
CSTATransferredEventXE "CSTATransferredEvent"§

This event report indicates that an existing call was
transferred to another device and that the device which
transferred the call is no longer part of the call, i.e. the
transferring device has dropped from the call.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See Data Types and CSTA
Data Types in section 4 for a complete description of the
event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass;

EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTATransferEvent_t transferred;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

ConnectionID_t primaryOldCall;
ConnectionID_t secondaryOldCall;
SubjectDeviceID_t transferringDevice;
SubjectDeviceID_t transferredDevice;
ConnectionList_t transferredConnections;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTATransferredEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

Telephony Services API Specification 6-67

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies this message as an CSTA unsolicited event.

eventType
This is a tag with the value CSTA_TRANSFERRED,
which identifies this message as an
CSTATransferredEvent.

monitorCrossRefID
This parameter contains the handle to the CSTA
association for which this event is associated. This handle
is typically chosen by the switch and should be used by the
application as a reference to a specific established
association.

primaryOldCall
This parameter identifies the primary known call that was

transferred.

secondaryOldCall
This parameter identifies the secondary call that was
transferred. This would identify the consultative call used
to make the transfer, after the primary call was placed on
hold.

transferringDevice
This indicates which device transferred the call. If the
device is not specified, then the parameter will indicate that
the device was not known or that it was not required.

transferredDevice
This indicates to which device the call was transferred. If
the device is not specified, then the parameter will indicate
that the device was not known or that it was not required.

6-68 Status Reporting Services

transferredConnections
This is a list of connections (parties) on the call which
resulted from the transfer. The call ID may be different
from either the primary or secondary old call (or both)..

localConnectionInfo
This parameter defines the local connection state of the call after
the calls have been transferred from the device which performed
the transfer. This could be null, initiated, alerting, connected, held,
queued, or failed.

cause
This parameter contains the cause value which indicates the
reason or explanation for the occurrence of this event. The
possible events are defined by CSTAEventCause_t.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event provides the application with all the information
it needs regarding a call which was transferred from one
device to another.

Before After

Figure 1 - Transferred Event Report

Telephony Services API Specification 6-69

6-70 Status Reporting Services

Feature Event Reports (Unsolicited)XE "Feature Event
Reports (Unsolicited)"§

This section covers event reports which pertain to the use of
features supported through this API. The feature event reports
indicate a change in the state of a specific feature which is
operating on a call or a device on the switch. Each event defines
the current state of the feature regardless of what the state of the
feature was before a feature event is received.

Telephony Services API Specification 6-71

CSTACallInfoEventXE "CSTACallInfoEvent"§

This event report is provided when a user account code
feature has collected data for a party on the call. The event
includes the account code and authorization information
which was collected by the switch feature.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See Data Types and CSTA
Data Types in section 4 for a complete description of the
event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass;

EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTACallInfoEvent_t callInformation;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

ConnectionID_t connection;
SubjectDeviceID_t device;
AccountInfo_t accountInfo;
AuthCode_t authorizationCode;

} CSTACallInforEvent_t;

typedef char AccountInfo_t[32];

typedef char AuthCode_t[32];

Parameters

acsHandle
This is the handle for the ACS Stream.

6-72 Status Reporting Services

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies this message as an CSTA unsolicited event.

eventType
This is a tag with the value
CSTA_CALL_INFORMATION, which identifies this
message as an CSTACallInfoEvent.

monitorCrossRefID
This parameter contains the handle to the CSTA
association for which this event is associated. This handle
is typically chosen by the switch and should be used by the
application as a reference to a specific established
association.

connection
This parameter identifies the party that has entered the

account code.

device
Indicates from which device was the account code
information entered. If the device is not specified, then the
parameter will indicate that the device was not known or
that it was not required.

accountInfo
Specifies the account code which was entered at the device.

authorizationCode
Specifies the authorization code which was enetered at the
device.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the

Telephony Services API Specification 6-73

privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event informs the application when an account code
feature has been activated and what information was
collected by the switch as a result of the feature being
activated.

6-74 Status Reporting Services

CSTADoNotDisturbEventXE "CSTADoNotDisturbEvent"§

This event report indicates a change in the status of the Do
Not Disturb feature for a specific device. The Do Not
Disturb event will result in all calls to a device to be
automatically forwarded to the device coverage path.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See sACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass;

EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
CSTAEventCategory_t eventCategory;
union
{
 CSTADoNotDisturbEvent_t doNotDisturb,
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

SubjectDeviceID_t device;
Boolean doNotDisturbOn;

} CSTADoNotDisturbEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

Telephony Services API Specification 6-75

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies this message as an CSTA unsolicited event.

eventType
This is a tag with the value CSTA_DO_NOT_DISTURB,
which identifies this message as an
CSTADoNotDisturbEvent.

monitorCrossRefID
This parameter contains the handle to the CSTA
association for which this event is associated. This handle
is typically chosen by the switch and should be used by the
application as a reference to a specific established
association.

device
Specifies the device for which the DO Not Disturb feature
has been activated/deactivated. If the device is not
specified, then the parameter will indicate that the device
was not known or that it was not required.

doNotDisturbON
Specifies whether the DO Not Disturb feature is on (1) or

off (0).

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

6-76 Status Reporting Services

CSTAForwardingEventXE "CSTAForwardingEvent"§

This event report will indicate a change in the state of the
Forwarding feature for a specific device. The event will
also indicate the type of forwarding being invoked when
the feature is activated.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass;

EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTAForwardingEvent_t forwarding;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

SubjectDeviceID_t device;
ForwardingInfo_t forwardingInformation;

} CSTAForwardingEvent_t;

typedef enum ForwardingType_t { FWD_IMMEDIATE = 0, FWD_BUSY = 1,
FWD_NO_ANS = 2, FWD_BUSY_INT = 3, FWD_BUSY_EXT = 4, FWD_NO_ANS_INT =
5, FWD_NO_ANS_EXT = 6} ForwardingType_t;typedef struct ForwardingInfo_t
{ ForwardingType_t forwardingType; Boolean forwardingOn; DeviceID_t forwardDN;

/* NULL for not present */} ForwardingInfo_t;Parameters

acsHandle
This is the handle for the ACS Stream.

Telephony Services API Specification 6-77

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies this message as an CSTA unsolicited event.

eventType
This is a tag with the value CSTA_FORWARDING
which identifies this message as an
CSTAForwardingEvent.

monitorCrossRefID
This parameter contains the handle to the CSTA
association for which this event is associated. This handle
is typically chosen by the switch and should be used by the
application as a reference to a specific established
association.

device
Specifies the device for which the Forwarding feature has
been activated/deactivated. If the device is not specified,
then the parameter will indicate that the device was not
known or that it was not required.

forwardingType
Specifies the type of forwarding being invoked for the
specific device. This may include one of the following:

Immediate Forwarding all calls

Busy Forwarding when busy

No Answer Forwarding after no
answer

Busy Internal Forwarding when busy

6-78 Status Reporting Services

for an internal call

Busy External Forwarding when busy
for an external call

No Answer Internal Forwarding afterno
answer for an internal
call

No Answer External Forwarding after no
answer for an external
call.

forwardingON
Specifies whether the Forward feature is on (1) or off (0).

forwardDN
Specifies the destination device to which the calls are being
forwarded. If the device is not specified, then the parameter
will indicate that the device was not known or that it was
not required.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

Comments

The application should be aware that the forwardingInfo
paramater can indicate any of the defined values depending
on the switch implementation of the forwarding feature.

Telephony Services API Specification 6-79

6-80 Status Reporting Services

CSTAMessageWaitingEventXE "CSTAMessageWaitingEvent"§

This event report is used to indicate whether the Message
Waiting feature has been activated/deactivated.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass;

EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{
 CSTAMessageWaitingEvent_t messageWaiting;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

CalledDeviceID_t deviceForMessage;
SubjectDeviceID_t invokingDevice;
Boolean messageWaitingOn;

} CSTAMessageWaitingEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies this message as an CSTA unsolicited event.

Telephony Services API Specification 6-81

eventType
This is a tag with the value
CSTA_MESSAGE_WAITING which identifies this
message as an CSTAMessageWaitingEvent.

monitorCrossRefID
This parameter contains the handle to the CSTA
association for which this event is associated. This handle
is typically chosen by the switch and should be used by the
application as a reference to a specific established
association.

deviceForMessage
Indicates the device where the message is waiting (i.e.
address of device where the message waiting feature was
activated). If the device is not specified, then the parameter
will indicate that the device was not known or that it was
not required.

invokingDevice
Specifies which device invoked the message waiting
feature (i.e. address of the device who activated the
message waiting feature). If the device is not specified,
then the parameter will indicate that the device was not
known or that it was not required.

messageWaitingOn
Specifies whether the Message Waiting feature is on (1) or
off (0).

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be

6-82 Status Reporting Services

delivered to the application.

Comments

This event can occur for both a device or a call association.

Telephony Services API Specification 6-83

Agent Status Event Reports (Unsolicited)

XE "Agent Status Event Reports (Unsolicited)"§
This section covers event reports which pertain to the use of ACD
agent features supported through the API. The agent feature event
reports indicate a change in the state of a specific agent. Each
event defines the current state of the feature regardless of what the
state of the feature was before a feature event is received. These
event will typically be used by applications in the call center or
message center environment. Standard desktop telephony
applications will typically not utilize this feature of the API.

6-84 Status Reporting Services

CSTALoggedOnEventXE "CSTALoggedOnEvent"§

This event report informs the application that an agent has
logged into a device (usually an ACD Split).

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass;

EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTALoggedOnEvent_t loggedOn,
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

SubjectDeviceID_t agentDevice;
AgentID_t agentID;
AgentGroup_t agentGroup;
AgentPassword_t password;

} CSTALoggedOnEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies this message as an CSTA unsolicited event.

Telephony Services API Specification 6-85

eventType
This is a tag with the value CSTA_LOGGED_ON which
identifies this message as an CSTALoggedOnEvent.

monitorCrossRefID
This parameter contains the handle to the CSTA
association for which this event is associated. This handle
is typically chosen by the switch and should be used by the
application as a reference to a specific established
association.

agentDevice
Specifies the device from which the agent is logged on to
the system. If the device is not specified, then the
parameter will indicate that the device was not known or
that it was not required.

agentID
This paramater specifies the agent identifier of the agent

who logged into the system.

agentGroup
Specifies the group or ACD Split to which the agent is
logging into.

password
This paramater specifies the agent's password used to log
into the system.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

6-86 Status Reporting Services

Comments

In most cases, when an agent logs into a device it usuallty
means that the agent is ready to start receiving calls at the
device. This may not be true for some implementations.

Telephony Services API Specification 6-87

CSTALoggedOffEventXE "CSTALoggedOffEvent"§

This event report indicates that an agent has logged out of
the device/ACD Split for which the agent had previously
logged in and was providing service.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass;

EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTALoggedOffEvent_t loggedOff;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

SubjectDeviceID_t agentDevice;
AgentID_t agentID;
AgentGroup_t agentGroup;

} CSTALoggedOffEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED, which

6-88 Status Reporting Services

identifies this message as an CSTA unsolicited event.

eventType
This is a tag with the value CSTA_LOGGED_OFF which
identifies this message as an CSTALoggedOffEvent.

agentDevice
Specifies the device from which the agent is logged off the
system. If the device is not specified, then the parameter
will indicate that the device was not known or that it was
not required.

agentID
This paramater specifies the agent identifier of the agent

who logged off the system.

agentGroup
Specifies the group or ACD Split from which the agent is
logging out.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

Telephony Services API Specification 6-89

CSTANotReadyEventXE "CSTANotReadyEvent"§

This event report indicates that an agent is busy with tasks
other than servicing a call at the device. In most cases this
will imply that the agent is not ready to recieve a call or
that the agent is taking a break.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass;

EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTANotReadyEvent_t notReady;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

SubjectDeviceID_t agentDevice;
AgentID_t agentID;

} CSTANotReadyEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED, which

6-90 Status Reporting Services

identifies this message as an CSTA unsolicited event.

eventType
This is a tag with the value CSTA_NOT_READY which
identifies this message as an CSTANotReadyEvent.

agentDevice
Specifies the device from which the agent is logged on to
the system. If the device is not specified, then the
parameter will indicate that the device was not known or
that it was not required.

agentID
This paramater specifies the identifier of the agent who in

not ready to receive calls.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

Telephony Services API Specification 6-91

CSTAReadyEventXE "CSTAReadyEvent"§

This event report indicates that an agent is ready to receive
calls at the device. This event can occur even if the agent is
busy on an active call at the device.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See Data Types and CSTA
Data Types in section 4 for a complete description of the
event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass;

EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTAReadyEvent_t ready;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

SubjectDeviceID_t agentDevice;
AgentID_t agentID;

} CSTAReadyEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies this message as an CSTA unsolicited event.

6-92 Status Reporting Services

eventType
This is a tag with the value CSTA_READY which
identifies this message as an CSTAReadyEvent.

agentDevice
Specifies the device which is ready to receive calls from
the ACD. If the device is not specified, then the parameter
will indicate that the device was not known or that it was
not required.

agentID
This paramater specifies the identifier of the agent who in

ready to receive calls.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

Telephony Services API Specification 6-93

CSTAWorkNotReadyEventXE "CSTAWorkNotReadyEvent"§

This event report indicates that the agent is in after call
work mode completing the tasks involved in servicing a
call after the connection has been disconnected. This will
implies that the agents is no longer on the call but is
completing the servicing of the last call and the agent
should not receive any additional calls.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass;

EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{
 CSTAWorkNotReadyEvent_t workNotReady;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

SubjectDeviceID_t agentDevice;
AgentID_t agentID;

} CSTAWorkNotReadyEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

6-94 Status Reporting Services

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies this message as an CSTA unsolicited event.

eventType
This is a tag with the value
CSTA_WORK_NOT_READY which identifies this
message as an CSTAWorkNotReadyEvent.

agentDevice
Specifies the device which has invoked the Work Not
Ready mode. If the device is not specified, then the
parameter will indicate that the device was not known or
that it was not required.

agentID
This paramater specifies the identifier of the agent who is

in the Work Not Ready mode.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

Comments

In the case of this event the agent is still working on
completing the after call work for the last call. The
difference between this event and the
CSTAWorkReadyEvent is that the agent has indicated
that he/she is not ready to receive additional calls.

Telephony Services API Specification 6-95

6-96 Status Reporting Services

CSTAWorkReadyEventXE "CSTAWorkReadyEvent"§

This event report indicates that the agent is in "after call
work mode" completing the tasks involved in servicing a
call after the connection has been disconnected. This
implies that the agents is no longer on the call but is
completing the servicing of the last call and the agent may
receive any additional calls.

Syntax

The following structure shows only the relevant portions of
the unions for this message. SeeACS Data Types andCSTA
Data Types in section 4 for a complete description of the
event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass;

EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTAWorkReadyEvent_t workReady;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

SubjectDeviceID_t agentDevice;
AgentID_t agentID;

} CSTAWorkReadyEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

Telephony Services API Specification 6-97

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies this message as an CSTA unsolicited event.

eventType
This is a tag with the value CSTA_WORK_READY
which identifies this message as an
CSTAWorkReadyEvent.

agentDevice
Specifies the device which has invoked the Work Ready
mode. If the device is not specified, then the parameter will
indicate that the device was not known or that it was not
required.

agentID
This paramater specifies the identifier of the agent who is

in the Work Ready mode.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

Comments

In the case of this event the agent is still working on
completing the after call work for the last call. The
difference between this event and the
CSTAWorkNotReadyEvent is that the agent has indicated
that he/she is ready to receive additional calls.

6-98 Status Reporting Services

Telephony Services API Specification 6-99

Event Report Data Types (Unsolicited)XE "Event Report
Data Types (Unsolicited)"§

This section defines the data structures associated with the CSTA
Event Reports defined in the "STATUS REPORTING
SERVICES" section of this document.

6-100 Status Reporting Services

CSTAMonitorFilter_tXE "CSTAMonitorFilter_t"§

This structure is used to identify the event type filters requested or
available on a monitored CSTA association.

typedef unsigned short CSTACallFilter_t;#define CF_CALL_CLEARED
0x8000#define CF_CONFERENCED 0x4000#define
CF_CONNECTION_CLEARED 0x2000#define CF_DELIVERED
0x1000#define CF_DIVERTED 0x0800#define
CF_ESTABLISHED 0x0400#define CF_FAILED 0x0200#define
CF_HELD 0x0100#define CF_NETWORK_REACHED 0x0080#define
CF_ORIGINATED 0x0040#define CF_QUEUED 0x0020#define
CF_RETRIEVED 0x0010#define CF_SERVICE_INITIATED
0x0008#define CF_TRANSFERRED 0x0004typedef unsigned char
CSTAFeatureFilter_t;#define FF_CALL_INFORMATION 0x80#define
FF_DO_NOT_DISTURB 0x40#define FF_FORWARDING 0x20#define
FF_MESSAGE_WAITING 0x10typedef unsigned char CSTAAgentFilter_t;#define
AF_LOGGED_ON 0x80#define AF_LOGGED_OFF 0x40#define
AF_NOT_READY 0x20#define AF_READY 0x10#define
AF_WORK_NOT_READY 0x08#define AF_WORK_READY 0x04typedef
unsigned char CSTAMaintenanceFilter_t;#define
MF_BACK_IN_SERVICE 0x80#define MF_OUT_OF_SERVICE
0x40typedef struct CSTAMonitorFilter_t { CSTACallFilter_t call;
CSTAFeatureFilter_t feature; CSTAAgentFilter_t agent; CSTAMaintenanceFilter_t
maintenance; Boolean private;} CSTAMonitorFilter_t;

CALL_FILTERS
These values indicate that a call event filter should be used
for processing events. The provided filter may be different
than the one requested.

FEATURE_FILTERS
These values indicate that a feature event filter should be
used for processing events. The provided filter may be
different than the one requested.

AGENT_FILTERS
These values indicate that a agent event filter should be
used for processing events. The provided filter may be
different than the one requested.

Telephony Services API Specification 6-101

MAINTENANCE_FILTERS
These values indicate that a maintenance event filter should
be used for processing events. The provided filter may be
different than the one requested.

PRIVATE_FILTER
This value indicates that a private filter should be used for
processing events. The provided filter may be different
than the one requested.

6-102 Status Reporting Services

CSTAEventCause_tXE "CSTAEventCause_t"§

This structure contains an enumerated list of all the possible event
causes which can occur with different events. The definitions of
these event cause codes are also provided.

typedef enum CSTAEventCause_t {
 EC_NONE = -1,
 EC_ACTIVE_MONITOR = 1,
 EC_ALTERNATE = 2,
 EC_BUSY = 3,
 EC_CALL_BACK = 4,
 EC_CALL_CANCELLED = 5,
 EC_CALL_FORWARD_ALWAYS = 6,
 EC_CALL_FORWARD_BUSY = 7,
 EC_CALL_FORWARD_NO_ANSWER = 8,
 EC_CALL_FORWARD = 9,
 EC_CALL_NOT_ANSWERED = 10,
 EC_CALL_PICKUP = 11,
 EC_CAMP_ON = 12,
 EC_DEST_NOT_OBTAINABLE = 13,
 EC_DO_NOT_DISTURB = 14,
 EC_INCOMPATIBLE_DESTINATION = 15,
 EC_INVALID_ACCOUNT_CODE = 16,
 EC_KEY_CONFERENCE = 17,
 EC_LOCKOUT = 18,
 EC_MAINTENANCE = 19,
 EC_NETWORK_CONGESTION = 20,
 EC_NETWORK_NOT_OBTAINABLE = 21,
 EC_NEW_CALL = 22,
 EC_NO_AVAILABLE_AGENTS = 23,
 EC_OVERRIDE = 24,
 EC_PARK = 25,
 EC_OVERFLOW = 26,
 EC_RECALL = 27,
 EC_REDIRECTED = 28,
 EC_REORDER_TONE = 29,
 EC_RESOURCES_NOT_AVAILABLE = 30,
 EC_SILENT_MONITOR = 31,
 EC_TRANSFER = 32,
 EC_TRUNKS_BUSY = 33,
 EC_VOICE_UNIT_INITIATOR = 34
} CSTAEventCause_t;

Certain cause codes will appear in events only if they make sense.
The table following the cause code definitionsXE "cause code
definitions"§ illustrates which cause codes are possible for the each
of the call events.

Telephony Services API Specification 6-103

Cause Code Indicates that (definition):

Active Monitor an Active Monitor Feature has
occurred. This feature typically allows
intrusion by a supervisor into an agent
call with the ability to speak and listen.
The resultant call can be considered as
a conference so this cause code may be
supplied with the Conferenced Event
Report.

Alternate the call is in the process of being
exchanged. This feature is typically
found on single-line telephones, where
the human interface puts one call on
hold and retrieves a held call or
answers a waiting call in an atomic
action.

Busy the call encountered a busy tone or
device

Call Back Call Back is a feature invoked (by a
user or via CSTA) in an attempt to
complete a call that has encountered a
busy or no answer condition. As a
result of invoking the feature, the failed
call is cleared and the call can be
considered as queued. The switch may
subsequently automatically retry the
call (normally when the called party
next becomes free). Consequently, this
cause code may appear in Event

6-104 Status Reporting Services

Reports related to the feature
invocation (Call Cleared, Connection
Cleared and Queued) or related to the
subsequent, retried call (Service
Initiated, Originated, Delivered, and
Established).

Call Cancelled the user has terminated a call without
going on-hook.

Call Forward the call has been redirected via a Call
Forwarding feature set for general,
unknown, or multiple conditions.

Call Fd. - Immediate the call has been redirected via a Call
Forwarding feature set for all
conditions.

Call Fd. - Busy the call has been redirected via a Call
Forwarding feature set for a busy
endpoint.

Call Fd. - No Answer the call has been redirected via a Call
Forwarding feature set for an endpoint
that does not answer.

Call Not Answered the call was not answered because a
timer has elapsed.

Call Pickup the call has been redirected via a Call
Pickup feature.

Camp On a Camp On feature has been invoked or
has matured.

Dest. Not Obtainable the call could not obtain the
destination.

Telephony Services API Specification 6-105

Do Not Disturb the call encountered a Do Not Disturb
condition.

Incompatible
Destination

the call encountered an incompatible
destination.

Invalid Account Code the call has an invalid account code.

Key Operation1 indicates that the Event Report
occurred at a bridged or twin device.

Lockout the call encountered inter-digit timeout
while dialing.

Maintenance the call encountered a facility or
endpoint in a maintenance condition.

Net Congestion the call encountered a congested
network. In some circumstances this
cause code indicates that the user is
listening to a "No Circuit" Special
Information Tone (SIT) from a network
that is accompanied by a statement
similar to "All circuits are busy..."

Net Not Obtainable the call could not reach a destination
network.

New Call the call has not yet been redirected.

1 Telephone numbers associated primarily with one device often
appear also on a second device. One example is a secretary who's
phone has mirrored or bridged lines of a boss's phone.
6-106 Status Reporting Services

No Available Agents the call could not access any agent.

Overflow the call overflowed a queue, group, or
target.

Override the call resulted because of an Override
feature.

Park indicate that the Event Report is
associated with an action to place a call
to or retrieve a call from a parked
position. Placing a call in a park
position releases the call from the
parking device, but retains the call in
the Switching Function so that it can be
connected to another (or the same)
device by invoking the un-parking
feature there.

Recall the call is alerting a device due to a
time-out built into a feature that failed
to complete or that anticipated further
action from the user.

Redirected the call has been redirected

Reorder Tone the call encountered reorder - a tone
provided by a network to indicate that
the request (call, feature, or
supplementary service) was not
recognizable. This condition usually
results when a user dials a number that
is not valid or attempts to obtain a
service that is not enabled for that user

Telephony Services API Specification 6-107

or device. In some circumstances this
cause code indicates that the user is
listening to a "Reorder" Special
Information Tone (SIT) from a network
that is accompanied by a statement
similar to "The call did not go through
as dialed..."

Resources not
Available

resources were not available

Silent Monitor the event was caused by the invocation
of a feature that allows a third party,
such as an ACD agent supervisor, to
join the call. The joining party can
hear the entire conversation, but cannot
be heard by either original party. The
feature, sometimes called silent
intrusion, may provide a tone to one or
both parties to indicate that they are
being monitored. This feature is not
the same as a CSTA Monitor request.
This cause shall not indicate that a
CSTA Monitor has been initiated.

Transfer a Transfer is in progress or has
occurred

Trunks Busy the call encountered Trunks Busy

Voice Unit Initiator indicates that the event was the result
of action by automated equipment
(voice mail device, voice response unit,
announcement) rather than the result of
action by a human user.

6-108 Status Reporting Services

The following table illustrates which cause codes values make
sense for a specific call status event. The "y" indicates that the
cause code is likely to appear in the specific event.

Telephony Services API Specification 6-109

Table 6-2 CSTA Event Report - Cause Relationships

6-110 Status Reporting Services

Cause Call
Clr.

Conf Con.
Clr.

Dlv. Div. Est. Fail Held Net.
Rch.

Orig. Q-ed Retr. Svc.
Init.

Tran

Active Monitor y

Alternate y y y y

Busy y y

Call Back y y y y y y

Call Cancelled y y y y

Call Forward y y y y y y

Call Fd. - Immediate y y y y y

Call Fd. - Busy y y y y y

Call Fd. - No Answer y y y y y y

Call Not Answered y y y y

Call Pickup y y

Camp On y y y

Dest. not Obtainable y y y

Do Not Disturb y y y y

Incpt. Destination y y y y

Invalid Account Code y y

Key Operation y y y y y y y y y y y y y y

Lockout y

Maintenance y y

Net Congestion y y

Net Not Obtainable y y

New Call y y y y y

No Available Agents y y y y

Overflow y y y y y y y

Telephony Services API Specification 6-111

Override y y y y y y y y

Park y y

Recall y y y y y y y y y

Redirected y y y y y y

Reorder Tone y

Resrcs. not Available y y y y y

Silent Monitor y y

Transfer y y y y y y y y

Trunks Busy y y

Voice Unit Initiator y y

XE " CSTA Event Report - Cause Relationships"§

6-112 Status Reporting Services

	CSTATransferredEventXE "CSTATransferredEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ CSTAMonitorCrossRefID_t monitorCrossRefID;
	union
	{
	CSTATransferEvent_t transferred;
	} u;
	} cstaUnsolicited;
	} event;} CSTAEvent_t;
	typedef struct
	{
	ConnectionID_t primaryOldCall;
	ConnectionID_t secondaryOldCall;
	SubjectDeviceID_t transferringDevice;
	SubjectDeviceID_t transferredDevice;
	ConnectionList_t transferredConnections;
	LocalConnectionState_t localConnectionInfo;
	CSTAEventCause_t cause;
	} CSTATransferredEvent_t;

	Feature Event Reports (Unsolicited)XE "Feature Event Reports (Unsolicited)"§
	CSTACallInfoEventXE "CSTACallInfoEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ CSTAMonitorCrossRefID_t monitorCrossRefID;
	union
	{
	CSTACallInfoEvent_t callInformation;
	} u;
	} cstaUnsolicited;
	} event;} CSTAEvent_t;
	typedef struct
	{
	ConnectionID_t connection;
	SubjectDeviceID_t device;
	AccountInfo_t accountInfo;
	AuthCode_t authorizationCode;
	} CSTACallInforEvent_t;
	typedef char AccountInfo_t[32];
	typedef char AuthCode_t[32];

	CSTADoNotDisturbEventXE "CSTADoNotDisturbEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ CSTAMonitorCrossRefID_t monitorCrossRefID;
	CSTAEventCategory_t eventCategory;
	union
	{
	CSTADoNotDisturbEvent_t doNotDisturb,
	} u;
	} cstaUnsolicited;
	} event;} CSTAEvent_t;
	typedef struct
	{
	SubjectDeviceID_t device;
	Boolean doNotDisturbOn;
	} CSTADoNotDisturbEvent_t;

	CSTAForwardingEventXE "CSTAForwardingEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ CSTAMonitorCrossRefID_t monitorCrossRefID;
	union
	{
	CSTAForwardingEvent_t forwarding;
	} u;
	} cstaUnsolicited;
	} event;} CSTAEvent_t;
	typedef struct
	{
	SubjectDeviceID_t device;
	ForwardingInfo_t forwardingInformation;
	} CSTAForwardingEvent_t;

	CSTAMessageWaitingEventXE "CSTAMessageWaitingEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ CSTAMonitorCrossRefID_t monitorCrossRefID;
	union
	{
	CSTAMessageWaitingEvent_t messageWaiting;
	} u;
	} cstaUnsolicited;
	} event;} CSTAEvent_t;
	typedef struct
	{
	CalledDeviceID_t deviceForMessage;
	SubjectDeviceID_t invokingDevice;
	Boolean messageWaitingOn;
	} CSTAMessageWaitingEvent_t;

	Agent Status Event Reports (Unsolicited)
	CSTALoggedOnEventXE "CSTALoggedOnEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ CSTAMonitorCrossRefID_t monitorCrossRefID;
	union
	{
	CSTALoggedOnEvent_t loggedOn,
	} u;
	} cstaUnsolicited;
	} event;} CSTAEvent_t;
	typedef struct
	{
	SubjectDeviceID_t agentDevice;
	AgentID_t agentID;
	AgentGroup_t agentGroup;
	AgentPassword_t password;
	} CSTALoggedOnEvent_t;

	CSTALoggedOffEventXE "CSTALoggedOffEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ CSTAMonitorCrossRefID_t monitorCrossRefID;
	union
	{
	CSTALoggedOffEvent_t loggedOff;
	} u;
	} cstaUnsolicited;
	} event;} CSTAEvent_t;
	typedef struct
	{
	SubjectDeviceID_t agentDevice;
	AgentID_t agentID;
	AgentGroup_t agentGroup;
	} CSTALoggedOffEvent_t;

	CSTANotReadyEventXE "CSTANotReadyEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ CSTAMonitorCrossRefID_t monitorCrossRefID;
	union
	{
	CSTANotReadyEvent_t notReady;
	} u;
	} cstaUnsolicited;
	} event;} CSTAEvent_t;
	typedef struct
	{
	SubjectDeviceID_t agentDevice;
	AgentID_t agentID;
	} CSTANotReadyEvent_t;

	CSTAReadyEventXE "CSTAReadyEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ CSTAMonitorCrossRefID_t monitorCrossRefID;
	union
	{
	CSTAReadyEvent_t ready;
	} u;
	} cstaUnsolicited;
	} event;} CSTAEvent_t;
	typedef struct
	{
	SubjectDeviceID_t agentDevice;
	AgentID_t agentID;
	} CSTAReadyEvent_t;

	CSTAWorkNotReadyEventXE "CSTAWorkNotReadyEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ CSTAMonitorCrossRefID_t monitorCrossRefID;
	union
	{
	CSTAWorkNotReadyEvent_t workNotReady;
	} u;
	} cstaUnsolicited;
	} event;} CSTAEvent_t;
	typedef struct
	{
	SubjectDeviceID_t agentDevice;
	AgentID_t agentID;
	} CSTAWorkNotReadyEvent_t;

	CSTAWorkReadyEventXE "CSTAWorkReadyEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ CSTAMonitorCrossRefID_t monitorCrossRefID;
	union
	{
	CSTAWorkReadyEvent_t workReady;
	} u;
	} cstaUnsolicited;
	} event;} CSTAEvent_t;
	typedef struct
	{
	SubjectDeviceID_t agentDevice;
	AgentID_t agentID;
	} CSTAWorkReadyEvent_t;

	Event Report Data Types (Unsolicited)XE "Event Report Data Types (Unsolicited)"§
	CSTAMonitorFilter_tXE "CSTAMonitorFilter_t"§
	CSTAEventCause_tXE "CSTAEventCause_t"§
	
	The following table illustrates which cause codes values make sense for a specific call status event. The "y" indicates that the cause code is likely to appear in the specific event.
	Call Clr.
	Conf
	Con.Clr.
	Dlv.
	Div.
	Est.
	Fail
	Held
	Net.
	Rch.
	Orig.
	Q-ed
	Retr.
	Svc.
	Init.
	Tran

