
CSTAHoldCallConfEventXE "CSTAHoldCallConfEvent"§

The Hold Call confirmation event provides the positive response
from the server for a previous Hold call requestXE "Hold call
request"§.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in Section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

CSTAHoldCallConfEvent_t holdCall;
}u; } cstaConfirmation;

} event;} CSTAEvent_t;

typedef struct CSTAHoldCallConfEvent_t {
 Nulltype null;
} CSTAHoldCallConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

Telephony Services API Specification 5-58

eventType
This is a tag with the value
CSTA_HOLD_CALL_CONF, which identifies this
message as an CSTAHoldCallConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

5-59 Switching Function Services

cstaMakeCall()XE " cstaMakeCall()"§

The cstaMakeCall() service originates a callXE "call
origination"§ between two devices on the switch. The service
attempts to create a new call and establish a connection between
the calling device (originator) and the called device (destination).
The Make Call service also provides a CSTA Connection
Identifier that indicates the Connection of the originating device.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaMakeCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *callingDevice,
DeviceID_t *calledDevice,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

callingDevice
A pointer to the device identifier of the device which is to
originate the new call.

calledDevice

Telephony Services API Specification 5-60

A pointer to the device identifier of the device being call,
i.e. the destination device.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not
used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value,
i.e. the invoke identifier. If the call fails a negative
error (<0) condition will be returned. For library-
generated identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the
return will never be positive (>0).

The application should always check the
CSTAMakeCallConfEvent message to ensure that the
service request has been acknowledged and processed by
the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

5-61 Switching Function Services

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

The cstaMakeCall() service originates a call between two
application designated devices. When the service is initiated, the
calling device is prompted (if necessary), and, when that device
acknowledges, a call to the called device is originated. Figure 5.12
illustrates the results of a Make Call service request (Calling
device = D1, Called device = D2). A call is established as if D1
had called D2, and the client is returned the Connection id:
(C1,D1).

Before After

Figure 5.12 - Make Call

The establishment of a complete call connection can be a multi-
stepped process depending on the destination of the call. Call
status event reports (see Status Reporting Service) may be sent by
the Telephony Server to the service requesting client application as
the connection establishment progresses. These events are in
addition to the standard confirmation events (e.g.
CSTAMakeCallConfEvent) which only indicates that the switch
is attempting to establish a connection between the two devices.
The application should be aware that the requested call is not
guaranteed to succeed even after a successful Make Call service

Telephony Services API Specification 5-62

confirmation event has been received. The application must
monitor status events to be informed of the call status as it
progresses. Status event reports can be established by using the
cstaMonitorStart() service (see Status Reporting Services).

5-63 Switching Function Services

CSTAMakeCallConfEventXE "CSTAMakeCallConfEvent"§

The Make Call confirmation event provides the positive response
from the server for a previous Make Call service request.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in Section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID; union
{ CSTAMakeCallConfEvent_t makeCall; } u;

} cstaConfirmation;
} event;} CSTAEvent_t;
typedef struct
{

ConnectionID_t newCall;
} CSTAMakeCallConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

Telephony Services API Specification 5-64

eventType
This is a tag with the value
CSTA_MAKE_CALL_CONF, which identifies this
message as an CSTAMakeCallConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

newCall
Specifies the Connection ID for the originating connection
of the new call originated by the Make Call request.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

5-65 Switching Function Services

cstaMakePredictiveCall()XE "cstaMakePredictiveCall()"§

The cstaMakePredictiveCall() service originates a call between a
group of devices or a logical device on behalf of an originating
(calling) device. The service creates a new call and establishes a
Connection with the terminating (called) device. The Make
Predictive Call service also provides a CSTA Connection Identifier
that indicates the Connection of the terminating (called) device.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaMakePredictiveCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *callingDevice,
DeviceID_t *calledDevice,
AllocationState_t allocationState;
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

callingDevice
A pointer to the device identifier of the device which is to
originate the new call.

calledDevice

Telephony Services API Specification 5-66

A pointer to the device identifier of the device being call,
i.e. the destination device.

allocationState
This parameter specifies under which condition the connection
with the destination is to be connected to the calling or originating
device. If this parameter is not specified by the application, the
Call Delivered state will be the default. This parameter may be one
of the following values:

1. Call Delivered: this value specifies that the switch

should attempt to connect the call to the caller
(originating device), if the Alerting or Connected state is
determined at the called party (destination device).

2. Call Established: this value specifies that the switch
should attempt to connect the call to the caller
(originating device), if the Connected state is determined
at the called party (destination device).

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not
used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value, i.e.
the invoke identifier. If the call fails a negative error (<0)
condition will be returned. For library-generated
identifiers the return will never be zero (0).

5-67 Switching Function Services

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the return
will never be positive (>0).

The application should always check the
CSTAMakePredictiveCallConfEvent message to ensure
that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.
ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

This service is often used to initiate a call to a called device
(destination) from a group of devices or a logical device without
first establishing a connection with a calling device (originator).
This service allocates the call to a particular device within that
group at some time during the progress of the call.

The cstaMakePredictiveCall() service first initiates a call to the
called device (destination). Depending on the call's progress, the
call may be connected with the calling device (originator) during

Telephony Services API Specification 5-68

the progress of the call. The point at which the switch will attempt
to connect the call to the originating device is determined by the
allocationSate parameter. If the allocation parameter is set to Call
Delivered, then the call is allocated upon detection of an Alerting
(or Connected) Connection state at the destination. If the allocation
parameter is set to Call Established, then the call is allocated upon
detection of a Connected Connection state at the recipient. In other
words, the call is connected to the originating device if the call
state is either alerting or connected at the far end or connected,
respectively.

Figure 5.13 illustrates the results of a Make Predictive Call
(Calling device = group device D1, Called device = D2.

Before After

Figure 5.13 - Make Predictive Call

5-69 Switching Function Services

CSTAMakePredictiveCallConfEventXE
"CSTAMakePredictiveCallConfEvent"§

The Make Predictive Call confirmation event provides the
positive response from the server for a previous
cstaMakePredictiveCall() request.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in Section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID; union
{ CSTAMakePredictiveConfEvent_t makePredictiveCall; } u; }

cstaConfirmation;
} event;} CSTAEvent_t;
typedef struct
{

ConnectionID_t newCall;
} CSTAMakePredictiveConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

Telephony Services API Specification 5-70

eventType
This is a tag with the value
MAKE_PREDICTIVE_CALL_CONF, which identifies
this message as an CSTAMakePredictiveConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

newCall
Specifies the Connection ID for the far-end connection of
the new call originated by the Make Predictive Call
request.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

5-71 Switching Function Services

cstaPickupCall()XE "cstaPickupCall()"§

The cstaPickupCall() service takes a ringing (alerting) call at a
device and redirects the call to a specified device.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaPickupCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *deflectCall,
DeviceID_t *calledDevice,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

deflectCall
This is a pointer to the connection identifier of the call
which is to be picked up from another device within the
switch.

calledDevice
A pointer to the device identifier of the device which is
picking up the original call.

Telephony Services API Specification 5-72

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not
used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value, i.e.
the invoke identifier. If the call fails a negative error (<0)
condition will be returned. For library-generated
identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the return
will never be positive (>0).

The application should always check the
CSTAPickupCallConfEvent message to ensure that the
service request has been acknowledged and processed by
the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously active

5-73 Switching Function Services

ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

The cstaPickupCall() service takes an alerting call at a
device within the switch and brings it to a local device
destination. This function picks up a call, deflectCall, at
device specified in the calledDevice parameter.

Before After

Figure 5.14 - Pickup Call

Telephony Services API Specification 5-74

CSTAPickupCallConfEventXE "CSTAPickupCallConfEvent"§

The Pickup Call confirmation event provides the positive response
from the server for a previous pickup call request.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in Section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{
 CSTAPickupCallConfEvent_t pickupCall;
}u; } cstaConfirmation;

} event;} CSTAEvent_t;

typedef struct CSTAPickupCallConfEvent_t {
 Nulltype null;
} CSTAPickupCallConfEvent_t;

Parameters

acsHandle
This is the handle to an active ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType

5-75 Switching Function Services

This is a tag with the value
CSTA_PICKUP_CALL_CONF, which identifies this
message as an CSTAPickupCallConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

Telephony Services API Specification 5-76

cstaReconnectCall()XE "cstaReconnectCall()"§

The cstaReconnectCall() service provides the compound action
(combination) of the cstaClearConnection() service followed by
the cstaRetrieveCall() service. The service clears an existing
Connection and then retrieves a previously Held Connection at the
same device.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaReconnectCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *activeCall,
ConnectionID_t *heldCall,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

activeCall
A pointer to the connection identifier of the active call
which is to be cleared.

heldCall

5-77 Switching Function Services

A pointer to the connection identifier of the held call which
is to be retrieved.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not
used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value, i.e.
the invoke identifier. If the call fails a negative error (<0)
condition will be returned. For library-generated
identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the return
will never be positive (>0).

The application should always check the
CSTAReconnectCallConfEvent message to ensure that
the service request has been acknowledged and processed
by the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

Telephony Services API Specification 5-78

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

A successful request of this service will causes an existing active
call to be dropped. Once the active call has been dropped, the
specified held call at the device is retrieved and becomes active.
This service is typically used to drop an active call and return to a
held call; however, it can also be used to cancel of a consultation
call (because of no answer, called device busy, etc.) followed by
returning to a held call.

Before After

Figure 5.15 - Reconnect Call

5-79 Switching Function Services

CSTAReconnectCallConfEventXE
"CSTAReconnectCallConfEvent"§

The Reconnect Call confirmation event provides the positive
response from the server for a previous Reconnect call request.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in Section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

CSTAReconnectCallConfEvent_t reconnectCall;
}u; } cstaConfirmation;

} event;} CSTAEvent_t;

typedef struct CSTAReconnectCallConfEvent_t {
 Nulltype null;
} CSTAReconnectCallConfEvent_t;

Parameters

acsHandle
This is the handle to an active ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType

Telephony Services API Specification 5-80

This is a tag with the value
CSTA_RECONNECT_CALL_CONF, which identifies
this message as an CSTAReconnectCallConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

5-81 Switching Function Services

cstaRetrieveCall()XE "cstaRetrieveCall()"§

The cstaRetrieveCall() service connects an existing Held
Connection. The state of the specified call changes from held to
active.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaRetrieveCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *heldCall,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

heldCall
A pointer to the connection identifier of the held call which
is to be retrieved.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not
used, the pointer should be set to NULL.

Telephony Services API Specification 5-82

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value, i.e.
the invoke identifier. If the call fails a negative error (<0)
condition will be returned. For library-generated
identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the return
will never be positive (>0).

The application should always check the
CSTARetrieveCallConfEvent message to ensure that the
service request has been acknowledged and processed by
the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is

5-83 Switching Function Services

established but a requested capability has been
denied by the Client Library Software Driver.

Telephony Services API Specification 5-84

Comments

The indicated held Connection is restored to the Connected state
(active). The call state can change depending on the actions of far
end endpoints. If the cstaHoldCall() service reserved the Held
Connection and the cstaRetrieveCall() service is requested for
the same call, then the Retrieve Call service uses the reserved
Connection.

Before After

Figure 5.16 - Retrieve Call

5-85 Switching Function Services

CSTARetriveCallConfEventXE "CSTARetriveCallConfEvent"§

The Retrieve Call confirmation event provides the positive
response from the server for a previous Retrieve call request.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in Section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{
 CSTARetrieveCallConfEvent_t retrieveCall;
}u; } cstaConfirmation;

} event;} CSTAEvent_t;

typedef struct CSTARetrieveCallConfEvent_t {
 Nulltype null;
} CSTARetrieveCallConfEvent_t;

Parameters

acsHandle
This is the handle to an active ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType
This is a tag with the value

Telephony Services API Specification 5-86

CSTA_RETRIEVE_CALL_CONF, which identifies
this message as an CSTARetrieveCallConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

5-87 Switching Function Services

cstaTransferCall()XE "cstaTransferCall()"§

The cstaTransferCall() service provides the transfer of a held
call with an active call at the same device. The transfer service
merges two calls with Connections to a single common device.
Also, both of the Connections to the common device become Null
and their Connections Identifiers are released.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaTransferCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *heldCall,
ConnectionID_t *activeCall,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

heldCall
A pointer to the connection identifier of the held call which
is to be transferred.

activeCall
A pointer to the connection identifier of the active call to

Telephony Services API Specification 5-88

which the held call is to be transferred.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not
used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value, i.e.
the invoke identifier. If the call fails a negative error (<0)
condition will be returned. For library-generated
identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the return
will never be positive (>0).

The application should always check the
CSTATransferCallConfEvent message to ensure that the
service request has been acknowledged and processed by
the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

5-89 Switching Function Services

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

Referring to Figure 5.17, the starting conditions for the
cstaTransferCall() service are: the call C1 from D1 to D2 is in
held state (heldCall). A call C2 from D1 to D3 is in progress or
active (activeCall). This service transfers the existing (held) call
between devices D1 and D2 into a new call with a new call
identifier from device D2 to a device D3.

Before After

Figure 5.17 - Transfer Call

The request is used in the situation where the call from D1 to D3 is
established (active) or if the call is in any state other than Failed or
Null state. The Transfer Call service successfully completes, and
D1 is released from the call.

Telephony Services API Specification 5-90

CSTATransferCallConfEventXE "CSTATransferCallConfEvent"§

The Transfer Call confirmation event provides the positive
response from the server for a previous transfer call request.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in Section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID; union
{

CSTATransferCallConfEvent_t transferCall; } u; }
cstaConfirmation;

} event;} CSTAEvent_t;

typedef struct Connection_t { ConnectionID_t party; DeviceID_t staticDevice; /* NULL for not present
*/} Connection_t;typedef struct ConnectionList { int count; Connection_t *connection;}
ConnectionList;typedef struct { ConnectionID_t newCall; ConnectionList connList;}
CSTATransferCallConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType
This is a tag with the value

5-91 Switching Function Services

CSTA_TRANSFER_CALL_CONF, which identifies
this message as an CSTATransferCallConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

newCall
Specifies the resulting Connection Identifier for the
transferred call.

connList
Specifies the resulting number of known devices in the
conference. This field contains a count (count) of the
number of devices in the conference and a pointer
(*connection) to an array of pointers which point to
ConnectionID_t structures which define each connection in
the call.

Each ConnectionID_t record contains the following:

Party - indicates the Connection ID of the party in the
conference.

Device - provides the static reference for the party in the
conference. This parameter may have a value that
indicates the static identifier is not known.

privateData
If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the
privateData pointer is set to NULL in these functions, then no private
data will be delivered to the application.

Telephony Services API Specification 5-92

 Telephony Supplementary ServicesXE "Telephony
Supplementary Services"§

This section describes CSTA telephony services which are
typically provided as "features" on a switch.

 Not all switches will support all these functions and events.

Telephony Supplementary Services functions are telephony-based
features which can be used by the application to manipulate
telephony objects related to a desktop telephone device. The
features are activated using the function services defined in this
section. As always, these function will generate associated
confirmation events from the Telephony Server.

Telephony supplementary confirmation events are messages from
the Telephony Server in response to Telephony Supplementary
service requests. The invokeID can be used to match a specific
confirmation event with the specific function call which caused the
event to be generated at the server.

The application must have an active ACS Stream and an Event
Handling Mechanism before supplementary services confirmation
events can be received from the Telephony Server. In addition,
unsolicited status events also require an active monitor before
status events are delivered to the application. See Control Services
and Status Reporting Services, respectively, for more information
on events.

5-93 Switching Function Services

cstaSetMsgWaitingInd()XE "cstaSetMsgWaitingInd()"§

The cstaSetMsgWaitingInd() service provides the
application with the ability to turns on and off a message
waiting indicator on a telephony device.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaSetMsgWaitingInd (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *device,
Boolean_t messages,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

device
This parameter is a pointer to the device identifier of the
device on which to set the message waiting indicator. .

msgIndicator
This parameter identifies whether to turn on or off the
message waiting indicator at the device specified by device
parameter. A value of TRUE indicates that the message

Telephony Services API Specification 5-94

waiting indicator should be tuned on, FALSE indicates that
the indicator should be turn off.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not
used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value, i.e.
the invoke identifier. If the call fails a negative error (<0)
condition will be returned. For library-generated
identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the return
will never be positive (>0).

The application should always check the
CSTASetMsgWaitingIndConfEvent message to ensure
that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

5-95 Switching Function Services

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Telephony Services API Specification 5-96

CSTASetMsgWaitingIndConfEventXE "
CSTASetMsgWaitingIndConfEvent"§

The Set Message Waiting Indicator confirmation event
provides the positive response from the Telephony Server
for a previous Set Message Waiting Indicator service
request. When the application receives this event the
message waiting indicator has been set as requested by the
application.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in Section 4 for a complete description
of the event structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{ InvokeID_t invokeID;

union
{

CSTASetMwiConfEvent_t setMwi;
}u;} cstaConfirmation;

} event;} CSTAEvent_t;

typedef struct CSTASetMwiConfEvent_t {
 Nulltype null;
} CSTASetMwiConfEvent_t;

Parameters

acsHandle
T his is the handle for the ACS Stream.

eventClass

5-97 Switching Function Services

This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType
This is a tag with the value CSTA_SET_MWI_CONF,
which identifies this message as an
CSTASetMessageWaitingIndConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

Telephony Services API Specification 5-98

cstaSetDoNotDisturb()XE "cstaSetDoNotDisturb()"§

The cstaSetDoNotDisturb() service activates the switch
feature that prevents calls from alerting at a specified
device by deflecting the calls from the original destination
to other devices.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaSetDoNotDisturb (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *device,
Boolean_t doNotDisturb,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

device
This parameter is a pointer to the device identifier of the
device on which the Do Not Disturb feature is to be
activated. This parameter may be different than the
originating device depending on the security level defined
for the originating device in the Telephony Server.

5-99 Switching Function Services

doNotDisturb
This parameter identifies whether to turn on or off the Do
Not Disturb feature at the device specified by device
parameter. A value of TRUE indicates that the Do Not
Disturb feature should be tuned on, FALSE indicates that
the feature should be turn off.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not
used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value, i.e.
the invoke identifier. If the call fails a negative error (<0)
condition will be returned. For library-generated
identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the return
will never be positive (>0).

The application should always check the
CSTASetDoNotDisturbConfEvent message to ensure that
the service request has been acknowledged and processed
by the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

Telephony Services API Specification 5-100

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

5-101 Switching Function Services

CSTASetDoNotDisturbConfEventXE
"CSTASetDoNotDisturbConfEvent"§

The Set Do Not Disturb confirmation event provides the
positive response from the Telephony Server for a previous
Set Do Not Disturb request. When the application receives
this event the Do Not Disturb feature has been set as
requested by the application.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in Section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{ InvokeID_t invokeID;

union
{

CSTASetDndConfEvent_t setDnd;
}u;} cstaConfirmation;
} event;} CSTAEvent_t;

typedef struct CSTASetDndConfEvent_t {
 Nulltype null;
} CSTASetDndConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass

Telephony Services API Specification 5-102

This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType
This is a tag with the value CSTA_SET_DND_CONF,
which identifies this message as an
CSTASetDoNotDistrubConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

5-103 Switching Function Services

cstaSetForwarding()XE "cstaSetForwarding()"§

The cstaSetForwarding() service activates and deactivates
several types of forwarding features on a specified device.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaSetForwarding (

ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *device,
ForwardingType_t forwardingType,
Boolean_t forwardingOn,
DeviceID_t *forwardingDestination,
PrivateData_t *privateData);

typedef enum ForwardingType_t {
 FWD_IMMEDIATE = 0,
 FWD_BUSY = 1,
 FWD_NO_ANS = 2,
 FWD_BUSY_INT = 3,
 FWD_BUSY_EXT = 4,
 FWD_NO_ANS_INT = 5,
 FWD_NO_ANS_EXT = 6
} ForwardingType_t;

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

device

Telephony Services API Specification 5-104

This parameter is a pointer to the device identifier of the
device on which forwarding is to be set. This parameter
may be different than the originating device depending on
the security level defined for the originating device in the
Telephony Server.

forwardingType
This parameter specifies the type of forwarding to set or
clear at the requested device. The possible types include:

Immediate Forwarding all calls

Busy Forwarding when busy

No Answer Forwarding after no
answer

Busy Internal Forwarding when busy
for an internal call

Busy External Forwarding when busy
for an external call

No Answer Internal Forwarding afterno
answer for an internal
call

No Answer External Forwarding after no
answer for an external
call.

forwardingOn
This parameter identifies whether to turn on or off the

5-105 Switching Function Services

forwarding feature at the device specified by device
parameter. A value of TRUE indicates that the forwarding
feature should be tuned on, FALSE indicates that the
feature should be turn off.

 forwardingDestination
This is a pointer to the device identifier for the device to
which the calls are to be forwarded.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not
used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value, i.e.
the invoke identifier. If the call fails a negative error (<0)
condition will be returned. For library-generated
identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the return
will never be positive (>0).

The application should always check the
CSTASetForwardingConfEvent message to ensure that
the service request has been acknowledged and processed
by the Telephony Server and the switch.

Telephony Services API Specification 5-106

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

5-107 Switching Function Services

CSTASetForwardingConfEventXE
"CSTASetForwardingConfEvent"§

The Set Forwarding confirmation event provides the
positive response from the server for a previous Set
Forwarding service request. When this event is received by
the application the forwarding feature has been set as
requested.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in Section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{ InvokeID_t invokeID;

union
{

CSTASetFwdConfEvent_t setFwd;
}u;} cstaConfirmation;
} event;} CSTAEvent_t;

typedef struct CSTASetFwdConfEvent_t {
 Nulltype null;
} CSTASetFwdConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass

Telephony Services API Specification 5-108

This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType
This is a tag with the value CSTA_SET_FWD_CONF,
which identifies this message as an
CSTASetForwardingConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

5-109 Switching Function Services

cstaSetAgentState()XE "cstaSetAgentState()"§

The cstaSetAgentState() service changes an ACD agents
work mode to one specified by this service.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaSetAgentState (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *device,
AgentMode_t agentMode,
AgentID_t *agentID,
AgentGroup_t *agentGroup,
AgentPassword_t *agentPassword,
PrivateData_t *privateData);

typedef enum AgentMode_t {
 AM_LOG_IN = 0,
 AM_LOG_OUT = 1,
 AM_NOT_READY = 2,
 AM_READY = 3,
 AM_WORK_NOT_READY = 4,
 AM_WORK_READY = 5
} AgentMode_t;

typedef char AgentID_t[32];

typedef DeviceID_t AgentGroup_t;

typedef char AgentPassword_t[32];

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().

Telephony Services API Specification 5-110

The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

device
This parameter is a pointer to the device identifier of the
device associated with the ACD agent for which the work
mode is to be changed. This parameter may be different
than the originating device depending on the security level
defined for the originating device in the Telephony Server.

agentMode
This parameter specifies the work mode state which the
agent will be moved to. This could be one of the following:

· LOG_IN
· LOG_OUT
· NOT_READY
· READY
· WORK_NOT_READY
· WORK_READY

agentID
A pointer to the agent identifier of the ACD Agent whose
work mode is to be changed.

agentGroup
A pointer to the agent group identifier for the ACD group
or split in which the agent will be logged into or out of.
This parameter is only required when the agentMode
parameter is set for the LOG_IN and LOG_OUT work
modes.

agentPassword
A pointer to a password that allows the agent to log into an
ACD split or group. This parameter is only required when
the agentMode parameter is set for the LOG_IN and
LOG_OUT work modes.

privateData

5-111 Switching Function Services

This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not
used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value, i.e.
the invoke identifier. If the call fails a negative error (<0)
condition will be returned. For library-generated
identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the return
will never be positive (>0).

The application should always check the
CSTASetAgentStateConfEvent message to ensure that
the service request has been acknowledged and processed
by the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

Telephony Services API Specification 5-112

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

5-113 Switching Function Services

CSTASetAgentStateConfEventXE
"CSTASetAgentStateConfEvent"§

The Set Agent State confirmation event provides the
positive response from the server for a previous Set Agent
State service request. When this event is received by the
application the forwarding feature has been set as
requested.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in Section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{ InvokeID_t invokeID;

union
{

CSTASetAgentStateConfEvent_t setAgentState;
}u;} cstaConfirmation;
} event;} CSTAEvent_t;

typedef struct CSTASetAgentStateConfEvent_t {
 Nulltype null;
} CSTASetAgentStateConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass

Telephony Services API Specification 5-114

This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType
This is a tag with the value
CSTA_SET_AGENT_STATE_CONF, which identifies
this message as an CSTASetAgentStateConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

5-115 Switching Function Services

cstaQueryMsgWaitingInd()XE "cstaQueryMsgWaitingInd()"§

The cstaQueryMessageWaitingInd() service provides the
current state of the message waiting indicator of a specified device.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaQueryMsgWaitingInd (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *device,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

device
This parameter is a pointer to the device identifier of the
device on which the message waiting indicator is being
queried. This parameter may be different than the
originating device depending on the security level defined
for the originating device in the Telephony Server.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not

Telephony Services API Specification 5-116

used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:
· Library-generated Identifiers - if the function call

completes successfully it will return a positive value, i.e.
the invoke identifier. If the call fails a negative error (<0)
condition will be returned. For library-generated
identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the return
will never be positive (>0).

The application should always check the
CSTAQueryMsgWaitingIndConfEvent message to
ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is

5-117 Switching Function Services

established but a requested capability has been
denied by the Client Library Software Driver.

Telephony Services API Specification 5-118

CSTAQueryMsgWaitingIndConfEventXE
"CSTAQueryMsgWaitingIndConfEvent"§

The Query Message Waiting Indicator confirmation event
provides the positive response from the server for a
previous Query Message Waiting Indicator service request.
This event informs the application whether there are any
messages waiting, i.e. whether the message waiting
indicator is turned on or off.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in Section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{ InvokeID_t invokeID; union

{ CSTAQueryMwiConfEvent_t queryMwi; } u;
} cstaConfirmation;

} event;} CSTAEvent_t;

typedef struct CSTAQueryMwiConfEvent_t {
 Boolean messages;

} CSTAQueryMwiConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,

5-119 Switching Function Services

which identifies this message as an CSTA confirmation
event.

eventType
This is a tag with the value
CSTA_QUERY_MWI_CONF, which identifies this
message as an CSTAQueryMwiConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

messages
This parameter specifies whether there are any messages
waiting at the requested device. TRUE indicates that there
are messages waiting, FALSE indicates that there are none.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

Telephony Services API Specification 5-120

cstaQueryDoNotDisturb()XE "cstaQueryDoNotDisturb()"§

The cstaQueryDoNotDisturb() service provides the current state
of the do not disturb feature on a specific device.
Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaQueryDoNotDisturb (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *device,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

device
This parameter is a pointer to the device identifier of the
device on which the Do Not Disturb feature is being
queried. This parameter may be different than the
originating device depending on the security level defined
for the originating device in the Telephony Server.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not

5-121 Switching Function Services

used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value, i.e.
the invoke identifier. If the call fails a negative error (<0)
condition will be returned. For library-generated
identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the return
will never be positive (>0).

The application should always check the
CSTAQueryDoNotDisturbConfEvent message to ensure
that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED

Telephony Services API Specification 5-122

This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

5-123 Switching Function Services

CSTAQueryDoNotDisturbConfEventXE
"CSTAQueryDoNotDisturbConfEvent"§

The Query Do Not Disturb confirmation event provides the positive
response from the server for a previous Query Do Not Disturb service
request. This event informs the application whether the feature is
turned on or off.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in Section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{ InvokeID_t invokeID; union

{ CSTAQueryDndConfEvent_t queryDnd; } u;
} cstaConfirmation;

} event;} CSTAEvent_t;

typedef struct
{

Boolean_t doNotDistrub;
} CSTAQueryDndConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

Telephony Services API Specification 5-124

eventType
This is a tag with the value
CSTA_QUERY_DND_CONF, which identifies this
message as an CSTAQueryDndConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

doNotDisturb
This parameter specifies whether the Do Not Disturb
feature is active at the requested device. TRUE indicates
that the feature is turned on. FLASE indicates that the
feature is turned off.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

5-125 Switching Function Services

cstaQueryForwarding ()XE "cstaQueryForwarding ()"§

The cstaQueryForwarding() service provides the current state of
the forwarding feature(s) on a specific device.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaQueryForwarding (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *device,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

device
This parameter is a pointer to the device identifier of the
device on which the forwarding feature is being queried.
This parameter may be different than the originating device
depending on the security level defined for the originating
device in the Telephony Server.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not

Telephony Services API Specification 5-126

used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value, i.e.
the invoke identifier. If the call fails a negative error (<0)
condition will be returned. For library-generated
identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the return
will never be positive (>0).

The application should always check the
CSTAQueryForwardingConfEvent message to ensure
that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED

5-127 Switching Function Services

This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Telephony Services API Specification 5-128

CSTAQueryForwardingConfEventXE
"CSTAQueryForwardingConfEvent"§

The Query Forwarding confirmation event provides the
positive response from the server for a previous Query
Forwarding service request. The event also informs the
application of the forwarding type, whether forwarding is
on or off, and the forwarding destination for each device
requested.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in Section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{ InvokeID_t invokeID; union

{ CSTAQueryFwdConfEvent_t queryFwd; } u;
} cstaConfirmation;

} event;} CSTAEvent_t;

typedef enum ForwardingType_t {
 FWD_IMMEDIATE = 0,
 FWD_BUSY = 1,
 FWD_NO_ANS = 2,
 FWD_BUSY_INT = 3,
 FWD_BUSY_EXT = 4,
 FWD_NO_ANS_INT = 5,
 FWD_NO_ANS_EXT = 6
} ForwardingType_t;

typedef struct ForwardingInfo_t {
 ForwardingType_t forwardingType;
 Boolean forwardingOn;
 DeviceID_t forwardDN;
} ForwardingInfo_t;

5-129 Switching Function Services

typedef struct ListForwardParameters_t {
 short count;
 ForwardingInfo_t param[7];
} ListForwardParameters_t;

typedef struct CSTAQueryFwdConfEvent_t {
 ListForwardParameters_t forward;
} CSTAQueryFwdConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType
This is a tag with the value
CSTA_QUERY_FWD_CONF, which identifies this
message as an CSTAQueryFwdConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

queryfwd
This parameter is a ListForwardParameters_t structure
which contains the following:

count
This parameter indicates how many forwarding list entries are
provided. Each entry corresponds to a different device.

param
An array of ForwardingInfo_t structures, each of which is
composed of the following elements.

Telephony Services API Specification 5-130

5-131 Switching Function Services

forwardingType
Specifies the type of forwarding set. The types include:

Immediate Forwarding all calls

Busy Forwarding when busy

No Answer Forwarding after no
answer

Busy Internal Forwarding when busy
for an internal call

Busy External Forwarding when busy
for an external call

No Answer Internal Forwarding afterno
answer for an internal
call

No Answer External Forwarding after no
answer for an external
call.

forwardingOn
Indicates whether forwarding is active or inactive. TRUE
indicates forwarding is active. FALSE indicates forwarding is
inactive.

forwardingDN
Specifies the forward-to destination device for the type of
forwarding listed.

Telephony Services API Specification 5-132

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

5-133 Switching Function Services

cstaQueryAgentState()XE "cstaQueryAgentState()"§

The cstaQueryAgentState() service will provide the application
with the current agent state at a device.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaQueryAgentState (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *device,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

device
This parameter is a pointer to the device identifier of the
device on which the agent state is being queried. This
parameter may be different than the originating device
depending on the security level defined for the originating
device in the Telephony Server.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not

Telephony Services API Specification 5-134

used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value, i.e.
the invoke identifier. If the call fails a negative error (<0)
condition will be returned. For library-generated
identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the return
will never be positive (>0).

The application should always check the
CSTAQueryAgentStateConfEvent message to ensure
that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED

5-135 Switching Function Services

This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Telephony Services API Specification 5-136

CSTAQueryAgentStateConfEventXE
"CSTAQueryAgentStateConfEvent"§

The Query Agent State confirmation event provides the
positive response from the server for a previous Query
Agent State service request. This event will provide the
application with the current agent state.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in Section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{ InvokeID_t invokeID; union

{ CSTAQueryAgentStateConfEvent_t queryAgentState; } u;
} cstaConfirmation;

} event;} CSTAEvent_t;

typedef enum AgentState_t {
 AG_NOT_READY = 0,
 AG_NULL = 1,
 AG_READY = 2,
 AG_WORK_NOT_READY = 3,
 AG_WORK_READY = 4
} AgentState_t;

typedef struct CSTAQueryAgentStateConfEvent_t {
 AgentState_t agentState;
} CSTAQueryAgentStateConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

5-137 Switching Function Services

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType
This is a tag with the value
CSTA_QUERY_AGENT_STATE_CONF, which
identifies this message as an
CSTAQueryAgentStateConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

agentState
This parameter specifies the current work mode state of the
agent. The possible agent states are:

· Null - This indicates that an agent is logged out of the
group or device that they serve.

· Not Ready - This state indicates that an agent is occupied
with some task other than that of serving a call.

· Ready - This state indicates that an agent is ready to
accept calls.

· Work/Not Ready - This state indicates that an agent is
occupied with after call work. It also implies that the
agent should not receive additional ACD calls.

· Work/Ready - This state indicates that an agent is
occupied with after call work. It also implies that the

Telephony Services API Specification 5-138

agent may receive additional ACD calls.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

5-139 Switching Function Services

cstaQueryLastNumber()XE "cstaQueryLastNumber()"§

The cstaQueryLastNumber() service provides the last number
dialed by a specified device.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaQueryLastNumber (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *device,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

device
This parameter is a pointer to the device identifier of the
device on which the last number is being queried. This
parameter may be different than the originating device
depending on the security level defined for the originating
device in the Telephony Server.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not

Telephony Services API Specification 5-140

used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value, i.e.
the invoke identifier. If the call fails a negative error (<0)
condition will be returned. For library-generated
identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the return
will never be positive (>0).

The application should always check the
CSTAQueryLastNumberConfEvent message to ensure
that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED

5-141 Switching Function Services

This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Telephony Services API Specification 5-142

CSTAQueryLastNumberConfEventXE
"CSTAQueryLastNumberConfEvent"§

The Query Last Number confirmation event provides the positive
response from the server for a previous Query Last Number
request. This event provides the last number that was dialed from
the requested device.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in Section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{ InvokeID_t invokeID; union

{ CSTAQueryLastNumberConfEvent_t queryLastNumber; } u;
} cstaConfirmation;

} event;} CSTAEvent_t;

typedef struct
{

DeviceID_t lastNumber,
} CSTAQueryLastNumberConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation

5-143 Switching Function Services

event.

eventType
This is a tag with the value
CSTA_QUERY_LAST_NUMBER_CONF, which
identifies this message as an
CSTAQueryLastNumberConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

lastNumber
This parameter indicates the last number dialed at the
requested device.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

Telephony Services API Specification 5-144

cstaQueryDeviceInfo()XE "cstaQueryDeviceInfo()"§

The cstaQueryDeviceInfo() service provides general
information about a device. The confirmation event for this
service will include information on the class and type of
device being queried.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaQueryDeviceInfo (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *device,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

device
This parameter is a pointer to the device identifier of the
device for which information is being requested. This
parameter may be different than the originating device
depending on the security level defined for the originating
device in the Telephony Server.

privateData

5-145 Switching Function Services

This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not
used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value, i.e.
the invoke identifier. If the call fails a negative error (<0)
condition will be returned. For library-generated
identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the return
will never be positive (>0).

The application should always check the
CSTAQueryDeviceInfoConfEvent message to ensure that
the service request has been acknowledged and processed
by the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

Telephony Services API Specification 5-146

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

5-147 Switching Function Services

CSTAQueryDeviceInfoConfEventXE
"CSTAQueryDeviceInfoConfEvent"§

The Query Device Info confirmation event provides the positive
response from the server for a previous Query Device Info request.
This event provides the application with type and class of the
requested device.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in Section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{ InvokeID_t invokeID; union

{ CSTAQueryDeviceInfoConfEvent_t queryDeviceInfo; } u;
} cstaConfirmation;

} event;} CSTAEvent_t;

typedef enum DeviceType_t {
 DT_STATION = 0,
 DT_LINE = 1,
 DT_BUTTON = 2,
 DT_ACD = 3,
 DT_TRUNK = 4,
 DT_OPERATOR = 5,
 DT_STATION_GROUP = 16,
 DT_LINE_GROUP = 17,
 DT_BUTTON_GROUP = 18,
 DT_ACD_GROUP = 19,
 DT_TRUNK_GROUP = 20,
 DT_OPERATOR_GROUP = 21,
 DT_OTHER = 255
} DeviceType_t;

Telephony Services API Specification 5-148

typedef unsigned char DeviceClass_t;
#define DC_VOICE 0x80
#define DC_DATA 0x40
#define DC_IMAGE 0x20
#define DC_OTHER 0x10

typedef struct CSTAQueryDeviceInfoConfEvent_t {
 DeviceID_t device;
 DeviceType_t deviceType;
 DeviceClass_t deviceClass;
} CSTAQueryDeviceInfoConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType
This is a tag with the value
CSTA_QUERY_DEVICE_INFO_CONF, which
identifies this message as an
CSTAQueryDeviceInfoConfEvent.

invokeID
This parameter specifies the function service request

instance for the service which was processed at the Telephony
Server or at the switch. This identifier is provided to the
application when a service request is made.

deviceIdentifier
May provide an alternate short-form static device identifier
for the device requested.

deviceType
This parameter indicates the type of device being queried.
The possible device types are:

5-149 Switching Function Services

ACD - Automatic Call Distributor (ACD)
ACD group - Automatic Call Distributor (ACD)
group
Button - is one instance of a call manipulation point
at an individual station.
Button group - is two or more instances of a call
manipulation point at an individual station.
Line - is a communications interface to one or more
stations.
Line group - is a set of communications interfaces
to one or more stations.
Operator - also known as Attendant
Operator group - two or more operator devices
used interchangeably or addressed identically.
Other - is any other type for which there is no
enumeration defined.
Station - is the traditional telephone device, either
simple or featured.
Station group - is two or more stations used
interchangeably or addressed identically.
Trunk - a device used to access other switching
sub-domains.
Trunk group - typically, two or more trunks
providing connectivity to the same place.

See the Functional Call Model section of this document for
more information on device types. Not all switch
implementations will support all the device types listed.

deviceClass
This parameter indicates the class of device being queried.
The possible device classes are:

Voice - a device that is used to make audio calls.
This class includes all normal telephones, as well as
computer modems and G3 facsimile machines.
Data - a device that is used to make digital data

Telephony Services API Specification 5-150

calls (either circuit switched or packet switched).
This class includes computer interfaces and G4
facsimile machines.
Image - a device that is used to make digital data
calls involving imaging, or high speed circuit
switched data in general. This class includes video
telephones and CODECs.
Other - a type of device not covered by data, image,
or voice.

5-151 Switching Function Services

See the Functional Call Model section of this document for more
information on device classes. Not all switch
implementations will support all the device classes listed.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

Comments
None.

Telephony Services API Specification 5-152

	CSTAHoldCallConfEventXE "CSTAHoldCallConfEvent"§
	cstaMakeCall()XE " cstaMakeCall()"§
	CSTAMakeCallConfEventXE "CSTAMakeCallConfEvent"§
	cstaMakePredictiveCall()XE "cstaMakePredictiveCall()"§
	CSTAMakePredictiveCallConfEventXE "CSTAMakePredictiveCallConfEvent"§
	cstaPickupCall()XE "cstaPickupCall()"§
	CSTAPickupCallConfEventXE "CSTAPickupCallConfEvent"§
	cstaReconnectCall()XE "cstaReconnectCall()"§
	CSTAReconnectCallConfEventXE "CSTAReconnectCallConfEvent"§
	cstaRetrieveCall()XE "cstaRetrieveCall()"§
	CSTARetriveCallConfEventXE "CSTARetriveCallConfEvent"§
	cstaTransferCall()XE "cstaTransferCall()"§
	CSTATransferCallConfEventXE "CSTATransferCallConfEvent"§
	Telephony Supplementary ServicesXE "Telephony Supplementary Services"§
	cstaSetMsgWaitingInd()XE "cstaSetMsgWaitingInd()"§
	CSTASetMsgWaitingIndConfEventXE " CSTASetMsgWaitingIndConfEvent"§
	cstaSetDoNotDisturb()XE "cstaSetDoNotDisturb()"§
	CSTASetDoNotDisturbConfEventXE "CSTASetDoNotDisturbConfEvent"§
	cstaSetForwarding()XE "cstaSetForwarding()"§
	CSTASetForwardingConfEventXE "CSTASetForwardingConfEvent"§
	cstaSetAgentState()XE "cstaSetAgentState()"§
	CSTASetAgentStateConfEventXE "CSTASetAgentStateConfEvent"§
	cstaQueryMsgWaitingInd()XE "cstaQueryMsgWaitingInd()"§
	CSTAQueryMsgWaitingIndConfEventXE "CSTAQueryMsgWaitingIndConfEvent"§
	cstaQueryDoNotDisturb()XE "cstaQueryDoNotDisturb()"§
	CSTAQueryDoNotDisturbConfEventXE "CSTAQueryDoNotDisturbConfEvent"§
	The Query Do Not Disturb confirmation event provides the positive response from the server for a previous Query Do Not Disturb service request. This event informs the application whether the feature is turned on or off.

	cstaQueryForwarding ()XE "cstaQueryForwarding ()"§
	CSTAQueryForwardingConfEventXE "CSTAQueryForwardingConfEvent"§
	cstaQueryAgentState()XE "cstaQueryAgentState()"§
	CSTAQueryAgentStateConfEventXE "CSTAQueryAgentStateConfEvent"§
	cstaQueryLastNumber()XE "cstaQueryLastNumber()"§
	CSTAQueryLastNumberConfEventXE "CSTAQueryLastNumberConfEvent"§
	cstaQueryDeviceInfo()XE "cstaQueryDeviceInfo()"§
	CSTAQueryDeviceInfoConfEventXE "CSTAQueryDeviceInfoConfEvent"§
	The Query Device Info confirmation event provides the positive response from the server for a previous Query Device Info request. This event provides the application with type and class of the requested device.

