
Chapter

7SNAPSHOT SERVICESXE "SNAPSHOT
SERVICES"§

An application uses CSTA Snapshot Services to query the current
state of a CSTA Call or a Device object. Snapshot services query
the switch to provide an application with information about the
object. The information is a "snapshot" since the state of the Call
or Device object changes over time.

The Call Snapshot Services return a list of the Devices and
Connections associated with a given Call, and the Connection
States for each of those Devices. As Figure 7-1 illustrates, the
union of the Connection States for the Call defines the overall Call
State. Also refer to the definition of Call State in Chapter 3.

Figure 7-1 shows a Call that has four associated devices. Recall
from Chapter 3 that the relationship between a CSTA Call and a
CSTA Device is a CSTA Connection (C1, C2, C3, and C4 are
Connections). Each Connection has an associated Connection
State. The Call Snapshot Services inform an application of each
Device that is on a given Call and the associated Connection State
for those Devices. The Call State is the union of all the
Connection States associated with the Call. The application can
use snapshot information to control Connections. For example, if
Figure 7-1 shows a four-party conference call, then an application
can use the Call Snapshot Services together with the csta-
ClearConnection() service to disconnect any party from the

Telephony Services API Specification 7-1

conference. To disconnect connection C4, an application uses the
Call Snapshot Services to obtain a Connection Identifier (for C4)
that it then passes to the cstaClearConnection() service.

Figure 7-1: Call Snapshot Service

Device Snapshot Services return information about Calls that are
associated with a given CSTA Device object. The information
includes a list of Calls associated with the given Device and the
Connection State of each Call (at that Device). Note the duality
here: Call Snapshot Services return information about
Connections at all Devices associated with a given Call, while
Device Snapshot Services return information about all
Connections at a given Device. Applications use the Device
Snapshot Services when they need to know what is happening at a
specific Device. As Figure 7-2 shows, Device Snapshot Services
do not provide information about the other parties on those Calls
connected to the given Device.

An application can use Device Snapshot information to manipulate
any Connection, (C1, C2, or C3 in Figure 7-2) at the given Device.

µ §
Figure 7-2: Device Snapshot Service

XE "Device Snapshot Service"§

Before an application requests the Call or Device Snapshot

Services, it must have previously obtained a Call or Device
identifier (that it will use as a parameter to request those
services). The identifier specifies a Call or Device in the
switching domain. Depending on the implementation,
Snapshot Services may not provide information about
devices or connections outside of that switching domain

7-2 Snapshot Services

µ §

(devices not attached to that switch) .

Telephony Services API Specification 7-3

Call Snapshot Services

XE "Call Snapshot Service"§
This section defines the Call Snapshot Services that query the
switch for the status of calls within the switching domain. Call
Snapshot Services return information about all Devices and
Connections associated with a specified CSTA Call object.

7-4 Snapshot Services

cstaSnapshotCallReq()XE "cstaSnapshotCallReq()"§

The cstaSnapshotCallReq() service provides
information about a Call object in the switching domain.
The service will return the Devices associated with a
given Call and the Connection State for each Device. The
Call State is the union of the Connection States.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaSnapshotCallReq (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *snapshotObj,
PrivateData_t *privateData),

Parameters

acsHandle
This is the handle to an active ACS Stream over which the
request will be made.

invokeID
This is an application provided handle that the application
uses to match a specific instance of a service request with
its confirmation event. The application supplies this
parameter only when the Invoke ID mechanism is set for
Application-generated IDs in acsOpenStream(). The
ACS Library ignores this parameter when the Stream is set
for Library-generated invoke IDs.

snapshotObj
This is a pointer to the Connection Identifier identifying
the Call object for which Snapshot information is
requested.

Telephony Services API Specification 7-5

privateData
This is an optional pointer to CSTA private data.

Return Values

cstaSnapshotCallReq() returns the following values
depending on whether the application is using library or
application-generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value, the
invoke identifier. If the call fails it will return a negative
error (<0). For library-generated identifiers the return
will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails it will return a negative error (<0). For
application-generated identifiers the return is never
positive (>0).

An application should always check the
CSTASnapshotCallConfEvent message to insure that the
Telephony Server and switch have acknowledged and
processed the cstaSnapshotCallReq() request.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
The application provided a bad or unknown
acsHandle.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been
abnormally aborted.

7-6 Snapshot Services

Comments

A call to cstaSnapshotCallReq() results in a confirmation
event, CSTASnapshotCallConfEvent, that returns the
information about the call. cstaSnapshotCallReq()
provides information about calls that make further
monitoring meaningful. For example, when an application
requests cstaMonitorStart(), there may already be active
calls at the Device being monitored. The application can
use Call Snapshot information to obtain information about
those existing calls process additional events about them in
a reasonable way.

cstaSnapshotCallReq() is passive and does not affect the
state of any object in the switching domain.

Telephony Services API Specification 7-7

CSTASnapshotCallConfEventXE
"CSTASnapshotCallConfEvent"§

The Call Snapshot confirmation event returns call related
information in response to the cstaSnapshotCallReq()
service. The call information includes the static Device
Identifiers, the Connection Identifiers, and Connection
States for every endpoint in the specified call.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

7-8 Snapshot Services

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

CSTASnapshotCallConfEvent_t snapshotCall;
} u; } cstaConfirmation

} event;} CSTAEvent_t;

typedef struct CSTASnapshotCallConfEvent_t { CSTASnapshotCallData_t
snapshotData;} CSTASnapshotCallConfEvent_t;
typedef struct CSTASnapshotCallData_t { int count; struct

CSTASnapshotCallResponseInfo_t *info;} CSTASnapshotCallData_t;
typedef struct CSTASnapshotCallResponseInfo_t { SubjectDeviceID_t

deviceOnCall; ConnectionID_t callIdentifier;
LocalConnectionState_t localConnectionState;}

CSTASnapshotCallResponseInfoEvent_t;Parameters

acsHandle
This is the handle for the ACS Stream over which the
confirmation arrived. This is the same as the ACS Stream
over which the request was made.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType
This is a tag with the value
CSTA_SNAPSHOT_CALL_CONF, which identifies
this message as an CSTASnapshotCallConfEvent.

invokeID
This parameter specifies the service request instance for the
cstaSnapshotCallReq() The application uses this
parameter to correlate responses with requests.

Telephony Services API Specification 7-9

snapshotData
Contains all the snapshot information for the Call for which
the query was made.

count
A count of the number of
CSTASnapshotCallResponseInfo_t structures. Each
structure contains information about one device on
the call.

info
A pointer to an array of
CSTASnapshotCallResponseInfo_t structures, each
of which contains the following fields:

deviceOnCall
A pointer to the Device Identifier of a
device that is a party on the call for which
the query was made.

callIdentifier
The Connection Identifier for the
Connection between the deviceOnCall and
the call for which the query was made.

localConnectionState
The Connection State for the local
Connection in the callIdentifier parameter.

privateData
If private data accompanies this event, then the private data
would be stored in the location that the application
specified as the privateData parameter in the
acsGetEventBlock() or acsGetEventPoll() request. If the
privateData pointer is set to NULL in these requests, then
CSTASnapshotCallConfEvent does not deliver private
data to the application.

7-10 Snapshot Services

Comments

The CSTASnapshotCallConfEvent returns a linked list
since the number of devices on a call can be greater than
one. Each member of the list identifies a Device on the
call, the Connection between the Device and the Call, and
the Connection State (see Figure 7-1). An application
should be aware that the number of members on the list is
not fixed. The pointer, *next, will be NULL for the last
member (device) on the list.

Telephony Services API Specification 7-11

Device Snapshot ServiceXE "Device Snapshot
Service"§

This section defines the Device Snapshot Services that query the
switch for the status of Devices within the switching domain.
Device Snapshot Services return information about Calls
(Connections) associated with a specified Device.

7-12 Snapshot Services

cstaSnapshotDeviceReq()XE "cstaSnapshotDeviceReq()"§

The cstaSnapshotDeviceReq() service returns
information about a Device object in the switching
domain. The service returns a list of calls associated with
the given Device and the Connection State of each of
those calls at that Device.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaSnapshotDeviceReq (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *snapshotObj,
PrivateData_t *privateData);

Parameters

acsHandle
This is the handle to an active ACS Stream over which the
request will be made.

invokeID
This is an application provided handle that the application
uses to match a specific instance of a service request with
its confirmation event. The application supplies this
parameter only when the Invoke ID mechanism is set for
Application-generated IDs in acsOpenStream(). The
ACS Library ignores this parameter when the Stream is set
for Library-generated invoke IDs.

snapshotObj
This parameter is a pointer to the Device Identifier for the
Device object for which Snapshot information is being
requested.

privateData

Telephony Services API Specification 7-13

This is an optional pointer to CSTA private data.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value, the
invoke identifier. If the call fails it will return a negative
error (<0). For library-generated identifiers the return
will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails it will return a negative error (<0). For
application-generated identifiers the return is never
positive (>0).

The application should always check the
CSTASnapshotDeviceConfEvent message to insure that
the Telephony Server and the switch have acknowledged
and processed the cstaSnapshotDeviceReq() request.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

Comments

7-14 Snapshot Services

A call to cstaSnapshotDeviceReq() results in a
confirmation event, CSTASnapshotDeviceConfEvent,
which returns information about the Device.
cstaSnapshotDeviceReq() provides information about
Devices that permit an application to synchronize state with
the switching domain. For example, an application can call
cstaSnapshotDeviceReq() to find out about the Calls
present at a Device, then call cstaMonitorStart() to
monitor the Device. The information from the Device
query permits the application to process the monitoring
events in a proper context.

The cstaSnapshotDeviceReq() is passive and does not
affect the state of any object within the switching domain.

Telephony Services API Specification 7-15

CSTASnapshotDeviceConfEventXE
"CSTASnapshotDeviceConfEvent"§

The Device Snapshot confirmation event returns Device
related information in response to the
cstaSnapshotDeviceReq() service. The Device
information includes a Connection Identifier for each
Call at the Device and the Connection State for each Call
at the Device.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

7-16 Snapshot Services

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

CSTASnapshotDeviceConfEvent_t snapshotDevice;
} u; } cstaConfirmation;

} event;} CSTAEvent_t;
typedef struct CSTASnapshotDeviceConfEvent_t { CSTASnapshotDeviceData_t
snapshotData;} CSTASnapshotDeviceConfEvent_t;typedef struct
CSTASnapshotDeviceData_t { int count; struct

CSTASnapshotDeviceResponseInfo_t *info;} CSTASnapshotDeviceData_t;
typedef struct CSTASnapshotDeviceResponseInfo_t { ConnectionID_t

callIdentifier; CSTACallState_t callState;}
CSTASnapshotDeviceResponseInfo_t;typedef struct CSTACallState_t { int

count; LocalConnectionState_t *state;}
CSTACallState_t;typedef enum CSTASimpleCallState_t { CALL_NULL = 0,

CALL_PENDING = 1, CALL_ORIGINATED = 3, CALL_DELIVERED = 35,
CALL_DELIVERED_HELD = 36, CALL_RECEIVED = 50,
CALL_ESTABLISHED = 51, CALL_ESTABLISHED_HELD = 52,
CALL_RECEIVED_ON_HOLD = 66, CALL_ESTABLISHED_ON_HOLD = 67,
CALL_QUEUED = 83, CALL_QUEUED_HELD = 84, CALL_FAILED = 99,
CALL_FAILED_HELD = 100} CSTASimpleCallState_t;
/* Used to take a CSTACallState_t which contains only two

 * LocalConnectionState_t and match them to the set of
 */ #define SIMPLE_CALL_STATE(ccs) (ccs.stat[0]+(ccs.state[1] << 4))
typedef struct CSTACallState_t {

int count;
LocalConnectionState_t *state;

} CSTACallState_t;

Parameters

acsHandle
This is the handle for the ACS Stream over which the
confirmation arrived. This is the same as the ACS Stream
over which the request was made.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType
This is a tag with the value
CSTA_SNAPSHOT_DEVICE_CONF, which identifies

Telephony Services API Specification 7-17

this message as an CSTASnapshotDeviceConfEvent.

invokeID
This parameter specifies the service request instance for the
cstaSnapshotDeviceReq() The application uses this
parameter to correlate responses with requests.

snapshotData
Contains all the snapshot information for the Device for
which the query was made.

count
A count of the number of
CSTASnapshotDeviceResponseInfo_t structures.
Each contains information about one Device on the
Call.

info
A pointer to an array of
CSTASnapshotDeviceResponseInfo_t structures,
each of which contains the following fields:

callIdentifier
A pointer to a Connection Identifier for each
call at the device. For some
implementations, this parameter points to
the device's dynamic device identifier for
the call object.

callState
The CSTA Call State. The Call State is
returned as a list of local Call States. If there
are only two Call States, then count is two.
The application can use the macro
SIMPLE_CALL_STATE() to determine if
a local Call State is one of the CSTA Simple
Call States (defined in Chapter 3 and

7-18 Snapshot Services

enumerated in the CSTASimpleCallState_t
structure).

privateData
If private data accompanies this event, then the private data
would be stored in the location that the application
specified as the privateData parameter in the
acsGetEventBlock() or acsGetEventPoll() request. If the
privateData pointer is set to NULL in these requests, then
CSTASnapshotDeviceConfEvent does not deliver private
data to the application.

Comments

The CSTASnapshotDeviceConfEvent returns a linked list
since the number of calls on a device can be greater than
one. Each member of the list identifies a call at the device,
and the local call state of the Connection for that call at the
device (see Figure 7-2). An application should be aware
that the number of members on the list is not fixed. The
pointer, *next, will be NULL for the last member (call) on
the list.

Telephony Services API Specification 7-19

	Call Snapshot Services
	cstaSnapshotCallReq()XE "cstaSnapshotCallReq()"§
	The cstaSnapshotCallReq() service provides information about a Call object in the switching domain. The service will return the Devices associated with a given Call and the Connection State for each Device. The Call State is the union of the Connection States.

	#include <csta.h>
	#include <acs.h>
	RetCode_t cstaSnapshotCallReq (
	ACSHandle_t acsHandle,
	InvokeID_t invokeID,
	ConnectionID_t *snapshotObj,
	PrivateData_t *privateData),
	CSTASnapshotCallConfEventXE "CSTASnapshotCallConfEvent"§
	The Call Snapshot confirmation event returns call related information in response to the cstaSnapshotCallReq() service. The call information includes the static Device Identifiers, the Connection Identifiers, and Connection States for every endpoint in the specified call.

	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ InvokeID_t invokeID;
	union
	{
	CSTASnapshotCallConfEvent_t snapshotCall;
	} u; } cstaConfirmation
	} event;} CSTAEvent_t;
	typedef struct CSTASnapshotCallConfEvent_t { CSTASnapshotCallData_t snapshotData;} CSTASnapshotCallConfEvent_t;
	typedef struct CSTASnapshotCallData_t { int count; struct CSTASnapshotCallResponseInfo_t *info;} CSTASnapshotCallData_t;

	Device Snapshot ServiceXE "Device Snapshot Service"§
	cstaSnapshotDeviceReq()XE "cstaSnapshotDeviceReq()"§
	The cstaSnapshotDeviceReq() service returns information about a Device object in the switching domain. The service returns a list of calls associated with the given Device and the Connection State of each of those calls at that Device.

	#include <csta.h>
	#include <acs.h>
	RetCode_t cstaSnapshotDeviceReq (
	ACSHandle_t acsHandle,
	InvokeID_t invokeID,
	DeviceID_t *snapshotObj,
	PrivateData_t *privateData);
	CSTASnapshotDeviceConfEventXE "CSTASnapshotDeviceConfEvent"§
	The Device Snapshot confirmation event returns Device related information in response to the cstaSnapshotDeviceReq() service. The Device information includes a Connection Identifier for each Call at the Device and the Connection State for each Call at the Device.

	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ InvokeID_t invokeID;
	union
	{
	CSTASnapshotDeviceConfEvent_t snapshotDevice;
	} u; } cstaConfirmation;
	} event;} CSTAEvent_t;
	typedef struct CSTASnapshotDeviceConfEvent_t { CSTASnapshotDeviceData_t snapshotData;} CSTASnapshotDeviceConfEvent_t;typedef struct CSTASnapshotDeviceData_t { int count; struct CSTASnapshotDeviceResponseInfo_t *info;} CSTASnapshotDeviceData_t;
	typedef struct CSTASnapshotDeviceResponseInfo_t { ConnectionID_t callIdentifier; CSTACallState_t callState;} CSTASnapshotDeviceResponseInfo_t;typedef struct CSTACallState_t { int count; LocalConnectionState_t *state;} CSTACallState_t;typedef enum CSTASimpleCallState_t { CALL_NULL = 0, CALL_PENDING = 1, CALL_ORIGINATED = 3, CALL_DELIVERED = 35, CALL_DELIVERED_HELD = 36, CALL_RECEIVED = 50, CALL_ESTABLISHED = 51, CALL_ESTABLISHED_HELD = 52, CALL_RECEIVED_ON_HOLD = 66, CALL_ESTABLISHED_ON_HOLD = 67, CALL_QUEUED = 83, CALL_QUEUED_HELD = 84, CALL_FAILED = 99, CALL_FAILED_HELD = 100} CSTASimpleCallState_t;
	/* Used to take a CSTACallState_t which contains only two
	* LocalConnectionState_t and match them to the set of
	*/ #define SIMPLE_CALL_STATE(ccs) (ccs.stat[0]+(ccs.state[1] << 4))
	typedef struct CSTACallState_t {
	int count;
	LocalConnectionState_t *state;
	} CSTACallState_t;

