
Chapter 5SWITCHING FUNCTION SERVICESXE
"SWITCHING FUNCTION SERVICES"§

This section describes Telephony Services which operate on calls
and activate switch related features that are associated with the
user desktop telephone or any other device defined by the
switching domain. Switching Functions Services are divided into
Basic Call Control Services and Telephony Supplementary
Services.

Basic Call Control ServicesXE "Basic Call Control
Services"§

This section defines Telephony Services which deal with basic call
control for the desktop or call center environments. These
functions provide services which allow client applications to:

· establish, control, and "tear-down" calls at a device
or within the switch,

· answer incoming calls into a device, and
· activate/de-activate features and capabilities

supported by the switch or the server.

Telephony Services API Specification 5-1

Each function in this section has an associated confirmation event
message which are events returned by the Telephony Server which
indicate to the status and other function-specific information
regarding the basic call control services request made by the
application. Confirmation event messages are always returned as a
result of a function call which has been successfully completed at
the API Client Library. A confirmation event is always originated
at the server once the application function has been processed by
the server and/or the switch. If a call to a function is unsuccessful
at the API Client Library level, the service request will not be sent
to the Telephony Server and thus no confirmation event will be
generated. If the function return code is anything other than
success, the service request will not generate a confirmation event.
The invokeIDXE " invokeID"§ can be used to match a specific
confirmation event with the specific function call which caused the
event to be generated at the server.

Once an application receives a confirmation message to a service
requested, e.g. receiving a CSTAMakeCallConfEvent after a
cstaMakeCall() service request, the request has been processed
by the server and the switch and the service request will either be
successful or failed depending on the information which is
returned in the confirmation event. The application should always
check for a function confirmation event and possibly unsolicited
status events (see Status Reporting Services) to ensure that a
specific service request has been carried out by the server and/or
the switch.

The application must have an active ACS Stream and an Event
Handling Mechanism before confirmation events can be received
from the Telephony Server. In addition, unsolicited status events
also require an active monitor before status events are delivered to
the application. See Control Services and Status Reporting
Services, respectively, for more information on events.

Not every Driver implementation will support all Telephony
functions. The application should use the cstaGetAPICaps function

5-2 Switching Function Services

to determine which Telephony services are supported.

Telephony Services API Specification 5-3

CSTAUniversalFailureConfEventXE
"CSTAUniversalFailureConfEvent"§

The CSTA universal failure confirmation event provides a generic
negative response from the server/switch for a previous requested
service. The CSTAUniversalFailureConfEvent will be sent in
place of any confirmation event described in this section when the
requested function fails. The confirmation events defined for each
function in this section are only sent when that function completes
successfully.
Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID; union
{
CSTAUniversalFailureConfEvent universalFailure; } u; }

cstaConfirmation;
} event;} CSTAEvent_t;

typedef struct
{

UniversalFailure_t error;
} CSTAUniversalFailureConfEvent_t;

typedef enum CSTAUniversalFailure_t {
 GENERIC_UNSPECIFIED = 0,
 GENERIC_OPERATION = 1,
 REQUEST_INCOMPATIBLE_WITH_OBJECT = 2,
 VALUE_OUT_OF_RANGE = 3,
 OBJECT_NOT_KNOWN = 4,
 INVALID_CALLING_DEVICE = 5,
 INVALID_CALLED_DEVICE = 6,

5-4 Switching Function Services

 INVALID_FORWARDING_DESTINATION = 7,
 PRIVILEGE_VIOLATION_ON_SPECIFIED_DEVICE = 8,
 PRIVILEGE_VIOLATION_ON_CALLED_DEVICE = 9,
 PRIVILEGE_VIOLATION_ON_CALLING_DEVICE = 10,
 INVALID_CSTA_CALL_IDENTIFIER = 11,
 INVALID_CSTA_DEVICE_IDENTIFIER = 12,
 INVALID_CSTA_CONNECTION_IDENTIFIER = 13,
 INVALID_DESTINATION = 14,
 INVALID_FEATURE = 15,
 INVALID_ALLOCATION_STATE = 16,
 INVALID_CROSS_REF_ID = 17,
 INVALID_OBJECT_TYPE = 18,
 SECURITY_VIOLATION = 19,
 GENERIC_STATE_INCOMPATIBILITY = 21,
 INVALID_OBJECT_STATE = 22,
 INVALID_CONNECTION_ID = 23,
 NO_ACTIVE_CALL = 24,
 NO_HELD_CALL = 25,
 NO_CALL_TO_CLEAR = 26,
 NO_CONNECTION_TO_CLEAR = 27,
 NO_CALL_TO_ANSWER = 28,
 NO_CALL_TO_COMPLETE = 29,
 GENERIC_SYSTEM_RESOURCE_AVAILABILITY = 31,
 SERVICE_BUSY = 32,
 RESOURCE_BUSY = 33,
 RESOURCE_OUT_OF_SERVICE = 34,
 NETWORK_BUSY = 35,
 NETWORK_OUT_OF_SERVICE = 36,
 OVERALL_MONITOR_LIMIT_EXCEEDED = 37,
 CONFERENCE_MEMBER_LIMIT_EXCEEDED = 38,
 GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY = 41,
 OBJECT_MONITOR_LIMIT_EXCEEDED = 42,
 EXTERNAL_TRUNK_LIMIT_EXCEEDED = 43,
 OUTSTANDING_REQUEST_LIMIT_EXCEEDED = 44,
 GENERIC_PERFORMANCE_MANAGEMENT = 51,
 PERFORMANCE_LIMIT_EXCEEDED = 52,
 SEQUENCE_NUMBER_VIOLATED = 61,
 TIME_STAMP_VIOLATED = 62,
 PAC_VIOLATED = 63,
 SEAL_VIOLATED = 64
} CSTAUniversalFailure_t;

Parameters

acsHandle
This is the handle for the newly opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType

Telephony Services API Specification 5-5

This tag with a value,
CSTA_UNIVERSAL_FAILURE_CONF, identifies this
message as an CSTAUniversalFailureConfEvent.
invokeID
This parameter specifies the function service request
instance that has failed at the server or at the switch. This
identifier is provided to the application when a service
request is made.

error
Unspecified errorsXE "Unspecified errors"§

Error values in this category indicate that an error has
occurred that is not among the other error types. This type
includes the following specific error value:
Unspecified Error.

Operation errorsXE "Operation errors"§
Error values in this category indicate that there is an error in
the Service Request. This type includes one of the following
specific error values:

Generic Operation Error. This error indicate that the
server has detected an error in the operation class, but that it
is not one of the defined errors, or the server cannot be any
more specific.

Request Incompatible With Object. The request is not
compatible with the object.

Value Out Of Range. The parameter has a value that is not
in the range defined for the server.

Object Not Known. The parameter has a value that is not
known to the server.

Invalid Calling Device. The calling device is not valid.

Invalid Called Device. The called device is not valid.

Privilege Violation on Specified Device. The request
cannot be provided because the specified device is not
authorized for the Service.

Invalid Forwarding Destination. The request cannot be
provided because the forwarding destination device is not
valid.

5-6 Switching Function Services

Privilege Violation On Called Device. The request cannot
be provided because the called device is not authorized for
the Service.

Privilege Violation On Calling Device. The request cannot
be provided because the calling device is not authorized for
the Service.

Invalid CSTA Call Identifier. The call identifier is not
valid.

Invalid CSTA Device Identifier. The Device Identifier is
not valid.

Invalid CSTA Connection Identifier. The Connection
identifier is not valid.

Invalid Destination. The Service Request specified a
destination that is not valid.

Invalid Feature. The Service Request specified a feature
that is not valid.

Invalid Allocation State. The Service Request indicated an
allocation condition that is not valid.

Invalid Cross Reference ID The Service Request specified
a Cross Reference Id that is not in use at this time.

Invalid Object Type. The Service Request specified an
object type that is outside the range of valid object types for
the Service.

Security Violation. The request violates a security
requirement.

State incompatibility errors
XE "State incompatibility errors"§Error values in this
category indicate that the Service Request was not
compatible with the condition of a related CSTA object.
This type includes the following specific error values:

Generic State Incompatibility. The server is unable to be
any more specific.

Incorrect Object State. The object is in the incorrect state
for the Service. This general error value may be used when
the server isn't able to be any more specific.

Invalid CSTA Connection Identifier For Active Call. The
Connection identifier specified in the Active Call parameter
of the request is not in the correct state.

Telephony Services API Specification 5-7

No Active Call. The requested Service operates on an active
call, but there is no active call.

No Held Call. The requested Service operates on a held call,
but the specified call is not in the Held state.

No Call To Clear. There is no call associated with the
CSTA Connection identifier of the Clear Call request.

No Connection To Clear. There is no Connection for the
CSTA Connection identifier specified as Connection To Be
Cleared.

No Call To Answer. There is no call active for the CSTA
Connection identifier specified as Call To Be Answered.

No Call To Complete. There is no call active for the CSTA
Connection identifier specified as Call To Be Completed.

System resource availability errors
XE "System resource availability errors"§Error values in this
category indicate that the Service Request cannot be
completed because of a lack of system resources within the
serving sub-domain. This type includes one of the following
specific error values:

Generic System Resource Availability Error. The server
is unable to be any more specific.

Service Busy. The Service is supported by the server, but is
temporarily unavailable.

Resource Busy. An internal resource is busy. There is high
probability that the Service will succeed if retried.

Resource Out Of Service. The Service requires a resource
that is Out Of Service. A Service Request that encounters
this condition could initiate system problem determination
actions (e.g. notification of the network administrator).

Network Busy. The server sub-domain is busy.

Network Out Of Service. The server sub-domain is Out Of
Service.

Overall Monitor Limit Exceeded. This request would
exceed the server's overall limit of monitors.

Conference Member Limit Exceeded. This request would
exceed the server's limit on the number of members of a
conference.

5-8 Switching Function Services

Subscribed resource availability errors
XE "Subscribed resource availability errors"§Error values in
this category indicate that the Service Request cannot be
completed because a required resource must be purchased or
contracted by the client system. This type includes the
following specific error values:

Generic Subscribed Resource Availability Error. The
server is unable to be any more specific.

Object Monitor Limit Exceeded. This request would
exceed the server's limit of monitors for the specified object.

External Trunk Limit Exceeded. The limit of external
trunks would be exceeded by this request.

Outstanding Requests Limit Exceeded. The limit of
outstanding requests would be exceeded by this request.

Performance management errors
XE "Performance management errors"§Error values in this
category indicate that an error has been returned as a
performance management mechanism. This type includes
the following specific error values:

Generic Performance Management Error. The server is
unable to be any more specific.

Performance Limit Exceeded. A performance limit is
exceeded.

7.Security errorsXE "Security errors"§
Error values in this category indicate that there is a security error.

This type includes the following specific error values:

Generic Security Error. The server is unable to be any
more specific.

Sequence Number Error. This error indicates that the
server has detected an error in the Sequence Number of the
operation.

Time Stamp Error. This error indicates that the server has
detected an error in the Time Stamp of the operation.

PAC Error. This error indicates that the server has detected
an error in the PAC of the operation.

Seal Error. This error indicates that the server has detected
an error in the Seal of the operation.

Telephony Services API Specification 5-9

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

Comments

None.

5-10 Switching Function Services

cstaAlternateCall()XE "cstaAlternateCall()"§

The Alternate Call Service provides a higher-level, compound
action of the Hold Call Service followed by Retrieve Call Service.
This function will place an existing active call on hold and then
either retrieves a previously held call or connects an alerting call at
the same device.
Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaAlternateCall(
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *activeCall,
ConnectionID_t *otherCall,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

activeCall
This parameter points to the connection identifier for the
"Connected" or active call which is to be alternated.

otherCall

Telephony Services API Specification 5-11

This parameter points to the connection identifier for the
"Alerting" or "Held" call which is to be alternated.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not
used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value,
i.e. the invoke identifier. If the call fails a negative
error (<0) condition will be returned. For library-
generated identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the
return will never be positive (>0).

The application should always check the
CSTAAlternateCallConfEvent message to ensure that the service
request has been acknowledged and processed by the Telephony Server
and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

5-12 Switching Function Services

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

A successful call to this function will causes the held-or-
delivered call to be swapped with the active call.

As shown in the figure below, the Alternate Call Service
places the user's active call to device D2 on hold and, in a
combined action, establishes or retrieves the call between
device D1 and device D3 as the active call. Device D2 can
be considered as being automatically placed on hold
immediately prior to the retrieval/establishment of the
held/active call to device D3.

The operation of the Alternate Call Service is depicted in
Figure 5.1.

Before After

Figure 5.1 - Alternate Call

Telephony Services API Specification 5-13

CSTAAlternateCallConfEventXE "CSTAAlternateCallConfEvent"§

The Alternate Call confirmation event provides the positive
response from the server for a previous alternate call
request.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

CSTAAlternateCallConfEvent_t alternateCall;
} u;

} cstaConfirmation;
} event;

} CSTAEvent_t;

typedef struct CSTAAlternateCallConfEvent_t {
 Nulltype null;
} CSTAAlternateCallConfEvent_t;

Parameters

acsHandle
This is the handle for the newly opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,

5-14 Switching Function Services

which identifies this message as an CSTA confirmation
event.

eventType
This is a tag with the value
CSTA_ALTERNATE_CALL_CONF, which identifies
this message as an CSTAAlternateCallConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

Telephony Services API Specification 5-15

cstaAnswerCall()XE "cstaAnswerCall()"§

The Answer Call function will connect an alerting call at the
device which is alerting. The call must be associated with a device
that can answer a call without requiring physical user
manipulation.
Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaAnswerCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *alertingCall,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

alertingCall
This parameter points to the connection identifier of the
call to be answered.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not

5-16 Switching Function Services

used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value,
i.e. the invoke identifier. If the call fails a negative
error (<0) condition will be returned. For library-
generated identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the
return will never be positive (>0).

The application should always check the
CSTAAnswerCallConfEvent message to ensure that the
service request has been acknowledged and processed by
the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED

Telephony Services API Specification 5-17

This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

The Answer Call Service works for an incoming call that is
alerting a device. In the following figure the call C1 is
delivered to device D1. The cstaAnswerCall() is
typically used with telephones that have attached
speakerphone units to establish the call in a hands-free
operation.

Before After

Figure 5.2 - Answer Call

5-18 Switching Function Services

CSTAAnswerCallConfEventXE "CSTAAnswerCallConfEvent"§

The Answer Call confirmation event provides the positive
response from the server for a previous answer call request.
Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

CSTAAnswerCallConfEvent_t answerCall;
} u;

} cstaConfirmation;
} event;} CSTAEvent_t;

typedef struct CSTAAnswerCallConfEvent_t {
 Nulltype null;
} CSTAAnswerCallConfEvent_t;

Parameters

acsHandle
This is the handle for the newly opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType

Telephony Services API Specification 5-19

This is a tag with the value
CSTA_ANSWER_CALL_CONF, which identifies this
message as an CSTAAnswerCallConfEvent.
invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

5-20 Switching Function Services

cstaCallCompletion()XE " cstaCallCompletion()"§

The Call Completion Service invokes specific switch features that
may complete a call that would otherwise fail. The feature to be
activated is passed as a parameter to the function.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaCallCompletion (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
Feature_t feature,
ConnectionID_t *call,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke
ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS Library
when the Stream is set for Library-generated invoke IDs.

feature
Specifies the call completion feature that is desired. These
include:

CAMP_ON - queues the call until the device is available.

Telephony Services API Specification 5-21

CALL_BACK - requests the called device to return the call when it returns
to idle.

INTRUDE - adds the caller to an existing active call at the called
device. This feature requires the appropriate user security

level at the server.

typedef enum Feature_t {
 FT_CAMP_ON = 0,
 FT_CALL_BACK = 1,
 FT_INTRUDE = 2
} Feature_t;

 call
This is a pointer to a connection identifier for the call to be
completed.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not
used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value,
i.e. the invoke identifier. If the call fails a negative
error (<0) condition will be returned. For library-
generated identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the
return will never be positive (>0).

The application should always check the
CSTACallCompletionConfEvent message to ensure that the service
request has been acknowledged and processed by the Telephony Server

5-22 Switching Function Services

and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

Generally this Service is invoked when a call is established
and it encounters a busy or no answer at the far device.

The Camp On feature allows queuing for availability of the far end
device. Generally, Camp On makes the caller wait until the called
party finishes the current call and any previously camped on calls.
Call Back allows requesting the called device to return the call
when it returns to idle. Call Back works much like Camp On, but
the caller is allowed to hang up after invoking the service, and the
CSTA Switching Function calls both parties when the called party
becomes free. Intrude allows the caller to be added into an
existing call at the called device.

Telephony Services API Specification 5-23

CSTACallCompletionConfEventXE
"CSTACallCompletionConfEvent"§

The Call Completion confirmation event provides the positive
response from the server for a previous call completion request.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

CSTACallCompletionConfEvent_t callCompletion;
}u; } cstaConfirmation;

} event;} CSTAEvent_t;

typedef struct CSTACallCompletionConfEvent_t {
 Nulltype null;
} CSTACallCompletionConfEvent_t;

Parameters

acsHandle
This is the handle for the newly opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

5-24 Switching Function Services

eventType
This is a tag with the value
CSTA_CALL_COMPLETION_CONF, which identifies
this message as an CSTACallCompletionConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

Telephony Services API Specification 5-25

cstaClearCall()XE "cstaClearCall()"§

The Clear Call Service releases all of the devices from the
specified call, and eliminates the call itself. The call ceases
to exist and the connection identifiers used for observation
and manipulation are released.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaClearCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *call,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

 call
This is a pointer to the connection identifier for the call to
be cleared.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not

5-26 Switching Function Services

used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never be
zero (0).

· Application-generated Identifiers - if the function
call completes successfully it will return a zero (0)
value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the
CSTAClearCallConfEvent message to ensure that the
service request has been acknowledged and processed by
the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

Telephony Services API Specification 5-27

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

This function will cause each device associated with a call to be
released and the CSTA Connection Identifiers (and their
components) are freed.

Figure 5.4 illustrates the results of a Clear Call (CSTA Connection
ID = C1,D1), where call C1 connects devices D1, D2 and D3.

Before After

Figure 5.4 - Clear Call

5-28 Switching Function Services

CSTAClearCallConfEventXE "CSTAClearCallConfEvent"§

The Clear Call confirmation event provides the positive response
from the server for a previous clear call request.
Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

CSTAClearCallConfEvent_t clearCall;
}u; } cstaConfirmation;

} event;} CSTAEvent_t;

typedef struct CSTAClearCallConfEvent_t {
 Nulltype null;
} CSTAClearCallConfEvent_t;

Parameters

acsHandle
This is the handle for the newly opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType
This is a tag with the value

Telephony Services API Specification 5-29

CSTA_CLEAR_CALL_CONF, which identifies this
message as an CSTAClearCallConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This confirmation indicates that all instances of the ACS
Connection Identifiers for all the endpoints in the call and
in the current association have become invalid. The
instances of identifiers should not be used to request
additional services of the Telephony Server.

5-30 Switching Function Services

cstaClearConnection()XE "cstaClearConnection()"§

The Clear Connection Service releases the specified device
from the designated call. The Connection is left in the Null
state. Additionally, the CSTA Connection Identifier
provided in the Service Request is released.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaClearConnection (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *call,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

 call
This is a pointer to the connection identifier for the
connection to be cleared.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not
used, the pointer should be set to NULL.

Telephony Services API Specification 5-31

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle which can be provided by the application to
match a specific instance of a function service request with
its associated confirmation event. If the application
provides an invokeID of zero (0), the API Client Library
will select a unique positive invoke identifier on behalf of
the application. A library-generated invoke identifier is
returned upon a successful call to this function
(RetCode_t). The invoke identifier can also be specified by
the application. For application-generated invoke
identifiers the invokeID parameter must be set to any non-
zero value. In this case the API Client Library will not
select an invoke identifier and the return value (RetCode_t)
will return either zero (0) if successful or a negative error
condition. In either case (library or application invoke
identifiers), the invokeID for a specific service request will
be included in its associated confirmation event.

Library-generated invoke identifiers will be created
sequentially without regards to application-generated
invoke identifiers. Mixing the two methods is not
recommended since invoke identifiers should be unique.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value,

5-32 Switching Function Services

i.e. the invoke identifier. If the call fails a negative
error (<0) condition will be returned. For library-
generated identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the
return will never be positive (>0).

The application should always check the
CSTAClearConnectionConfEvent message to ensure
that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

This Service releases the specified Connection and CSTA
Connection Identifier instance from the designated call.
The result is as if the device had hung up on the call. It is
interesting to note that the phone may not be physically
returned to the switch hook, which may result in silence,

Telephony Services API Specification 5-33

dial tone, or some other condition. Generally, if only two
Connections are in the call, the effect of
cstaClearConnection() function is the same as
cstaClearCall().

Figure 5.5 is an example of the results of a Clear
Connection (CSTA Connection Id = C1,D3), where call C1
connects devices D1, D2 and D3. Note that it is likely that
the call is not cleared by this Service if it is some type of
conference.

Before After

Figure 5.5 - Clear Connection

5-34 Switching Function Services

CSTAClearConnectionConfEventXE
"CSTAClearConnectionConfEvent"§

The Clear Connection confirmation event provides the positive
response from the server for a previous clear connection request.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types
andCSTA Data Types in section 4 for a complete
description of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{
 CSTAClearConnectionConfEvent_t clearConnection;
} u;

} cstaConfirmation;
} event;} CSTAEvent_t;

typedef struct CSTAClearConnectionConfEvent_t {
 Nulltype null;
} CSTAClearConnectionConfEvent_t;

Parameters

acsHandle
This is the handle for the newly opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

Telephony Services API Specification 5-35

eventType
This tag with the value
CSTA_CLEAR_CONNECTION_CONF identifies this
message as an CSTAClearConnectionConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This confirmation event indicates that the instance of the
ACS Connection Identifier for the cleared Connection is
released. The identifier should not be used to request
additional services of the Telephony Server.

5-36 Switching Function Services

cstaConferenceCall()XE " cstaConferenceCall()"§

This function provides the conference of an existing held call and
another active call at a device. The two calls are merged into a
single call and the two Connections at the conferenceing device are
resolved into a single Connection in the Connected state. The pre-
existing CSTA Connection Identifiers associated with the device
creating the conference are released, and a new CSTA Connection
Identifier for the resulting conferenced Connection is provided.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaConferenceCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *heldCall,
ConnectionID_t *activeCall,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

heldCall
This is a pointer to the connection identifier for the call
which is on hold and is to be conferenced with an active
call.

Telephony Services API Specification 5-37

activeCall
This is a pointer to the connection identifier for the call
which is active or proceeding and is to be conferenced with
the held call.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not
used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value,
i.e. the invoke identifier. If the call fails a negative
error (<0) condition will be returned. For library-
generated identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the
return will never be positive (>0).

The application should always check the
CSTAConferenceCallConfEvent message to ensure that
the service request has been acknowledged and processed
by the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

5-38 Switching Function Services

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

Figure 5.6 is an example of the starting conditions for the
cstaConferenceCall() function, which are: the call C1 from D1
to D2 is in the held state. A call C2 from D1 to D3 is in progress
or active.

Before After

Figure 5.6 - Conference Call

D1, D2 and D3 are conferenced or joined together into a single
call, C3. The value of the Connection identifier (D1,C3) may be
that of one of the CSTA Connection Identifiers provided in the
request (D1,C1 or D1,C2).

Telephony Services API Specification 5-39

CSTAConferenceCallConfEventXE
"CSTAConferenceCallConfEvent"§

The Conference Call confirmation event provides the
positive response from the server for a previous conference
call request.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID; union
{ CSTAConferenceCallConfEvent_t conferenceCall; } u; }

cstaConfirmation;
} event;} CSTAEvent_t;

typedef struct Connection_t {
 ConnectionID_t party;
 DeviceID_t staticDevice;
} Connection_t;

typedef struct ConnectionList {
 int count;
 Connection_t *connection;
} ConnectionList;

typedef struct CSTAConferenceCallConfEvent_t {
 ConnectionID_t newCall;
 ConnectionList connList;
} CSTAConferenceCallConfEvent_t;

Parameters

acsHandle

5-40 Switching Function Services

This is the handle for the newly opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType
This is a tag with the value
CSTA_CONFERENCE_CALL_CONF, which identifies
this message as an CSTAClearConnectionConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

newCall
This parameter specifies the resulting connection identifier
for the calls which were conferenced at the Conferenceing
device. This connection identifier replaces the two previous
connection identifier at that device.

connList
Specifies the resulting number of known devices in the
conference. This field contains a count (count) of the
number of devices in the conference and a pointer
(*connection) to an array of Connection_t structures
which define each connection in the call.

Each Connection_t record contains the following:

Party - indicates the Connection ID of the party in the conference.

Device - provides the static reference for the party in the
conference. This parameter may have a value that
indicates the static identifier is not known.

Telephony Services API Specification 5-41

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

5-42 Switching Function Services

cstaConsultationCall()XE "cstaConsultationCall()"§

The cstaConsultationCall() function will provide the compound
or combined action of the Hold Call service followed by Make
Call service. This service places an existing active call at a device
on hold and initiates a new call from the same device using a
single function call.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaConsultationCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *activeCall,
DeviceID_t *calledDevice,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke
ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS Library
when the Stream is set for Library-generated invoke IDs.

activeCall
This is a pointer to the connection identifier for the active
call which is to be placed on hold before the new call is
established.

calledDevice

Telephony Services API Specification 5-43

This is a pointer to the destination device address for the
new call to be established.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not
used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value,
i.e. the invoke identifier. If the call fails a negative
error (<0) condition will be returned. For library-
generated identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the
return will never be positive (>0).

The application should always check the
CSTAConsultationCallConfEvent message to ensure that the service
request has been acknowledged and processed by the Telephony Server
and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

5-44 Switching Function Services

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

This compound service allows the application to place an
existing call on hold and at the same time establish a new
call to another device.

In this case an active call C1 exists at D1 (see Figure 5.7)
and a consultative call is desired to D3. After this function
is called, the original active call (C1) is placed on hold and
a new call, C2, is placed to device D3.

Before After

Figure 5.7 - Consultation Call

Telephony Services API Specification 5-45

CSTAConsultationCallConfEventXE
"CSTAConsultationCallConfEvent"§

The Consultation Call confirmation event provides the positive
response from the server for a previous consultation call request.
Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID; union
{ CSTAConsultationCallConfEvent_t consultationCall;
} u; } cstaConfirmation;

} event;} CSTAEvent_t;
typedef struct CSTAConsultationCallConfEvent_t {

 ConnectionID_t newCall;
} CSTAConsultationCallConfEvent_t;

Parameters

acsHandle
This is the handle for the newly opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType
This tag with the value
CSTA_CONSULTATION_CALL_CONF, identifies

5-46 Switching Function Services

this message as an CSTAConsultationCallConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

newCall
Specifies the Connection ID for the originating connection
of the new call originated by the Consultation Call request.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

Telephony Services API Specification 5-47

cstaDeflectCall()XE " cstaDeflectCall()"§

The cstaDeflectCall() service takes an alerting call at a device
and redirects the call to another device on the switch.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaDeflectCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *deflectCall,
DeviceID_t *calledDevice,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

deflectCall
This is a pointer to the connection identifier of the call
which is to be deflected to another device within the
switch.

calledDevice
A pointer to the device identifier where the original call is
to be deflected.

5-48 Switching Function Services

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not
used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value,
i.e. the invoke identifier. If the call fails a negative
error (<0) condition will be returned. For library-
generated identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the
return will never be positive (>0).

The application should always check the
CSTADeflectCallConfEvent message to ensure that the
service request has been acknowledged and processed by
the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously active

Telephony Services API Specification 5-49

ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

The Deflect Call Service takes a ringing (alerting) call at a
device (D1) and sends it to a new destination (D3). This
function replaces the original called device, as specified in
the deflectCall parameter, with a different device within
the switch, as specified in the calledDevice parameter.

Before After

Figure 5.8 - Deflect Call

5-50 Switching Function Services

CSTADeflectCallConfEventXE "CSTADeflectCallConfEvent"§

The Deflect Call confirmation event provides the positive response
from the server for a previous deflect call request.
Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{
 CSTADeflectCallConfEvent_t deflectCall;
} u;

} cstaConfirmation;
} event;} CSTAEvent_t;

typedef struct CSTADeflectCallConfEvent_t {
 Nulltype null;
} CSTADeflectCallConfEvent_t;

Parameters

acsHandle
This is the handle for the newly opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType
This is a tag with the value

Telephony Services API Specification 5-51

CSTA_DEFLECT_CALL_CONF, which identifies this
message as an CSTADeflectCallConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

5-52 Switching Function Services

cstaGroupPickupCall()XE " cstaGroupPickupCall()"§

The cstaGroupPickupCall() service moves an alerting call (at
one or more devices in a device pickup group) to a specified
device.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaGroupPickupCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *deflectCall,
DeviceID_t *pickupDevice,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a

specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke ID
mechanism is set for Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the Stream is set for
Library-generated invoke IDs.

deflectCall
This is a pointer to the the call being picked up.

pickupDevice
This is a pointer to the device which is picking up calls
from the group.

privateData

Telephony Services API Specification 5-53

This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not
used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value,
i.e. the invoke identifier. If the call fails a negative
error (<0) condition will be returned. For library-
generated identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the
return will never be positive (>0).

The application should always check the
CSTAGroupPickupConfEvent message to ensure that the service
request has been acknowledged and processed by the Telephony Server
and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

5-54 Switching Function Services

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

The cstaGroupPickupCall() service redirects an alerting
call (at one of more devices in a device pickup) to a
specified device, the pickupDevice.

Before After

Figure 5.10 - Group Pickup Call

Telephony Services API Specification 5-55

CSTAGroupPickupCallConfEventXE
"CSTAGroupPickupCallConfEvent"§

The Group Pickup Call confirmation event provides the
positive response from the server for a previous Group
Pickup call request.

Syntax

The following structure shows only the relevant portions of
the unions for this message. SeeACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{
 CSTAGroupPickupCallConfEvent_t groupPickupCall;
}u; } cstaConfirmation;

} event;} CSTAEvent_t;

typedef struct CSTAGroupPickupCallConfEvent_t {
 Nulltype null;
} CSTAGroupPickupCallConfEvent_t;

Parameters

acsHandle
This is the handle for the newly opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation

5-56 Switching Function Services

event.

eventType
This is a tag with the value CSTA_GROUP_PICKUP_-
CALL_CONF, which identifies this message as an
CSTAGroupPickupCallConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is
set to NULL in these functions, then no private data will be
delivered to the application.

Telephony Services API Specification 5-57

cstaHoldCall()XE "cstaHoldCall()"§

The cstaHoldCall() service places an existing Connection
in the held state.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t cstaHoldCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *activeCall,
Boolean_t reservation,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for
matching a specific instance of a function service request
with its associated confirmation event. This parameter is
only used when the Invoke ID mechanism is set for
Application-generated IDs in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream
is set for Library-generated invoke IDs.

activeCall
A pointer to the connection identifier for the active call to
be placed on hold.

reservation
Reserves the facility for reuse by the held call. This option
is not appropriate for most non-ISDN telephones. The
default is no connection reservation. This parameter is

5-58 Switching Function Services

optional.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not
used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value,
i.e. the invoke identifier. If the call fails a negative
error (<0) condition will be returned. For library-
generated identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the
return will never be positive (>0).

The application should always check the
CSTAHoldCallConfEvent message to ensure that the
service request has been acknowledged and processed by
the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

Telephony Services API Specification 5-59

ACSERR_STREAM_FAILED
This return value indicates that a previously active
ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

A call to this function will interrupt communications for an
existing call at a device. The call is usually, but not always, in the
active state. A call may be placed on hold by the user some time
after completion of dialing. The associated connection for the held
call is made available for other uses, depending on the reservation
option (ISDN-case). As shown in Figure 5.11, if the Hold Call
service is invoked for device D1 on call C1, then call C1 is placed
on hold at device D1. The hold relationship is affected at the
holding device.

Before After

Figure 5.11 - Hold Call

The cstaHoldCall() service maintains a relationship between the
holding device and the held call that lasts until the call is retrieved
from the hold status, or until the call is cleared.

5-60 Switching Function Services

	Basic Call Control ServicesXE "Basic Call Control Services"§
	CSTAUniversalFailureConfEventXE "CSTAUniversalFailureConfEvent"§
	cstaAlternateCall()XE "cstaAlternateCall()"§
	CSTAAlternateCallConfEventXE "CSTAAlternateCallConfEvent"§
	cstaAnswerCall()XE "cstaAnswerCall()"§
	CSTAAnswerCallConfEventXE "CSTAAnswerCallConfEvent"§
	cstaCallCompletion()XE " cstaCallCompletion()"§
	camp_on - queues the call until the device is available.
	call_back - requests the called device to return the call when it returns to idle.
	intrude - adds the caller to an existing active call at the called device. This feature requires the appropriate user security level at the server.

	CSTACallCompletionConfEventXE "CSTACallCompletionConfEvent"§
	cstaClearCall()XE "cstaClearCall()"§
	CSTAClearCallConfEventXE "CSTAClearCallConfEvent"§
	cstaClearConnection()XE "cstaClearConnection()"§
	CSTAClearConnectionConfEventXE "CSTAClearConnectionConfEvent"§
	cstaConferenceCall()XE " cstaConferenceCall()"§
	CSTAConferenceCallConfEventXE "CSTAConferenceCallConfEvent"§
	cstaConsultationCall()XE "cstaConsultationCall()"§
	CSTAConsultationCallConfEventXE "CSTAConsultationCallConfEvent"§
	cstaDeflectCall()XE " cstaDeflectCall()"§
	CSTADeflectCallConfEventXE "CSTADeflectCallConfEvent"§
	cstaGroupPickupCall()XE " cstaGroupPickupCall()"§
	CSTAGroupPickupCallConfEventXE "CSTAGroupPickupCallConfEvent"§
	cstaHoldCall()XE "cstaHoldCall()"§

