
Chapter

9  ESCAPE AND MAINTENANCE SERVICESXE 
"ESCAPE SERVICES"§XE "MAINTENACE 
SERVICES"§

This  section  describes  the  CSTA  Escape  and  Maintenance
Services. 

Escape Services

XE "Escape Services"§XE "Escape Services"§Switching domain
implementors use Escape Services to enhance TSAPI the functions
with "private" services which are specific to the switch or PBX
Driver  implementation(see Section  2.3).  Each implementor  may
define  functions  within  the  CSTA  private  services  framework,
even though CSTA does not incorporate these services. Although
the functions  defined within escape services can vary from one
implementation to the next, the way the application accesses these
functions is consistent. Escape Services use the same programming
model  as  all  other  CSTA  services.  Figure  9-1  illustrates  this
model.

When an application requests an escape service from a server it
receives a confirmation event or a Universal Failure in the same
fashion as for other TSAPI services. The Escape Service request

Telephony Services API Specification   9-1



parameters are an  acsHandle (to the open stream),  an  invokeID
and a private data parameter. The confirmation event includes the
acsHandle, the invokeID, and the private data response.

Escape Services also includes an unsolicited private event which a
server  can send to  an application  at  any time a CSTA monitor
association exists on a CSTA call or device object (see Section 6 -
cstaMonitorStart( )).

 
Figure  9-1  :  Escape  Services  ModelXE  "Escape  Services
Model"§

Applications can also send Escape Services requests to a switch.
For most CSTA services the application is always a client in the
computing domain. However, an escape service could operate in
the  opposite  direction  (such  as  routing  does).  Although  the
client/server role may change, services are always uni-directional
where either the switch or application is always the requester for a
service.

TSAPI  includes  escape  service  definitions  for  both  the
"Application as the Client" and the "Switch as the Client".

See vendor specific documentation for more information on what,
if any, Escape Services are  supported by a specific vendor. Escape
Service  Functions  are  generally  not  portable  across  different
vendor  implementations.  Some  implementations  may  support
Escape Services either bi-directionally or unidirectional (one-way
only) depending on the needs and capabilities of the switch driver 

 Maintenance Services

XE  "Maintenance  Services"§There  are  two  different  types  of
CSTA maintenance services: 

9-2  Escape/Maintenance Services



· device  status  maintenance  events  which  provide  status
information for device objects, and

· bi-directional  system  status  maintenance  services  which
provide information on the overall status of the system.

The device status events inform the application when the switch
places a  monitored  device  in  or  out  of  service.  When a device
object is removed from service, the application may monitor the
device (e.g.  cstaMonitorStart( ) or  cstaDevSnapshotReq( )) but
may  not  request  services  for  that  device.  For  example,  an
application request for a  cstaMakeCall( ) returns an error when
the device is out of service.

System Status services inform applications or switches about the
status of the switching or computing domains,  respectively.  The
System  Status  Services  include  the  following  system  status
information (cause codes):

Telephony Services API Specification   9-3



System Status 
Cause Code

Cause Code
Definitions

Initializing the system is re-initializing or restarting. This
status indicates that the system is temporarily
unable  to  respond  to  any  requests.  If
provided,  this  status  message  shall  be
followed  by  an  Enable  status  message  that
indicates  that  the  initialization  process  is
completed.

Enabled request  and  responses  are  enabled,  usually
after  a  disruption  or  restart.  This  status
indication  shall  be sent  after  an initializing
status indicator has been sent and my be sent
under other conditions. This status indicates
that  there  are  no  outstanding  monitor
requests.

Normal a System Status Event with this cause value
can be sent at any time to indicate that the
status is normal. This status has no effect on
other services.

Message Lost this status indicates that a request, response,
or event report may have been lost.

Disabled this  cause  value  indicates  that  active
cstaMonitorStart( ) monitor  requests  via
have  been  disabled.  Other  requests  and
responses may also be disabled,  but,  unlike
monitors,  reject  responses  are  provided  for
those.

Overload
Imminen

the system (driver, switch, or application) is
about  to  reach  an  overload  condition.  The

9-4  Escape/Maintenance Services



t "client"  should  shed  load  to  remedy  the
situation.

Overload
Reached

the system (driver, switch, or application) has
reached an overload condition and may take
action  to  shed  load.  The  server  (the
application, driver, or switch) may then take
action to decrease message traffic. This may
include  stopping  existing  monitors  or
rejecting any new requests sent by the client.

Overload
Relieved

the system (driver, switch, or application) has
determined  that  the  overload  condition  has
passed and normal application operation may
resume.

Table 9-1 : System Status Cause CodesXE "System Status
Cause Codes"§

The  System  Status  services  are  bi-directional  and  thus  can
originate at the application domain or at the driver/switch domain.
Figure 9-2 shows System Status Maintenance Services.

 Figure 9-2 : System Status Maintenance ServicesXE "System
Status Maintenance Services"§

An application can obtain System Status information in one of two
different ways :

· the client can ask for  the information using a request to the
"server" and obtain the information in a confirmation event, or

· the client can register for System Status messages and receive
unsolicited events containing system status changes.

A  switch  or  application  may  issue  the  System  Status  request
(cstaSysStatReq( ))  to  obtain  status  information  from  the

Telephony Services API Specification   9-5



"server" (the application or switch, respectively, depending on
the  direction  of  the  request).  A  System  Status  response
(CSTASysStatReqConfEvent) provides the "client" with the
current system status information for the "server". The "server"
may send unsolicited  events  can be sent  to  the client  if  the
client  used  the  cstaSysStatStart( )  service  to  register  for
System  Status  events.  The  System  Status  unsolicited  event
(CSTASysStatEvent) is the same in structure as the confirma-
tion  event  (CSTASysStatReqConfEvent)  except  that  the
"server" sends it to the "client" automatically. 

Escape Services : Application as Client

XE "Escape Services \\: Application as Client"§
This  section  defines  escape  services  for  situation  where  the
application is the service requester in the client/server relationship
(see Figure 9-1). The services include an escape service request, a
confirmation  event  to  the  request,  and  an  unsolicited  escape
service event that originates at the driver or switching domain.

9-6  Escape/Maintenance Services



cstaEscapeService( )XE "cstaEscapeService( )"§

This service allows the application to request a service
which is not defined by the CSTA Standard but rather by
a  Telephony  Services  implementor.  A  service  request
made  by  this  function  will  be  specific  to  an
implementation.

Syntax

#include <csta.h>  
#include <acs.h>

RetCode_t   cstaEscapeService (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
PrivateData_t *privateData);

Parameters

acsHandle 
This is the handle to an active ACS Stream.

invokeID 
A  handle  provided  by  the  application  to  be  used  for
matching a specific instance of a function service request
with its associated confirmation event.  This parameter is
only  valid  when  the  Invoke  ID  mechanism  is  set  for
Application-generated IDs in the  acsOpenStream( ).  The
parameter is ignored by the ACS Library when the Stream
is set for Library-generated invoke IDs.

privateData 
This  is  a  pointer  to  the  CSTA  private  data  extension
mechanism.   This  parameter  in  NOT  optional  for  this
function  and  must  be  passed  by  the  application.  If  the
parameter  is  NULL  an  error  will  be  returned  to  the
application and the API Client Library Driver will  reject
the service request.

Telephony Services API Specification   9-7



Return Values

This  function  returns  the  following  values  depending on
whether  the  application  is  using  library  or  application-
generated invoke identifiers:

· Library-generated  Identifiers -  if  the  function  call
completes successfully  it  will  return a positive value,
i.e.  the  invoke  identifier.  If  the  call  fails  a  negative
error  (<0)  condition  will  be  returned.  For  library-
generated identifiers the return will never be zero (0).

· Application-generated Identifiers -  if the function call
completes successfully it will return a zero (0) value. If
the  call  fails  a  negative  error  (<0)  condition  will  be
returned.  For  application-generated  identifiers  the
return will never be positive (>0).

The  application  should  always  check  the
CSTAEscapeServiceConfEvent message to insure that the
service request has been acknowledged and processed by
the Telephony Server and the switch.

The  following  are  possible  negative  error  conditions  for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application. 

ACSERR_NOCONN
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

ACSERR_REQDENIED
This  return  value indicates  that  a  ACS Stream is
established  but  a  requested  capability  has  been
denied by the Client Library Software Driver.

9-8  Escape/Maintenance Services



ACSERR_NULLPARAMETER
This error  indicates that  the pointer  to the CSTA
Private  Data  information  is  NULL  and  thus  no
private data is available to send to the driver/switch.
No action is taken by the API Client Library Driver.

Comments

This function is used to send private data information to the
driver/switch. 

Telephony Services API Specification   9-9



CSTAEscapeServiceConfEventXE
"CSTAEscapeServiceConfEvent"§

This  confirmation  event  is  sent  in  response  to  the
cstaEscapeService( )  service  and  provides  the  positive
acknowledgment  to  the  request.  The  event  includes  any
private  information  that  is  to  be  provided  as  part  of  a
confirmation event to the service request.

Syntax

The following structure shows only the relevant portions of
the  unions  for  this  message.  See  ACS  Data  Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct 
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct 
{

ACSEventHeader_t eventHeader;
union 
{ struct 

{ InvokeID_t invokeID; } cstaConfirmation;
} event;} CSTAEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This  is  a  tag  with  the  value  CSTACONFIRMATION,
which  identifies  this message as an CSTA confirmation
event.

9-10  Escape/Maintenance Services



eventType
This  is  a  tag  with  the  value
CSTA_ESCAPE_SERVICE_CONF which   identifies
this message as an CSTAEscapeServiceConfEvent.

invokeID 
This  parameter  specifies  the  function  service  request
instance  for  the  service  which  was  processed  at  the
Telephony  Server  or  at  the  switch.  This  identifier  is
provided to the application when a service request is made.

privateData
If private data accompanied this event, then the private data
would  be  copied  to  the  location  pointed  to  by  the
privateData  pointer  in  the  acsGetEventBlock( ) or
acsGetEventPoll( ) function. If the  privateData  pointer is
set to NULL in these functions, then no private data will be
delivered to the application.  

Comments

This event always occurs as a result of a normal (positive)
service  request  made  through  the  cstaEscapeService( )
service.  The  information  contained  in  the  privateData
parameter is implementation specific.

Telephony Services API Specification   9-11



CSTAPrivateEventXE "CSTAPrivateEvent"§

This  event  report  allows  for  unsolicited,  implementation
specific event reporting. The informational contents of this
event will be defined by a specific implementation.

Syntax

The following structure shows only the relevant portions of
the  unions  for  this  message.  See   ACS Data  Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct 
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct 
{

ACSEventHeader_t eventHeader;
union 
{ struct 

{ union
{

CSTAPrivateEvent_t  privateData;
} u;

} cstaEventReport;
} event;} CSTAEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This  is  a  tag  with  the  value  CSTAEVENTREPORT,
which   identifies   this  message  as  an  CSTA unsolicited
event.

9-12  Escape/Maintenance Services



eventType
This  is  a  tag  with  the  value CSTA_PRIVATE,  which
identifies  this message as an CSTAPrivateEvent.

monitorCrossRefID
Does not apply to this event.

privateData
If private data accompanied this event, then the private data
would  be  copied  to  the  location  pointed  to  by  the
privateData  pointer  in  the  acsGetEventBlock( ) or
acsGetEventPoll( ) function. If the  privateData  pointer is
set to NULL in these functions, then no private data will be
delivered to the application.  

Comments

This  event  is  typically  used  for  providing  unsolicited,
implementation specific event information. This event can
occur  at  any  time  and  does  not  have  be  specific  to  a
monitored  object.  The  event  can  be  sent  by  the
driver/switch even though the application does not have a
monitored  object.  When  a  monitor  exists,  the
PrivateStatusEvent is  used by the driver/switch to send
private status information pertaining to a monitored object.
The PrivateEvent is used for all other cases of unsolicited
private  events  and  is  not  associated  with  a  monitoring
association.

Telephony Services API Specification   9-13



CSTAPrivateStatusEventXE
"CSTAPrivateStatusEvent"§

This  event  report  allows  for  unsolicited,  implementation
specific  event  reporting  for  a  monitored  object.  The
informational  contents of this event will  be defined by a
specific implementation.

Syntax

The following structure shows only the relevant portions of
the  unions  for  this  message.  See   ACS Data  Types  and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct 
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct 
{

ACSEventHeader_t eventHeader;
union 
{ struct 

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
} cstaUnsolicited;

} event;} CSTAEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies  this message as an CSTA unsolicited event.

9-14  Escape/Maintenance Services



eventType
This is a tag with the value CSTA_PRIVATE_STATUS,
which   identifies   this  message  as  an
CSTAPrivateStatusEvent.

monitorCrossRefID
This  parameter  contains  the  handle  to  the  CSTA
association for which this event is associated. This handle
is typically chosen by the switch and should be used by the
application  as  a  reference  to  a  specific  established
association.

privateData
If private data accompanied this event, then the private data
would  be  copied  to  the  location  pointed  to  by  the
privateData  pointer  in  the  acsGetEventBlock( ) or
acsGetEventPoll( ) function. If the  privateData  pointer is
set to NULL in these functions, then no private data will be
delivered to the application.  

Comments

This event is typically used for providing implementation
specific event information which is not defined in any other
event  in  the  API.  The  event  is  always  used  for  private
information on a monitoring association. A monitor must
be active  (cstaMonitorStart( ))  before  this  event  can be
sent to the application by the driver/switch. This event is
always sent from the driver/switch to the application and it
is not bi-directional.

Telephony Services API Specification   9-15



Escape Service : Driver/Switch as the ClientXE "Escape 
Service \\: Driver/Switch as the Client"§

This  section  defines  escape  services  for  cases  where  the
Driver/Switch  is  the  service  requester  in  the  client/server
relationship  (see  Figure  9-1).  The  services  include  an  escape
service request event, a confirmation function for the request, and
an  unsolicited  escape  service  event  that  originates  at  the
application domain.

9-16  Escape/Maintenance Services



CSTAEscapeServiceReqXE "CSTAEscapeServiceReq"§

This  unsolicited  event  is  sent  by  the  driver/switch  to
request a private  service from the application.  The event
includes  the  service  request  as  private  information  for
which the application must provide a positive or negative
acknowledgment.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See 4.3 ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct 
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct 
{

ACSEventHeader_t eventHeader;
union 
{ struct 

{ InvokeID_t invokeID;
union 
{

CSTAEscapeSvcReqEvent_t escapeSvcReqeust;
} u;

} cstaRequestEvent;
} event;} CSTAEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This  is  a  tag  with  the  value  CSTAREQUEST,  which
identifies  this message as an CSTA unsolicited event.

Telephony Services API Specification   9-17



eventType
This is a tag with the value CSTA_ESCAPE_SVC_REQ,
which   identifies   this  message  as  an
CSTAEscapeServiceReq

invokeID
This parameter defines the invoke identifier selected by the
driver/switch  for  the  specific  private  request.  This
parameter  must be returned, unchanged, in the response to
this request in order for the driver/switch to match a service
request with a service response.

privateData
If private data accompanied this event, then the private data
would  be  copied  to  the  location  pointed  to  by  the
privateData  pointer  in  the  acsGetEventBlock( ) or
acsGetEventPoll( ) function. If the  privateData  pointer is
set to NULL in these functions, then no private data will be
delivered to the application.  

Comments

This event is sent by the driver/switch to request an escape
or  private  service  when  the  application  is  providing  the
"server"  function  in  the  client/server  relationship.  The
response  to  this  event  will  be  accomplished  via  the
cstaEscapeServiceConf( ) service.

9-18  Escape/Maintenance Services



cstaEscapeServiceConf( )XE
"cstaEscapeServiceConf( )"§

This  service  allows  the  application  to  respond  to  a
CSTAEscapeServiceEvent which  originated  at  the
driver/switch.  A  service  response  made  by  this  function
will be specific to an implementation.

Syntax

#include <csta.h>  
#include <acs.h>

RetCode_t   cstaEscapeServiceConf (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
CSTAUniversalFailure_t error, /* negative ACK */
PrivateData_t *privateData), /* positive ACK */

Parameters

acsHandle 
This is the handle to an active ACS Stream.

invokeID 
The  invoke  identifier  used  in  this  function  must be  the
same  value  (unchanged)  as  that  provided  in  the
CSTAEscapeServiceReq for which this services request is
being called.  The same  invokeID value must  be used in
order  for  the  driver/switch  to  match  the  instances  of  a
previous service event and the service confirmation to that
event provided by this function call.

error
This  parameter  is  used  to  provide  a  negative
acknowledgment  to  the  CSTAEscapeServiceReq.  See
CSTAUniversalFailureConfEvent for a definition of the
possible error values for this parameter. If the error pointer
is  NULL  this  will  indicates  that  the  event  contains  a
positive acknowledgment.

Telephony Services API Specification   9-19



privateData 
This  is  a  pointer  to  the  CSTA  private  data  extension
mechanism which contains the positive acknowledgment to
the  CSTAEscapeServiceEvent.   If  the  private  pointer  is
NULL this will indicate that the event contains a negative
acknowledgment.

Return Values

This function never returns an invoke identifier since there
is no confirmation event for this service. The function does
return  errors  conditions  during  the  processing  of  the
request by the API Client Library. A return value of zero
(0)  indicates  that  the  request  has  been  accepted  by  the
Library. This function never returns a positive value.

Possible local error returns are (negative returns):

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application. 

ACSERR_NOCONN
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

ACSERR_REQDENIED
This  return  value indicates  that  a  ACS Stream is
established  but  a  requested  capability  has  been
denied by the Client Library Software Driver.

ACSERR_NONULL
This  error  indicates  that  neither  the  error or
privateData pointers  are  NULL.  One  of  these
pointers must be NULL to indicate either a positive
or  negative  acknowledgment  to  the  request.  No

9-20  Escape/Maintenance Services



action is taken by the API Client Library.

ACSERR_NORESPONSE
This  error  indicates  that  both  the  error or  the
privateData pointer are NULL. In this case the API
Client  Library  has  nothing  to  send  to  the
driver/switch and rejects the response. The request
associated  with  the  invoke  identifier  from  the
driver/server  will  still  be  outstanding  and  the
application  must  respond  by  calling  this  function
with acceptable parameters.

ACSERR_BADINVOKEID
This error indicates that the invoke identifier being
returned  by  the  application  is  not  one  that  is
outstanding from the driver/switch. The API Client
Library will  keep track of the driver/switch-based
invoke  id's  until  the  application  responds  to  the
specific request from the driver/switch.

Comments

This function is used to send a response to a private request
from the driver/switch. The event supports both a positive
and negative acknowledgment to the request.  One of the
two pointers (error or privateData) must be NULL in order
for  the  request  to  be  successfully  processed  by the  API
Client Library. This would indicate a positive or negative
acknowledgment to the request made by the driver/switch.

Telephony Services API Specification   9-21



cstaSendPrivateEvent( )XE
"cstaSendPrivateEvent( )"§

This service allows the application to send an unsolicited
private event to the driver/switch. An event sent by this
function will be specific to an implementation.

Syntax

#include <csta.h>  
#include <acs.h>

RetCode_t   cstaSendPrivateEvent (
ACSHandle_t acsHandle,
PrivateData_t *privateData),

Parameters

acsHandle 
This is the handle to an active ACS Stream.

privateData 
This  is  a  pointer  to  the  CSTA  private  data  extension
mechanism.   This  parameter  in  NOT  optional  for  this
function  and  must  be  passed  by  the  application.  If  the
parameter  is  NULL  an  error  will  be  returned  to  the
application and the API Client Library Driver will  reject
the service request.

Return Values

This function never returns an invoke identifier since there
is no confirmation event for this service. The function does
return  errors  conditions  during  the  processing  of  the
request by the API Client Library. A return value of zero
(0)  indicates  that  the  request  has  been  accepted  by  the
Library. This function never returns a positive value.

Possible local error returns are (negative returns):

9-22  Escape/Maintenance Services



ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application. 

ACSERR_NOCONN
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

ACSERR_REQDENIED
This  return  value indicates  that  a  ACS Stream is
established  but  a  requested  capability  has  been
denied by the Client Library Software Driver.

ACSERR_NULLPARAMETER
This error  indicates that  the pointer  to the CSTA
Private  Data  information  is  NULL  and  thus  no
private data is available to send to the driver/switch.
No action is taken by the API Client Library Driver.

Comments

This  function  is  used  to  send  unsolicited,  private  data
information  to  the  driver/switch  when  the  application  is
supporting  the  "server"  role  in  the  client/server
relationship. 

Telephony Services API Specification   9-23



Maintenance Services: Device StatusXE "Maintenance 
Services"§

This  section  describes  the  CSTA  Maintenance  Services  which
provide  device  status  information.  To  receive  device  status
information,  an  application  must  monitor  the  device(e.g.  the
application  must  have  an  active  monitorCrossRefID for  the
device). These events are unidirectional and always originate in the
switch domain.

9-24  Escape/Maintenance Services



CSTABackInServiceEventXE "CSTABackInServiceEvent"§

This event report indicates that a monitored device object
has returned to services and operates normally. 

Syntax

The following structure shows only the relevant portions of
the  unions  for  this  message.  See  ACS  Data  Types  and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct 
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct 
{

ACSEventHeader_t eventHeader;
union 
{ struct 

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTABackInServiceEvent_t  backInService;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct 
{

DeviceID_t device;
CSTAEventCause_t case;

} CSTABackInServiceEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies this message as an CSTA unsolicited event.

Telephony Services API Specification   9-25



eventType
This is a tag with the value CSTA_BACK_IN_SERVICE
,  which  identifies  this  message  as  an
CSTABackInServiceEvent.

monitorCrossRefID
This  parameter  contains  the  handle  to  the  CSTA
association for which this event is associated. This handle
is typically chosen by the switch and should be used by the
application  as  a  reference  to  a  specific  established
association.

device
Specifies the device which is back in service. If the device
is not specified,  then the parameter  will indicate that the
device was not known or that it was not required.

cause
This parameter indicates the reason or explanation for the
occurrence  of  this  event.  See  Section  6  for  more
information.

privateData
If private data accompanied this event, then the private data
would  be  copied  to  the  location  pointed  to  by  the
privateData  pointer  in  the  acsGetEventBlock( ) or
acsGetEventPoll( ) function. If the  privateData  pointer is
set to NULL in these functions, then no private data will be
delivered to the application.  

Comments

This  event  indicates  that  a  previously  inactive  device  (a
device which is out service) has resumed normal operation.
Once  this  event  has  occurred  the  application  can  then
initiate an active service request (e.g. cstaMakeCall( )) for
that specific device. A passive service request can be done

9-26  Escape/Maintenance Services



while a device is out of service, i.e. monitoring or Snapshot
Services.

Telephony Services API Specification   9-27



CSTAOutOfServiceEventXE
"CSTAOutOfServiceEvent"§

This event report indicates that a monitored device object
has entered a maintenance state and can no longer accept
calls or be actively manipulated by the application. 

Syntax

The following structure shows only the relevant portions of
the  unions  for  this  message.  See  ACS  Data  Types  and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct 
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct 
{

ACSEventHeader_t eventHeader;
union 
{ struct 

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTAOutOfServiceEvent_t  outOfService;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct 
{

DeviceID_t device;
CSTAEventCause_t case;

} CSTAOutOfServiceEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies this message as an CSTA unsolicited event.

9-28  Escape/Maintenance Services



eventType
This is a tag with the value CSTA_OUT_OF_SERVICE ,
which  identifies  this  message  as  an
CSTAOutOfServiceEvent.

monitorCrossRefID
This  parameter  contains  the  handle  to  the  CSTA
association for which this event is associated. This handle
is typically chosen by the switch and should be used by the
application  as  a  reference  to  a  specific  established
association.

device
This parameter indicates the device which has been taken
out  of  service.  If  the  device  is  not  specified,  then  the
parameter will indicate that the device was not known or
that it was not required.

cause
This parameter indicates the reason or explanation for

the  occurrence  of  this  event.   See  Section  6  for  more
information.

privateData
If private data accompanied this event, then the private data
would  be  copied  to  the  location  pointed  to  by  the
privateData  pointer  in  the  acsGetEventBlock( ) or
acsGetEventPoll( ) function. If the  privateData  pointer is
set to NULL in these functions, then no private data will be
delivered to the application.  

Comments

This  event  indicates  that  a  previously  active  device  (a
device which is in service) has entered into a maintenance
state,  i.e.  the device has been taken out of service.  Once

Telephony Services API Specification   9-29



this event has occurred the application can not initiate any
new active service request (e.g.  cstaMakeCall( )) for that
specific device. A passive service request (e.g. monitoring
or Snapshot Services) can be done while a device is out of
service.

9-30  Escape/Maintenance Services



System Status - Application as the ClientXE "System 
Status - Application as the Client"§

This section defines the services which provide system level status
information  to  the application  or  the driver/switch.  The System
Status  service  is  bi-directional  and  thus  the  client/server
relationship (see Figure 9-2) can be reversed.

Telephony Services API Specification   9-31



cstaSysStatReq( )

This service allows the application to request system status
information  from  the  driver/switch  domain.XE
"cstaSysStatReq( )"§

Syntax

#include <csta.h>  
#include <acs.h>

RetCode_t   cstaSysStatReq (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
PrivateData_t *privateData);

Parameters

acsHandle 
This is the handle to an active ACS Stream.

invokeID 
A  handle  provided  by  the  application  to  be  used  for
matching a specific instance of a function service request
with its associated confirmation event.  This parameter is
only  valid  when  the  Invoke  ID  mechanism  is  set  for
Application-generated IDs in the  acsOpenStream( ).  The
parameter is ignored by the ACS Library when the Stream
is set for Library-generated invoke IDs.

privateData 
This  is  a  pointer  to  the  CSTA  private  data  extension
mechanism.  This is optional.

Return Values

This  function  returns  the  following  values  depending on
whether  the  application  is  using  library  or  application-
generated invoke identifiers:

9-32  Escape/Maintenance Services



· Library-generated  Identifiers -  if  the  function
call  completes  successfully  it  will  return  a
positive value, i.e.  the invoke identifier.  If  the
call fails a negative error (<0) condition will be
returned.  For  library-generated  identifiers  the
return will never be zero (0).

· Application-generated  Identifiers -  if  the
function  call  completes  successfully  it  will
return  a  zero  (0)  value.  If  the  call  fails  a
negative error (<0) condition will be returned.
For application-generated identifiers the return
will never be positive (>0).

The  application  should  always  check  the
CSTASysStatReqConfEvent message  to  insure  that  the
service request has been acknowledged and processed by
the Telephony Server and the switch.

The  following  are  possible  negative  error  conditions  for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application. 

ACSERR_NOCONN
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

ACSERR_REQDENIED
This  return  value indicates  that  a  ACS Stream is
established  but  a  requested  capability  has  been
denied by the Client Library Software Driver.

Comments

This function is used to request the current overall system
status for the driver/switch. 

Telephony Services API Specification   9-33



CSTASysStatReqConfEventXE
"CSTASysStatReqConfEvent"§

This event is in response to the cstaSysStatReq( ) service
and informs the application of the overall system status of
the driver/switch.

Syntax

The following structure shows only the relevant portions of
the  unions  for  this  message.  See   ACS Data  Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct 
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct 
{

ACSEventHeader_t eventHeader;
union 
{ struct 

{ InvokeID_t invokeID;
union
{

CSTASysStatReqConfEvent  sysStatReq;
} u;

} cstaConfirmation;
} event;} CSTAEvent_t;

typedef struct CSTASysStatReqConfEvent_t (
SystemStatus_t systemStatus;

) CSTASysStatStatReqConfEvent_t

typedef enum SystemStatus_t {
    SS_INITIALIZING = 0,
    SS_ENABLED = 1,
    SS_NORMAL = 2,
    SS_MESSAGES_LOST = 3,
    SS_DISABLED = 4,
    SS_OVERLOAD_IMMINENT = 5,
    SS_OVERLOAD_REACHED = 6,
    SS_OVERLOAD_RELIEVED = 7
} SystemStatus_t;

Parameters

acsHandle

9-34  Escape/Maintenance Services



This is the handle for the opened ACS Stream.

eventClass
This  is  a  tag  with  the  value  CSTACONFIRMATION,
which  identifies  this  message  as  an  CSTA  unsolicited
event.

eventType
This  is  a  tag  with  the  value
CSTA_SYS_STAT_REQ_CONF,  which  identifies  this
message as an CSTASysStatReqConfEvent.

invokeID
This  parameter  specifies  the  requested  instance  of  the
function or event.  It  is used to match a specific function
call request with its confirmation events.

privateData
If private data accompanied this event, then the private data
would  be  copied  to  the  location  pointed  to  by  the
privateData  pointer  in  the  acsGetEventBlock( ) or
acsGetEventPoll( ) function. If the  privateData  pointer is
set to NULL in these functions, then no private data will be
delivered to the application. 

systemStatus
This parameter provides the application with a cause code
defining the overall system status as follows:

Telephony Services API Specification   9-35



Cause
Cod
e

Definition

Initializing the  driver/switch  is  re-initializing  or
restarting.  This  status  indicates  that  the
driver/switch  is  temporarily  unable  to
respond to any requests. If provided, this
status  message  shall  be  followed  by  an
Enable status message to indicate that the
initialization process is completed.

Enabled request  and  responses  are  re-enabled,
usually  after  a disruption or restart.  This
status  indication  shall  be  sent  after  an
initializing  status indicator  has been sent
and may be sent  under  other  conditions.
This  status  indicates  that  there  are  no
outstanding monitor request.

Normal this cause value can be sent at any time by
the driver/switch to indicate that the status
is  normal.  This  status  has  no  effect  on
other services.

Message
Lost

this status indicates that a request and/or
responses  may  have  been  lost,  including
Event Reports.

Disabled this  cause  value  indicates  that  existing
monitor requests via  cstaMonitorStart( )
have  been  disabled.  Other  requests  and
responses may also be disabled, but reject
responses should be provided.

Overload the  driver/switch  is  about  to  reach  a

9-36  Escape/Maintenance Services



Imminent overload  condition  and  the  application
should shed load to better the situation.

Overload
Reached 

the driver/switch  has  reach overload and
may  take  initiative  to  shed  load.  This
cause may be followed by action on the
part  of  the  driver/switch  to  decrease
message  traffic.  This  may  include
stopping  existing  or  rejecting  any  new
monitor  requests  sent  by  the  client,  and
rejections  to  additional  new  service
requests.

Overload 
Relieved

the driver/switch has determined that the
overload condition has passed and normal
application operation may continue.

Comments

This  confirmation  event  provides  the  application  with
certain  information  regarding  the  state  of  the  overall
driver/switch  system.  This  event  is  important  for  proper
application operation and should be processed accordingly.
This  is  especially  important  for  cause  values  for  the
overload condition.  If  the driver/switch has informed the
application  that  an  overload  condition  is  imminent  all
applications should attempt to decrease the overall traffic
to  the  driver/switch.  This  can  be  accomplished,  for
example, by stopping all non-essential monitors on call or
device  objects  on  the  switch  thus  reducing  the  traffic
between the server and the switch. Frequent occurrence of
the Overload Imminent cause value can be a symptoms of a
poorly  engineered  system  which  should  reviewed  for
proper loading.

Telephony Services API Specification   9-37



cstaSysStatStart( )XE
"cstaSysStatStart( )"§

This services allows the application to register for System
Status event reporting. It can be used by an application to
automatically receive a CSTASysStatEvent each time the
status of the driver/switch changes.

Syntax

#include <csta.h>  
#include <acs.h>

RetCode_t cstaSysStatStart (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
SystemStatusFilter_t statusFilter,
PrivateData_t *privateData),

typedef unsigned char   SystemStatusFilter_t;
#define                     SF_INITIALIZING 0x80
#define                     SF_ENABLED 0x40
#define                     SF_NORMAL 0x20
#define                     SF_MESSAGES_LOST 0x10
#define                     SF_DISABLED 0x08
#define                     SF_OVERLOAD_IMMINENT 0x04
#define                     SF_OVERLOAD_REACHED 0x02
#define                     SF_OVERLOAD_RELIEVED 0x01

                Parameters

acsHandle
This is the handle to an active ACS Stream.

invokeID 
A  handle  provided  by  the  application  to  be  used  for
matching a specific instance of a function service request
with its associated confirmation event.  This parameter is
only  valid  when  the  Invoke  ID  mechanism  is  set  for
Application-generated IDs in the  acsOpenStream( ).  The
parameter is ignored by the ACS Library when the Stream
is set for Library-generated invoke IDs.

statusFilter

9-38  Escape/Maintenance Services



This parameter is used to specify a filter for specific cause
values  in  which  the  application  is  not  interested.  The
parameter  can  be  used  by  the  application  to  filter  out
unwanted status information (e.g. the Normal status)
 
privateData 
Private data extension mechanism.  This is optional. 

Return Values

This  function  returns  the  following  values  depending on
whether  the  application  is  using  library  or  application-
generated invoke identifiers:

· Library-generated  Identifiers -  if  the  function  call
completes successfully  it  will  return a positive value,
i.e.  the  invoke  identifier.  If  the  call  fails  a  negative
error  (<0)  condition  will  be  returned.  For  library-
generated identifiers the return will never be zero (0).

· Application-generated Identifiers -  if the function call
completes successfully it will return a zero (0) value. If
the  call  fails  a  negative  error  (<0)  condition  will  be
returned.  For  application-generated  identifiers  the
return will never be positive (>0).

The  application  should  always  check  the
CSTASysStatStartConfEvent message to insure that the
service request has been acknowledged and processed by
the Telephony Server and the switch.

The  following  are  possible  negative  error  conditions  for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application. 

Telephony Services API Specification   9-39



ACSERR_NOCONN
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

ACSERR_REQDENIED
This  return  value indicates  that  a  ACS Stream is
established  but  a  requested  capability  has  been
denied by the Client Library Software Driver.

Comments

This function is used to start a monitor for system status
information. The system status information is provided via
the  CSTASysStatEvent. Only one System Status register
is allowed per opened ACS Stream.

9-40  Escape/Maintenance Services



CSTASysStatStartConfEventXE
"CSTASysStatStartConfEvent"§

This  event  is  in  response  to  the  cstaSysStatStart( )
function  and  confirms  an  active  System Status  monitor.
Once  this  event  is  issued  the  application  will  start  to
automatically receive unsolicited System Status events.

Syntax

The following structure shows only the relevant portions of
the  unions  for  this  message.  See   ACS Data  Types  and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct 
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct 
{

ACSEventHeader_t eventHeader;
union 
{ struct 

{ InvokeID_t invokeID_t;
union
{

CSTASysStatStartConfEvent  sysStatStart;
} u;

} cstaConfirmation;
} event;} CSTAEvent_t;

typedef struct CSTASysStatStartConfEvent_t (
SystemStatusFilter_t systemFilter;

) CSTASysStatStatStartConfEvent_t

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This  is  a  tag  with  the  value  CSTACONFIRMATION,
which   identifies   this  message  as  an  CSTA unsolicited
event.

Telephony Services API Specification   9-41



eventType
This  is  a  tag  with  the  value
CSTA_SYS_STAT_START_CONF,  which   identifies
this message as an CSTASysStatStartConfEvent.

invokeID
This  parameter  specifies  the  requested  instance  of  the
function or event. It is used to match a specific functions
call request with its confirmation events.

statusFilter
This parameter is used to specify the filter type which is
active  on  the  System  Status  monitor  requested  by  the
application.  The  parameter  identifies  which  filter  was
accepted by the driver/switch. Note that the filter returned
by this function may be different than the filter requested
in the  cstaSysStatStart( ) service request. This can occur
when  the  driver/switch  rejected  the  request  filter  and
selected a default filter.

privateData
If private data accompanied this event, then the private data
would  be  copied  to  the  location  pointed  to  by  the
privateData  pointer  in  the  acsGetEventBlock( ) or
acsGetEventPoll( ) function. If the  privateData  pointer is
set to NULL in these functions, then no private data will be
delivered to the application.  

Comments

This  confirmation  event  should  be  checked  by  the
application  to  insure that  the System Status  monitor  has
been activated and that the requested filter is active.

9-42  Escape/Maintenance Services



cstaSysStatStop( )XE "cstaSysStatStop( )"§

This  service  is  used  to  cancel  a  previously  registered
monitor for System Status information.

Syntax

#include <csta.h>  
#include <acs.h>

RetCode_t cstaSysStatStop (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
PrivateData_t *privateData),

Parameters

acsHandle
This is the handle to an active ACS Stream.

invokeID 
A  handle  provided  by  the  application  to  be  used  for
matching a specific instance of a function service request
with its associated confirmation event.  This parameter is
only  valid  when  the  Invoke  ID  mechanism  is  set  for
Application-generated IDs in the  acsOpenStream( ).  The
parameter is ignored by the ACS Library when the Stream
is set for Library-generated invoke IDs.

privateData 
Private data extension mechanism.  This is optional. 

Return Values

This  function  returns  the  following  values  depending on
whether  the  application  is  using  library  or  application-
generated invoke identifiers:

· Library-generated  Identifiers -  if  the  function  call
completes successfully  it  will  return a positive value,

Telephony Services API Specification   9-43



i.e.  the  invoke  identifier.  If  the  call  fails  a  negative
error  (<0)  condition  will  be  returned.  For  library-
generated identifiers the return will never be zero (0).

· Application-generated Identifiers -  if the function call
completes successfully it will return a zero (0) value. If
the  call  fails  a  negative  error  (<0)  condition  will  be
returned.  For  application-generated  identifiers  the
return will never be positive (>0).

The  application  should  always  check  the
CSTASysStatStopConfEvent message to  insure that  the
service request has been acknowledged and processed by
the Telephony Server and the switch.

The  following  are  possible  negative  error  conditions  for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application. 

ACSERR_NOCONN
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

ACSERR_REQDENIED
This  return  value indicates  that  a  ACS Stream is
established  but  a  requested  capability  has  been
denied by the Client Library Software Driver.

Comments

This  function  is  used  to  cancel  a  previously  registered
System Status monitor. Once a confirmation event is issued
for this function, i.e. a  CSTASysStatStopConfEvent, the
driver/switch will terminate automatic System Status event
notification. If required, the application can still continue to

9-44  Escape/Maintenance Services



poll  for  system  status  information  using  the  cstaSys-
StatReq( ) service,  even after a System Status register is
closed.

Telephony Services API Specification   9-45



CSTASysStatStopConfEventXE
"CSTASysStatStopConfEvent"§

This  event  is  in  response  to  the  cstaSysStatStop( )
function and confirms a cancellation of the active System
Status monitor.  Once this  event  is  issued the application
will  not  continue  to  receive  unsolicited  System  Status
events.

Syntax

The following structure shows only the relevant portions of
the  unions  for  this  message.  See   ACS Data  Types  and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct 
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct 
{

ACSEventHeader_t eventHeader;
union 
{ struct 

{ InvokeID_t invokeID_t;
} cstaConfirmation;

} event;} CSTAEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This  is  a  tag  with  the  value  CSTACONFIRMATION,
which   identifies   this  message  as  an  CSTA unsolicited
event.

eventType
This  is  a  tag  with  the  value

9-46  Escape/Maintenance Services



CSTA_SYS_STAT_STOP_CONF, which  identifies  this
message as an CSTASysStatStopConfEvent.

invokeID
This  parameter  specifies  the  requested  instance  of  the
function or event. It is used to match a specific functions
call request with its confirmation events. 

privateData
If private data accompanied this event, then the private data
would  be  copied  to  the  location  pointed  to  by  the
privateData  pointer  in  the  acsGetEventBlock( ) or
acsGetEventPoll( ) function. If the  privateData  pointer is
set to NULL in these functions, then no private data will be
delivered to the application.  

Comments

This  confirmation  event  should  be  checked  by  the
application  to  insure that  the System Status  monitor  has
been  deactivated.  Once  this  event  is  sent,  automatic
notification of System Status events will be discontinued.
The  application  must  poll  using  the  cstaSysStatReq( )
service in order to obtain any System Status information.

Telephony Services API Specification   9-47



cstaChangeSysStatFilter( )XE "cstaChangeSysStatFilter( )"§

This  function  is  used  to  request  a  change  in  the  filter
options for automatic System Status event reporting for a
specific ACS Stream. It allows the application to specify
which System Status events it requires.

Syntax

#include <csta.h>  
#include <acs.h>

RetCode_t cstaChangeSysStatFilter (
ACSHandle_t acsHandle,
InvokeID_t *invokeID,
SystemStatusFilter_t statusFilter,
PrivateData_t *privateData),

Parameters

acsHandle
This is the handle to an active ACS Stream.

invokeID 
A  handle  provided  by  the  application  to  be  used  for
matching a specific instance of a function service request
with its associated confirmation event.  This parameter is
only  valid  when  the  Invoke  ID  mechanism  is  set  for
Application-generated IDs in the  acsOpenStream( ).  The
parameter is ignored by the ACS Library when the Stream
is set for Library-generated invoke IDs.

statusFilter
This parameter identifies the new filter mask to be applied
to  the  existing  active  System  Status  monitor.  The  new
mask will replace the existing mask.

privateData 
Private data extension mechanism.  This is optional. 

9-48  Escape/Maintenance Services



Return Values

This  function  returns  the  following  values  depending on
whether  the  application  is  using  library  or  application-
generated invoke identifiers:

· Library-generated  Identifiers -  if  the  function  call
completes successfully  it  will  return a positive value,
i.e.  the  invoke  identifier.  If  the  call  fails  a  negative
error  (<0)  condition  will  be  returned.  For  library-
generated identifiers the return will never be zero (0).

· Application-generated Identifiers -  if the function call
completes successfully it will return a zero (0) value. If
the  call  fails  a  negative  error  (<0)  condition  will  be
returned.  For  application-generated  identifiers  the
return will never be positive (>0).

The  application  should  always  check  the
CSTAChangeSysStatFilterConfEvent message to insure
that  the  service  request  has  been  acknowledged  and
processed by the Telephony Server and the switch.

The  following  are  possible  negative  error  conditions  for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application. 

ACSERR_NOCONN
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

ACSERR_REQDENIED
This  return  value indicates  that  a  ACS Stream is
established  but  a  requested  capability  has  been
denied by the Client Library Software Driver.

Telephony Services API Specification   9-49



Comments

This  service  is  used  whenever  the  application  wishes  to
change  a  previously  defined  System  Status  event  filter.
Note that  application  will  not  receive any System Status
message which has its bit mask turned off.

9-50  Escape/Maintenance Services



CSTAChangeSysStatFilterConfEventXE
"CSTAChangeSysStatFilterConfEvent"§

This  event  occurs  as  a  result  of  the
cstaChangeSysStatFilter( )  service  and  informs  the
application which event filter was set by the server.

Syntax

The following structure shows only the relevant portions of
the  unions  for  this  message.  See  ACS  Data  Types  and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct 
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct 
{

ACSEventHeader_t eventHeader;
union 
{ struct 

{ InvokeID_t invokeID_t;
union
{

CSTAChangeSysStatFilterConfEvent  changeSysStatFilter;
} u;

} cstaConfirmation;
} event;} CSTAEvent_t;

typedef struct CSTAChangeSysStatFilterConfEvent_t (
SystemStatusFilter_t statusFilterSelected;
SystemStatusFilter_t statusFilterActive;

} CSTAChangeSysStatFilterConfEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This  is  a  tag  with  the  value  CSTACONFIRMATION,
which   identifies   this  message  as  an  CSTA unsolicited

Telephony Services API Specification   9-51



event.

eventType
This  is  a  tag  with  the  value
CSTA_CHANGE_SYS_STAT_FILTER_CONF  , which
identifies   this  message  as  an
CSTAChangeSysStatFilterConfEvent.

invokeID
This parameter specifies the requested instance of the

function or event. It is used to match a specific functions
call request with its confirmation events.

statusFilterSelected
This  parameter  specifies  the  System  Status  event  filters
which  are  active  as  a  result  of  the
cstaChangeSysStatFilter( )  service  request.  This  filter
may be different than the one requested by the application.
This  can occur  if  the implementation  rejects  a particular
filter request.

eventFilterActive
This parameter indicates the filters which are already active
on the given CSTA association.

privateData
If private data accompanied this event, then the private data
would  be  copied  to  the  location  pointed  to  by  the
privateData  pointer  in  the  acsGetEventBlock( ) or
acsGetEventPoll( ) function. If the  privateData  pointer is
set to NULL in these functions, then no private data will be
delivered to the application.  

Comments

This confirmation event should be check by the application
to insure that the event filter requested has been activated

9-52  Escape/Maintenance Services



and which filters  are already active on the given System
Status monitor.

Telephony Services API Specification   9-53



CSTASysStatEventXE
"CSTASysStatEvent"§

This  unsolicited  event  informs  the  application  of  the
overall system status of the driver/switch. The application
must register for System Status events before this event is
sent to the application.

Syntax

The following structure shows only the relevant portions of
the  unions  for  this  message.  See  ACS  Data  Types  and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct 
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct 
{

ACSEventHeader_t eventHeader;
union 
{ struct 

{ union
{

CSTASysStatEvent_t  sysStat;
} u;

} cstaEventReport;
} event;} CSTAEvent_t;

typedef struct 
{

SystemStatus_t systemStatus;
} CSTASysStatEvent_t;

typedef  enum  SystemStatus_t  {     SS_INITIALIZING =  0,     SS_ENABLED =  1,
SS_NORMAL  =  2,     SS_MESSAGES_LOST  =  3,     SS_DISABLED  =  4,
SS_OVERLOAD_IMMINENT  =  5,     SS_OVERLOAD_REACHED  =  6,
SS_OVERLOAD_RELIEVED = 7} SystemStatus_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass

9-54  Escape/Maintenance Services



This  is  a  tag  with  the  value  CSTAEVENTREPORT,
which   identifies   this  message  as  an  CSTA unsolicited
event.

eventType
This  is  a  tag  with  the  value CSTA_SYS_STAT,  which
identifies  this message as an CSTASysStatEvent.

monitorCrossRefID
This parameter is unused in this message..

privateData
If private data accompanied this event, then the private data
would  be  copied  to  the  location  pointed  to  by  the
privateData  pointer  in  the  acsGetEventBlock( ) or
acsGetEventPoll( ) function. If the  privateData  pointer is
set to NULL in these functions, then no private data will be
delivered to the application.  

systemStatus
This parameter provides the application with a cause code
defining the overall system status as follows:

Telephony Services API Specification   9-55



Cause Code Definition

Initializing the  driver/switch  is  re-initializing  or
restarting.  This  status  indicates  that  the
driver/switch  is  temporarily  unable  to
respond to any requests. If provided, this
status  message  shall  be  followed  by  an
Enable status message to indicate that the
initialization process is completed.

Enabled request  and  responses  are  re-enabled,
usually after a disruption or restart.  This
status  indication  shall  be  sent  after  an
initializing status indicator has been sent
and may be sent under  other  conditions.
This  status  indicates  that  there  are  no
outstanding monitor request.

Normal this cause value can be sent at any time by
the driver/switch to indicate that the status
is  normal.  This  status  has  no  effect  on
other services.

Message
Lost

this status indicates that a request and/or
responses may have been lost,  including
Event Reports.

Disabled this  cause  value  indicates  that  existing
monitor requests via  cstaMonitorStart( )
have  been  disabled.  Other  requests  and
responses may also be disabled, but reject
responses should be provided.

Overload 
Imminent

the  driver/switch  is  about  to  reach  a
overload  condition  and  the  application
should shed load to better the situation.

9-56  Escape/Maintenance Services



Overload 
Reached

the driver/switch has reach overload and
may  take  initiative  to  shed  load.  This
cause may be followed by action on the
part  of  the  driver/switch  to  decrease
message  traffic.  This  may  include
stopping  existing  or  rejecting  any  new
monitor  requests  sent  by  the  client,  and
rejections  to  additional  new  service
requests.

Overload 
Relieved

the driver/switch has determined that the
overload condition has passed and normal
application operation may continue.

Comments

This  event  provides  the  application  with  certain
information regarding the state of the overall driver/switch
system.  This  event  is  important  for  proper  application
operation  and  should  be  processed  accordingly.  This  is
especially  important  for  cause  values  for  the  overload
condition. If the driver/switch has informed the application
that  an  overload  condition  is  imminent  all  applications
should  attempt  to  decrease  the  overall  traffic  to  the
driver/switch. This can be accomplished, for example, by
stopping  all  non-essential  monitors  on  call  or  device
objects on the switch thus reducing the traffic between the
server and the switch. Frequent  occurrence  of  the
Overload Imminent event can be a symptoms of a poorly
engineered  system  which  should  reviewed  for  proper
loading.

Certain, non-essential cause values can be sent at any time
or depending on the driver/switch implementation even at
regular intervals (e.g. the Normal cause value) to indicate

Telephony Services API Specification   9-57



that the system status is O.K. and operating normally. This
can be turned off by the application to avoid the overhead
associated with processing these normal messages. This is
accomplished by changing the event filter type by using the
cstaChangeSysStatFilter( )  service.  This  service  can  be
used to discontinue the delivery of "non-essential" system
status events to the application.

9-58  Escape/Maintenance Services



cstaSysStatEndedEventXE
"cstaSysStatEndedEvent"§

This service is used by the driver  to cancel a previously
registered monitor for System Status information.

Syntax

The following structure shows only the relevant portions of
the  unions  for  this  message.  See   ACS Data  Types  and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct 
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct 
{

ACSEventHeader_t eventHeader;
union 
{

struct 
{ union

{
CSTASysStatEndedEvent_t  sysStatEnded;

} u;
} cstaEventReport;

} event;} CSTAEvent_t;
typedef struct CSTASysStatEndedEvent_t {
    Nulltype        null;
} CSTASysStatEndedEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This  is  a  tag  with  the  value  CSTAEVENTREPORT,
which   identifies   this  message  as  an  CSTA unsolicited
event.

Telephony Services API Specification   9-59



eventType
This is a tag with the value CSTA_SYS_STAT_ENDED,
which   identifies   this  message  as  an
CSTASysStatStopEvent.

monitorCrossRefID
This parameter is unused in this message.

privateData
If private data accompanied this event, then the private data
would  be  copied  to  the  location  pointed  to  by  the
privateData  pointer  in  the  acsGetEventBlock( ) or
acsGetEventPoll( ) function. If the  privateData  pointer is
set to NULL in these functions, then no private data will be
delivered to the application.  

9-60  Escape/Maintenance Services



System Status : Driver/Switch as the Client

XE "System Status \\:  Driver/Switch as the Client"§This section
defines the services which provide system level status information
to  the  driver/switch  form  the  application.  The  System  Status
service is bi-directional and thus the client/server relationship (see
Figure 9-2) can be reversed.

Telephony Services API Specification   9-61



CSTASysStatReqEventXE "CSTASysStatReqEvent"§

This  unsolicited  event  is  sent  by  the  driver/switch  to
request system status information from the application.

Syntax

The following structure shows only the relevant portions of
the  unions  for  this  message.  See  section  4.3  ACS Data
Types  and 4.6  CSTA  Data  Types for  a  complete
description of the event structure.

typedef struct 
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct 
{

ACSEventHeader_t eventHeader;
union 
{ struct 

{ InvokeID_t invokeID;
union 
{

CSTASysStatReqEvent_t sysStatRequest;
} u;

} cstaRequestEvent;
} event;} CSTAEvent_t;

typedef struct CSTASysStatReqEvent_t {
    Nulltype        null;
} CSTASysStatReqEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies  this message as an CSTA unsolicited event.

eventType
This  is  a  tag  with  the  value CSTA_SYS_STAT_REQ,
which   identifies   this  message  as  an

9-62  Escape/Maintenance Services



CSTASysStatReqEvent.

InvokeID
This  parameter  identifies  the  instance  of  the  request
generated by the switch/driver.  This same value must be
used,  unchanged,  in  the  response  to  this  event
(cstaSysStatReqConf( )).

privateData
If private data accompanied this event, then the private data
would  be  copied  to  the  location  pointed  to  by  the
privateData  pointer  in  the  acsGetEventBlock( ) or
acsGetEventPoll( ) function. If the  privateData  pointer is
set to NULL in these functions, then no private data will be
delivered to the application.  

Comments

This  event  is  sent  by  the  driver/switch  to  request  status
information  pertaining  to  the  application.  It  is  the  bi-
directional  equivalent  of  the  cstaSysStatReq( )  function
which  is  issued  by  the  application  to  request  status
information  from  the  driver/switch.  The  application  re-
sponds  to  this  unsolicited  event  request  utilizing  the
cstaSysStatReqConf( ) function.

Telephony Services API Specification   9-63



cstaSysStatReqConf( )XE
"cstaSysStatReqConf( )"§

This  service  is  used  to  respond  to  a
CSTASysStatReqEvent unsolicited  event  from  the
driver/switch.  It  provides  the  driver/switch  with  in-
formation regarding the status of the application.

Syntax

#include <csta.h>

RetCode_t cstaSysStatReqConf (

ACSHandle_t acsHandle,
InvokeID_t *invokeID,
SystemStatus_t systemStatus,
PrivateData_t *privateData);

typedef enum SystemStatus_t {    SS_INITIALIZING = 0,    SS_ENABLED = 1,    SS_NORMAL =
2,    SS_MESSAGES_LOST = 3,    SS_DISABLED = 4,    SS_OVERLOAD_IMMINENT = 5,
SS_OVERLOAD_REACHED = 6,    SS_OVERLOAD_RELIEVED = 7} SystemStatus_t;

Parameters

acsHandle
This is the handle to an active ACS Stream.

InvokeID
The value of this parameter must be the same (unchanged)
as that provided in the  cstaSysStatReqEvent so that the
driver/switch  can match  an instance of  a  service  request
with the response to that request.

systemStatus
This  parameter  provides  the  driver/switch  with  a  cause
code defining the overall system status of the application as
follows:

9-64  Escape/Maintenance Services



Cause Code Definition

Initializing the  application  is  re-initializing  or
restarting.  This  status  indicates  that  the
application  is  temporarily  unable  to
respond to any requests. If provided, this
status  message  shall  be  followed  by  an
Enable status message to indicate that the
initialization process is completed.

Enabled request  and  responses  are  re-enabled,
usually after a disruption or restart.  This
status  indication  shall  be  sent  after  an
initializing status indicator has been sent
and may be sent under other conditions.
This  status  indicates  that  there  are  no
outstanding monitor request.

Normal this cause value can be sent at any time
by  the  application  to  indicate  that  the
status is normal. This status has no effect
on other services.

Message Lost this status indicates that a request and/or
responses may have been lost,  including
Event Reports.

Disabled this  cause  value  indicates  that  existing
monitor requests via cstaMonitorStart( )
have  been  disabled.  Other  requests  and
responses may also be disabled, but reject
responses should be provided.

Overload 
Imminent

the  application  is  about  to  reach  a
overload condition and the driver/switch
should shed load to better the situation.

Telephony Services API Specification   9-65



Overload 
Reached

the  application  has  reach  overload  and
may  take  initiative  to  shed  load.  This
cause may be followed by action on the
part  of  the  application  to  decrease
message  traffic.  This  may include  stop-
ping  existing  or  rejecting  any  new
requests  sent  by  the  driver/switch,  and
rejections  to  additional  new  service
requests.

Overload 
Relieved

the  application  has  determined  that  the
overload condition has passed and normal
driver/switch operation may continue.

privateData 
Private data extension mechanism. This is optional. 

Return Values

This function never returns an invoke identifier since there
is no confirmation event for this service. The function does
return  errors  conditions  during  the  processing  of  the
request by the API Client Library. A return value of zero
(0)  indicates  that  the  request  has  been  accepted  by  the
Library.

Possible local error returns are (negative returns):

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application. 

ACSERR_NOCONN
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

9-66  Escape/Maintenance Services



ACSERR_REQDENIED
This  return  value indicates  that  a  ACS Stream is
established  but  a  requested  capability  has  been
denied by the Client Library Software Driver.

Comments

This confirmation response provides the driver/switch with
certain  information  regarding  the  state  of  the  overall
application.  The  information  can  be  used  by  the
driver/switch  to  determine  the  overall  state  of  the
application. The driver/switch may act on this information
in order to insure proper end-to-end system operation and
performance.  Frequent  occurrence  of  the  Overload
Imminent  cause  value  can  be  a  symptoms  of  a  poorly
engineered application system which should reviewed for
proper loading.

Telephony Services API Specification   9-67



cstaSysStatEventSend( )XE
"cstaSysStatEventSend( )"§

This  service  is  used  to  send  application  system  status
information  in  the  form  of  an  unsolicited  event  to  the
driver/switch without a formal request for the information.
This status information can be sent at any time.

Syntax

#include <csta.h>

RetCode_t cstaSysStatEvent (
ACSHandle_t acsHandle,
SystemStatus_t systemStatus,
PrivateData_t *privateData);

typedef enum SystemStatus_t {    SS_INITIALIZING = 0,    SS_ENABLED = 1,    SS_NORMAL =
2,    SS_MESSAGES_LOST = 3,    SS_DISABLED = 4,    SS_OVERLOAD_IMMINENT = 5,
SS_OVERLOAD_REACHED = 6,    SS_OVERLOAD_RELIEVED = 7} SystemStatus_t;

Parameters

acsHandle
This is the handle to an active ACS Stream.

systemStatus
This  parameter  provides  the  driver/switch  with  a  cause
code defining the overall system status of the application as
follows:

9-68  Escape/Maintenance Services



Cause Code Definition

Initializing the  application  is  re-initializing  or
restarting.  This  status  indicates  that  the
application  is  temporarily  unable  to
respond to any requests. If provided, this
status  message shall  be followed by an
Enable status message to indicate that the
initialization process is completed.

Enabled request  and  responses  are  re-enabled,
usually after a disruption or restart. This
status  indication  shall  be  sent  after  an
initializing status indicator has been sent
and may be sent under other conditions.
This  status  indicates  that  there  are  no
outstanding monitor request.

Normal this cause value can be sent at any time
by  the  application  to  indicate  that  the
status is normal. This status has no effect
on other services.

Message
Lost

this status indicates that a request and/or
responses may have been lost, including
Event Reports.

Disabled this  cause  value  indicates  that  existing
monitor  requests  via
cstaMonitorStart( ) have been disabled.
Other requests and responses may also be
disabled,  but reject  responses should be
provided.

Overload 
Imminent

the  application  is  about  to  reach  a
overload condition and the driver/switch

Telephony Services API Specification   9-69



should shed load to better the situation.

Overload 
Reached

the  application  has  reach  overload  and
may  take  initiative  to  shed  load.  This
cause may be followed by action on the
part  of  the  application  to  decrease
message traffic.  This may include stop-
ping  existing  or  rejecting  any  new
requests  sent  by  the  driver/switch,  and
rejections  to  additional  new  service
requests.

Overload 
Relieved

the  application  has  determined  that  the
overload  condition  has  passed  and
normal  driver/switch  operation  may
continue.

privateData 
Private data extension mechanism. This is optional. 

Return Values

This function never returns an invoke identifier since there
is no confirmation event for this service. The function does
return  errors  conditions  during  the  processing  of  the
request by the API Client Library. A return value of zero
(0)  indicates  that  the  request  has  been  accepted  by  the
Library.

Possible local error returns are (negative returns):

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application. 

ACSERR_NOCONN

9-70  Escape/Maintenance Services



This return value indicates that a previously active
ACS Stream has been abnormally aborted.

ACSERR_REQDENIED
This  return  value indicates  that  a  ACS Stream is
established  but  a  requested  capability  has  been
denied by the Client Library Software Driver.

Comments

This unsolicited service event is sent to the driver/switch in
order  to  inform it  of  the state  of  the overall  application
system. The driver/switch may act on this information in
order  to  insure  proper  end-to-end  system  operation  and
performance.  Frequent  occurrence  of  the  Overload
Imminent  cause  value  can  be  a  symptoms  of  a  poorly
engineered application system which should reviewed for
proper loading.

Telephony Services API Specification   9-71


	Escape Services
	Maintenance Services
	Escape Services : Application as Client
	cstaEscapeService( )XE "cstaEscapeService( )"§
	This service allows the application to request a service which is not defined by the CSTA Standard but rather by a Telephony Services implementor. A service request made by this function will be spe­cific to an implementation.

	#include <csta.h>
	#include <acs.h>
	RetCode_t cstaEscapeService (
	ACSHandle_t acsHandle,
	InvokeID_t invokeID,
	PrivateData_t *privateData);
	CSTAEscapeServiceConfEventXE "CSTAEscapeServiceConfEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ InvokeID_t invokeID; } cstaConfirmation;
	} event;} CSTAEvent_t;
	CSTAPrivateEventXE "CSTAPrivateEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ union
	{
	CSTAPrivateEvent_t privateData;
	} u;
	} cstaEventReport;
	CSTAPrivateStatusEventXE "CSTAPrivateStatusEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ CSTAMonitorCrossRefID_t monitorCrossRefID;
	} cstaUnsolicited;

	Escape Service : Driver/Switch as the ClientXE "Escape Service \: Driver/Switch as the Client"§
	CSTAEscapeServiceReqXE "CSTAEscapeServiceReq"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	} cstaRequestEvent;
	} event;} CSTAEvent_t;
	cstaEscapeServiceConf( )XE "cstaEscapeServiceConf( )"§
	This service allows the application to respond to a CSTAEscapeServ­iceEvent which originated at the driver/switch. A service response made by this function will be specific to an implementation.

	#include <csta.h>
	#include <acs.h>
	RetCode_t cstaEscapeServiceConf (
	ACSHandle_t acsHandle,
	InvokeID_t invokeID,
	CSTAUniversalFailure_t error, /* negative ACK */
	PrivateData_t *privateData), /* positive ACK */
	cstaSendPrivateEvent( )XE "cstaSendPrivateEvent( )"§
	This service allows the application to send an unsolicited private event to the driver/switch. An event sent by this function will be specific to an implementation.

	#include <csta.h>
	#include <acs.h>
	RetCode_t cstaSendPrivateEvent (
	ACSHandle_t acsHandle,
	PrivateData_t *privateData),

	Maintenance Services: Device StatusXE "Maintenance Services"§
	CSTABackInServiceEventXE "CSTABackInServiceEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ CSTAMonitorCrossRefID_t monitorCrossRefID;
	union
	{
	CSTABackInServiceEvent_t backInService;
	} u;
	} cstaUnsolicited;
	} event;} CSTAEvent_t;
	typedef struct
	{
	DeviceID_t device;
	CSTAEventCause_t case;
	} CSTABackInServiceEvent_t;
	CSTAOutOfServiceEventXE "CSTAOutOfServiceEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ CSTAMonitorCrossRefID_t monitorCrossRefID;
	union
	{
	CSTAOutOfServiceEvent_t outOfService;
	} u;
	} cstaUnsolicited;
	} event;} CSTAEvent_t;
	typedef struct
	{
	DeviceID_t device;
	CSTAEventCause_t case;
	} CSTAOutOfServiceEvent_t;

	System Status - Application as the ClientXE "System Status - Application as the Client"§
	cstaSysStatReq( )
	#include <csta.h>
	#include <acs.h>
	RetCode_t cstaSysStatReq (
	ACSHandle_t acsHandle,
	InvokeID_t invokeID,
	PrivateData_t *privateData);
	CSTASysStatReqConfEventXE "CSTASysStatReqConfEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ InvokeID_t invokeID;
	union
	{
	CSTASysStatReqConfEvent sysStatReq;
	} u;
	} cstaConfirmation;
	} event;} CSTAEvent_t;
	typedef struct CSTASysStatReqConfEvent_t (
	SystemStatus_t systemStatus;
	) CSTASysStatStatReqConfEvent_t
	typedef enum SystemStatus_t {
	SS_INITIALIZING = 0,
	SS_ENABLED = 1,
	SS_NORMAL = 2,
	SS_MESSAGES_LOST = 3,
	SS_DISABLED = 4,
	SS_OVERLOAD_IMMINENT = 5,
	SS_OVERLOAD_REACHED = 6,
	SS_OVERLOAD_RELIEVED = 7
	} SystemStatus_t;
	cstaSysStatStart( )XE "cstaSysStatStart( )"§
	#include <csta.h>
	#include <acs.h>
	RetCode_t cstaSysStatStart (
	ACSHandle_t acsHandle,
	InvokeID_t invokeID,
	SystemStatusFilter_t statusFilter,
	PrivateData_t *privateData),
	typedef unsigned char SystemStatusFilter_t;
	#define SF_INITIALIZING 0x80
	#define SF_ENABLED 0x40
	#define SF_NORMAL 0x20
	#define SF_MESSAGES_LOST 0x10
	#define SF_DISABLED 0x08
	#define SF_OVERLOAD_IMMINENT 0x04
	#define SF_OVERLOAD_REACHED 0x02
	#define SF_OVERLOAD_RELIEVED 0x01
	CSTASysStatStartConfEventXE "CSTASysStatStartConfEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ InvokeID_t invokeID_t;
	union
	{
	CSTASysStatStartConfEvent sysStatStart;
	} u;
	} cstaConfirmation;
	} event;} CSTAEvent_t;
	typedef struct CSTASysStatStartConfEvent_t (
	SystemStatusFilter_t systemFilter;
	) CSTASysStatStatStartConfEvent_t
	cstaSysStatStop( )XE "cstaSysStatStop( )"§
	CSTASysStatStopConfEventXE "CSTASysStatStopConfEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ InvokeID_t invokeID_t;
	} cstaConfirmation;
	} event;} CSTAEvent_t;
	cstaChangeSysStatFilter( )XE "cstaChangeSysStatFilter( )"§
	#include <csta.h>
	#include <acs.h>
	RetCode_t cstaChangeSysStatFilter (
	ACSHandle_t acsHandle,
	InvokeID_t *invokeID,
	SystemStatusFilter_t statusFilter,
	PrivateData_t *privateData),
	CSTAChangeSysStatFilterConfEventXE "CSTAChangeSysStatFilterConfEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ InvokeID_t invokeID_t;
	union
	{
	CSTAChangeSysStatFilterConfEvent changeSysStatFilter;
	} u;
	} cstaConfirmation;
	} event;} CSTAEvent_t;
	typedef struct CSTAChangeSysStatFilterConfEvent_t (
	SystemStatusFilter_t statusFilterSelected;
	SystemStatusFilter_t statusFilterActive;
	} CSTAChangeSysStatFilterConfEvent_t;
	CSTASysStatEventXE "CSTASysStatEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ union
	{
	CSTASysStatEvent_t sysStat;
	} u;
	} cstaEventReport;
	} event;} CSTAEvent_t;
	typedef struct
	{
	SystemStatus_t systemStatus;
	} CSTASysStatEvent_t;
	typedef enum SystemStatus_t { SS_INITIALIZING = 0, SS_ENABLED = 1, SS_NORMAL = 2, SS_MESSAGES_LOST = 3, SS_DISABLED = 4, SS_OVERLOAD_IMMINENT = 5, SS_OVERLOAD_REACHED = 6, SS_OVERLOAD_RELIEVED = 7} SystemStatus_t;
	cstaSysStatEndedEventXE "cstaSysStatEndedEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{
	struct
	{ union
	{
	CSTASysStatEndedEvent_t sysStatEnded;
	} u;
	} cstaEventReport;
	} event;} CSTAEvent_t;
	typedef struct CSTASysStatEndedEvent_t {
	Nulltype null;
	} CSTASysStatEndedEvent_t;

	System Status : Driver/Switch as the Client
	CSTASysStatReqEventXE "CSTASysStatReqEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	union
	{
	CSTASysStatReqEvent_t sysStatRequest;
	} u;
	} cstaRequestEvent;
	} event;} CSTAEvent_t;
	typedef struct CSTASysStatReqEvent_t {
	Nulltype null;
	} CSTASysStatReqEvent_t;
	cstaSysStatReqConf( )XE "cstaSysStatReqConf( )"§
	typedef enum SystemStatus_t { SS_INITIALIZING = 0, SS_ENABLED = 1, SS_NORMAL = 2, SS_MESSAGES_LOST = 3, SS_DISABLED = 4, SS_OVERLOAD_IMMINENT = 5, SS_OVERLOAD_REACHED = 6, SS_OVERLOAD_RELIEVED = 7} SystemStatus_t;
	cstaSysStatEventSend( )XE "cstaSysStatEventSend( )"§
	typedef enum SystemStatus_t { SS_INITIALIZING = 0, SS_ENABLED = 1, SS_NORMAL = 2, SS_MESSAGES_LOST = 3, SS_DISABLED = 4, SS_OVERLOAD_IMMINENT = 5, SS_OVERLOAD_REACHED = 6, SS_OVERLOAD_RELIEVED = 7} SystemStatus_t;


