Driver Interface via the tdiFreeBuffer() routine after the message
has been processed, or send this message buffer back to the Driver via the tdiSendToDriver()
routine.

TSDI for Netware
Issue 1.5 3/1/94

§

TSDI for Netware
Issue 1.5 3/1/94

µ

7.6. tdiReceiveFromTserver()

This function is called by the Driver NLM in order to receive a populated message buffer from the
Tserver NLM. The buffer will be owned by the Driver until it is repopulated with a response
message and sent back to the Tserver via the tdiSendToTserver() routine or until it is
deallocated by the Driver via the tdiFreeBuffer() routine. This routine will only be able to
receive a buffer if the routine tdiSendToDriver() has been previously executed by the Tserver
to send a message to the Driver.

Syntax

#include <tdi.h>

TDIReturn_t tdiReceiveFromTserver(

TDIHandle_t driverID, /* INPUT */
char **bufptr) /* OUTPUT */

Parameters

driverID

This is the unique identification number given to the Driver when it registered with the
Tserver via tdiDriverRegister(). It allows the routine to correctly identify which buffer
queue to use to access the message from the Tserver.

bufptr

This parameter is set to point to the start of the buffer returned by the
tdiReceiveFromTserver() function call. If the tdiReceiveFromTserver() call is not successful,
the function will set bufptr to NULL.

Return Values

This function returns TDI_SUCCESS on success, and on failure bufptr is set to NULL and
this function returns one of the following (negative) values:

TSDI for Netware
Issue 1.5 3/1/94

TDI_ERR_BAD_DRVRID This error indicates that the driverID specified in the
tdiReceiveFromTserver() function is not valid. This
may indicate that the Driver unregistered during the time
this function blocks waiting for a message from the
Tserver.

TDI_ERR_ESYS This error indicates that some form of system error has
occurred. When this occurs the TSDI will place an entry
in the Error Log.

Comments

The tdiReceiveFromTserver() function receives a message that was sent by the Tserver NLM
across the Telephony Services Driver Interface. The buffer will be owned by the Driver
NLM until it is sent back to the Tserver NLM via the tdiSendToTserver() routine or until it is
deallocated via the tdiFreeBuffer() routine. This routine will only be able to receive a buffer
if the routine tdiSendToDriver() has been previously executed by the Tserver NLM to send a
message to the Driver.

Driver NLM Notes

The Driver NLM is responsible for issuing a tdiDriverRegister() function call to specify the
maximum number of bytes that can be allocated for message buffers by the Tserver or the
Driver for this interface. The driverID returned by the tdiDriverRegister() routine must be
used for the tdiReceiveFromTserver() routine to receive messages from the Tserver over the
Telephony Services Driver interface. The Driver NLM is responsible for calling
tdiReceiveFromTserver() to retrieve messages from its queues in a timely manner, and the
Driver NLM must give the memory buffer back to the Telephony Services Driver Interface
via the tdiFreeBuffer() routine after the message has been processed, or the message can be
sent back to the Tserver via the tdiSendToTserver() routine.

Warning

The message buffer returned by this function should not be directly returned to the

TSDI for Netware
Issue 1.5 3/1/94

NetWareâ OS by the Driver NLM. The Driver should return this buffer back to the TSDI as
outlined above.

TSDI for Netware
Issue 1.5 3/1/94

§7.7. tdiDriverSanity()

This function is called by the Driver NLM once a minute to report to the Tserver that it is alive and
functioning. If the Tserver does not receive this message it will place an ERROR in the error
logging file and send this error condition message to the Tserver's OA&M client only if the
client application is up and running. If the Tserver's OA&M client application is not running at
the time the Tserver detects the Driver has not indicated its sanity, no message is sent (and
will not be sent even if the Tserver's OA&M application is started at a later time).

Syntax

#include <tdi.h>

TDIReturn_t tdiDriverSanity(

TDIHandle_t driverID) /* INPUT */

Parameters

driverID

This is the unique identification number given to the Driver when it registered with the
Tserver via tdiDriverRegister(). It allows the routine to correctly identify which buffer
queue to use to access the message from the Tserver.

Return Values

This function returns TDI_SUCCESS on success, and on failure this function returns one of
the following (negative) values:

TDI_ERR_BAD_DRVRID This error indicates that the driverID specified in the
tdiReceiveFromTserver() function is not valid.

TSDI for Netware
Issue 1.5 3/1/94

Driver NLM Notes

The Driver NLM is responsible for calling this function once every minute.

TSDI for Netware
Issue 1.5 3/1/94

µ

7.8. tdiQueueSize ()

This function will return the current status of the message buffers used for the Telephony Services
Driver interface. This routine returns a count of the messages in each of the (four) possible
states: queued to the Tserver, queued to the Driver, "owned" by the Driver, or "owned" by the
Tserver.

Syntax

#include <tdi.h>

TDIReturn_t tdiQueueSize (

TDIHandle_t driverID, /* INPUT */
TDIQueue_info_t *queue_descriptor); /* OUTPUT */

Parameters

driverID

This is the unique identification number given to the driver when it registered with the
Tserver via the tdiDriverRegister() routine.

queue_descriptor

This parameter returns the following information in the TDIQueue_info_t structure:

typedef struct {
int queued_to_driver;
int queued_to_tserver;
int allocd_by_driver;
int allocd_by_tserver;

}TDIQueue_info_t;

Where the sum of all of these fields equals the total number of messages currently allocated
for this Telephony Services Driver interface. The fields are defined as follows:

queued_to_driver

TSDI for Netware
Issue 1.5 3/1/94

This count specifies the number of message buffers that are currently queued to the
Driver.

queued_to_tserver

This count specifies the number of message buffers that are currently queued to the
Tserver.

allocd_by_driver

This count specifies the number of message buffers that are currently allocated to the
Driver. Message buffers are allocated to the Driver if the Driver NLM has performed a
tdiAllocBuffer() or a tdiReceiveFromTserver() function call.

allocd_by_tserver

This parameter specifies the number of message buffers that are currently allocated to the
Tserver. Message buffers are allocated to the Tserver if the Tserver NLM has performed
a tdiAllocBuffer() or a tdiReceiveFromDriver() function call.

Return Values

This function returns TDI_SUCCESS on success, and on failure this function sets the return
parameters to 0 and returns one of the following (negative) values:

TDI_ERR_BAD_DRVRID This error indicates that the driverID specified in the
tdiQueueSize() function is not valid.

Comments

This routine is exported from the Tserver for use by the Drivers, and it can be called
internally by the Tserver. It provides a method for determining how many message buffers
are queued in either direction across the Telephony Services Driver Interface. Using this
function the Tserver and Driver can provide a method of flow control by limiting the

TSDI for Netware
Issue 1.5 3/1/94

allocation of buffers and the sending of data based on the number of messages in the queues.
This routine also provides a mechanism for debugging message buffer configuration and
handling problems.

7.9. tdiMemAllocSize()

§

This function will return the current status of the memory used for message buffers by a Tserver-
Driver interface. This routine returns a count of the bytes in message buffers that are in each of the
(four) possible states: queued to the Tserver, queued to the Driver, "owned" by the Driver, or
"owned" by the Tserver.

Syntax

#include <tsrv/tdi.h>

TDIReturn_t tdiMemAllocSize (

TDIHandle_t driverID, /* INPUT */
TDIMemAlloc_info_t*mem_descriptor); /* OUTPUT */

Parameters

driverID

This is the unique identification number given to the driver when it registered with the
Tserver via the tdiDriverRegister() routine.

mem_descriptor

This parameter returns the following information in the TDIMemAlloc_info_t structure:

typedef struct {
unsigned long bytes_queued_to_driver;
unsigned long bytes_queued_to_tserver;
unsigned long bytes_allocd_by_driver;
unsigned long bytes_allocd_by_tserver;

TSDI for Netware
Issue 1.5 3/1/94

}TDIMemAlloc_info_t;

Where the sum of these fields is the total number of bytes allocated for message buffers for
this Tserver-Driver interface. The fields of TDIMemAlloc_info_t are defined as follows:

bytes_queued_to_driver

This parameter specifies the number of bytes in message buffers that are currently
queued to the Driver. This count includes the (12) bytes that are part of the overhead for
each message buffer allocated from the Tserver-Driver interface.

bytes_queued_to_tserver

This parameter specifies the number of bytes in message buffers that are currently queued
to the Tserver. This count includes the (12) bytes that are part of the overhead for each
message buffer allocated from the Tserver-Driver interface.

bytes_allocd_by_driver

This parameter specifies the number of bytes in message buffers that are currently
allocated to the Driver. Message buffers are allocated to the Driver if the Driver NLM
has performed a tdiAllocBuffer() or a tdiReceiveFromTserver() function call. This count
includes the (12) bytes that are part of the overhead for each message buffer allocated
from the Tserver-Driver interface.

bytes_allocd_by_tserver

This parameter specifies the number of bytes in message buffers that are currently
allocated to the Tserver. Message buffers are allocated to the Tserver if the Tserver NLM
has performed a tdiAllocBuffer() or a tdiReceiveFromDriver() function call. This count
includes the (12) bytes that are part of the overhead for each message buffer allocated
from the Tserver-Driver interface.

Return Values

This function returns TDI_SUCCESS on success, and on failure this function sets the return
parameters to 0 and returns one of the following (negative) values:

TSDI for Netware
Issue 1.5 3/1/94

TDI_ERR_BAD_DRVRID This error indicates that the driverID specified in the
tdiMemAllocSize() function is not valid.

Comments

This routine is exported from the Tserver for use by the Drivers, and it can be called
internally by the Tserver. It provides a method for determining how memory is used for
message buffers in the Tserver-Driver Interface. Using this function the Tserver and Driver
can determine if the memory parameters specified at Driver registration time are sized
appropriately. This routine also provides a mechanism for debugging message buffer
configuration and handling problems.

µ

7.8. tdiQueueSize ()

This function will return the current status of the message buffers used for the Telephony Services
Driver interface. This routine returns a count of the messages in each of the (four) possible
states: queued to the Tserver, queued to the Driver, "owned" by the Driver, or "owned" by the
Tserver.

Syntax

#include <tdi.h>

TDIReturn_t tdiQueueSize (

TDIHandle_t driverID, /* INPUT */
TDIQueue_info_t *queue_descriptor); /* OUTPUT */

Parameters

driverID

This is the unique identification number given to the driver when it registered with the
Tserver via the tdiDriverRegister() routine.

TSDI for Netware
Issue 1.5 3/1/94

queue_descriptor

This parameter returns the following information in the TDIQueue_info_t structure:

typedef struct {
int queued_to_driver;
int queued_to_tserver;
int allocd_by_driver;
int allocd_by_tserver;

}TDIQueue_info_t;

Where the sum of all of these fields equals the total number of messages currently allocated
for this Telephony Services Driver interface. The fields are defined as follows:

queued_to_driver

This count specifies the number of message buffers that are currently queued to the
Driver.

queued_to_tserver

This count specifies the number of message buffers that are currently queued to the
Tserver.

allocd_by_driver

This count specifies the number of message buffers that are currently allocated to the
Driver. Message buffers are allocated to the Driver if the Driver NLM has performed a
tdiAllocBuffer() or a tdiReceiveFromTserver() function call.

allocd_by_tserver

This parameter specifies the number of message buffers that are currently allocated to the
Tserver. Message buffers are allocated to the Tserver if the Tserver NLM has performed
a tdiAllocBuffer() or a tdiReceiveFromDriver() function call.

Return Values

This function returns TDI_SUCCESS on success, and on failure this function sets the return
parameters to 0 and returns one of the following (negative) values:

TSDI for Netware
Issue 1.5 3/1/94

TDI_ERR_BAD_DRVRID This error indicates that the driverID specified in the
tdiQueueSize() function is not valid.

Comments

This routine is exported from the Tserver for use by the Drivers, and it can be called
internally by the Tserver. It provides a method for determining how many message buffers
are queued in either direction across the Telephony Services Driver Interface. Using this
function the Tserver and Driver can provide a method of flow control by limiting the
allocation of buffers and the sending of data based on the number of messages in the queues.
This routine also provides a mechanism for debugging message buffer configuration and
handling problems.

µ

7.8. tdiQueueSize ()

This function will return the current status of the message buffers used for the Telephony Services
Driver interface. This routine returns a count of the messages in each of the (four) possible
states: queued to the Tserver, queued to the Driver, "owned" by the Driver, or "owned" by the
Tserver.

Syntax

#include <tdi.h>

TDIReturn_t tdiQueueSize (

TDIHandle_t driverID, /* INPUT */
TDIQueue_info_t *queue_descriptor); /* OUTPUT */

Parameters

driverID

TSDI for Netware
Issue 1.5 3/1/94

This is the unique identification number given to the driver when it registered with the
Tserver via the tdiDriverRegister() routine.

queue_descriptor

This parameter returns the following information in the TDIQueue_info_t structure:

typedef struct {
int queued_to_driver;
int queued_to_tserver;
int allocd_by_driver;
int allocd_by_tserver;

}TDIQueue_info_t;

Where the sum of all of these fields equals the total number of messages currently allocated
for this Telephony Services Driver interface. The fields are defined as follows:

queued_to_driver

This count specifies the number of message buffers that are currently queued to the
Driver.

queued_to_tserver

This count specifies the number of message buffers that are currently queued to the
Tserver.

allocd_by_driver

This count specifies the number of message buffers that are currently allocated to the
Driver. Message buffers are allocated to the Driver if the Driver NLM has performed a
tdiAllocBuffer() or a tdiReceiveFromTserver() function call.

allocd_by_tserver

This parameter specifies the number of message buffers that are currently allocated to the
Tserver. Message buffers are allocated to the Tserver if the Tserver NLM has performed
a tdiAllocBuffer() or a tdiReceiveFromDriver() function call.

Return Values
TSDI for Netware

Issue 1.5 3/1/94

This function returns TDI_SUCCESS on success, and on failure this function sets the return
parameters to 0 and returns one of the following (negative) values:

TDI_ERR_BAD_DRVRID This error indicates that the driverID specified in the
tdiQueueSize() function is not valid.

Comments

This routine is exported from the Tserver for use by the Drivers, and it can be called
internally by the Tserver. It provides a method for determining how many message buffers
are queued in either direction across the Telephony Services Driver Interface. Using this
function the Tserver and Driver can provide a method of flow control by limiting the
allocation of buffers and the sending of data based on the number of messages in the queues.
This routine also provides a mechanism for debugging message buffer configuration and
handling problems.

7.9. tdiMemAllocSize()

§

This function will return the current status of the memory used for message buffers by a Tserver-
Driver interface. This routine returns a count of the bytes in message buffers that are in each of the
(four) possible states: queued to the Tserver, queued to the Driver, "owned" by the Driver, or
"owned" by the Tserver.

Syntax

#include <tsrv/tdi.h>

TDIReturn_t tdiMemAllocSize (

TSDI for Netware
Issue 1.5 3/1/94

TDIHandle_t driverID, /* INPUT */
TDIMemAlloc_info_t*mem_descriptor); /* OUTPUT */

Parameters

driverID

This is the unique identification number given to the driver when it registered with the
Tserver via the tdiDriverRegister() routine.

mem_descriptor

This parameter returns the following information in the TDIMemAlloc_info_t structure:

typedef struct {
unsigned long bytes_queued_to_driver;
unsigned long bytes_queued_to_tserver;
unsigned long bytes_allocd_by_driver;
unsigned long bytes_allocd_by_tserver;

}TDIMemAlloc_info_t;

Where the sum of these fields is the total number of bytes allocated for message buffers for
this Tserver-Driver interface. The fields of TDIMemAlloc_info_t are defined as follows:

bytes_queued_to_driver

This parameter specifies the number of bytes in message buffers that are currently
queued to the Driver. This count includes the (12) bytes that are part of the overhead for
each message buffer allocated from the Tserver-Driver interface.

bytes_queued_to_tserver

This parameter specifies the number of bytes in message buffers that are currently queued
to the Tserver. This count includes the (12) bytes that are part of the overhead for each
message buffer allocated from the Tserver-Driver interface.

bytes_allocd_by_driver

This parameter specifies the number of bytes in message buffers that are currently
allocated to the Driver. Message buffers are allocated to the Driver if the Driver NLM
has performed a tdiAllocBuffer() or a tdiReceiveFromTserver() function call. This count
includes the (12) bytes that are part of the overhead for each message buffer allocated

TSDI for Netware
Issue 1.5 3/1/94

from the Tserver-Driver interface.

bytes_allocd_by_tserver

This parameter specifies the number of bytes in message buffers that are currently
allocated to the Tserver. Message buffers are allocated to the Tserver if the Tserver NLM
has performed a tdiAllocBuffer() or a tdiReceiveFromDriver() function call. This count
includes the (12) bytes that are part of the overhead for each message buffer allocated
from the Tserver-Driver interface.

Return Values

This function returns TDI_SUCCESS on success, and on failure this function sets the return
parameters to 0 and returns one of the following (negative) values:

TDI_ERR_BAD_DRVRID This error indicates that the driverID specified in the
tdiMemAllocSize() function is not valid.

Comments

This routine is exported from the Tserver for use by the Drivers, and it can be called
internally by the Tserver. It provides a method for determining how memory is used for
message buffers in the Tserver-Driver Interface. Using this function the Tserver and Driver
can determine if the memory parameters specified at Driver registration time are sized
appropriately. This routine also provides a mechanism for debugging message buffer
configuration and handling problems.

7.10. tdiGetSessionIDInfo()

TSDI for Netware
Issue 1.5 3/1/94

§This function will return the current information related to an ACS session.

Syntax

#include <tsrv/tdi.h>

TDIReturn_t tdiGetSessionIDInfo (
TDIHandle_t driverID, /* INPUT */
SessionID_t sessionID, /* INPUT */
TDISessionID_t *sessionIDInfo);/* OUTPUT */

Parameters

driverID

This is the unique identification number given to the driver when it registered with the
Tserver via the tdiDriverRegister() routine.

sessionID

This is the ACS sessionID assigned to this session by the Tserver when the
ACSOpenStreamRequest was sent to the driver..

sessionIDinfo

This parameter is a pointer to a TDISessionID_t structure in the Driver space. The
Tserver will fill information related to this session in the structure pointed to by this
parameter.

typedef struct
{

LoginID_t loginID; /* Login for this session */
AppName_t appName; /* Application name for this session*/
unsigned long network; /* Network of worktop */
unsigned char node[6]; /* Node of worktop */
LoginTime_t timeOpened; /* Time the ACS stream was opened */
char homeDeviceID[16]; /* Primary device ID of Home

 * WorkTop record
 */

char awayDeviceID[16]; /* Primary device ID of Away Worktop
 * record.
 */

} TDISessionID_t;
TSDI for Netware

Issue 1.5 3/1/94

Return Values

This function returns TDI_SUCCESS on success, and on failure this function sets the return
parameters to 0 and returns one of the following (negative) values:

TDI_ERR_BAD_DRVRID This error indicates that the driverID specified in the
tdiGetSessionIDInfo() function is not valid.

TDI_ERR_BAD_SESSIONID This error indicates that the sessionID specified in the
tdiGetSessionIDInfo() function is not valid.

Comments

This routine is exported from the Tserver for use by the Drivers, and it can be called
internally by the Tserver. It provides a method information about an ACS session that
would be usefull in debugging or trace statements from the driver.

7.11. tdiMapInvokeID()

This function will map the Tserver generated invokeID back into the invoke generated by the
application.

Syntax

#include <tsrv/tdi.h>

TDIReturn_t tdiMapInvokeID(
TDIHandle_t driverID, /* INPUT */

TSDI for Netware
Issue 1.5 3/1/94

SessionID_t sessionID, /* INPUT */
InvokeID_t invokeID, /* INPUT */
InvokeID_t *appInvokeID); /* OUTPUT */

Parameters

driverID

This is the unique identification number given to the driver when it registered with the
Tserver via the tdiDriverRegister() routine.

sessionID

This is the ACS sessionID assigned to this session by the Tserver when the
ACSOpenStreamRequest was sent to the driver..

invokeID

This parameter is the invokeID passed to the driver in the Driver Control block with a
specific message.

invokeID

This parameter is the invokeID passed to the driver in the Driver Control block with a
specific message.

Return Values

This function returns TDI_SUCCESS on success, and on failure this function sets the return
parameters to 0 and returns one of the following (negative) values:

TDI_ERR_BAD_DRVRID This error indicates that the driverID specified in the
tdiGetSessionIDInfo() function is not valid.

TDI_ERR_BAD_SESSIONID This error indicates that the sessionID specified in the
tdiGetSessionIDInfo() function is not valid.

TSDI for Netware
Issue 1.5 3/1/94

Comments

This routine is exported from the Tserver for use by the Drivers, and it can be called
internally by the Tserver. It provides a method information about an ACS session that
would be usefull in debugging or trace statements from the driver.

8. TSDI Header Files tc "Appendix 2: tdi.h"§

8.1. tdi.h

All header files needed for TSDI development are contained on the CSTA SDK disk which is part
of the TSDI SDK kit.

9. ACS and CSTA Message Interface Header Filestc "Appendix 3: csta.h"§

This section describes the C Language header file that defines the ACS and CSTA message interface
between the PBX Driver and the application.

9.1. acs.h

All header files needed for TSDI development are contained on the CSTA SDK disk which is part
of the TSDI SDK kit.

9.2. acsdefs.h

All header files needed for TSDI development are contained on the CSTA SDK disk which is part
of the TSDI SDK kit.

9.3. csta.h

All header files needed for TSDI development are contained on the CSTA SDK disk which is part
of the TSDI SDK kit.

TSDI for Netware
Issue 1.5 3/1/94

9.4. cstadefs.h

All header files needed for TSDI development are contained on the CSTA SDK disk which is part
of the TSDI SDK kit.

10. OA&M API Manual Pagestc "Appendix 4: OA&M API Manual Pages"§

This section describes the interface provided by the Telephony Server for support of Driver defined
Operation, Administration, and Maintenance (OA&M) Services. The Telephony Server
provides a simple OA&M interface between a client application and a Driver that has
registered with the Telephony Server. This interface, from the Telephony Servers point of
view, is just a block of data sent by an application to a driver and an event message sent in
response by the driver back to the application. The format of the data is entirely up to the PBX
Driver and the application. This will allow a customized OA&M client application to be
developed by any vendor for their own Driver.

10.1. tsrvDriverRequest()

This function sends a TSRVDriverOAMReq message to the Driver specified by the
acsHandle. A TSRVDriverOAMConfEvent will be returned from the Driver in response to
this request. The application must receive the confirmation event via the
acsGetEventBlock() or acsGetEventPoll() function.

Syntax

#include <acs.h>
#include <tdrvr.h>

RetCode_t tsrvDriverRequest(

RetCode_t FAR pascal _export
tsrvDriverRequest (ACSHandle_t acsHandle,

InvokeID_t invokeID,

ACSHandle_t *acsHandle, /* RETURN */
InvokeID_t invokeID, /* INPUT */

TSDI for Netware
Issue 1.5 3/1/94

unsigned char FAR *data, /* INPUT */
int length); /* INPUT */

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream returned by the function call. This
handle is determined by the API Client Library and is unique to the ACS Stream being opened.
Once the open function is successful, this handle must be used in all other function calls to the API.
If the open is successful, the application is guaranteed to have a valid handle available upon return
from this call. If the open is not successful, then the function return code will contain the cause of
the failure.

invokeID

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the Invoke
ID mechanism is set for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated invoke IDs.

data

A pointer to a data buffer the application is sending to the Driver.

length

The length of the data buffer pointed to by data.

Return Values

This function returns the following values depending on whether the application is using library or
application-generated invoke identifiers:

· Library-generated Identifiers - if the function call completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call completes successfully it will return a zero (0)
value. If the call fails a negative error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

TSDI for Netware
Issue 1.5 3/1/94

The application should always check the TSRVDriverOAMConfEvent message to insure that the
service request has been acknowledged and processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_APIVERDENIED

This return indicates that the API Version requested is invalid and not supported by the existing API
Client Library.

ACSERR_BADPARAMETER

One or more of the parameters is invalid.

ACSERR_DUPSTREAM

This return indicates that an ACS Stream is already established with the requested Server.

ACSERR_NODRIVER

This error return value indicates that no API Client Library Driver was found or installed on the
system.

ACSERR_NOSERVER

This indicates that the requested Server is not present in the network.

ACSERR_NORESOURCE

This return value indicates that there are insufficient resources to open a ACS Stream.

Comments

None.

Application Notes

TSDI for Netware
Issue 1.5 3/1/94

None.

TSDI for Netware
Issue 1.5 3/1/94

10.2. TSRVDriverOAMConfEvent

This event is generated in response to the tsrvDriverRequest() function and provides the
application with the confirmation event from the Driver..

Syntax

The following structure describes the format of the confirmation event received..

typedef struct
{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

TSRVDriverConfirmationEvent driverConfirmation;
} event;
char heap[TSRV_DRIVER_HEAP];

} TSRVDriverEvent_t;

typedef struct
{

InvokeID_t invokeID;
union
{

TSRVDriverOAMConfEvent_t driverConf;
} u;

} TSRVDriverConfirmationEvent;

typedef struct TSRVDriverOAMConfEvent_t {
 int length;
 unsigned char FAR *data;
} TSRVDriverOAMConfEvent_t;

TSDI for Netware
Issue 1.5 3/1/94

Parameters

acsHandle

This is the handle for the newly opened ACS Stream.

eventClass

This is a tag with the value TDRVRCONFIRMATION, which identifies this message as an
Tserver Driver OA&M confirmation event.

eventType

This is a tag with the value TSRV_DRIVEROAM_CONF, which identifies this message as an
TSRVDriverOAMConfEvent.

invokeID

This parameter specifies the requested instance of the function or event. It is used to match a specific
function request with its confirmation events.

data

A pointer to a data buffer the Driver is sending to the application.

length

The length of the data buffer pointed to by data.

Comments

None.

Application Notes

None.

TSDI for Netware
Issue 1.5 3/1/94

10.3. TSRVDriverOAMEvent

This event can occur at any time (unsolicited) and is sent by the Driver as defined by the Driver
OA&M scheme.

Syntax

The following structure describes this event.

typedef struct
{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

TSRVDriverUnsolicitedEvent driverUnsolicited;
} event;
char heap[TSRV_DRIVER_HEAP];

} TSRVDriverEvent_t;

typedef struct TSRVDriverOAMEvent_t
{
 int length;
 unsigned char FAR *data;
} TSRVDriverOAMEvent_t;

Parameters

acsHandle

This is the handle for the newly opened ACS Stream.

eventClass
TSDI for Netware

Issue 1.5 3/1/94

This is a tag with the value TDRVRUNSOLICITED, which identifies this message as an ACS
unsolicited event.

eventType

This is a tag with the value TSRV_DRIVEROAM, which identifies this message as an
TSRVDriverOAMEvent.

data

A pointer to a data buffer the Driver is sending to the application.

length

The length of the data buffer pointed to by data.

Comments

None.

Application Notes

None.

TSDI for Netware
Issue 1.5 3/1/94

11. OA&M Header Filestc "Appendix 5: oam.h"§

This section describes the C Language header file that defines the interface provided by the
Telephony Server for support of Driver defined Operation, Administration, and Maintenance
(OA&M) Services.

11.1. drvrdefs.h

All header files needed for TSDI development are contained on the CSTA SDK disk which is part
of the TSDI SDK kit.

11.2. tdrvr.h

All header files needed for TSDI development are contained on the CSTA SDK disk which is part
of the TSDI SDK kit.

12. Error Log Manual Pagestc "Appendix 6: Error Log Manual Pages"§

The following manual page describes the function call interface for the Error Logger
that may be used by the PBX Driver NLMs.

13. Referencestc "References"§

TSAPI Telephony Server Application Programing Interface (TSAP)
T.A. Anschutz, and J.R. Garcia AT&T Global Business
Communications Systems, Issue 1.7 November 29, 1993.

[ECMA/52] Technical Report ECMA/52, Computer Supported
Telecommunications Applications (CSTA), European Computer
Manufacturers Association, June 1990.

[ECMA-179] STANDARD ECMA-179, Services For Computer Supported
Telecommunications Applications (CSTA), European Computer
Manufacturers Association, June 1992.

[ECMA-180] STANDARD ECMA-180, Protocol For Computer Supported
TSDI for Netware

Issue 1.5 3/1/94

Telecommunications Applications (CSTA), European Computer
Manufacturers Association, June 1992.

[NLMREF-I] Novellâ NetWareâ Loadable Module Library Reference Vol I,
Novell, Inc. September 1991 Edition.

[NLMREF-II] Novellâ NetWareâ Loadable Module Library Reference Vol
II, Novell, Inc. September 1991 Edition.

[DRV-SDK] Telephony Server Driver Software Development Kit, AT&T
Global Business Communications Systems, To Be Completed.

µ

7.3. tdiAllocBuffer()

This function is issued by the Tserver NLM or the Driver NLM to allocate a buffer for sending a
message across the Telephony Services Driver Interface.

Syntax

#include <tdi.h>

TDIReturn_t tdiAllocBuffer (

TDIHandle_t driverID, /* INPUT */
char **bufptr, /* OUTPUT */
unsigned lint length, /* INPUT */
TDIBuf_flag_t *buf_flag); /* OUTPUT */

TSDI for Netware
Issue 1.5 3/1/94

Parameters

driverID

This is the value of the handle returned by the tdiDriverRegister() function call. This handle
uniquely identifies the interface between the Tserver and the Driver.

bufptr

This parameter is set to point to the start of the buffer returned by the tdiAllocBuffer()
function call. If the tdiAllocBuffer() call is not successful, the function will set bufptr to
NULL. A buffer pointed to by bufptr is guaranteed to point to a byte aligned block of data.

length

This parameter specifies the size (in bytes) of the memory block. The length must be less
than TDI_MAX_BUFFER_SIZE. If the tdiAllocBuffer() routine is successful, this function
will return a block of data that is at least length bytes long. (The TSDI will allocate a block
of memory that is larger than length. The first 12 bytes of this memory block will be used by
the TSDI to implement the message queues, however, this 12 bytes should not be included in
the length field. The TSDI will automatically add the 12 bytes onto the length field and
create and maintain the header). This routine will return bufptr as the first byte aligned
point in the memory block after the message header.

buf_flag

This parameter is a bit mask set by the tdiAllocBuffer() routine to provide information on the
amount of memory allocated by the Tserver or the Driver for this interface. The buf_flag
parameter will be set to indicate the following conditions when they occur:

TDI_EXCEED_HIWATER_MARK The current amount of memory allocated for
message buffers (by the TServer NLM and the
Driver NLM) is greater than the high water mark
(hiwater_mark) specified in the
tdiDriverRegister() function.

TSDI for Netware
Issue 1.5 3/1/94

TDI_EXCEED_MAX_BYTES The current amount of memory allocated for
message buffers (by the TServer NLM and the
Driver NLM) is greater than the maximum
number of bytes (max_bytes) specified in the
tdiDriverRegister() function. This will only be
returned on a failure.

Return Values

This function returns TDI_SUCCESS on success, and on failure bufptr is set to NULL and
this function returns one of the following (negative) values:

TDI_ERR_BAD_DRVRID This error indicates that the driverID specified in the
tdiAllocBuffer() function is not valid.

TDI_ERR_NO_MEM This error indicates the TSDI was unable to allocate the
requested memory from the NetWareâ OS.

TDI_ERR_BADLENGTH This error indicates that the requested length is greater
than TDI_MAX_BUFFER_SIZE.

TSDI for Netware
Issue 1.5 3/1/94

TDI_ERR_NO_BUFFERS This error indicates that the Tserver and the Driver have
(together) allocated more memory for message buffers
than allowed for this Telephony Services Driver
interface. The maximum amount of memory allowed is
set via the max_bytes field of the buffer_descriptor
parameter when the Driver registers with the TSDI.

TDI_ERR_ESYS This error indicates that some form of system error has
occurred. When this occurs the TSDI will place an
entry in the Error Log.

Comments

The tdiAllocBuffer() function provides a buffer to the Tserver NLM or the Driver NLM that
can be used to send a message across the Telephony Services Driver Interface. The buffers
are allocated from Netwareâ OS if the current amount of memory allocated for this interface
is less than the maximum specified at Driver registration time. The Driver NLM is
responsible for setting the maximum bytes allowed for this interface during the
tdiDriverRegister() routine. If the Driver NLM has allocated a message buffer via the
tdiAllocBuffer() routine, the Driver is responsible for dealing with the buffer by either
sending the buffer back to the Tserver through the TSDI via the tdiSendToTserver() function,
in which case the Tserver is responsible for freeing the buffer, or freeing the buffer via the
tdiFreeBuffer() function. If the Tserver NLM has allocated a message buffer via the
tdiAllocBuffer() routine, the Tserver is responsible for freeing the buffer back to the
Telephony Services Driver Interface either by successfully sending the buffer to the Driver
NLM via the tdiSendToDriver() function, or freeing the buffer via the tdiFreeBuffer()
function.

The tdiAllocBuffer() function will return a bit mask, buf_flag, indicating the current status of
the memory allocated for message buffers used on this interface. The Tserver and the Driver
NLMs can examine this bit mask to determine if some form of voluntary flow control is
required.

TSDI for Netware
Issue 1.5 3/1/94

Memory allocated for message buffers via the tdiAllocBuffer() routine should not be directly
freed back to the NetWare OS by the Tserver or the Driver NLMs; the messages should be
released back to the Telephony Services Driver interface via the tdiFreeBuffer() routine.

Warning

The Tserver and Driver NLMs are not guaranteed to receive a message buffer via the
tdiAllocBuffer() routine even though the current memory allocated is less than max_bytes
specified by the Driver in the tdiDriverRegister() routine. The NetWareâ OS may not have
the resources at this time to fulfill the memory allocation request.

Driver NLM Notes

The Driver NLM is responsible for issuing a tdiDriverRegister() function call to specify the
maximum number of bytes that can be allocated for message buffers by the Tserver or the
Driver for this interface. The driverID returned by the tdiDriverRegister() routine must be
used to allocate buffers that will be used across this interface. The Driver NLM should
monitor the buf_flag parameter to determine if the memory allocation limit is sized
appropriately and to determine when some form of flow control is required. The Driver
NLM is not responsible for the memory resources allocated by tdiAllocBuffer() routine since
they are allocated from the Novellâ NetWare OS in the Tserver context. The Telephony
Services Driver interface is responsible for freeing these memory resources. The Driver
NLM is responsible for giving the memory resources back to the Telephony Services Driver
interface via the tdiFreeBuffer() routine, or sending the buffer to the Tserver via the
tdiSendToTserver() routine.

Tserver NLM Notes

The driverID must be used to allocate buffers that will be used across this Telephony
Services Driver Interface. The Tserver NLM is responsible for giving the memory
resources back to the Telephony Services Driver interface via the tdiFreeBuffer() routine, or
sending the buffer to the Driver via the tdiSendToDriver() routine. The Telephony Services
Driver Interface is part of the Tserver NLM, and the memory allocated for the Telephony
Services Driver Interface must be freed before the Tserver NLM can unload.

TSDI for Netware
Issue 1.5 3/1/94

TSDI for Netware
Issue 1.5 3/1/94

	1. Introduction
	1.1. Overview
	1.2. Terminology
	1.3. Related Documents

	2. Document Updates {dah}
	2.1. Reason for Reissue
	2.2. Change History

	3. Description
	3.1. Telephony Server Architecture
	3.2. Telephony Server Communication Model
	3.3. PBX Driver Tasks and Responsibilities
	3.3.1. Driver Initialization
	3.3.2. Message Based Interface
	3.3.3. Driver Termination

	3.4. Telephony Server Multiplexing
	3.5. CSTA Tserver Security
	3.5.1. Client Access Security Levels
	3.5.2. Security Issues and Class of Service

	3.6. Driver OA&M
	3.6.1. Using the Tserver as a Transport

	3.7. Error Log Interface

	4. Functional Description
	4.1. PBX Driver to Tserver Interface
	4.1.1. Driver Registration
	4.1.1.1. Registration Mechanism
	4.1.1.2. TSDI Memory Allocation
	4.1.1.4. Driver Registration Security Level

	4.1.2. TSDI Version Control
	4.1.3. Receiving Requests and Responses
	4.1.4. Sending Requests and Responses
	4.1.5. Driver to Tserver Heartbeat Message
	4.1.6. Unregistering the Driver
	4.1.7. Telephony Services Driver Interface Monitoring
	4.1.7. Telephony Server Flow Control Of TSDI Messages

	4.2. PBX Driver to Client Interface
	4.2.1. Advertising Driver Services
	4.2.2. The Stream to the Client Workstation
	4.2.3. The Message Format Between the PBX Driver and the Client
	4.2.3.1. The Driver Control Block
	4.2.3.2. The Driver Control Block Field Definition

	/* Driver Control Block Structure */
	typedef struct {
	unsigned short messageOffset;
	unsigned short messageLength;
	unsigned short privateOffset;
	unsigned short privateLength;
	InvokeID_t invokeID;
	CSTAMonitorCrossRefID_t monitorCrossRefID;
	SessionID_t sessionID;
	EventClass_t messageClass;
	EventType_t messageType;
	short class_of_service;
	} TDIDriverControlBlock_t;
	4.2.3.3. DC Block / Message Class Mapping
	4.2.3.3.1. Tserver to Driver Messages
	4.2.3.3.2. Driver to Tserver Messages

	4.2.3.3. The Protocol on the Client Stream
	4.2.3.3. TSDI Session ID to ACS Handle Mapping
	4.2.3.3. Scope of Monitor and Routing Cross Reference IDs
	4.2.3.3. Scope of Invoke IDs

	4.3. ACS Messaging Interface
	4.3.1. Application Control Services
	4.3.2. Processing ACS Control Messages
	4.3.2.1. Processing an acsOpenStream Message
	4.3.2.2. Processing a Close Request
	4.3.2.2.1. Processing an acsCloseStream()
	4.3.2.2.2. Processing an acs AbortStream()

	4.3.2.3. Asychronously Closing a Stream from the Driver
	4.3.2.4. When To Use ACSUniversalFailureConfEvent
	4.3.2.5. When To Use ACSUniversalFailureEvent
	4.3.2.6. Failure Codes To Use in ACSUniversalFailure Type Messages

	4.4. CSTA Messaging Interface
	4.4.1. Request-Response Protocol
	4.4.2. Processing CSTA Messages
	4.4.3. CSTA Control Services Functions
	
	4.4.4. CSTA Security Services Functions
	4.4.5. Switching Function Services
	4.4.5.1. Basic Call Control Services

	4.4.6. Status Reporting Services
	4.4.7.
	µCSTA Snapshot Services
	4.4.8. CSTA Computing Function Services
	4.4.8.1. Routing Registration Functions and Events
	4.4.8.2. Routing Functions and Events

	4.4.9.
	µCSTA Escape/Maintenance Services
	4.4.9.1. Escape Services : Application as Client
	4.4.9.2. Escape Service : Driver/Switch as the Client
	4.4.9.3. Maintenance Services
	4.4.9.3.1. Device Status
	4.4.9.3.2. System Status - Application as the Client
	4.4.9.3.3. System Status : Driver/Switch as the Client

	4.5. OA&M Interface
	4.5.1. OA&M Interface Control Services

	4.6. Private Data Definition
	typedef struct PrivateData_t {
	char vendor[32];
	unsigned short length;
	char data[1]; //actual length determined by application
	} PrivateData_t;

	4.7. Error Log Interface

	5. Compiling and Linking a Driver
	6. TSDI Coding Examples
	6.1. Initializing the Driver with the Tserver
	6.2. Processing an ACSOpenStream() Request
	6.2.1. Returning an ACSOpenStreamConfEvent
	6.2.2. Returning an ACSUniversalFailureConfEvent

	6.3. Processing an AcsCloseStream() Request
	6.4. Creating a CSTAConferenceCallConfEvent
	6.5. Private Data
	6.6. Processing a Monitor Request

	7. Telephony Services Driver Interface Manual Pages tc "Appendix 1: Tserver-Driver Interface Manual Pages"§
	7.1. tdiDriverRegister ()
	#include <tdi.h>
	TDIHandle_t tdiDriverRegister (
	
	const char *service_name, /* INPUT */
	const char *driver_name, /* INPUT */
	int service_type, /* INPUT */
	int channel_number, /* INPUT */
	const char *vendor_name, /* INPUT */
	const char *version, /* INPUT */
	TDISecurity_t driver_security, /* INPUT */
	TDIBuf_info_t *buffer_descriptor); /* INPUT */
	typedef struct
	{
	unsigned long max_bytes; /* Maximum number of bytes to
	* allocate for this interface
	*/
	unsigned long hiwater_mark;/* High water mark for buffer
	* allocation on this interface
	*/
	} TDIBuf_info_t;

	7.2. tdiDriverUnregister ()
	#include <tdi.h>
	TDIReturn_t tdiDriverUnregister (
	TDIHandle_t driverID); /* INPUT */

	7.4. tdiFreeBuffer ()
	#include <tdi.h>
	TDIReturn_t tdiFreeBuffer (
	
	TDIHandle_t driverID, /* INPUT */
	char *bufptr); /* INPUT */

	7.5. tdiSendToTserver()
	#include <tdi.h>
	TDIReturn_t tdiSendToTserver(
	
	TDIHandle_t driverID, /* INPUT */
	char *bufptr, /* INPUT */
	TDIPriority_t priority); /* INPUT */
	

	7.6. tdiReceiveFromTserver()
	#include <tdi.h>
	TDIReturn_t tdiReceiveFromTserver(
	TDIHandle_t driverID, /* INPUT */
	char **bufptr) /* OUTPUT */
	

	§7.7. tdiDriverSanity()
	#include <tdi.h>
	TDIReturn_t tdiDriverSanity(
	TDIHandle_t driverID) /* INPUT */
	

	7.8. tdiQueueSize ()
	#include <tdi.h>
	TDIReturn_t tdiQueueSize (
	TDIHandle_t driverID, /* INPUT */
	TDIQueue_info_t *queue_descriptor); /* OUTPUT */
	typedef struct {
	int queued_to_driver;
	int queued_to_tserver;
	int allocd_by_driver;
	int allocd_by_tserver;
	}TDIQueue_info_t;

	7.9. tdiMemAllocSize()
	#include <tsrv/tdi.h>
	TDIReturn_t tdiMemAllocSize (
	TDIHandle_t driverID, /* INPUT */
	TDIMemAlloc_info_t *mem_descriptor); /* OUTPUT */
	typedef struct {
	unsigned long bytes_queued_to_driver;
	unsigned long bytes_queued_to_tserver;
	unsigned long bytes_allocd_by_driver;
	unsigned long bytes_allocd_by_tserver;
	}TDIMemAlloc_info_t;

	7.8. tdiQueueSize ()
	#include <tdi.h>
	TDIReturn_t tdiQueueSize (
	TDIHandle_t driverID, /* INPUT */
	TDIQueue_info_t *queue_descriptor); /* OUTPUT */
	typedef struct {
	int queued_to_driver;
	int queued_to_tserver;
	int allocd_by_driver;
	int allocd_by_tserver;
	}TDIQueue_info_t;

	7.8. tdiQueueSize ()
	#include <tdi.h>
	TDIReturn_t tdiQueueSize (
	TDIHandle_t driverID, /* INPUT */
	TDIQueue_info_t *queue_descriptor); /* OUTPUT */
	typedef struct {
	int queued_to_driver;
	int queued_to_tserver;
	int allocd_by_driver;
	int allocd_by_tserver;
	}TDIQueue_info_t;

	7.9. tdiMemAllocSize()
	#include <tsrv/tdi.h>
	TDIReturn_t tdiMemAllocSize (
	TDIHandle_t driverID, /* INPUT */
	TDIMemAlloc_info_t *mem_descriptor); /* OUTPUT */
	typedef struct {
	unsigned long bytes_queued_to_driver;
	unsigned long bytes_queued_to_tserver;
	unsigned long bytes_allocd_by_driver;
	unsigned long bytes_allocd_by_tserver;
	}TDIMemAlloc_info_t;

	7.10. tdiGetSessionIDInfo()
	#include <tsrv/tdi.h>
	TDIReturn_t tdiGetSessionIDInfo (
	TDIHandle_t driverID, /* INPUT */
	SessionID_t sessionID, /* INPUT */
	TDISessionID_t *sessionIDInfo);/* OUTPUT */
	typedef struct
	{
	LoginID_t loginID; /* Login for this session */
	AppName_t appName; /* Application name for this session*/
	unsigned long network; /* Network of worktop */
	unsigned char node[6]; /* Node of worktop */
	LoginTime_t timeOpened; /* Time the ACS stream was opened */
	char homeDeviceID[16]; /* Primary device ID of Home
	* WorkTop record
	*/
	char awayDeviceID[16]; /* Primary device ID of Away Worktop
	* record.
	*/
	} TDISessionID_t;

	7.11. tdiMapInvokeID()
	#include <tsrv/tdi.h>
	TDIReturn_t tdiMapInvokeID(
	TDIHandle_t driverID, /* INPUT */
	SessionID_t sessionID, /* INPUT */
	InvokeID_t invokeID, /* INPUT */
	InvokeID_t *appInvokeID); /* OUTPUT */

	8. TSDI Header Files tc "Appendix 2: tdi.h"§
	8.1. tdi.h

	9. ACS and CSTA Message Interface Header Filestc "Appendix 3: csta.h"§
	9.1. acs.h
	9.2. acsdefs.h
	9.3. csta.h
	9.4. cstadefs.h

	10. OA&M API Manual Pagestc "Appendix 4: OA&M API Manual Pages"§
	10.1. tsrvDriverRequest()
	#include <acs.h>
	#include <tdrvr.h>
	RetCode_t tsrvDriverRequest(
	RetCode_t FAR pascal _export
	tsrvDriverRequest (ACSHandle_t acsHandle,
	InvokeID_t invokeID,
	ACSHandle_t *acsHandle, /* RETURN */
	InvokeID_t invokeID, /* INPUT */
	unsigned char FAR *data, /* INPUT */
	int length); /* INPUT */

	10.2. TSRVDriverOAMConfEvent
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{
	TSRVDriverConfirmationEvent driverConfirmation;
	} event;
	char heap[TSRV_DRIVER_HEAP];
	} TSRVDriverEvent_t;
	typedef struct
	{
	InvokeID_t invokeID;
	union
	{
	TSRVDriverOAMConfEvent_t driverConf;
	} u;
	} TSRVDriverConfirmationEvent;
	typedef struct TSRVDriverOAMConfEvent_t {
	int length;
	unsigned char FAR *data;
	} TSRVDriverOAMConfEvent_t;

	10.3. TSRVDriverOAMEvent
	Syntax
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{
	TSRVDriverUnsolicitedEvent driverUnsolicited;
	} event;
	char heap[TSRV_DRIVER_HEAP];
	} TSRVDriverEvent_t;
	typedef struct TSRVDriverOAMEvent_t
	{
	int length;
	unsigned char FAR *data;
	} TSRVDriverOAMEvent_t;

	11. OA&M Header Filestc "Appendix 5: oam.h"§
	11.1. drvrdefs.h
	11.2. tdrvr.h

	12. Error Log Manual Pagestc "Appendix 6: Error Log Manual Pages"§
	13. Referencestc "References"§
	7.3. tdiAllocBuffer()
	#include <tdi.h>
	TDIReturn_t tdiAllocBuffer (
	
	TDIHandle_t driverID, /* INPUT */
	char **bufptr, /* OUTPUT */
	unsigned lint length, /* INPUT */
	TDIBuf_flag_t *buf_flag); /* OUTPUT */

