
Chapter 4CONTROL SERVICES

This section defines the Application Programming Interface (API)
Control ServicesXE "Control Services"§ (ACS) associated with
the call control capabilities (CSTA-based services) supported by
NetWare Telephony Services. ACS functions deal with the
characteristics of the API interface (e.g. opening and closing the
ACS interface). CSTA functions deal with the call and messaging
mechanisms supported by the API Client Library. The ACS
functions and events provide the application with:

· The ability to open and initialize a virtual communication
channel (ACS stream for CSTA-based services) with any
Telephony Server defined by the system

· The use of a blocked or polling mechanism to receive
events

· The initialization of an Event Service Routine (ESR)
mechanism for the notification of the arrival of solicited
and unsolicited event messages from the server or the API
Client Library. This mechanism may be different for each
API environment.

· The ability to get a list of Telephony Servers on the
network

Telephony Services API Specification 4-1

· The ability to poll the Telephony Server for the support
capabilities

4-2 Control Services

Opening an ACS Stream

XE "Opening an ACS Stream"§In order to obtain Telephony
Services from the Telephony Server an ACS stream or session
must be established and initialized between the client and the
server. This client/server connection is used to establish an
application control session which is a logical link between the
application using the API at the client PC and call processing
software on the server. The session enables the application to
request certain telephony control functions (e.g. making a call) be
performed on its behalf and on behalf of the user. The server
software then in turn performs the requested operation, e.g.
establishing a call between the end-user telephone on the desktop
and another station destination provided by the application. This
session is established through the server which acts as the gateway
or a "bridge" between the data and voice environments. This
gateway/bridging function provides the logical voice/data
integration needed at the application level in order to control the
telephone on the users desktop. Each application must open its
own ACS Stream before any services are requested.

The establishment of the client/server ACS Stream is
accomplished using the acsOpenStream()XE
"acsOpenStream()"§ and receiving the complementary
ACSOpenStreamConfEventXE
"ACSOpenStreamConfEvent"§ message. The
acsOpenStream() is a request to establish an ACS Stream (for
CSTA-based services) with the Telephony Server. The acsHandle
returned by the acsOpenStream() function must be used by the
application whenever the application accesses the ACS Stream.
The ACS Stream may not be used by the application to request
services from the Telephony Server until the corresponding
ACSOpenStreamConfEvent has been received. The
acsOpenStream() function is always a non-blocking call. The
acsOpenStream() function will initiate communications with a

Telephony Services API Specification 4-3

Telephony Server and will return to the application immediately.
The application must monitor the acsHandle for the
ACSOpenStreamConfEvent before requesting Telephony
Services. After the ACSOpenStreamConfEvent has been
successfully received for a ACS Stream, call control sessions can
be established between the application and the Telephony Server.
The application can start monitoring for telephony or other events
associated with the user's telephone. The application should always
check the ACSOpenStreamConfEvent to ensure that the
connection has been established as requested by the application.
The application is not guaranteed to get the API functional level
requested in the acsOpenStream() function since these
parameters depend on security access administration at the server.
It is the responsibility of the application to dismantle the ACS
Stream via the acsCloseStream()XE "acsCloseStream()"§ or
the acsAbortStream()XE "acsAbortStream()"§ function to
ensure that all system resources associated with the ACS Stream
have been released.

The dismantling of the client/server ACS Stream can be
accomplished by using the acsCloseStream()XE
"acsCloseStream()"§ function and receiving the complementary
ACSCloseStreamConfEvent XE "ACSCloseStreamConfEvent "§
message. The acsCloseStream() function will begin an orderly
disconnect of the ACS Stream to the Telephony Server, and the
application may not request any services from the Telephony
Server after the acsCloseStream() function has returned. The
acsHandle that the application passes to the acsCloseStream()
function remains in effect until the application has received the
ACSCloseStreamConfEvent. The reception of the
ACSCloseStreamConfEvent by the application frees all system
resources associated with the ACS Stream, and invalidates the
acsHandle. The ACSCloseStreamConfEvent is guaranteed to be
the last event the application will receive on the ACS Stream. All
call control sessions that existed between the application and the
server will be dismantled during the procedures associated with the
acsCloseStream() function. The calls on the switch, however, are

4-4 Control Services

not dropped due to the close request, just the call associations
maintained by the Telephony Server.

The acsCloseStream() function is always a non-blocking call.
The acsCloseStream() function will return to the application
immediately after it has initiated orderly disconnect procedures
from the Telephony Server, but the application may still receive
events on the acsHandle associated with the ACS Stream. The
application must continue to poll until it receives the
ACSCloseStreamConfEvent so that system resources can be
released.

If the application does not require confirmation, it can use the
acsAbortStream() XE "acsAbortStream() "§function to
unilaterally dismantle an ACS Stream. The acsAbortStream()
function is a non-blocking function and will return to the
application immediately. When the acsAbortStream() function
returns, the acsHandle is invalid. The API Client Library will
clean up all resources associated with this handle, including any
events associated with this handle not received by the application.
The abort stream request will be passed to the Telephony Server,
which will also clean up all resources and call control sessions that
existed between the application and the server. The calls on the
switch, however, are not dropped due to the abort request, just the
call associations maintained by the Telephony Server. There is no
confirmation event for an acsAbortStream() call.

An application may open several ACS Streams, but is restricted to
one stream per advertised telephony service. A Telephony Server
advertises each registered PBX Driver service. Since the PBX
Drivers are vendor dependent and may support multiple CTI links,
an application cannot make any correlation between a registered
PBX Driver service and the number of underlying physical CTI
links.

Telephony Services API Specification 4-5

Sending Requests and Responses

XE "Sending Requests and Responses"§After the ACS Stream is
successfully opened and the ACSOpenStreamConfEvent is
received, the application can make requests of the Telephony
Server (and respond to Telephony Services requests) by applying
the acsHandle to the functions defined in the Switching Function
Services section of this document. Each function request to the
Telephony Server requires an invokeID (which can be application
or library generated) that will be returned in the confirmation
event of the function call. The invokeID can be used by the
application to match the confirmation event (or failure event) to
the corresponding request. An application specifies whether
invokeIDs will be application or library generated by specifying
this choice in one of the parameters to the acsOpenStream
function. Once the invokeID type has been selected for an ACS
stream via the acsOpenStream function, it cannot be changed for
this stream.

Receiving Events

XE "Receiving Events"§
When the ACS Stream is successfully opened, the API Library has
at least one message, (i.e. the ACSOpenStreamConfEvent)
queued for the application. In order to retrieve this event and
subsequent messages, the application must use the
acsGetEventBlock() XE "acsGetEventBlock() "§(blocking
mode) or the acsGetEventPoll()XE "acsGetEventPoll()"§
(non-blocking mode) function. The blocking and non-blocking
modes are defined as follows:

· Blocking - an application can choose to use the
acsGetEventBlock() function which gets the next
event or blocks if no events are available in the API

4-6 Control Services

Library event queue. The API Library event queue
contains messages for all ACS streams opened by
this application. An application indicates which
ACS stream it wishes to receive a message from by
specifying the acsHandle in the
acsGetEventBlock() call. Using this mechanism,
the application that requested an event will be "put
to sleep" and be awakened only when an event has
occurred. This event handling mechanism is useful
for applications which monitor a station on the
switch and only require CPU cycles for processing
when an event has occurred.

· Non-Blocking - If the application cannot be
blocked while waiting for an event, a non-blocking
mechanism is also supported by the API Client
Library. This mechanism allows the application to
get events at its own schedule or pace by simply
polling for the event when events are required.
Polling is accomplished using the
acsGetEventPoll() function which is called every
time the application wants to process an event. If
the acsGetEventPoll() function call is successful,
it returns the next event in the API Client Library
event queue. The API Library event queue contains
messages for all ACS streams opened by this
application. An application indicates which ACS
stream it wishes to receive a message from by
specifying the acsHandle in the acsGetEventPoll()
call. When the API Library event queue is empty
the function returns immediately with a "no
message" cause code.

The application must poll the API Library event queue often
enough so that the queue does not overflow. The API Library will
stop acknowledging messages from the Telephony Server when
the queue fills up, ultimately resulting in a loss of the stream.

Telephony Services API Specification 4-7

The API library provides a rudimentary Event Service Routine
(ESR)XE "Event Service Routine (ESR)"§ mechanism for the
asynchronous notification of the arrival of incoming events. The
application may specify an ESR function in acsSetESR()XE
"acsSetESR()"§. The ESR mechanism is intended only for the
notification of incoming events from the API Library, and does
not process incoming events. The application can use the ESR
mechanism to trigger platform specific events (i.e. post a
Windowsä message for the application, or signal a semaphore in
the NetWareâ environment). Note that the application must still
use acsGetEventBlock() or acsGetEventPoll() to receive the
message. When a message is known to be available, it does not
matter which function is used to retrieve it.

4-8 Control Services

API Control Services (ACS) Functions and Confirmation
Events

This section defines the ACS functionsXE "ACS functions"§
associated with the Telephony Server's ACS Services. These
functions are used to open and manage events on the ACS Stream
between client workstation and the Telephony Server.

Telephony Services API Specification 4-9

acsOpenStream ()

XE "acsOpenStream ()"§acsOpenStream() opens a
communications session (ACS message stream) to the
Telephony Server. This stream is required in order to
access the other ACS Control Services supported by the
client library and the CSTA client Telephony Services
supported by the server and must be called before any other
ACS or CSTA services is requested. acsOpenStream()
immediately returns an acsHandle; a confirmarion event
arrives later.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t acsOpenStream(
ACSHandle_t *acsHandle, /* RETURN */
InvokeIDType_t invokeIDType, /* INPUT */
InvokeID_t invokeID, /* INPUT */
StreamType_t streamType, /* INPUT */
ServerID_t *serverID, /* INPUT */
LoginID_t *loginID, /* INPUT */
Passwd_t *passwd, /* INPUT */
AppName_t *applicationName, /* INPUT */
Level_t acsLevelReq, /* INPUT */
Version_t *apiVer, /* INPUT */
unsigned short sendQSize, /* INPUT */
unsigned short sendExtraBufs, /* INPUT */
unsigned short recvExtraBufs /* INPUT */
PrivateData_t *privateData); /* INPUT */

Parameters

acsHandle
This is the value of the unique handle to the opened ACS Stream
returned by the function call. This handle is determined by the API
Client Library and is unique to the ACS Stream being opened.
Once the open function is successful, this handle must be used in
all other function calls to the API. If the open is successful, the
application is guaranteed to have a valid handle available upon
return from this call. If the open is not successful, then the

4-10 Control Services

function return code will contain the cause of the failure.

invokeIDType
This parameter sets the type of invoke identifiers which will be use for the

Stream being opened by the application.
The possible types are: Application-Generated Invoke IDs
(APP_GEN_ID) or Library generated invoke identifiers
(LIB_GEN_ID).

When APP_GEN_ID is selected then the application will
provide an ID with every function call in the API that
requires an invokeID. This same invoke ID value will be
returned to the application in the confirmation event for the
specific instance of a service request. Application-
generated invoke IDs can assume any 32-bit value.

When LIB_GEN_ID is selected, the ACS Library will
automatically generate an invokeID and will return its
value upon successful completion of the function call. The
value will be the return from the function call (RetCode_t).
Library-generated invoke IDs are always in the range 1 to
32767.

invokeID
A handle provided by the application to be used for
matching a specific instance of a function service request
with its associated confirmation event. This parameter is
only used when the Invoke ID mechanism is set for
Application-generated IDs in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream
is set for Library-generated invoke IDs.

streamType
This parameter allows the application to specify the type of
stream required by the application. For the API release
defined in this document the possible values are:

Telephony Services API Specification 4-11

ST_CSTA - requests that a CSTA call control
stream or session be opened to a Telephony Server.
This stream can be used for service requests and
responses which begin with the prefix "csta" or
"CSTA".

ST_OAM - request that an OAM stream is opened
with the Telephony Server.

serverID
This is a pointer to a null-terminated string of maximum size

ACS_MAX_SERVICEID. This string contains the name of the
server (in ASCII format) to be used for providing services
requested in the streamType parameter.

loginID
This is a pointer to a null terminated string of maximum size
ACS_MAX_LOGINID, which contains the login ID of the user
who wishes to use the server specified in the serviceID parameter.

passwd
This is a pointer to a null terminated string of maximum
size ACS_MAX_PASSWORD, which contains the
password of the user who wishes to use the server specified
in the serverID parameter.

applicationName
This is a pointer to a null terminated string of maximum
size ACS_MAX_APPNAME, which contains a user
selected name for the application being run. The
application name is used in a display only mode by
administration and maintenance functions and is intended
to aid administrators in debugging misbehaved
applications.

acsLevelReq
The acsLevel is not supported for the Telephony Server.

4-12 Control Services

This field is ignored by the implementation of this API.

apiVer
This parameter is used to specify the API Version being
requested by the application. The API Client Library will
support different API functionality depending on the
version being used in order to maintain backwards
compatibility. As the API is enhanced with new
capabilities not supported by older applications, this
parameter allows existing applications to request older
version of the API for compatibility reasons. The API
version of a particular Software Development Kit (SDK) is
specified by CSTA_API_VERSION in the csta.h header
file.

sendQSize
This parameter specifies the maximum number of outgoing
messages the API Client Library will queue before
returning ACSERR_QUEUE_FULL. If this parameter is
set to zero (0), then a default queue size will be used.

sendExtraBufs
This parameter specifies the number of additional packet
buffers to be allocated to the send queue. If this parameter
is set to zero (0), the number of buffers is equal to the
queue size (i.e., one buffer per message). If many messages
are expected to exceed the size of a network packet, as in
the case where private data is used extensively, or if the
ACSERR_NOBUFFERS error is frequently reported,
additional buffers may be allocated via this parameter.

recvQSize
This parameter specifies the maximum number of
incoming messages the API Client Library will queue
before it ceases acknowledgment to the Telephony Server.

Telephony Services API Specification 4-13

If this parameter is set to zero (0), then a default queue size
will be used.

recvExtraBufs
This parameter specifies the number of additional packet
buffers to be allocated to the receive queue. If this
parameter is set to zero (0), the number of buffers is equal
to the queue size (i.e., one buffer per message). If many
messages are expected to exceed the size of a network
packet, as in the case where private data is used
extensively, or if the ACSERR_STREAM_FAILED error
is frequently reported, additional buffers may be allocated
via this parameter.

privateData
This points to a data structure which defines any
implementation-specific initialization information needed
by the server. The data in this structure is not interpreted by
the API Client Library and can be used as an escape
mechanism to provide implementation specific commands
between the application and the Telephony Server. A
NULL pointer may be used to specify no private data.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value, i.e.
the invoke identifier. If the call fails a negative error
(<0) condition will be returned. For library-generated
identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be

4-14 Control Services

returned. For application-generated identifiers the return
will never be positive (>0).

The application should always check the ACSOpenStreamConfEvent
message to ensure that the service request has been acknowledged
and processed by the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_APIVERDENIED
This return indicates that the API Version requested
is invalid and not supported by the existing API
Client Library.

ACSERR_BADPARAMETER
One or more of the parameters is invalid.

ACSERR_DUPSTREAM
This return indicates that an ACS Stream is already
established with the requested Server.

ACSERR_NODRIVER
This error return value indicates that no API Client
Library Driver was found or installed on the
system.

ACSERR_NOSERVER
This indicates that the requested Server is not
present in the network.

ACSERR_NORESOURCE
This return value indicates that there are insufficient
resources to open a ACS Stream.

Comments

Telephony Services API Specification 4-15

The acsOpenStream() function enables an application to
open a network or local communication channel (ACS
Stream) with a Server device. The stream to be opened will
initiate and establish a ACS client/server session between
the application and the Server. This session can be used to
access all the server supported services (e.g. for the
Telephony Server this would be cstaMakeCall,
cstaTransferCall, etc.). The ACS session must be opened
in order to obtain a acsHandle to the stream. This handle
must be obtained before any other function can be called
since a valid handle is required by all service requests.

Once this function is called successfully, the application
must use the given handle and wait for a
ACSOpenStreamConfEvent to determine the status of the
ACS Stream. Only one ACS Stream is allowed per
application to a single serverID. Multiple calls by the same
application to the acsOpenStream() function are allowed
assuming a different serverID is used in each
acsOpenStream() service request or different stream type.

Application Notes

A Telephony Server advertises services for each registered
PBX Driver. A PBX Driver may support a single CTI link
or multiple CTI links. Each advertised service name is
unique on the a network.

The Client is responsible for calling the acsCloseStream()
function and receiving the ACSCloseStreamConfEvent or
calling the acsAbortStream() function to dismantle the
ACS Stream . It is very important that an application close
an active stream during its exit or cleanup routine in order
to free resources in the client and server for other
applications on the network.

4-16 Control Services

The ACSOpenStreamConfEvent is guaranteed to be the
first event the application will receive on ACS Stream if no
errors occurred during the ACS Stream initialization
process.

The application may only call the acsEventNotify(),
acsSetESR(), acsGetEventBlock(), acsGetEventPoll()
and acsCloseStream() functions before it has received the
ACSOpenStreamConfEvent.

The application must be prepared to receive an
ACSUniversalFailureConfEvent (for any stream type),
CSTAUniversalFailureConfEvent (for a CSTA stream
type) or an ACSUniversalFailureEvent (for any stream
type) anytime after the acsOpenStream() function
completes indicating that a failure has occurred on the
stream.

Telephony Services API Specification 4-17

ACSOpenStreamConfEventXE
"ACSOpenStreamConfEvent"§

This event is generated in response to the
acsOpenStream() function and provides the application
with status information regarding the requested open of an
ACS Stream with the Telephony Server. The application
may only perform the ACS functions acsEventNotify(),
acsSetESR(), acsGetEventBlock(), acsGetEventPoll(),
and acsCloseStream() on an acsHandle until this
confirmation event has been received.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See section 4.3 ACS Data Types and 4.6
CSTA Data Types for a complete description of the event
structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{

ACSOpenStreamConfEvent_t acsopen;
} u;

} acsConfirmation;
} event;} CSTAEvent_t;

typedef struct ACSOpenStreamConfEvent_t
{
 Version_t apiVer;
 Version_t libVer;
 Version_t tsrvVer;
 Version_t drvrVer;
} ACSOpenStreamConfEvent_t;

4-18 Control Services

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value ACSCONFIRMATION, which
identifies this message as an ACS confirmation event.

eventType
This is a tag with the value ACS_OPEN_STREAM, which
identifies this message as an ACSOpenStreamConfEvent.

invokeID
This parameter specifies the requested instance of the function or
event. It is used to match a specific function request with its
confirmation events.

apiVer
This parameter indicates which version of the API was granted.

libVer
This parameter indicates which version of the Library is running.

tsrvVer
This parameter indicates which version of the TSERVER is
running.

drvrVer
This parameter indicates which version of the Driver is running.

Comments

This message is an indication that the ACS Stream requested by
the application via the acsOpenStream() function is available to
provide communication with the Telephony Server. The

Telephony Services API Specification 4-19

application may now request call control services from the
Telephony Server on the acsHandle identifying this ACS Stream.
This message contains the Level of the stream opened, the
identification of the server that is providing service, and any
Private data returned by the Telephony Server.

Application Notes

The ACSOpenStreamConfEvent is guaranteed to be the first event on
the ACS Stream the application will receive if no errors occurred
during the ACS Stream initialization.

4-20 Control Services

acsCloseStream()XE "acsCloseStream ()"§

XE "acsCloseStream ()"§
This function closes an ACS Stream to the Telephony Server. The
application will be unable to request services from the Telephony
Server after the acsCloseStream() function has returned. The
acsHandle is valid on this stream after the acsCloseStream()
function returns, but can only be used to receive events via the
acsGetEventBlock() or acsGetEventPoll() functions. The
application must receive the ACSCloseStreamConfEvent
associated with this function call to indicate that the ACS Stream
associated with the specified acsHandle has been terminated and to
allow stream resources to be freed.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t acsCloseStream (
ACSHandle_t acsHandle, /* INPUT */
InvokeID_t invokeID, /* INPUT */
PrivateData_t *privateData); /* INPUT */

Parameters

acsHandle
This is the handle for the active ACS Stream which is to be
closed. Once the confirmation event associated with this
function returns, the handle is no longer valid.

invokeID
A handle provided by the application to be used for
matching a specific instance of a function service request
with its associated confirmation event. This parameter is
only used when the Invoke ID mechanism is set for
Application-generated IDs in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream
is set for Library-generated invoke IDs.

Telephony Services API Specification 4-21

privateData
This points to a data structure which defines any
implementation-specific information needed by the server.
The data in this structure is not interpreted by the API
Client Library and can be used as an escape mechanism to
provide implementation specific commands between the
application and the Telephony Server.

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value,
i.e. the invoke identifier. If the call fails a negative
error (<0) condition will be returned. For library-
generated identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the
return will never be positive (>0).

The application should always check the
ACSCloseStreamConfEvent message to ensure that the
service request has been acknowledged and processed by
the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This indicates that the acsHandle being used is not

4-22 Control Services

a valid handle for an active ACS Stream. No
changes occur in any existing streams if a bad
handle is passed with this function.

Comments

Once this function returns, the application must also check the
ACSCloseStreamConfEvent message to ensure that the ACS
Stream was closed properly and to see if any Private Data was
returned by the server.

No other service request will be accepted to the specified
acsHandle after this function successfully returns. The
handle is an active and valid handle until the application
has received the ACSCloseStreamConfEvent.

Application Notes

The Client is responsible for receiving the
ACSCloseStreamConfEvent to free all resources associated with
the ACS Stream.

The application must be prepared to receive multiple events on the ACS
Stream after the acsCloseStream() function has completed, but
the ACSCloseStreamConfEvent is guaranteed to be the last event
on the ACS Stream.

The acsGetEventBlock() and acsGetEventPoll()
functions can only be called after the acsCloseStream()
function has returned successfully.

Telephony Services API Specification 4-23

ACSCloseStreamConfEventXE "ACSCloseStreamConfEvent"§

This event is generated in response to the
acsCloseStream() function and provides information
regarding the closing of the ACS Stream The acsHandle is
no longer valid after this event has been received by the
application, so the ACSCloseStreamConfEvent is the last
event the application will receive for this ACS Stream.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See section 4.2 ACS Data Types and 4.6
CSTA Data Types for a complete description of the event
structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{

ACSCloseStreamConfEvent_t acsclose;
} u;

} acsConfirmation;
} event;} CSTAEvent_t;

typedef struct ACSCloseStreamConfEvent_t
{
Nulltype null;

} ACSCloseStreamConfEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

4-24 Control Services

eventClass
This is a tag with the value ACSCONFIRMATION, which
identifies this message as an ACS confirmation event.

eventType
This is a tag with the value ACS_CLOSE_STREAM, which
identifies this message as an ACSCloseStreamConfEvent.

invokeID
This parameter specifies the requested instance of the function. It
is used to match a specific acsCloseStream() function request
with its confirmation event.

Comments

This message indicates that the ACS Stream to the Telephony
Server has closed and that the associated acsHandle is no longer
valid. This message contains any Private data returned by the
Telephony Server.

Telephony Services API Specification 4-25

ACSUniversalFailureConfEventXE
"ACSUniversalFailureConfEvent"§

This event can occur at any time in place of a confirmation
event for any of the CSTA functions which have their own
confirmation event and indicates a problem in the processes
of the requested function. It does not indicate a failure or
lost of the ACS Stream with the Telephony Server. If the
ACS Stream has failed, then an ACSUniversalFailureEvent
(unsolicited version of this confirmation event) is sent to
the application.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See section ACS Data Types and CSTA
Data Types for a complete description of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{
union
{
ACSUniversalFailureConfEvent_t failureEvent;
} u;

} acsConfirmation;
} event;} CSTAEvent_t;
typedef struct
{

int failedStatus;
} ACSUniversalFailureConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

4-26 Control Services

eventClass
This is a tag with the value ACSCONFIRMATION, which
identifies this message as an ACS unsolicited event.

eventType
This is a tag with the value
ACS_UNIVERSAL_FAILURE_CONF , which identifies this
message as an ACSUniversalConfEvent.

failedStatus
This parameter indicate the cause value for the failure of the
original Telephony request.

These cause values are the same set listed for
ACSUniversalFailureEvent in the
"ACSUniversalFailureEvent".

Comments

This event will occur anytime when a non-telephony problem (no
memory, Tserver Security check failed, etc) in processing a
Telephony request in encountered and is sent in place of the
confirmation event that would normally be received for that
function (i.e., CSTAMakeCallConfEvent in response to a
cstaMakeCall() request). If the problem which prevents the
telephony function from being processed is telephony based, then a
CSTAUniversalFailureConfEvent will be received instead.

Application Notes

None.

Telephony Services API Specification 4-27

acsAbortStream()XE "acsAbortStream()"§

This function unilaterally closes an ACS Stream to the
Telephony Server. The application will be unable to
request services from the Telephony Server or receive
events after the acsAbortStream() function has returned.
The acsHandle is invalid on this stream after the
acsAbortStream() function returns. There is no associated
confirmation event for this function.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t acsAbortStream (
ACSHandle_t acsHandle, /* INPUT */
PrivateData_t *privateData); /* INPUT */

Parameters

acsHandle
This is the handle for the active ACS Stream which is to be closed. There
is no confirmation event for this function. Once this function returns
success, the ACS Stream is no longer valid.

privateData
This points to a data structure which defines any implementation-
specific information needed by the server. The data in this
structure is not interpreted by the API Client Library and can be
used as an escape mechanism to provide implementation specific
commands between the application and the Telephony Server.

Return Values

This function always returns zero (0) if successful.

The following are possible negative error conditions for this

4-28 Control Services

function:

ACSERR_BADHDL
This indicates that the acsHandle being used is not
a valid handle for an active ACS Stream. No
changes occur in any existing streams if a bad
handle is passed with this function.

Comments

Once this function returns, the ACS stream is dismantled and the
acsHandle is invalid

Application Notes

None

Telephony Services API Specification 4-29

acsGetEventBlock()XE "acsGetEventBlock()"§

This function is used when an application wants to receive
an event in a Blocking mode. In the Blocking mode the
application will be blocked until there is an event from the
ACS Stream indicated by the acsHandle. If the acsHandle
is set to zero (0), then the application will block until there
is an event from any ACS stream opened by this
application. The function will return after the event has
been copied into the applications data space.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t acsGetEventBlock (
ACSHandle_t acsHandle, /* INPUT */
void *eventBuf, /* INPUT */
unsigned short *eventBufSize, /* INPUT/RETURN */
PrivateData_t *privateData, /* RETURN */
unsigned short *numEvents); /* RETURN */

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream. If a handle of zero (0) is given, then the next
message on any of the open ACS Streams for this
application is returned.

eventBuf
This is a pointer to an area in the application address space
large enough to hold one incoming event that is received
by the application. This buffer should be large enough to
hold the largest event the application expected to receive.
Typically the application will reserve a space large enough
to hold a CSTAEvent_t.

eventBufSize

4-30 Control Services

This parameter indicates the size of the user buffer pointed
to by eventBuf. If the event is larger the eventBuf, then this
parameter will be returned with the size of the buffer
required to receive the event. The application should call
this function again with a larger buffer.

privateData
This parameter points to a buffer which will receive any private
data that accompanies this event. The length field of the
PrivateData_t structure must be set to the size of the data buffer. If
the application does not wish to receive private data, then
privateData should be set to NULL.

numEvents
The library will return the number of events queued for the
application on this ACS Stream (not including the current event)
via the numEvents parameter. If this parameter is NULL, then no
value will be returned.

Return Values

This function returns a positive acknowledgment or a negative error
condition (< 0). There is no confirmation event for this function.
The positive return value is:

ACSPOSITIVE_ACK
The function completed successfully as requested
by the application, and an event has been copied to
the application data space. No errors were detected.

Possible local error returns are (negative returns):

ACSERR_BADHDL
This indicates that the acsHandle being used is not a
valid handle for an active ACS Stream. No changes

Telephony Services API Specification 4-31

occur in any existing streams if a bad handle is
passed with this function.

ACSERR_UBUFSMALL
The user buffer size indicated in the eventBufSize
parameter was smaller than the size of the next
available event for the application on the ACS
stream. The eventBufSize variable has been reset by
the API Library to the size of the next message on
the ACS stream. The application should call
acsGetEventBlock() again with a larger buffer.
The ACS event is still on the API Library queue.

Comments

The acsGetEventBlock() and acsGetEventPoll() functions can be
intermixed by the application. For example, if bursty event
message traffic is expected an application may decide to block
initially for the first event and wait until it arrives. When the first
event arrives the blocking function returns, at which time the
application can process this event quickly and poll for the other
events which may have been placed in queue while the first event
was being processed. The polling can be continued until a
ACSERR_NOMESSAGE is returned by the polling function. At
this time the application can then call the blocking function again
and start the whole cycle over again.

There is no confirmation event for this function.

Application Notes

The application is responsible for calling the acsGetEventBlock()
or acsGetEventPoll() function frequently enough that the API
Client Library does not overflow its receive queue and refuse
incoming events from the Telephony Server.

4-32 Control Services

acsGetEventPoll()XE "acsGetEventPoll()"§

This function is used when an application wants to receive
an event in a Non-Blocking mode. In the Non-Blocking
mode the oldest outstanding event from any active ACS
Stream will be copied into the applications data space and
control will be returned to the application. If no events are
currently queued for the application, the function will
return control immediately to the application with an error
code indicating that no events were available.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t acsGetEventPoll (
ACSHandle_t acsHandle, /* INPUT */
void *eventBuf, /* INPUT */
unsigned short *eventBufSize, /* INPUT/RETURN */
PrivateData_t *privateData, /* RETURN */
unsigned short *numEvents; /* RETURN */

Parameters

acsHandle
This is the value of the unique handle to the opened ACS Stream.
If a handle of zero (0) is given, then the next message on any of
the open ACS Streams for this application is returned.

eventBuf
This is a pointer to an area in the application address space large enough

to hold one incoming event that is received by the application.
This buffer should be large enough to hold the largest event the
application expected to receive. Typically the application will
reserve a space large enough to hold a CSTAEvent_t.

eventBufSize
This parameter indicates the size of the user buffer pointed to by
eventBuf. If the event is larger the eventBuf, then this parameter

Telephony Services API Specification 4-33

will be returned with the size of the buffer required to receive the
event. The application should call this function again with a larger
buffer.

privateData
This parameter points to a buffer which will receive any
private data that accompanies this event. The length field
of the PrivateData_t structure must be set to the size of the
data buffer. If the application does not wish to receive
private data, then privateData should be set to NULL.

numEvents
The library will return the number of events queued for the
application on this ACS Stream (not including the current
event) via the numEvents parameter. If this parameter is
NULL, then no value will be returned.

Return Values

This function returns a positive acknowledgment or a
negative error condition (< 0). There is no confirmation
event for this function. The positive return value is:

ACSPOSITIVE_ACK
The function completed successfully as requested
by the application, and an event has been copied to
the application data space. No errors were detected.

Possible local error returns are (negative returns):

ACSERR_BADHDL
This indicates that the acsHandle being used is not a
valid handle for an active ACS Stream. No changes
occur in any existing streams if a bad handle is
passed with this function.

4-34 Control Services

ACSERR_NOMESSAGE
The function were no messages available to return
to the application.

ACSERR_UBUFSMALL
The user buffer size indicated in the eventBufSize
parameter was smaller than the size of the next
available event for the application on the ACS
stream. The eventBufSize variable has been reset by
the API Library to the size of the next message on
the ACS stream. The application should call
acsGetEventPoll() again with a larger buffer. The
ACS event is still on the API Library queue.

Comments

When this function is called, it returns immediately, and
the user must examine the return code to determine if a
message was copied into the user's data space. If an event
was available, the function will return
ACSPOSITIVE_ACK.
If no events existed on the ACS Stream for the application,
this function will return ACSERR_NOMESSAGE.

The acsGetEventBlock() and acsGetEventPoll()
functions can be intermixed by the application. For
example, if bursty event message traffic is expected an
application may decide to block initially for the first event
and wait until it arrives. When the first event arrives the
blocking function returns, at which time the application can
process this event quickly and poll for the other events
which may have been placed in queue while the first event
was being processed. The polling may continue until the
ACSERR_NOMESSAGE is returned by the polling
function. At this time the application can then call the
blocking function again and start the whole cycle over

Telephony Services API Specification 4-35

again.

There is no confirmation event for this function.

Application Notes

The application is responsible for calling the
acsGetEventBlock() or acsGetEventPoll() function
frequently enough that the API Client Library does not
overflow its receive queue and refuse incoming events
from the Telephony Server.

4-36 Control Services

acsSetESR() XE "acsSetESR() "§

The acsSetESR() function also allows the application to
designate an Event Service Routine (ESR) that will be
called when an incoming event is available.

Syntax

#include <csta.h>
#include <acs.h>

#typedef void (*EsrFunc)(unsigned short esrParam)

RetCode_t acsSetESR (
ACSHandle_t acsHandle,
EsrFunc esr,
unsigned short esrParam,
Boolean notifyAll);

Parameters

acsHandle
This is the value of the unique handle to the opened Stream
for which this ESR routine will apply. Only one ESR is
allowed per active acsHandle.
esr
This is a pointer to the ESR (the address of a function). A
NULL pointer indicates no ESR.

esrParam
This is a user-defined parameter which will be passed to
the ESR when it is called.

notifyAll
If this parameter is TRUE then the ESR will be called for
every event. If it is FALSE then the ESR will only be
called each time the receive queue becomes non-empty, i.e.
the queue count changes from zero (0) to one (1). This
option may be used to reduce the overhead of notification.

Telephony Services API Specification 4-37

Return Values

This function returns a positive acknowledgment or a negative
error condition (< 0). There is no confirmation event for
this function. The positive return value is:

ACSPOSITIVE_ACK
The function completed successfully as requested
by the application. No errors were detected.

 Possible local error returns are (negative returns):

ACSERR_BADHDL
This indicates that the acsHandle being used is not a
valid handle for an active ACS Stream. No changes
occur in any existing streams if a bad handle is
passed with this function.

Comments

The ESR mechanism can be used by the application to
receive an asynchronous notification of the arrival of an
incoming event from the Open ACS Stream. The ESR
routine will receive one user-defined parameter. The ESR
should not call ACS functions, otherwise the results will be
indeterminate. The ESR should note the arrival of the
incoming event, and complete its operation as quickly as
possible. The application must still call acsGetEventBlock
or acsGetEventPoll() to retrieve the event from the Client
API Library queue.

If there are already events in the receive queue waiting to
be retrieved when acsSetESR() is called, the esr will be
called for each of them.

The esr in the acsSetESR() function will replace the
current ESR maintained by the API Client Library. A

4-38 Control Services

NULL esr will disable the current ESR mechanism.

There is no confirmation event for this function.

Application Notes

The application can use the ESR mechanism to trigger
platform specific events (e.g. post a Windowsä message
for the application, or signal a semaphore in the NetWareâ
environment).

The application may use the ESR mechanism for
asynchronous notification of the arrival of incoming
events, but most API Library environments provide other
mechanisms for receiving asynchronous notification.

The application should not call ACS functions from within the
ESR.

The application should complete its ESR processing as quickly as
possible.

The ESR function may be called while (some level of)
interrupts are disabled. This is API implementation
specific, so the application programmer should consult the
API documentation. Under Windowsä, the ESR function
must be exported and its address obtained from
MakeProcInstance().

Telephony Services API Specification 4-39

acsEventNotify() (Windows 3.1) XE
"acsEventNotify() (Windows 3.1) "§

The acsEventNotify() function allows a Windows
application to request that a message be posted to its
application queue when an incoming ACS event is
available.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t acsEventNotify (
ACSHandle_t acsHandle,
HWND msg,
Boolean notifyAll);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream for which event notification messages will be
posted.

hwnd
This is the handle of the window which is to receive event
notification messages. If this parameter is NULL, event
notification is disabled.

msg
This is the user-defined message to be posted when an
incoming event becomes available. The wParam and
lParam parameters of the message will contain the
following members of the ACSEventHeader_t structure:

wParam acsHandle
HIWORD(lParam) eventClass
LOWORD(lParam) eventType

4-40 Control Services

notifyAll
If this parameter is TRUE then a message will be posted
for every event. If it is FALSE then a message will only be
posted each time the receive queue becomes non-empty,
i.e. the queue count changes from zero (0) to one (1). This
option may be used to reduce the overhead of notification,
or the likelihood of overflowing the application's message
queue (see below).

Return Values

This function returns a positive acknowledgment or a
negative error condition (< 0). There is no confirmation
event for this function. The positive return value is:

ACSPOSITIVE_ACK
The function completed successfully as requested
by the application. No errors were detected.

 Possible local error returns are (negative returns):

ACSERR_BADHDL
This indicates that the acsHandle being used is not a
valid handle for an active ACS Stream. No changes
occur in any existing streams if a bad handle is
passed with this function.

Application Notes

This function only enables notification of an incoming
event. Use acsGetEventPoll() to actually retrieve the
complete event structure.

If there are already events in the receive queue waiting to
be retrieved when acsEventNotify() is called, a message
will be posted for each of them.

Telephony Services API Specification 4-41

Applications which process a high volume of incoming
events may cause the default application queue (8 messages
max) to overflow. In this case, use the Windows API call
SetMessageQueue() to increase the size of the application
queue. Also, the rate of notifications may be reduced by
setting notifyAll to FALSE.

There is no confirmation event for this function.

4-42 Control Services

Example

This example uses the acsEventNotify function to enable
event notification.

#define WM_ACSEVENT WM_USER + 99 // or use RegisterWindowMessage()

long FAR PASCAL
WndProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
{

// declare local variables...

switch (msg)
{
case WM_CREATE:

// post WM_ACSEVENT to this window
// whenever an ACS event arrives

acsEventNotify (acsHandle, hwnd, WM_ACSEVENT, TRUE);

// other initialization, etc...
return 0;

case WM_ACSEVENT:

// wParam contains an ACSHandle_t
// HIWORD(lParam) contains an EventClass_t
// LOWORD(lParam) contains an EventType_t

// dispatch the event to user-defined
// handler function here

return 0;

// process other window messages...

}
return DefWindowProc (hwnd, msg, wParam, lParam);

}

Telephony Services API Specification 4-43

acsFlushEventQueue()XE "acsFlushEventQueue()"§

This function removes all events for the application on a
ACS Stream associated with the given handle and
maintained by the API Client Library. Once this function
returns the application may receive any new events that
arrive on this ACS Stream.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t ACSFlushEventQueue (ACSHandle_t acsHandle);

Parameters

acsHandle
This is the handle to an active ACS Stream. If the
acsHandle is 0, then all active ACS Streams for this
application will be flushed.

Return Values

This function returns a positive acknowledgment or a
negative error condition (< 0). There is no confirmation
event for this function. The positive return value is:

ACSPOSITIVE_ACK
The function completed successfully as requested
by the application. No errors were detected.

 Possible local error returns are (negative returns):

ACSERR_BADHDL
This indicates that the acsHandle being used is not a
valid handle for an active ACS Stream. No changes
occur in any existing streams if a bad handle is

4-44 Control Services

passed with this function.

Comments

Once this function returns the API Client Library will not
have any events queued for the application on the specified
ACS Stream. The application is ready to start receiving
new events from the Telephony Server.

There is no confirmation event for this function.

Application Notes

The application should exercise caution when calling this
function, since all events from the switch on the associated
ACS Stream have been discarded. The application has no
way to determine what kinds of events have been
destroyed, and may have lost events that relay important
status information from the switch.

This function does not delete the
ACSCloseStreamConfEvent, since this function can not
be called after the acsCloseStream() function.

The acsFlushEventQueue() function will delete all other
events queued to the application on the ACS Stream. The
ACSUniversalFailureEvent and the
CSTAUniversalFailureConfEvent, in particular, will be
deleted if they are currently queued to the application.

Telephony Services API Specification 4-45

acsEnumServerNames()XE
"acsEnumServerNames()"§

This function is used to enumerate the names of all the
servers of a specified stream type. This function is a
synchronous call and has no associated confirmation event.

Syntax

#include <acs.h>

typedef Boolean (*EnumServerNamesCB) (
char *serverName,
unsigned long lParam);

RetCode_t acsEnumServerNames (
StreamType_t streamType,
EnumServerNamesCB callback ,
unsigned long lParam);

Parameters

streamType
ndicates the type of stream requested. The currently defined stream
types are ST_CSTA and ST_OAM.

callback
This is a pointer to a callback function which will be
invoked for each of the enumerated server names, along
with the user-defined parameter lParam. If the callback
function returns FALSE (0), enumeration will terminate.

lParam
A user-defined parameter which is passed on each
invocation of the callback function.

Return Values

This function returns a positive acknowledgment or a
negative error condition (< 0). There is no confirmation
event for this function. The positive return value is:

4-46 Control Services

ACSPOSITIVE_ACK
The function completed successfully as requested
by the application. No errors were detected.

The following are possible negative error conditions for this
function:

ACSERR_UNKNOWN
The request has failed due to unknown network problems.

Comments

This function enumerates all the known servers, invoking
the callback function for each server name. The
serverName parameter points to automatic storage; the
callback function must make a copy if it needs to preserve
this data. Under Windowsä, the callback function must be
exported and its address obtained from
MakeProcInstance().

An active ACS Stream is NOT required to call this function.

Telephony Services API Specification 4-47

ACS Unsolicited EventsXE "ACS Unsolicited Events"§

This section covers the unsolicited ACS Status Events.

4-48 Control Services

ACSUniversalFailureEventXE "ACSUniversalFailureEvent"§

This event can occur at any time (unsolicited) and can
indicate, among other things, a failure or lost of the ACS
Stream with the Telephony Server.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types for a complete description of the event
structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{
union
{
 ACSUniversalFailureEvent_t failureEvent;
} u;

} acsUnsolicited;
} event;} CSTAEvent_t;
typedef struct
{

ACSUniversalFailure_t error;
}
ACSUniversalFailureEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value ACSUNSOLICITED, which
identifies this message as an ACS unsolicited event.

Telephony Services API Specification 4-49

eventType
This is a tag with the value
ACS_UNIVERSAL_FAILURE, which identifies this
message as an ACSUniversalFailureEvent.

error
This parameter indicate the cause values for the ACS
Stream failure defined by the current active acsHandle.

Not all of the errors listed below will occur in a ACS
Universal Failure message. Some of the errors occur only
in error logs generated by the Tserver.

The possible values are:

typedef enum ACSUniversalFailure_t {
 TSERVER_STREAM_FAILED = 0,
 TSERVER_NO_THREAD = 1,
 TSERVER_BAD_DRIVER_ID = 2,
 TSERVER_DEAD_DRIVER = 3,
 TSERVER_MESSAGE_HIGH_WATER_MARK = 4,
 TSERVER_FREE_BUFFER_FAILED = 5,
 TSERVER_SEND_TO_DRIVER = 6,
 TSERVER_RECEIVE_FROM_DRIVER = 7,
 TSERVER_REGISTRATION_FAILED = 8,
 TSERVER_SPX_FAILED = 9,
 TSERVER_TRACE = 10,
 TSERVER_NO_MEMORY = 11,
 TSERVER_ENCODE_FAILED = 12,
 TSERVER_DECODE_FAILED = 13,
 TSERVER_BAD_CONNECTION = 14,
 TSERVER_BAD_PDU = 15,
 TSERVER_NO_VERSION = 16,
 TSERVER_ECB_MAX_EXCEEDED = 17,
 TSERVER_NO_ECBS = 18,
 TSERVER_NO_SDB = 19,
 TSERVER_NO_SDB_CHECK_NEEDED = 20,
 TSERVER_SDB_CHECK_NEEDED = 21,
 TSERVER_BAD_SDB_LEVEL = 22,
 TSERVER_BAD_SERVERID = 23,
 TSERVER_BAD_STREAM_TYPE = 24,
 TSERVER_BAD_PASSWORD_OR_LOGIN = 25,
 TSERVER_NO_USER_RECORD = 26,
 TSERVER_NO_DEVICE_RECORD = 27,
 TSERVER_DEVICE_NOT_ON_LIST = 28,
 TSERVER_USERS_RESTRICTED_HOME = 30,
 TSERVER_NO_AWAYPERMISSION = 31,
 TSERVER_NO_HOMEPERMISSION = 32,
 TSERVER_NO_AWAY_WORKTOP = 33,

4-50 Control Services

 TSERVER_BAD_DEVICE_RECORD = 34,
 TSERVER_DEVICE_NOT_SUPPORTED = 35,
 TSERVER_INSUFFICIENT_PERMISSION = 36,
 TSERVER_NO_RESOURCE_TAG = 37,
 TSERVER_INVALID_MESSAGE = 38,
 TSERVER_EXCEPTION_LIST = 39,
 TSERVER_NOT_ON_OAM_LIST = 40,
 TSERVER_PBX_ID_NOT_IN_SDB = 41,
 TSERVER_USER_LICENSES_EXCEEDED = 42,
 TSERVER_OAM_DROP_CONNECTION = 43,
 TSERVER_NO_VERSION_RECORD = 44,
 TSERVER_OLD_VERSION_RECORD = 45,
 TSERVER_BAD_PACKET = 46,
 TSERVER_OPEN_FAILED = 47,
 TSERVER_OAM_IN_USE = 48,
 TSERVER_DEVICE_NOT_ON_HOME_LIST = 49,
 TSERVER_DEVICE_NOT_ON_CALL_CONTROL_LIST = 50,
 TSERVER_DEVICE_NOT_ON_AWAY_LIST = 51,
 TSERVER_DEVICE_NOT_ON_ROUTE_LIST = 52,
 TSERVER_DEVICE_NOT_ON_MONITOR_DEVICE_LIST = 53,
 TSERVER_DEVICE_NOT_ON_MONITOR_CALL_DEVICE_LIST = 54,
 TSERVER_NO_CALL_CALL_MONITOR_PERMISSION = 55,
 TSERVER_HOME_DEVICE_LIST_EMPTY = 56,
 TSERVER_CALL_CONTROL_LIST_EMPTY = 57,
 TSERVER_AWAY_LIST_EMPTY = 58,
 TSERVER_ROUTE_LIST_EMPTY = 59,
 TSERVER_MONITOR_DEVICE_LIST_EMPTY = 60,
 TSERVER_MONITOR_CALL_DEVICE_LIST_EMPTY = 61,
 TSERVER_USER_AT_HOME_WORKTOP = 62,
 TSERVER_DEVICE_LIST_EMPTY = 63,
 TSERVER_BAD_GET_DEVICE_LEVEL = 64,
 TSERVER_DRIVER_UNREGISTERED = 65,
 TSERVER_NO_ACS_STREAM = 66,
 TSERVER_DROP_OAM = 67,
 TSERVER_ECB_TIMEOUT = 68,
 TSERVER_BAD_ECB = 69,
 TSERVER_ADVERTISE_FAILED = 70,
 TSERVER_NETWARE_FAILURE = 71,
 TSERVER_TDI_QUEUE_FAULT = 72,
 TSERVER_DRIVER_CONGESTION = 73,
 TSERVER_NO_TDI_BUFFERS = 74,
 TSERVER_OLD_INVOKEID = 75,
 TSERVER_HWMARK_TO_LARGE = 76,
 TSERVER_SET_ECB_TO_LOW = 77,
 TSERVER_NO_RECORD_IN_FILE = 78,
 TSERVER_DRIVER_CONGESTION = 73,
 DRIVER_DUPLICATE_ACSHANDLE = 1000,
 DRIVER_INVALID_ACS_REQUEST = 1001,
 DRIVER_ACS_HANDLE_REJECTION = 1002,
 DRIVER_INVALID_CLASS_REJECTION = 1003,
 DRIVER_GENERIC_REJECTION = 1004,
 DRIVER_RESOURCE_LIMITATION = 1005,
 DRIVER_ACSHANDLE_TERMINATION = 1006,
 DRIVER_LINK_UNAVAILABLE = 1007
} ACSUniversalFailure_t;

Tserver Operation errors
Error values in this category indicate that there is an error in

Telephony Services API Specification 4-51

the Service Request. This type includes one of the following
specific error values:

Tserver Stream Failed
XE "Tserver Stream Failed"§ The Client Library detected that
the ACS Stream failed.

Tserver No ThreadXE "Tserver No Thread"§
One or more the threads (processes) that make up the Tserver

could not be created.

Tserver Bad Driver ID
XE "Tserver Bad Driver ID"§ One of the threads (processes)
that make up the Tserver encounterd a bad Driver Identification
number during processing.

Tserver Dead Driver
XE "Tserver Dead Driver"§A Driver has not sent a
heart beat messages to the Tserver form the last three
minutes. The Driver may be in an inoperable state.

Tserver Message High Water Mark
XE "Tserver Message High Water Mark"§The
message rate between a client and the Tserver or the
Tserver and a Driver has exceeded the high water mark
rate.

Tserver Free Buffer Failed
XE "Tserver Free Buffer Failed"§ The Tserver was unable to
free Tserver Driver Interface (TDI) memory.

Tserver Send To Driver
XE "Tserver Send To Driver"§The Tserver was unable to send a
message to a Driver.

Tserver Receive From Driver
XE "Tserver Receive From Driver"§ The Tserver was unable
to receive a message from a Driver.

4-52 Control Services

Tserver Registration Failed
XE "Tserver Registration Failed"§ A Driver's attempt to
register with the Tserver failed.

Tserver Spx Failed
XE "Tserver Spx Failed"§ A NetWare SPX call failed in the
Tserver.

Tserver Trace
XE "Tserver Trace"§ Used by the Tserver for debugging
purposes only.

Tserver No Memory
XE "Tserver No Memory"§The Tserver was unable to allocate a
piece of memory.

Tserver Encode Failed
XE "Tserver Encode Failed"§The Tserver was
unable to encode a message for shipment to a client
workstation.

Tserver Decode Failed
XE "Tserver Decode Failed"§ The Tserver was unable to
decode a message from a client workstation.

Tserver Bad Connection
XE "Tserver Bad Connection"§ The Tserver tried to process a
request with a bad client connection ID number.

Tserver Bad PDU
XE "Tserver Bad PDU"§ The Tservers internal table of
Protocol Descriptor Units is corrupted.

Tserver No Version
XE "Tserver No Version"§ The Tserver processed a

Telephony Services API Specification 4-53

ACSOpenStreamConfEvent from a Driver in which one or more
the version fields was not set.

Tserver ECB Max Exceeded
XE "Tserver ECB Max Exceeded"§The Tserver can
not process a message from the driver because the
message is larger than the sum of the ECBs allocated
for this driver.

Tserver No ECBS
XE "Tserver No ECBS"§The Tserver has no available
ECBs to send events to the client.

Tserver No Resource Tag
XE "Tserver No Resource Tag"§The Tserver was
unable to get a resource tag for the purpose of
allocating memory.

Tserver Invalid Message
XE "Tserver Invalid Message"§ The Tserver received an
invalid Tserver OAM message.

Tserver Security Data Base errors
Error values in this category indicate that there is an error in
the process of an event which requires a check against the
Security Data Base. This type includes one of the following
specific error values:

Tserver No SDB
XE "Tserver No SDB"§One or more the files that
makeup the Security Data Base is not present on the
server or can not be opened.

Tserver No SDB Check Needed
XE "Tserver No SDB Check Needed"§ The requested service
event does not require a Security Data Base check.

4-54 Control Services

Tserver SDB Check Needed
XE "Tserver SDB Check Needed"§ The requested service
event does require a Security Data Base check.

Tserver Bad SDB Level
XE "Tserver Bad SDB Level"§The Tservers internal
table of API calls indicating which level of security to
perform on the request is corrupted.

Tserver Bad Server ID
XE "Tserver Bad Server ID"§ The Tserver rejected an
ACSOpenStream request because the Server ID in the message
did not match a Driver supported by this Tserver.

Tserver Bad Stream Type
XE "Tserver Bad Stream Type"§XE "Tserver Bad Stream
Type"§ The stream type an ACSOpenStream request was
invalid.

Tserver Bad Password Or Login
XE "Tserver Bad Password Or Login"§The
Password or Login or both from an ACSOpenStream
request did not match an entry in the Bindery on the
server the Tserver is running on.

Tserver No User Record
XE "Tserver No User Record"§ No user record was found in
the Security Data Base for the login specified in the
ACSOpenStream request.

Tserver No Device Record
XE "Tserver No Device Record"§ No device record was found
in the Security Data Base for the device specified in the API call.

Tserver Device Not On List
XE "Tserver Device Not On List"§The specified device in an

Telephony Services API Specification 4-55

API call was not found on any device list administered for this
user.

Tserver Users Restricted Home
XE "Tserver Users Restricted Home"§ The Tserver is
administered to restrict users to home worktops so no checking
is done against away worktop devices.

Tserver No Away Permission
XE "Tserver No Away Permission"§The Tserver
rejected a service request because the device did not
match a device associated with an away worktop.

Tserver No Home Permission
The Tserver rejected a service request because the
device did not match a device associated with a home
worktop.

Tserver No Away Worktop
XE "Tserver No Away Worktop"§The away worktop
the user is working from is not administered in the
Security Data Base.

Tserver Bad Device Record
XE "Tserver Bad Device Record"§The Tserver read a device
record from the Security Data Base that contained corrupted
information.

Tserver Device Not Supported
XE "Tserver Device Not Supported"§The device in
the API call is administered to be supported by a
different Tserver.

Tserver Insufficient Permission
XE "Tserver Insufficient Permission"§The device in
the API call is at the users away worktop and the device

4-56 Control Services

has a higher permission level than the user, preventing
the user from controlling the device.

Tserver Exception List
XE "Tserver Exception List"§ The device in the API call is on
an exception list which is administered as part of the information
for this user.

Driver errors
XE "Driver errors"§Error values in this category
indicate that the driver detected an error. This type
includes one of the following specific error values:

Driver Duplicate ACSHandle
XE "Driver Duplicate ACSHandle"§The acsHandle
given for an ACSOpenStream request is already in use
for a session. The already open session with the
acsHandle is remains open.

Driver Invalid ACS Request
XE "Driver Invalid ACS Request"§The acs message
contains an invalid or unknown request. The request is
rejected.

Driver ACS Handle Rejection
XE "Driver ACS Handle Rejection"§A CSTA
request was issued with no prior ACSOpenStream
request. The request is rejected.

Driver Invalid Class Rejection
XE "Driver Invalid Class Rejection"§The driver
received a message containing an invalid or unknown
message class. The request is rejected.

Driver Generic Rejection
XE "Driver Generic Rejection"§The driver detected

Telephony Services API Specification 4-57

an invalid message for something other than message
type or message class. This is an internal error and
should be reported.

Driver Resource Limitation
XE "Driver Resource Limitation"§The driver did not
have adequate resources (i.e. memory, etc.) to complete
the requested operation. This is an internal error and
should be reported.

Driver ACSHandle Termination
XE "Driver ACSHandle Termination"§ Due to problems with
the link to the switch the driver has found it necessary to
terminate the session with the given acsHandle. The session will
be closed, and all outstanding requests will terminate.

Driver Link Unavailable
XE "Driver Link Unavailable"§The driver was
unable to open the new session because no link was
available to the PBX. The link may have been placed in
the BLOCKED state, or it may have been taken off-
line.

Comments

None.

Application Notes

None.

4-58 Control Services

ACS Data TypesXE "ACS Data Types"§

This section defines all the data types which are used with
the ACS functions and messages and may repeat data types
already shown in the ACS Control Functions. Refer to the
specific commands for any operational differences in these
data types. The ACS data types are type defined in the
acs.h header file.

ACS Common Data Types

This section specifies the common ACS data types.

typedef int RetCode_t;

#define ACSPOSITIVE_ACK0 /* The function was successful */

/* Error Codes */

#define ACSERR_APIVERDENIED -1 /* This return indicates that the
 * API Version requested is invalid
 * and not supported by the

 * existing API Client Library.
 */

#define ACSERR_BADPARAMETER -2 /* One or more of the parameters is
 * invalid
 */

#define ACSERR_DUPSTREAM -3 /* This return indicates that an
 * ACS Stream is already established
 * with the requested Server.
 */

#define ACSERR_NODRIVER -4 /* This error return value indicates
 * that no API Client Library Driver
 * was found or installed on the
 * system.
 */

#define ACSERR_NOSERVER -5 /* This indicates that the requested
 * Server is not present in the

 * network.
 */

#define ACSERR_NORESOURCE -6 /* This return value indicates that
 * there are insufficient resources
 * to open a ACS Stream.

Telephony Services API Specification 4-59

 */

#define ACSERR_UBUFSMALL -7 /* The user buffer size was
 * smaller than the size of
 * the next available event.
 */

#define ACSERR_NOMESSAGE -8 /* There were no messages
 *available to
 * return to the application.
 */

#define ACSERR_UNKNOWN -9 /* The ACS Stream has encountered
 * an unspecified error.

 */

#define ACSERR_BADHDL -10 /* The ACS Handle is invalid */

#define ACSERR_STREAM_FAILED -11 /* The ACS Stream has failed
 * due to network problems.
 * No further operations are

 * possible on this stream.
 */

#define ACSERR_NOBUFFERS -12 /* There were not enough buffers
 * available to place an outgoing
 * message on the send queue.
 * No message has been sent.
 */

#define ACSERR_QUEUE_FULL -13 /* The send queue is full.
 * No message has been sent.

 */

typedef unsigned longInvokeID_t;

typedef enum {
APP_GEN_ID, // application will provide invokeIDs;

// any 4-byte value is legal
LIB_GEN_ID // library will generate invokeIDs in

// the range 1-32767
} InvokeIDType_t;

typedef unsigned short ACSHandle_t;

typedef unsigned short EventClass_t;

// defines for ACS event classes

#define ACSREQUEST 0
#define ACSUNSOLICITED 1
#define ACSCONFIRMATION 2

typedef unsigned short EventType_t; // event types are defined in
//acs.h and csta.h

typedef char Boolean;

4-60 Control Services

typedef char Nulltype;

#define ACS_OPEN_STREAM 1
#define ACS_OPEN_STREAM_CONF 2
#define ACS_CLOSE_STREAM 3
#define ACS_CLOSE_STREAM_CONF 4
#define ACS_ABORT_STREAM 5
#define ACS_UNIVERSAL_FAILURE_CONF 6
#define ACS_UNIVERSAL_FAILURE 7

typedef enum StreamType_t {
 ST_CSTA = 1,
 ST_OAM = 2,
} StreamType_t;

typedef char ServerID_t[49];

typedef char LoginID_t[49];

typedef char Passwd_t[49];

typedef char AppName_t[21];

typedef enum Level_t {
 ACS_LEVEL1 = 1,
 ACS_LEVEL2 = 2,
 ACS_LEVEL3 = 3,
 ACS_LEVEL4 = 4
} Level_t;

typedef char Version_t[21];

ACS Event Data TypesXE "ACS Event Data Types"§

This section specifies the ACS data types used in the
construction of generic ACSEvent_t structures (see section
4.6).

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;
EventType_t eventType;

} ACSEventHeader_t;

typedef struct
{

union
{

ACSUniversalFailureEvent_t failureEvent;
} u;

} ACSUnsolicitedEvent;

Telephony Services API Specification 4-61

typedef struct
{

InvokeID_t invokeID;
union
{

ACSOpenStreamConfEvent_t acsopen;
ACSCloseStreamConfEvent_t acsclose;

ACSUniversalFailureConfEvent_tfailureEvent;
} u;

} ACSConfirmationEvent;

CSTA Control Services and Confirmation Events

XE "CSTA Control Services Functions and Confirmation
Events"§This section defines the CSTA functions
associated with the Telephony Server's Services. These
functions are used to determine types and capabilities of
Telephony Servers and Drivers connected to Telephony
Servers and to determine the set of devices an application
can control, monitor and query.

4-62 Control Services

cstaGetAPICaps()XE " cstaGetAPICaps()"§

This is used to obtain the CSTA API function and event
capabilities which are supported by the Telephony Servers
on the system. The servers could be a local client
Telephony Server or a remote Telephony Server across a
network or internetwork. If a capability is supported then
any corresponding confirmation event is also supported.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaGetAPICaps(
ACSHandle_t acsHandle,
InvokeID_t invokeID);

Parameters

acsHandle
This is the handle to an active ACS Stream.

invokeID
A handle provided by the application to be used for
matching a specific instance of a function service request
with its associated confirmation event. This parameter is
only used when the Invoke ID mechanism is set for
Application-generated IDs in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream
is set for Library-generated invoke IDs.

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value, i.e.

Telephony Services API Specification 4-63

the invoke identifier. If the call fails a negative error
(<0) condition will be returned. For library-generated
identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the return
will never be positive (>0).

The application should always check the
CSTAGetAPICapsConfEvent message to ensure that the
service request has been acknowledged and processed by
the Telephony Server and the switch.

The following are possible negative error conditions for this
function:

ACSERR_BADHDL
This indicates that the acsHandle being used is not a
valid handle for an active ACS Stream. No changes
occur in any existing streams if a bad handle is
passed with this function.

Comments

If this function returns with a POSITIVE_ACK, the
request has been forwarded to the Telephony Server, and
the application will receive an indication of the support for
the capabilities in a CSTAGetAPICapsConfEvent. An
active ACS Stream is required to the server before this
function is called.

The application may use this command to determine which
functions and events are supported by the requested
Telephony Server. This will avoid unnecessary negative
acknowledgments from the Telephony Server when a

4-64 Control Services

specific API function or event is not supported..

Telephony Services API Specification 4-65

CSTAGetAPICapsConfEventXE
"CSTAGetAPICapsConfEvent"§

This event is in response to the cstaGetAPICaps() function
and it provides an indication of whether the requested
function or event is supported by a specific Telephony
Server.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See CSTA Data Types for a
complete description of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID; union
{

 CSTAGetAPICapsConfEvent_t getAPIcaps;
} u;

} cstaConfirmation;

} event;} CSTAEvent_t;
typedef struct CSTAGetAPICapsConfEvent_t {
 short alternateCall;
 short answerCall;
 short callCompletion;
 short clearCall;
 short clearConnection;
 short conferenceCall;
 short consultationCall;
 short deflectCall;
 short pickupCall;
 short groupPickupCall;
 short holdCall;
 short makeCall;
 short makePredictiveCall;
 short queryMwi;
 short queryDnd;
 short queryFwd;
 short queryAgentState;
 short queryLastNumber;

4-66 Control Services

 short queryDeviceInfo;
 short reconnectCall;
 short retrieveCall;
 short setMwi;
 short setDnd;
 short setFwd;
 short setAgentState;
 short transferCall;
 short eventReport;
 short callClearedEvent;
 short conferencedEvent;
 short connectionClearedEvent;
 short deliveredEvent;
 short divertedEvent;
 short establishedEvent;
 short failedEvent;
 short heldEvent;
 short networkReachedEvent;
 short originatedEvent;
 short queuedEvent;
 short retrievedEvent;
 short serviceInitiatedEvent;
 short transferedEvent;
 short callInformationEvent;
 short doNotDisturbEvent;
 short forwardingEvent;
 short messageWaitingEvent;
 short loggedOnEvent;
 short loggedOffEvent;
 short notReadyEvent;
 short readyEvent;
 short workNotReadyEvent;
 short workReadyEvent;
 short backInServiceEvent;
 short outOfServiceEvent;
 short privateEvent;
 short routeRequestEvent;
 short reRoute;
 short routeSelect;
 short routeUsedEvent;
 short routeEndEvent;
 short monitorDevice;
 short monitorCall;
 short monitorCallsViaDevice;
 short changeMonitorFilter;
 short monitorStop;
 short monitorEnded;
 short snapshotDeviceReq;
 short snapshotCallReq;
 short escapeService;
 short privateStatusEvent;
 short escapeServiceEvent;
 short escapeServiceConf;
 short sendPrivateEvent;
 short sysStatReq;
 short sysStatStart;
 short sysStatStop;
 short changeSysStatFilter;
 short sysStatReqEvent;

Telephony Services API Specification 4-67

 short sysStatReqConf;
 short sysStatEvent;
} CSTAGetAPICapsConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an ACS confirmation
event.

eventType
This is a tag with the value
CSTA_GETAPI_CAPS_CONF , which identifies this
message as an CSTAGetAPICapsConfEvent.

getAPIcaps
This structure contains a integer for each possible CSTA
capability which indicates whether the capability is
supported. A value of 0 indicates the capability is not
supported, a positive value indicates the version of the API
(this version is distinct from the version of the API
requested in the ACSopen) call that is supported.

For this release of the API, all API calls are on version 1.

Comments

This event will provide the application with compatibility
information for a specific Telephony Server on a
command/event basis. All the commands and events
supported by a Telephony Server must be supported as
defined in this document.

4-68 Control Services

cstaGetDeviceList()XE " cstaGetDeviceList()"§

This is used to obtain the list of Devices that can be
controlled, monitored, queried or routed for the ACS
Stream indicated by the acsHandle.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaGetDeviceList(
ACSHandle_t acsHandle,
InvokeID_t invokeID,
long index,
CSTALevel_t level)

Parameters

acsHandle
This is the handle to an active ACS Stream.

invokeID
A handle provided by the application to be used for
matching a specific instance of a function service request
with its associated confirmation event. This parameter is
only used when the Invoke ID mechanism is set for
Application-generated IDs in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream
is set for Library-generated invoke IDs.

index
The security data base could contain a large number of
devices that a user has privilege over, so this API call will
return only CSTA_MAX_GETDEVICE devices in any
one CSTAGetDeviceListConfEvent, which means several
calls to cstaGetDeviceList() may be necessary to retrieve
all the devices. Index should be set of -1 the first time this
API is called and then set to the value of Index returned in
the confirmation event. Index will be set back to -1 in the

Telephony Services API Specification 4-69

CSTAGetDeviceListConfEvent which contains the last
batch of devices.

level
This parameter specifies the class of service for which the
user wants to know the set of devices that can be controlled
via this ACS stream. level must be set to one of the
following:

typedef enum CSTALevel_t {
 CSTA_HOME_WORK_TOP = 1,
 CSTA_AWAY_WORK_TOP = 2,
 CSTA_DEVICE_DEVICE_MONITOR = 3,
 CSTA_CALL_DEVICE_MONITOR = 4,
 CSTA_CALL_CONTROL = 5,
 CSTA_ROUTING = 6,
 CSTA_CALL_CALL_MONITOR = 7
} CSTALevel_t;

To determine if an ACS stream has permission to do
call/call
 monitoring, use the API call CSTAQueryCallMonitor.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value, i.e.
the invoke identifier. If the call fails a negative error
(<0) condition will be returned. For library-generated
identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the return
will never be positive (>0).

4-70 Control Services

The application should always check the
CSTAGetDeviceListConfEvent message to ensure that
the service request has been acknowledged and processed
by the Telephony Server and the switch.

The following are possible negative error conditions for this
function:

ACSERR_BADHDL
This indicates that the acsHandle being used is not a
valid handle for an active ACS Stream. No changes
occur in any existing streams if a bad handle is
passed with this function.

Comments
None

Telephony Services API Specification 4-71

CSTAGetDeviceListConfEventXE
"CSTAGetDeviceListConfEvent"§

This event is in response to the cstaGetDeviceList()
function and it provide a list of the devices which can be
controlled for the indicated ACS Level.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types for a complete description of the event
structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID; union
{
 CSTAGetDeviceListConfEvent_t getDeviceList;
} event;

} cstaConfirmation;
} u;} CSTAEvent_t;

typedef enum SDBLevel_t {
 NO_SDB_CHECKING = 1,
 ACS_ONLY = 2,
 ACS_AND_CSTA_CHECKING = 3
} SDBLevel_t;

typedef struct CSTAGetDeviceList_t {
 long index;
 CSTALevel_t level;
} CSTAGetDeviceList_t;

typedef struct DeviceList {
 short count;
 DeviceID_t device[20];
} DeviceList;

4-72 Control Services

typedef struct CSTAGetDeviceListConfEvent_t {
 SDBLevel_t driverSdbLevel;
 CSTALevel_t level;
 long index;
 DeviceList devList;
} CSTAGetDeviceListConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an ACS confirmation
event.

eventType
This is a tag with the value
CSTA_GET_DEVICE_LIST_CONF, which identifies
this message as an CSTAGetDeviceListConfEvent.

invokeID
This parameter specifies the requested instance of the
function. It is used to match a specific function request
with its confirmation events.

driverSdbLevel
This parameter indicates the Security Level with which
the Driver registered. Possible values are:

NO_SDB_CHECKING No security checks.

ASC_ONLY Check ACSOpenStream requests only

ASC_AND_CSTA_CHECKING Check ACSOpenStream and all
applicable CSTA messages

index
This parameter indicates to the client application the

Telephony Services API Specification 4-73

current index the Tserver is using for returning the list of
devices. The client application should return this value in
the next call to CSTAGetDeviceList to continue receiving
devices. A value of (-1) indicates there are no more devices
in the list.

devlist
This parameter is a structure which contains an array of
DeviceID_t which contain the devices for this stream.

Comments
None.

4-74 Control Services

cstaQueryCallMonitor()XE "cstaQueryCallMonitor()"§

This is used to determine the if a given ACS stream has
permission to do call/call monitoring in the security
database.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaGetDeviceList(
ACSHandle_t acsHandle,
InvokeID_t invokeID)

Parameters

· acsHandle
This is the handle to an active ACS Stream.

invokeID
A handle provided by the application to be used for
matching a specific instance of a function service request
with its associated confirmation event. This parameter is
only used when the Invoke ID mechanism is set for
Application-generated IDs in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream
is set for Library-generated invoke IDs.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

· Library-generated Identifiers - if the function call
completes successfully it will return a positive value, i.e.
the invoke identifier. If the call fails a negative error

Telephony Services API Specification 4-75

(<0) condition will be returned. For library-generated
identifiers the return will never be zero (0).

· Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value. If
the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the return
will never be positive (>0).

The application should always check the
CSTAQueryCallMonitorConfEvent message to ensure
that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This indicates that the acsHandle being used is not a
valid handle for an active ACS Stream. No changes
occur in any existing streams if a bad handle is
passed with this function.

Comments

None

4-76 Control Services

CSTAQueryCallMonitorConfEventXE "
CSTAQueryCallMonitorConfEvent"§

This event is in response to the cstaQueryCallMonitor()
function and it provide a list of the devices which can be
controlled for the indicated ACS Level.

Syntax

The following structure shows only the relevant portions of
the unions for this message. See ACS Data Types and
CSTA Data Types for a complete description of the event
structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID; union
{
 CSTAQueryCallMonitorConfEvent_t queryCallMonitor;
} event;

} cstaConfirmation;
} u;} CSTAEvent_t;

typedef struct CSTAQueryCallMonitorConfEvent_t {
 Boolean callMonitor;
} CSTAQueryCallMonitorConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an ACS confirmation
event.

Telephony Services API Specification 4-77

eventType
This is a tag with the value CSTA_QUERY_CALL_-
MONITOR_CONF, which identifies this message as an
CSTAQueryCallMonitorConfEvent.

invokeID
This parameter specifies the requested instance of the
function. It is used to match a specific function request
with its confirmation events.

callMonitor
This parameter indicates whether or not (TRUE or FALSE)
the ACS Stream has call/call monitoring privilege.

Comments

None.

4-78 Control Services

CSTA Event Data TypesXE "CSTA Event Data Types"§

This section defines all the event data types which are used
with the CSTA functions and messages and may repeat
data types already shown in the CSTA Control Functions.
Refer to the specific commands for any operational
differences in these data types. The complete set of CSTA
data types is given in section 10 - CSTA Data Types. The
CSTA data types are type defined in the CSTA.H header
file.

An application always receives a generic CSTAEvent_t
event structure. This structure contains an
ACSEventHeader_t structure which contains information
common to all events. This common information includes:

· acsHandle: Specifies the ACS Stream the event
arrived on.

· eventClass: Identifies the event as an ACS
confirmation, ACS unsolicited, CSTA confirma-
tion, or CSTA unsolicited event.

· eventType: Identifies the specific type of message
(MakeCall, confirmation event, HoldCall event, etc)

· privateData: Private data defined by the specified
driver vendor.

The CSTAEvent_t structure then consists of a union of the
four possible eventClass types; ACS confirmation, ACS
unsolicited, CSTA confirmation or CSTA unsolicited
event. Each eventClass type itself consists of a union of all
the possible eventTypes for that class. Each eventClass may
contain common information such as invokeID and
monitorCrossRefID.

/* CSTA Control Services Header File <CSTA.H> */

Telephony Services API Specification 4-79

#include <acs.h>// defines for CSTA event classes

#define CSTAREQUEST 3
#define CSTAUNSOLICITED 4
#define CSTACONFIRMATION 5
#define CSTAEVENTREPORT 6

typedef struct {
InvokeID_t invokeID;
union
{

CSTARouteRequestEvent_t routeRequest;
CSTAReRouteRequest_t reRouteRequest;
CSTAEscapeSvcReqEvent_t escapeSvcReqeust;
CSTASysStatReqEvent_t sysStatRequest;

} u;

} CSTARequestEvent;

typedef struct {
union
{

CSTARouteRegisterAbortEvent_t registerAbort;
CSTARouteUsedEvent_t routeUsed;
CSTARouteEndEvent_t routeEnd;
CSTAPrivateEvent_t privateEvent;
CSTASysStatEvent_t sysStat;
CSTASysStatEndedEvent_t sysStatEnded;

}u;
} CSTAEventReport;

typedef struct {
CSTAMonitorCrossRefID_t monitorCrossRefId;
union
{

CSTACallClearedEvent_t callCleared;
CSTAConferencedEvent_t conferenced;
CSTAConnectionClearedEvent_t connectionCleared;
CSTADeliveredEvent_t delivered;
CSTADivertedEvent_t diverted;
CSTAEstablishedEvent_t established;
CSTAFailedEvent_t failed;
CSTAHeldEvent_t held;
CSTANetworkReachedEvent_t networkReached;
CSTAOriginatedEvent_t originated;
CSTAQueuedEvent_t queued;
CSTARetrievedEvent_t retrieved;
CSTAServiceInitiatedEvent_t serviceInitiated;
CSTATransferedEvent_t transfered;
CSTACallInformationEvent_t callInformation;
CSTADoNotDisturbEvent_t doNotDisturb;
CSTAForwardingEvent_t forwarding;
CSTAMessageWaitingEvent_t messageWaiting;
CSTALoggedOnEvent_t loggedOn;
CSTALoggedOffEvent_t loggedOff;
CSTANotReadyEvent_t notReady;
CSTAReadyEvent_t ready;
CSTAWorkNotReadyEvent_t workNotReady;

4-80 Control Services

CSTAWorkReadyEvent_t workReady;
CSTABackInServiceEvent_t backInService;
CSTAOutOfServiceEvent_t outOfService;
CSTAPrivateStatusEvent_t privateStatus;
CSTAMonitorEndedEvent_t monitorEnded;

} u;
} CSTAUnsolicitedEvent;

typedef struct
{

InvokeID_t invokeID;
union
{

CSTAAlternateCallConfEvent_t alternateCall;
CSTAAnswerCallConfEvent_t answerCall;
CSTACallCompletionConfEvent_t callCompletion;
CSTAClearCallConfEvent_t clearCall;
CSTAClearConnectionConfEvent_t clearConnection;
CSTAConferenceCallConfEvent_t conferenceCall;
CSTAConsultationCallConfEvent_t consultationCall;
CSTADeflectCallConfEvent_t deflectCall;
CSTAPickupCallConfEvent_t pickupCall;
CSTAGroupPickupCallConfEvent_t groupPickupCall;
CSTAHoldCallConfEvent_t holdCall;
CSTAMakeCallConfEvent_t makeCall;
CSTAMakePredictiveCallConfEvent_t makePredictiveCall;
CSTAQueryMwiConfEvent_t queryMwi;
CSTAQueryDndConfEvent_t queryDnd;
CSTAQueryFwdConfEvent_t queryFwd;
CSTAQueryAgentStateConfEvent_t queryAgentState;
CSTAQueryLastNumberConfEvent_t queryLastNumber;
CSTAQueryDeviceInfoConfEvent_t queryDeviceInfo;
CSTAReconnectCallConfEvent_t reconnectCall;
CSTARetrieveCallConfEvent_t retrieveCall;
CSTASetMwiConfEvent_t setMwi;
CSTASetDndConfEvent_t setDnd;
CSTASetFwdConfEvent_t setFwd;
CSTASetAgentStateConfEvent_t setAgentState;
CSTATransferCallConfEvent_t ransferCall;
CSTAUniversalFailureConfEvent_t universalFailure;
CSTAMonitorConfEvent_t monitorStart;
CSTAChangeMonitorFilterConfEvent_t changeMonitorFilter;
CSTAMonitorStopConfEvent_t monitorStop;
CSTASnapshotDeviceConfEvent_t snapshotDevice;
CSTASnapshotCallConfEvent_t snapshotCall;
CSTARouteRegisterReqConfEvent_t sysStatStart;
CSTASysStatStopConfEvent_t sysStatStop;
CSTAChangeSysStatFilterConfEvent_t changeSysStatFilter;

} u;

} CSTAConfirmationEvent;

#define CSTA_MAX_HEAP 1024

Telephony Services API Specification 4-81

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

ACSUnsolicitedEvent acsUnsolicited;
ACSConfirmationEvent acsConfirmation;
CSTARequestEvent cstaRequest;
CSTAUnsolicitedEvent cstaUnsolicited;
CSTAConfirmationEvent cstaConfirmation;

} event;
char heap[CSTA_MAX_HEAP];
} CSTAEvent_t

4-82 Control Services

	Opening an ACS Stream
	Sending Requests and Responses
	Receiving Events
	API Control Services (ACS) Functions and Confirmation Events
	acsOpenStream ()
	#include <csta.h>
	#include <acs.h>
	RetCode_t acsOpenStream(
	ACSHandle_t *acsHandle, /* RETURN */
	InvokeIDType_t invokeIDType, /* INPUT */
	InvokeID_t invokeID, /* INPUT */
	StreamType_t streamType, /* INPUT */
	ServerID_t *serverID, /* INPUT */
	LoginID_t *loginID, /* INPUT */
	Passwd_t *passwd, /* INPUT */
	AppName_t *applicationName, /* INPUT */
	Level_t acsLevelReq, /* INPUT */
	Version_t *apiVer, /* INPUT */
	unsigned short sendQSize, /* INPUT */
	unsigned short sendExtraBufs, /* INPUT */
	unsigned short recvExtraBufs /* INPUT */
	PrivateData_t *privateData); /* INPUT */
	ACSOpenStreamConfEventXE "ACSOpenStreamConfEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{
	struct
	{
	InvokeID_t invokeID;
	union
	{
	ACSOpenStreamConfEvent_t acsopen;
	} u;
	} acsConfirmation;
	} event;} CSTAEvent_t;
	typedef struct ACSOpenStreamConfEvent_t
	{
	Version_t apiVer;
	Version_t libVer;
	Version_t tsrvVer;
	Version_t drvrVer;
	} ACSOpenStreamConfEvent_t;
	acsCloseStream()XE "acsCloseStream ()"§
	#include <csta.h>
	#include <acs.h>
	RetCode_t acsCloseStream (
	ACSHandle_t acsHandle, /* INPUT */
	InvokeID_t invokeID, /* INPUT */
	PrivateData_t *privateData); /* INPUT */
	ACSCloseStreamConfEventXE "ACSCloseStreamConfEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{
	struct
	{
	InvokeID_t invokeID;
	union
	{
	ACSCloseStreamConfEvent_t acsclose;
	} u;
	} acsConfirmation;
	} event;} CSTAEvent_t;
	typedef struct ACSCloseStreamConfEvent_t
	{
	Nulltype null;
	} ACSCloseStreamConfEvent_t;
	ACSUniversalFailureConfEventXE "ACSUniversalFailureConfEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{
	union
	{
	ACSUniversalFailureConfEvent_t failureEvent;
	} u;
	} acsConfirmation;
	} event;} CSTAEvent_t;
	typedef struct
	{
	int failedStatus;
	} ACSUniversalFailureConfEvent_t;
	acsAbortStream()XE "acsAbortStream()"§
	#include <csta.h>
	#include <acs.h>
	RetCode_t acsAbortStream (
	ACSHandle_t acsHandle, /* INPUT */
	PrivateData_t *privateData); /* INPUT */
	acsGetEventBlock()XE "acsGetEventBlock()"§
	#include <csta.h>
	#include <acs.h>
	RetCode_t acsGetEventBlock (
	ACSHandle_t acsHandle, /* INPUT */
	void *eventBuf, /* INPUT */
	unsigned short *eventBufSize, /* INPUT/RETURN */
	PrivateData_t *privateData, /* RETURN */
	unsigned short *numEvents); /* RETURN */
	acsGetEventPoll()XE "acsGetEventPoll()"§
	#include <csta.h>
	#include <acs.h>
	RetCode_t acsGetEventPoll (
	ACSHandle_t acsHandle, /* INPUT */
	void *eventBuf, /* INPUT */
	unsigned short *eventBufSize, /* INPUT/RETURN */
	PrivateData_t *privateData, /* RETURN */
	unsigned short *numEvents; /* RETURN */
	acsSetESR() XE "acsSetESR() "§
	#include <csta.h>
	#include <acs.h>
	#typedef void (*EsrFunc)(unsigned short esrParam)
	RetCode_t acsSetESR (
	ACSHandle_t acsHandle,
	EsrFunc esr,
	unsigned short esrParam,
	Boolean notifyAll);
	acsEventNotify() (Windows 3.1) XE "acsEventNotify() (Windows 3.1) "§
	#include <csta.h>
	#include <acs.h>
	RetCode_t acsEventNotify (
	ACSHandle_t acsHandle,
	HWND msg,
	Boolean notifyAll);
	#define WM_ACSEVENT WM_USER + 99 // or use RegisterWindowMessage()
	long FAR PASCAL
	WndProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
	{
	// declare local variables...
	
	switch (msg)
	{
	case WM_CREATE:
	// post WM_ACSEVENT to this window
	// whenever an ACS event arrives
	
	acsEventNotify (acsHandle, hwnd, WM_ACSEVENT, TRUE);
	
	// other initialization, etc...
	return 0;
	case WM_ACSEVENT:
	
	// wParam contains an ACSHandle_t
	// HIWORD(lParam) contains an EventClass_t
	// LOWORD(lParam) contains an EventType_t
	
	// dispatch the event to user-defined
	// handler function here
	
	return 0;
	
	// process other window messages...
	
	}
	return DefWindowProc (hwnd, msg, wParam, lParam);
	}
	acsFlushEventQueue()XE "acsFlushEventQueue()"§
	#include <csta.h>
	#include <acs.h>
	RetCode_t ACSFlushEventQueue (ACSHandle_t acsHandle);
	acsEnumServerNames()XE "acsEnumServerNames()"§
	#include <acs.h>
	typedef Boolean (*EnumServerNamesCB) (
	char *serverName,
	unsigned long lParam);
	RetCode_t acsEnumServerNames (
	StreamType_t streamType,
	EnumServerNamesCB callback ,
	unsigned long lParam);

	ACS Unsolicited EventsXE "ACS Unsolicited Events"§
	ACSUniversalFailureEventXE "ACSUniversalFailureEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{
	union
	{
	ACSUniversalFailureEvent_t failureEvent;
	} u;
	} acsUnsolicited;
	} event;} CSTAEvent_t;
	typedef struct
	{
	ACSUniversalFailure_t error;
	}
	ACSUniversalFailureEvent_t;

	ACS Data TypesXE "ACS Data Types"§
	ACS Common Data Types
	typedef int RetCode_t;
	#define ACSPOSITIVE_ACK 0 /* The function was successful */
	/* Error Codes */
	#define ACSERR_APIVERDENIED -1 /* This return indicates that the
	* API Version requested is invalid
	* and not supported by the
	* existing API Client Library.
	*/
	#define ACSERR_BADPARAMETER -2 /* One or more of the parameters is
	* invalid
	*/
	#define ACSERR_DUPSTREAM -3 /* This return indicates that an
	* ACS Stream is already established
	* with the requested Server.
	*/
	#define ACSERR_NODRIVER -4 /* This error return value indicates
	* that no API Client Library Driver
	* was found or installed on the
	* system.
	*/
	#define ACSERR_NOSERVER -5 /* This indicates that the requested
	* Server is not present in the * network.
	*/
	#define ACSERR_NORESOURCE -6 /* This return value indicates that
	* there are insufficient resources
	* to open a ACS Stream.
	*/
	#define ACSERR_UBUFSMALL -7 /* The user buffer size was
	* smaller than the size of
	* the next available event.
	*/
	#define ACSERR_NOMESSAGE -8 /* There were no messages
	*available to
	* return to the application.
	*/
	#define ACSERR_UNKNOWN -9 /* The ACS Stream has encountered
	* an unspecified error.
	*/
	#define ACSERR_BADHDL -10 /* The ACS Handle is invalid */
	#define ACSERR_STREAM_FAILED -11 /* The ACS Stream has failed
	* due to network problems.
	* No further operations are
	* possible on this stream.
	*/
	#define ACSERR_NOBUFFERS -12 /* There were not enough buffers
	* available to place an outgoing
	* message on the send queue.
	* No message has been sent.
	*/
	#define ACSERR_QUEUE_FULL -13 /* The send queue is full.
	* No message has been sent.
	*/
	typedef unsigned long InvokeID_t;
	typedef enum {
	APP_GEN_ID, // application will provide invokeIDs;
	// any 4-byte value is legal
	LIB_GEN_ID // library will generate invokeIDs in
	// the range 1-32767
	} InvokeIDType_t;
	typedef unsigned short ACSHandle_t;
	typedef unsigned short EventClass_t;
	// defines for ACS event classes
	#define ACSREQUEST 0
	#define ACSUNSOLICITED 1
	#define ACSCONFIRMATION 2
	typedef unsigned short EventType_t; // event types are defined in //acs.h and csta.h
	typedef char Boolean;
	typedef char Nulltype;
	#define ACS_OPEN_STREAM 1
	#define ACS_OPEN_STREAM_CONF 2
	#define ACS_CLOSE_STREAM 3
	#define ACS_CLOSE_STREAM_CONF 4
	#define ACS_ABORT_STREAM 5
	#define ACS_UNIVERSAL_FAILURE_CONF 6
	#define ACS_UNIVERSAL_FAILURE 7
	typedef enum StreamType_t {
	ST_CSTA = 1,
	ST_OAM = 2,
	} StreamType_t;
	typedef char ServerID_t[49];
	typedef char LoginID_t[49];
	typedef char Passwd_t[49];
	typedef char AppName_t[21];
	typedef enum Level_t {
	ACS_LEVEL1 = 1,
	ACS_LEVEL2 = 2,
	ACS_LEVEL3 = 3,
	ACS_LEVEL4 = 4
	} Level_t;
	typedef char Version_t[21];
	ACS Event Data TypesXE "ACS Event Data Types"§
	typedef struct
	{
	ACSHandle_t acsHandle;
	EventClass_t eventClass;
	EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	union
	{
	ACSUniversalFailureEvent_t failureEvent;
	} u;
	} ACSUnsolicitedEvent;
	typedef struct
	{
	InvokeID_t invokeID;
	union
	{
	ACSOpenStreamConfEvent_t acsopen;
	ACSCloseStreamConfEvent_t acsclose;
	ACSUniversalFailureConfEvent_t failureEvent;
	} u;
	} ACSConfirmationEvent;

	CSTA Control Services and Confirmation Events
	cstaGetAPICaps()XE " cstaGetAPICaps()"§
	#include <csta.h>
	#include <acs.h>
	RetCode_t cstaGetAPICaps(
	ACSHandle_t acsHandle,
	InvokeID_t invokeID);
	CSTAGetAPICapsConfEventXE "CSTAGetAPICapsConfEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ InvokeID_t invokeID; union
	{
	CSTAGetAPICapsConfEvent_t getAPIcaps;
	} u;
	} cstaConfirmation;
	typedef struct CSTAGetAPICapsConfEvent_t {
	short alternateCall;
	short answerCall;
	short callCompletion;
	short clearCall;
	short clearConnection;
	short conferenceCall;
	short consultationCall;
	short deflectCall;
	short pickupCall;
	short groupPickupCall;
	short holdCall;
	short makeCall;
	short makePredictiveCall;
	short queryMwi;
	short queryDnd;
	short queryFwd;
	short queryAgentState;
	short queryLastNumber;
	short queryDeviceInfo;
	short reconnectCall;
	short retrieveCall;
	short setMwi;
	short setDnd;
	short setFwd;
	short setAgentState;
	short transferCall;
	short eventReport;
	short callClearedEvent;
	short conferencedEvent;
	short connectionClearedEvent;
	short deliveredEvent;
	short divertedEvent;
	short establishedEvent;
	short failedEvent;
	short heldEvent;
	short networkReachedEvent;
	short originatedEvent;
	short queuedEvent;
	short retrievedEvent;
	short serviceInitiatedEvent;
	short transferedEvent;
	short callInformationEvent;
	short doNotDisturbEvent;
	short forwardingEvent;
	short messageWaitingEvent;
	short loggedOnEvent;
	short loggedOffEvent;
	short notReadyEvent;
	short readyEvent;
	short workNotReadyEvent;
	short workReadyEvent;
	short backInServiceEvent;
	short outOfServiceEvent;
	short privateEvent;
	short routeRequestEvent;
	short reRoute;
	short routeSelect;
	short routeUsedEvent;
	short routeEndEvent;
	short monitorDevice;
	short monitorCall;
	short monitorCallsViaDevice;
	short changeMonitorFilter;
	short monitorStop;
	short monitorEnded;
	short snapshotDeviceReq;
	short snapshotCallReq;
	short escapeService;
	short privateStatusEvent;
	short escapeServiceEvent;
	short escapeServiceConf;
	short sendPrivateEvent;
	short sysStatReq;
	short sysStatStart;
	short sysStatStop;
	short changeSysStatFilter;
	short sysStatReqEvent;
	short sysStatReqConf;
	short sysStatEvent;
	} CSTAGetAPICapsConfEvent_t;
	cstaGetDeviceList()XE " cstaGetDeviceList()"§
	#include <csta.h>
	#include <acs.h>
	RetCode_t cstaGetDeviceList(
	ACSHandle_t acsHandle,
	InvokeID_t invokeID,
	long index,
	CSTALevel_t level)
	typedef enum CSTALevel_t {
	CSTA_HOME_WORK_TOP = 1,
	CSTA_AWAY_WORK_TOP = 2,
	CSTA_DEVICE_DEVICE_MONITOR = 3,
	CSTA_CALL_DEVICE_MONITOR = 4,
	CSTA_CALL_CONTROL = 5,
	CSTA_ROUTING = 6,
	CSTA_CALL_CALL_MONITOR = 7
	} CSTALevel_t;
	
	CSTAGetDeviceListConfEventXE "CSTAGetDeviceListConfEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ InvokeID_t invokeID; union
	{
	CSTAGetDeviceListConfEvent_t getDeviceList;
	} event;
	} cstaConfirmation;
	} u;} CSTAEvent_t;
	cstaQueryCallMonitor()XE "cstaQueryCallMonitor()"§
	#include <csta.h>
	#include <acs.h>
	RetCode_t cstaGetDeviceList(
	ACSHandle_t acsHandle,
	InvokeID_t invokeID)
	CSTAQueryCallMonitorConfEventXE " CSTAQueryCallMonitorConfEvent"§
	typedef struct
	{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t eventType;
	} ACSEventHeader_t;
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{ struct
	{ InvokeID_t invokeID; union
	{
	} event;
	} cstaConfirmation;
	} u;} CSTAEvent_t;

	CSTA Event Data TypesXE "CSTA Event Data Types"§
	/* CSTA Control Services Header File <CSTA.H> */
	#include <acs.h>// defines for CSTA event classes
	#define CSTAREQUEST 3
	#define CSTAUNSOLICITED 4
	#define CSTACONFIRMATION 5
	typedef struct {
	InvokeID_t invokeID;
	union
	{
	CSTARouteRequestEvent_t routeRequest;
	CSTAReRouteRequest_t reRouteRequest;
	CSTAEscapeSvcReqEvent_t escapeSvcReqeust;
	CSTASysStatReqEvent_t sysStatRequest;
	} u;
	} CSTARequestEvent;
	typedef struct {
	union
	{
	CSTARouteRegisterAbortEvent_t registerAbort;
	CSTARouteUsedEvent_t routeUsed;
	CSTARouteEndEvent_t routeEnd;
	CSTAPrivateEvent_t privateEvent;
	CSTASysStatEvent_t sysStat;
	CSTASysStatEndedEvent_t sysStatEnded;
	}u;
	} CSTAEventReport;
	typedef struct {
	CSTAMonitorCrossRefID_t monitorCrossRefId;
	union
	{
	CSTACallClearedEvent_t callCleared;
	CSTAConferencedEvent_t conferenced;
	CSTAConnectionClearedEvent_t connectionCleared;
	CSTADeliveredEvent_t delivered;
	CSTADivertedEvent_t diverted;
	CSTAEstablishedEvent_t established;
	CSTAFailedEvent_t failed;
	CSTAHeldEvent_t held;
	CSTANetworkReachedEvent_t networkReached;
	CSTAOriginatedEvent_t originated;
	CSTAQueuedEvent_t queued;
	CSTARetrievedEvent_t retrieved;
	CSTAServiceInitiatedEvent_t serviceInitiated;
	CSTATransferedEvent_t transfered;
	CSTACallInformationEvent_t callInformation;
	CSTADoNotDisturbEvent_t doNotDisturb;
	CSTAForwardingEvent_t forwarding;
	CSTAMessageWaitingEvent_t messageWaiting;
	CSTALoggedOnEvent_t loggedOn;
	CSTALoggedOffEvent_t loggedOff;
	CSTANotReadyEvent_t notReady;
	CSTAReadyEvent_t ready;
	CSTAWorkNotReadyEvent_t workNotReady;
	CSTAWorkReadyEvent_t workReady;
	CSTABackInServiceEvent_t backInService;
	CSTAOutOfServiceEvent_t outOfService;
	CSTAPrivateStatusEvent_t privateStatus;
	CSTAMonitorEndedEvent_t monitorEnded;
	} u;
	} CSTAUnsolicitedEvent;
	typedef struct
	{
	InvokeID_t invokeID;
	union
	{
	CSTAAlternateCallConfEvent_t alternateCall;
	CSTAAnswerCallConfEvent_t answerCall;
	CSTACallCompletionConfEvent_t callCompletion;
	CSTAClearCallConfEvent_t clearCall;
	CSTAClearConnectionConfEvent_t clearConnection;
	CSTAConferenceCallConfEvent_t conferenceCall;
	CSTAConsultationCallConfEvent_t consultationCall;
	CSTADeflectCallConfEvent_t deflectCall;
	CSTAPickupCallConfEvent_t pickupCall;
	CSTAGroupPickupCallConfEvent_t groupPickupCall;
	CSTAHoldCallConfEvent_t holdCall;
	CSTAMakeCallConfEvent_t makeCall;
	CSTAMakePredictiveCallConfEvent_t makePredictiveCall;
	CSTAQueryMwiConfEvent_t queryMwi;
	CSTAQueryDndConfEvent_t queryDnd;
	CSTAQueryFwdConfEvent_t queryFwd;
	CSTAQueryAgentStateConfEvent_t queryAgentState;
	CSTAQueryLastNumberConfEvent_t queryLastNumber;
	CSTAQueryDeviceInfoConfEvent_t queryDeviceInfo;
	CSTAReconnectCallConfEvent_t reconnectCall;
	CSTARetrieveCallConfEvent_t retrieveCall;
	CSTASetMwiConfEvent_t setMwi;
	CSTASetDndConfEvent_t setDnd;
	CSTASetFwdConfEvent_t setFwd;
	CSTASetAgentStateConfEvent_t setAgentState;
	CSTATransferCallConfEvent_t ransferCall;
	CSTAUniversalFailureConfEvent_t universalFailure;
	CSTAMonitorConfEvent_t monitorStart;
	CSTAChangeMonitorFilterConfEvent_t changeMonitorFilter;
	CSTAMonitorStopConfEvent_t monitorStop;
	CSTASnapshotDeviceConfEvent_t snapshotDevice;
	CSTASnapshotCallConfEvent_t snapshotCall;
	CSTARouteRegisterReqConfEvent_t sysStatStart;
	CSTASysStatStopConfEvent_t sysStatStop;
	CSTAChangeSysStatFilterConfEvent_t changeSysStatFilter;
	} u;
	} CSTAConfirmationEvent;
	#define CSTA_MAX_HEAP 1024
	typedef struct
	{
	ACSEventHeader_t eventHeader;
	union
	{
	ACSUnsolicitedEvent acsUnsolicited;
	ACSConfirmationEvent acsConfirmation;
	CSTARequestEvent cstaRequest;
	CSTAUnsolicitedEvent cstaUnsolicited;
	CSTAConfirmationEvent cstaConfirmation;
	} event;
	char heap[CSTA_MAX_HEAP];
	} CSTAEvent_t

