
Chapter 9 Escape and Maintenance Services

This chapter describes the CSTA Escape and Maintenance
Services.

Escape Services

XE "Escape Service"§Switching domains use Escape Services to
enhance TSAPI functions with "private" services which are
specific to the switch or PBX Driver implementation (see
Section 2.3). Each switch vendor may define functions within
the CSTA private services framework, even though CSTA does
not incorporate these services. Although the functions defined
within escape services can vary from one implementation to the
next, the way the application accesses these functions is
consistent. Escape Services use the same programming model as
all other CSTA services. Figure 9-1 illustrates this model.

When an application requests an escape service from a server it
receives a confirmation event or a Universal Failure in the same
fashion as for other TSAPI services. The Escape Service request
parameters are an acsHandle (to the open stream), an invokeID
and a private data parameter. The confirmation event includes
the acsHandle, the invokeID, and the private data response.

Escape Services also includes an unsolicited private event which

DRAFT 2.0 Telephony Services API 9-1

a server can send to an application at any time a CSTA monitor
association exists on a CSTA call or device object (see Section 6
- cstaMonitorStart()).

Figure 9-2
Escape Services ModelXE "Escape Service:Model"§tc "Escape Services
Model" \f f \l3§

Applications can also send Escape Services requests to a switch.
For most CSTA services the application is always a client in the
computing domain. However, an escape service could operate in
the opposite direction (such as routing does). Although the
client/server role may change, services are always uni-directional
where either the switch or application is always the requester for
a service.

TSAPI includes escape service definitions for both the
"Application as the Client" and the "Switch as the Client".

 See vendor specific documentation for more information on what, if any, Escape
Services are supported by a specific vendor. Escape Service Functions are generally
not portable across different vendor implementations. Some implementations may
support Escape Services either bi-directionally or unidirectional (one-way only)
depending on the needs and capabilities of the switch driver

9-2 Escape and Maintenance Services

Maintenance Services

XE "Maintenance Services"§There are two different types of
CSTA maintenance services:

u device status maintenance events which provide status
information for device objects, and

u bi-directional system status maintenance services which
provide information on the overall status of the system.

The device status events inform the application when the switch
places a monitored device in or out of service. When a device
object is removed from service, the application may monitor the
device (e.g. cstaMonitorStart() or cstaDevSnapshotReq())
but may not request services for that device. For example, an
application request for a cstaMakeCall() returns an error when
the device is out of service.

System Status services inform applications or switches about the
status of the switching or computing domains, respectively.
Table 9-1 shows the System Status Services’ system status
information (cause codes).

DRAFT 2.0 Telephony Services API 9-3

Table 9-2
System Status Cause CodesXE "System status:Cause codes"§tc "System
Status Cause Codes"\f t \l3§

System Status
Cause Code

Cause Code Definitions

Initializing the system is re-initializing or restarting. This status indicates that
the system is temporarily unable to respond to any requests. If
provided, this status message shall be followed by an Enable status
message that indicates that the initialization process is completed.

Enabled request and responses are enabled, usually after a disruption or
restart. This status indication shall be sent after an initializing status
indicator has been sent and my be sent under other conditions. This
status indicates that there are no outstanding monitor requests.

Normal a System Status Event with this cause value can be sent at any time
to indicate that the status is normal. This status has no effect on
other services.

Message Lost this status indicates that a request, response, or event report may
have been lost.

Disabled this cause value indicates that active cstaMonitorStart() monitor
requests via have been disabled. Other requests and responses may
also be disabled, but, unlike monitors, reject responses are provided
for those.

Overload Imminent the system (driver, switch, or application) is about to reach an
overload condition. The "client" should shed load to remedy the
situation.

9-4 Escape and Maintenance Services

Overload Reached the system (driver, switch, or application) has reached an overload
condition and may take action to shed load. The server (the
application, driver, or switch) may then take action to decrease
message traffic. This may include stopping existing monitors or
rejecting any new requests sent by the client.

Overload Relieved the system (driver, switch, or application) has determined that the
overload condition has passed and normal application operation
may resume.

The System Status services are bi-directional and thus can
originate at the application domain or at the driver/switch
domain. Figure 9-3 shows System Status Maintenance Services.

Figure 9-4
System Status Maintenance ServicesXE "System status:Maintenance
services"§tc "System Status Maintenance Services" \f f \l3§

An application can obtain System Status information in one of
two different ways :

u the client can ask for the information using a request to the
"server" and obtain the information in a confirmation event,
or

u the client can register for System Status messages and
receive unsolicited events containing system status changes.

A switch or application may issue the System Status request

DRAFT 2.0 Telephony Services API 9-5

(cstaSysStatReq()) to obtain status information from the
"server" (the application or switch, respectively, depending on
the direction of the request). A System Status response
(CSTASysStatReqConfEvent) provides the "client" with the
current system status information for the "server". The "server"
may send unsolicited events can be sent to the client if the client
used the cstaSysStatStart() service to register for System
Status events. The System Status unsolicited event
(CSTASysStatEvent) is the same in structure as the confirma-
tion event (CSTASysStatReqConfEvent) except that the
"server" sends it to the "client" automatically.

9-6 Escape and Maintenance Services

Escape Services : Application as Client

XE "Escape Service:Application as Client"§This section defines
escape services for situation where the application is the service
requester in the client/server relationship (see Figure 9-5). The
services include an escape service request, a confirmation event
to the request, and an unsolicited escape service event that
originates at the driver or switching domain.

DRAFT 2.0 Telephony Services API 9-7

cstaEscapeService()XE "cstaEscapeService()"§

This service allows the application to request a service which is
not defined by the CSTA Standard but rather by a switch vendor.
A service request made by this function will be specific to an
implementation.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaEscapeService (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
PrivateData_t *privateData);

Parameters

acsHandle
This is the handle to an active ACS Stream.

invokeID
A handle provided by the application to be used for
matching a specific instance of a function service request
with its associated confirmation event. This parameter is
only valid when the Invoke ID mechanism is set for
Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the
Stream is set for Library-generated invoke IDs.

privateData
This is a pointer to the CSTA private data extension
mechanism. This parameter in NOT optional for this
function and must be passed by the application. If the
parameter is NULL an error will be returned to the
application and the API Client Library Driver will reject
the service request.

9-8 Escape and Maintenance Services

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-gener-
ated identifiers the return will never be positive
(>0).

The application should always check the
CSTAEscapeServiceConfEvent message to insure that
the service request has been acknowledged and processed
by the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_NOCONN
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

ACSERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been

DRAFT 2.0 Telephony Services API 9-9

denied by the Client Library Software Driver.

ACSERR_NULLPARAMETER
This error indicates that the pointer to the CSTA
Private Data information is NULL and thus no
private data is available to send to the
driver/switch. No action is taken by the API
Client Library Driver.

Comments

This function is used to send private data information to
the driver/switch.

9-10 Escape and Maintenance Services

CSTAEscapeServiceConfEventXE "CSTAEscapeServiceConfEvent"§

This confirmation event is sent in response to the
cstaEscapeService() service and provides the positive
acknowledgment to the request. The event includes any private
information that is to be provided as part of a confirmation event
to the service request.

Syntax

The following structure shows only the relevant portions
of the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID; } cstaConfirmation;
} event;} CSTAEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType
This is a tag with the value
CSTA_ESCAPE_SERVICE_CONF which identifies

DRAFT 2.0 Telephony Services API 9-11

this message as an CSTAEscapeServiceConfEvent.

invokeID
This parameter specifies the function service request
instance for the service which was processed at the
Telephony Server or at the switch. This identifier is
provided to the application when a service request is
made.

privateData
If private data accompanied this event, then the private
data would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer
is set to NULL in these functions, then no private data
will be delivered to the application.

Comments

This event always occurs as a result of a normal
(positive) service request made through the
cstaEscapeService() service. The information contained
in the privateData parameter is implementation specific.

9-12 Escape and Maintenance Services

CSTAPrivateEventXE "CSTAPrivateEvent"§

This event report allows for unsolicited, implementation specific
event reporting. The informational contents of this event will be
defined by a specific implementation.

Syntax

The following structure shows only the relevant portions
of the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ union
{

CSTAPrivateEvent_t privateData;
} u;

} cstaEventReport;

} event;} CSTAEvent_t;Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This is a tag with the value CSTAEVENTREPORT,
which identifies this message as an CSTA unsolicited
event.

eventType
This is a tag with the value CSTA_PRIVATE, which
identifies this message as an CSTAPrivateEvent.

DRAFT 2.0 Telephony Services API 9-13

monitorCrossRefID
Does not apply to this event.

privateData
If private data accompanied this event, then the private
data would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer
is set to NULL in these functions, then no private data
will be delivered to the application.

Comments

This event is typically used for providing unsolicited,
implementation specific event information. This event
can occur at any time and does not have be specific to a
monitored object. The event can be sent by the
driver/switch even though the application does not have a
monitored object. When a monitor exists, the
PrivateStatusEvent is used by the driver/switch to send
private status information pertaining to a monitored
object. The PrivateEvent is used for all other cases of
unsolicited private events and is not associated with a
monitoring association.

9-14 Escape and Maintenance Services

CSTAPrivateStatusEventXE "CSTAPrivateStatusEvent"§

This event report allows for unsolicited, implementation specific
event reporting for a monitored object. The informational
contents of this event will be defined by a specific
implementation.

Syntax

The following structure shows only the relevant portions
of the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
} cstaUnsolicited;

} event;} CSTAEvent_t;Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED,
which identifies this message as an CSTA unsolicited
event.

eventType
This is a tag with the value
CSTA_PRIVATE_STATUS, which identifies this
message as an CSTAPrivateStatusEvent.

DRAFT 2.0 Telephony Services API 9-15

monitorCrossRefID
This parameter contains the handle to the CSTA
association for which this event is associated. This handle
is typically chosen by the switch and should be used by
the application as a reference to a specific established
association.

privateData
If private data accompanied this event, then the private
data would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer
is set to NULL in these functions, then no private data
will be delivered to the application.

Comments

This event is typically used for providing implementation
specific event information which is not defined in any
other event in the API. The event is always used for
private information on a monitoring association. A
monitor must be active (cstaMonitorStart()) before this
event can be sent to the application by the driver/switch.
This event is always sent from the driver/switch to the
application and it is not bi-directional.

9-16 Escape and Maintenance Services

Escape Service : Driver/Switch as the ClientXE
"Escape Service:Driver/Switch as the Client"§

This section defines escape services for cases where the
Driver/Switch is the service requester in the client/server
relationship (see Figure 9-1). The services include an escape
service request event, a confirmation function for the request,
and an unsolicited escape service event that originates at the
application domain.

DRAFT 2.0 Telephony Services API 9-17

CSTAEscapeServiceReqXE "CSTAEscapeServiceReq"§

This unsolicited event is sent by the driver/switch to request a
private service from the application. The event includes the
service request as private information for which the application
must provide a positive or negative acknowledgment.

Syntax

The following structure shows only the relevant portions
of the unions for this message. See 4.3 ACS Data Types
and CSTA Data Types in section 4 for a complete
description of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

CSTAEscapeSvcReqEvent_t escapeSvcReqeust;
} u;

} cstaRequestEvent;

} event;} CSTAEvent_t;Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This is a tag with the value CSTAREQUEST, which
identifies this message as an CSTA unsolicited event.

eventType
This is a tag with the value
CSTA_ESCAPE_SVC_REQ, which identifies this

9-18 Escape and Maintenance Services

message as an CSTAEscapeServiceReq

invokeID
This parameter defines the invoke identifier selected by
the driver/switch for the specific private request. This
parameter must be returned, unchanged, in the response
to this request in order for the driver/switch to match a
service request with a service response.

privateData
If private data accompanied this event, then the private
data would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer
is set to NULL in these functions, then no private data
will be delivered to the application.

Comments

This event is sent by the driver/switch to request an
escape or private service when the application is
providing the "server" function in the client/server
relationship. The response to this event will be accom-
plished via the cstaEscapeServiceConf() service.

DRAFT 2.0 Telephony Services API 9-19

cstaEscapeServiceConf()XE "cstaEscapeServiceConf()"§

This service allows the application to respond to a
CSTAEscapeServiceEvent which originated at the
driver/switch. A service response made by this function will be
specific to an implementation.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaEscapeServiceConf (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
CSTAUniversalFailure_t error, /* negative ACK */
PrivateData_t *privateData), /* positive ACK */

Parameters

acsHandle
This is the handle to an active ACS Stream.

invokeID
The invoke identifier used in this function must be the
same value (unchanged) as that provided in the
CSTAEscapeServiceReq for which this services request
is being called. The same invokeID value must be used in
order for the driver/switch to match the instances of a
previous service event and the service confirmation to
that event provided by this function call.

error
This parameter is used to provide a negative
acknowledgment to the CSTAEscapeServiceReq. See
CSTAUniversalFailureConfEvent for a definition of
the possible error values for this parameter. If the error
pointer is NULL this will indicates that the event
contains a positive acknowledgment.

9-20 Escape and Maintenance Services

privateData
This is a pointer to the CSTA private data extension
mechanism which contains the positive acknowledgment
to the CSTAEscapeServiceEvent. If the private pointer
is NULL this will indicate that the event contains a
negative acknowledgment.

Return Values

This function never returns an invoke identifier since
there is no confirmation event for this service. The
function does return errors conditions during the
processing of the request by the API Client Library. A
return value of zero (0) indicates that the request has
been accepted by the Library. This function never returns
a positive value.

Possible local error returns are (negative returns):

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_NOCONN
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

ACSERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

ACSERR_NONULL
This error indicates that neither the error or
privateData pointers are NULL. One of these
pointers must be NULL to indicate either a
positive or negative acknowledgment to the
request. No action is taken by the API Client

DRAFT 2.0 Telephony Services API 9-21

Library.

ACSERR_NORESPONSE
This error indicates that both the error or the
privateData pointer are NULL. In this case the
API Client Library has nothing to send to the
driver/switch and rejects the response. The
request associated with the invoke identifier from
the driver/server will still be outstanding and the
application must respond by calling this function
with acceptable parameters.

ACSERR_BADINVOKEID
This error indicates that the invoke identifier
being returned by the application is not one that is
outstanding from the driver/switch. The API
Client Library will keep track of the
driver/switch-based invoke id's until the
application responds to the specific request from
the driver/switch.

Comments

This function is used to send a response to a private
request from the driver/switch. The event supports both a
positive and negative acknowledgment to the request.
One of the two pointers (error or privateData) must be
NULL in order for the request to be successfully
processed by the API Client Library. This would indicate
a positive or negative acknowledgment to the request
made by the driver/switch.

9-22 Escape and Maintenance Services

cstaSendPrivateEvent()XE "cstaSendPrivateEvent()"§

This service allows the application to send an unsolicited private
event to the driver/switch. An event sent by this function will be
specific to an implementation.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaSendPrivateEvent (
ACSHandle_t acsHandle,
PrivateData_t *privateData),

Parameters

acsHandle
This is the handle to an active ACS Stream.

privateData
This is a pointer to the CSTA private data extension
mechanism. This parameter in NOT optional for this
function and must be passed by the application. If the
parameter is NULL an error will be returned to the
application and the API Client Library Driver will reject
the service request.

Return Values

This function never returns an invoke identifier since
there is no confirmation event for this service. The
function does return errors conditions during the
processing of the request by the API Client Library. A
return value of zero (0) indicates that the request has
been accepted by the Library. This function never returns
a positive value.

Possible local error returns are (negative returns):

DRAFT 2.0 Telephony Services API 9-23

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_NOCONN
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

ACSERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

ACSERR_NULLPARAMETER
This error indicates that the pointer to the CSTA
Private Data information is NULL and thus no
private data is available to send to the
driver/switch. No action is taken by the API
Client Library Driver.

Comments

This function is used to send unsolicited, private data
information to the driver/switch when the application is
supporting the "server" role in the client/server
relationship.

9-24 Escape and Maintenance Services

Maintenance Services: Device StatusXE "Maintenance
Services"§

This section describes the CSTA Maintenance Services which
provide device status information. To receive device status
information, an application must monitor the device(e.g. the
application must have an active monitorCrossRefID for the
device). These events are unidirectional and always originate in
the switch domain.

DRAFT 2.0 Telephony Services API 9-25

CSTABackInServiceEventXE "CSTABackInServiceEvent"§

This event report indicates that a monitored device object has
returned to services and operates normally.

Syntax

The following structure shows only the relevant portions
of the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTABackInServiceEvent_t backInService;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

DeviceID_t device;
CSTAEventCause_t case;

} CSTABackInServiceEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED,
which identifies this message as an CSTA unsolicited
event.

9-26 Escape and Maintenance Services

eventType
This is a tag with the value
CSTA_BACK_IN_SERVICE , which identifies this
message as an CSTABackInServiceEvent.

monitorCrossRefID
This parameter contains the handle to the CSTA
association for which this event is associated. This handle
is typically chosen by the switch and should be used by
the application as a reference to a specific established
association.

device
Specifies the device which is back in service. If the
device is not specified, then the parameter will indicate
that the device was not known or that it was not required.

cause
This parameter indicates the reason or explanation for the
occurrence of this event. See Section 6 for more
information.

privateData
If private data accompanied this event, then the private
data would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer
is set to NULL in these functions, then no private data
will be delivered to the application.

Comments

This event indicates that a previously inactive device (a
device which is out service) has resumed normal
operation. Once this event has occurred the application
can then initiate an active service request (e.g.
cstaMakeCall()) for that specific device. A passive

DRAFT 2.0 Telephony Services API 9-27

service request can be done while a device is out of
service, i.e. monitoring or Snapshot Services.

9-28 Escape and Maintenance Services

CSTAOutOfServiceEventXE "CSTAOutOfServiceEvent"§

This event report indicates that a monitored device object has
entered a maintenance state and can no longer accept calls or be
actively manipulated by the application.

Syntax

The following structure shows only the relevant portions
of the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTAOutOfServiceEvent_t outOfService;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

DeviceID_t device;
CSTAEventCause_t case;

} CSTAOutOfServiceEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED,
which identifies this message as an CSTA unsolicited
event.

DRAFT 2.0 Telephony Services API 9-29

eventType
This is a tag with the value
CSTA_OUT_OF_SERVICE , which identifies this
message as an CSTAOutOfServiceEvent.

monitorCrossRefID
This parameter contains the handle to the CSTA
association for which this event is associated. This handle
is typically chosen by the switch and should be used by
the application as a reference to a specific established
association.

device
This parameter indicates the device which has been taken
out of service. If the device is not specified, then the
parameter will indicate that the device was not known or
that it was not required.

cause
This parameter indicates the reason or explanation for

the occurrence of this event. See Section 6 for more
information.

privateData
If private data accompanied this event, then the private
data would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer
is set to NULL in these functions, then no private data
will be delivered to the application.

Comments

This event indicates that a previously active device (a
device which is in service) has entered into a
maintenance state, i.e. the device has been taken out of
service. Once this event has occurred the application can

9-30 Escape and Maintenance Services

not initiate any new active service request (e.g.
cstaMakeCall()) for that specific device. A passive
service request (e.g. monitoring or Snapshot Services)
can be done while a device is out of service.

DRAFT 2.0 Telephony Services API 9-31

System Status - Application as the ClientXE "System
status:Application as the client"§

This section defines the services which provide system level
status information to the application or the driver/switch. The
System Status service is bi-directional and thus the client/server
relationship (see Figure 9-2) can be reversed.

9-32 Escape and Maintenance Services

cstaSysStatReq()

This service allows the application to request system status
information from the driver/switch domain.XE
"cstaSysStatReq()"§

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaSysStatReq (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
PrivateData_t *privateData);

Parameters

acsHandle
This is the handle to an active ACS Stream.

invokeID
A handle provided by the application to be used for
matching a specific instance of a function service request
with its associated confirmation event. This parameter is
only valid when the Invoke ID mechanism is set for
Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the
Stream is set for Library-generated invoke IDs.

privateData
This is a pointer to the CSTA private data extension
mechanism. This is optional.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

DRAFT 2.0 Telephony Services API 9-33

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the
CSTASysStatReqConfEvent message to insure that the
service request has been acknowledged and processed by
the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_NOCONN
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

ACSERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

This function is used to request the current overall system
status for the driver/switch.

9-34 Escape and Maintenance Services

DRAFT 2.0 Telephony Services API 9-35

CSTASysStatReqConfEventXE "CSTASysStatReqConfEvent"§

This event is in response to the cstaSysStatReq() service and
informs the application of the overall system status of the
driver/switch.

Syntax

The following structure shows only the relevant portions
of the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

CSTASysStatReqConfEvent sysStatReq;
} u;

} cstaConfirmation;
} event;} CSTAEvent_t;

typedef struct CSTASysStatReqConfEvent_t (
SystemStatus_t systemStatus;

) CSTASysStatStatReqConfEvent_t

typedef enum SystemStatus_t {
 SS_INITIALIZING = 0,
 SS_ENABLED = 1,
 SS_NORMAL = 2,
 SS_MESSAGES_LOST = 3,
 SS_DISABLED = 4,
 SS_OVERLOAD_IMMINENT = 5,
 SS_OVERLOAD_REACHED = 6,
 SS_OVERLOAD_RELIEVED = 7
} SystemStatus_t;

9-36 Escape and Maintenance Services

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA unsolicited
event.

eventType
This is a tag with the value
CSTA_SYS_STAT_REQ_CONF, which identifies this
message as an CSTASysStatReqConfEvent.

invokeID
This parameter specifies the requested instance of the
function or event. It is used to match a specific function
call request with its confirmation events.

privateData
If private data accompanied this event, then the private
data would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer
is set to NULL in these functions, then no private data
will be delivered to the application.

systemStatus
This parameter provides the application with a cause
code defining the overall system status as fin Table 9-3

DRAFT 2.0 Telephony Services API 9-37

Table 9-4
Overall System Status Codestc "Overall System Status Cause Codes"\f t \l3§

Cause Code Definition

Initializing the driver/switch is re-initializing or restarting. This status
indicates that the driver/switch is temporarily unable to respond
to any requests. If provided, this status message shall be
followed by an Enable status message to indicate that the
initialization process is completed.

Enabled request and responses are re-enabled, usually after a disruption
or restart. This status indication shall be sent after an initializing
status indicator has been sent and may be sent under other
conditions. This status indicates that there are no outstanding
monitor request.

Normal this cause value can be sent at any time by the driver/switch to
indicate that the status is normal. This status has no effect on
other services.

Message Lost this status indicates that a request and/or responses may have
been lost, including Event Reports.

Disabled this cause value indicates that existing monitor requests via
cstaMonitorStart() have been disabled. Other requests and
responses may also be disabled, but reject responses should be
provided.

Overload
Imminent

the driver/switch is about to reach a overload condition and the
application should shed load to better the situation.

9-38 Escape and Maintenance Services

Overload
Reached

the driver/switch has reach overload and may take initiative to
shed load. This cause may be followed by action on the part of
the driver/switch to decrease message traffic. This may include
stopping existing or rejecting any new monitor requests sent by
the client, and rejections to additional new service requests.

Overload
Relieved

the driver/switch has determined that the overload condition has
passed and normal application operation may continue.

Comments

This confirmation event provides the application with
certain information regarding the state of the overall
driver/switch system. This event is important for proper
application operation and should be processed
accordingly. This is especially important for cause values
for the overload condition. If the driver/switch has
informed the application that an overload condition is
imminent all applications should attempt to decrease the
overall traffic to the driver/switch. This can be
accomplished, for example, by stopping all non-essential
monitors on call or device objects on the switch thus
reducing the traffic between the server and the switch.
Frequent occurrence of the Overload Imminent cause
value can be a symptoms of a poorly engineered system
which should reviewed for proper loading.

DRAFT 2.0 Telephony Services API 9-39

cstaSysStatStart()XE "cstaSysStatStart()"§

This services allows the application to register for System Status
event reporting. It can be used by an application to automatically
receive a CSTASysStatEvent each time the status of the
driver/switch changes.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaSysStatStart (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
SystemStatusFilter_t statusFilter,
PrivateData_t *privateData),

typedef unsigned char SystemStatusFilter_t;
#define SF_INITIALIZING 0x80
#define SF_ENABLED 0x40
#define SF_NORMAL 0x20
#define SF_MESSAGES_LOST 0x10
#define SF_DISABLED 0x08
#define SF_OVERLOAD_IMMINENT 0x04
#define SF_OVERLOAD_REACHED 0x02
#define SF_OVERLOAD_RELIEVED 0x01

 Parameters

acsHandle
This is the handle to an active ACS Stream.

invokeID
A handle provided by the application to be used for
matching a specific instance of a function service request
with its associated confirmation event. This parameter is
only valid when the Invoke ID mechanism is set for
Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the
Stream is set for Library-generated invoke IDs.

9-40 Escape and Maintenance Services

statusFilter
This parameter is used to specify a filter for specific
cause values in which the application is not interested.
The parameter can be used by the application to filter out
unwanted status information (e.g. the Normal status)

privateData
Private data extension mechanism. This is optional.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-gener-
ated identifiers the return will never be positive
(>0).

The application should always check the
CSTASysStatStartConfEvent message to insure that
the service request has been acknowledged and processed
by the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown

DRAFT 2.0 Telephony Services API 9-41

acsHandle was provided by the application.

ACSERR_NOCONN
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

ACSERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

This function is used to start a monitor for system status
information. The system status information is provided
via the CSTASysStatEvent. Only one System Status
register is allowed per opened ACS Stream.

9-42 Escape and Maintenance Services

CSTASysStatStartConfEventXE "CSTASysStatStartConfEvent"§

This event is in response to the cstaSysStatStart() function and
confirms an active System Status monitor. Once this event is
issued the application will start to automatically receive
unsolicited System Status events.

Syntax

The following structure shows only the relevant portions
of the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID_t;
union
{

CSTASysStatStartConfEvent sysStatStart;
} u;

} cstaConfirmation;
} event;} CSTAEvent_t;

typedef struct CSTASysStatStartConfEvent_t (
SystemStatusFilter_t systemFilter;

) CSTASysStatStatStartConfEvent_t

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA unsolicited
event.

DRAFT 2.0 Telephony Services API 9-43

eventType
This is a tag with the value
CSTA_SYS_STAT_START_CONF, which identifies
this message as an CSTASysStatStartConfEvent.

invokeID
This parameter specifies the requested instance of the
function or event. It is used to match a specific functions
call request with its confirmation events.

statusFilter
This parameter is used to specify the filter type which is
active on the System Status monitor requested by the
application. The parameter identifies which filter was
accepted by the driver/switch. Note that the filter
returned by this function may be different than the filter
requested in the cstaSysStatStart() service request. This
can occur when the driver/switch rejected the request
filter and selected a default filter.

privateData
If private data accompanied this event, then the private
data would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer
is set to NULL in these functions, then no private data
will be delivered to the application.

Comments

This confirmation event should be checked by the
application to insure that the System Status monitor has
been activated and that the requested filter is active.

9-44 Escape and Maintenance Services

cstaSysStatStop()XE "cstaSysStatStop()"§

This service is used to cancel a previously registered monitor for
System Status information.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaSysStatStop (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
PrivateData_t *privateData),

Parameters

acsHandle
This is the handle to an active ACS Stream.

invokeID
A handle provided by the application to be used for
matching a specific instance of a function service request
with its associated confirmation event. This parameter is
only valid when the Invoke ID mechanism is set for
Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the
Stream is set for Library-generated invoke IDs.

privateData
Private data extension mechanism. This is optional.

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive

DRAFT 2.0 Telephony Services API 9-45

value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-gener-
ated identifiers the return will never be positive
(>0).

The application should always check the
CSTASysStatStopConfEvent message to insure that the
service request has been acknowledged and processed by
the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_NOCONN
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

ACSERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

This function is used to cancel a previously registered
System Status monitor. Once a confirmation event is
issued for this function, i.e. a
CSTASysStatStopConfEvent, the driver/switch will

9-46 Escape and Maintenance Services

terminate automatic System Status event notification. If
required, the application can still continue to poll for
system status information using the cstaSysStatReq()
service, even after a System Status register is closed.

DRAFT 2.0 Telephony Services API 9-47

CSTASysStatStopConfEventXE "CSTASysStatStopConfEvent"§

This event is in response to the cstaSysStatStop() function and
confirms a cancellation of the active System Status monitor.
Once this event is issued the application will not continue to
receive unsolicited System Status events.

Syntax

The following structure shows only the relevant portions
of the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID_t;
} cstaConfirmation;

} event;} CSTAEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA unsolicited
event.

eventType
This is a tag with the value
CSTA_SYS_STAT_STOP_CONF, which identifies
this message as an CSTASysStatStopConfEvent.

9-48 Escape and Maintenance Services

invokeID
This parameter specifies the requested instance of the
function or event. It is used to match a specific functions
call request with its confirmation events.

privateData
If private data accompanied this event, then the private
data would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer
is set to NULL in these functions, then no private data
will be delivered to the application.

Comments

This confirmation event should be checked by the
application to insure that the System Status monitor has
been deactivated. Once this event is sent, automatic
notification of System Status events will be discontinued.
The application must poll using the cstaSysStatReq()
service in order to obtain any System Status information.

DRAFT 2.0 Telephony Services API 9-49

cstaChangeSysStatFilter()XE "cstaChangeSysStatFilter()"§

This function is used to request a change in the filter options for
automatic System Status event reporting for a specific ACS
Stream. It allows the application to specify which System Status
events it requires.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaChangeSysStatFilter (
ACSHandle_t acsHandle,
InvokeID_t *invokeID,
SystemStatusFilter_t statusFilter,
PrivateData_t *privateData),

Parameters

acsHandle
This is the handle to an active ACS Stream.

invokeID
A handle provided by the application to be used for
matching a specific instance of a function service request
with its associated confirmation event. This parameter is
only valid when the Invoke ID mechanism is set for
Application-generated IDs in the acsOpenStream().
The parameter is ignored by the ACS Library when the
Stream is set for Library-generated invoke IDs.

statusFilter
This parameter identifies the new filter mask to be
applied to the existing active System Status monitor. The
new mask will replace the existing mask.

privateData
Private data extension mechanism. This is optional.

9-50 Escape and Maintenance Services

Return Values

This function returns the following values depending on
whether the application is using library or application-
generated invoke identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-gener-
ated identifiers the return will never be positive
(>0).

The application should always check the
CSTAChangeSysStatFilterConfEvent message to
insure that the service request has been acknowledged
and processed by the Telephony Server and the switch.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_NOCONN
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

ACSERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been

DRAFT 2.0 Telephony Services API 9-51

denied by the Client Library Software Driver.

Comments

This service is used whenever the application wishes to
change a previously defined System Status event filter.
Note that application will not receive any System Status
message which has its bit mask turned off.

9-52 Escape and Maintenance Services

CSTAChangeSysStatFilterConfEventXE
"CSTAChangeSysStatFilterConfEvent"§

This event occurs as a result of the cstaChangeSysStatFilter()
service and informs the application which event filter was set by
the server.

Syntax

The following structure shows only the relevant portions
of the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID_t;
union
{

CSTAChangeSysStatFilterConfEvent changeSysStatFilter;
} u;

} cstaConfirmation;
} event;} CSTAEvent_t;

typedef struct CSTAChangeSysStatFilterConfEvent_t (
SystemStatusFilter_t statusFilterSelected;
SystemStatusFilter_t statusFilterActive;

} CSTAChangeSysStatFilterConfEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA unsolicited
event.

DRAFT 2.0 Telephony Services API 9-53

eventType
This is a tag with the value
CSTA_CHANGE_SYS_STAT_FILTER_CONF , which
identifies this message as an
CSTAChangeSysStatFilterConfEvent.

invokeID
This parameter specifies the requested instance of the

function or event. It is used to match a specific functions
call request with its confirmation events.

statusFilterSelected
This parameter specifies the System Status event filters
which are active as a result of the
cstaChangeSysStatFilter() service request. This filter
may be different than the one requested by the
application. This can occur if the implementation rejects
a particular filter request.

eventFilterActive
This parameter indicates the filters which are already
active on the given CSTA association.

privateData
If private data accompanied this event, then the private
data would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer
is set to NULL in these functions, then no private data
will be delivered to the application.

Comments

This confirmation event should be check by the
application to insure that the event filter requested has
been activated and which filters are already active on the
given System Status monitor.

9-54 Escape and Maintenance Services

DRAFT 2.0 Telephony Services API 9-55

CSTASysStatEventXE "CSTASysStatEvent"§

This unsolicited event informs the application of the overall
system status of the driver/switch. The application must register
for System Status events before this event is sent to the
application.

Syntax

The following structure shows only the relevant portions
of the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ union
{

CSTASysStatEvent_t sysStat;
} u;

} cstaEventReport;
} event;} CSTAEvent_t;

typedef struct
{

SystemStatus_t systemStatus;
} CSTASysStatEvent_t;

typedef enum SystemStatus_t { SS_INITIALIZING = 0, SS_ENABLED = 1,
SS_NORMAL = 2, SS_MESSAGES_LOST = 3, SS_DISABLED = 4,
SS_OVERLOAD_IMMINENT = 5, SS_OVERLOAD_REACHED = 6,
SS_OVERLOAD_RELIEVED = 7} SystemStatus_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

9-56 Escape and Maintenance Services

eventClass
This is a tag with the value CSTAEVENTREPORT,
which identifies this message as an CSTA unsolicited
event.

eventType
This is a tag with the value CSTA_SYS_STAT, which
identifies this message as an CSTASysStatEvent.

monitorCrossRefID
This parameter is unused in this message..

privateData
If private data accompanied this event, then the private
data would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer
is set to NULL in these functions, then no private data
will be delivered to the application.

systemStatus
This parameter provides the application with a cause
code defining the overall system status. See Table 9-5
for the possible values of this parameter.

DRAFT 2.0 Telephony Services API 9-57

Comments

This event provides the application with certain
information regarding the state of the overall
driver/switch system. This event is important for proper
application operation and should be processed
accordingly. This is especially important for cause values
for the overload condition. If the driver/switch has
informed the application that an overload condition is
imminent all applications should attempt to decrease the
overall traffic to the driver/switch. This can be
accomplished, for example, by stopping all non-essential
monitors on call or device objects on the switch thus
reducing the traffic between the server and the switch.
Frequent occurrence of the Overload Imminent event can
be a symptoms of a poorly engineered system which
should reviewed for proper loading.

Certain, non-essential cause values can be sent at any
time or depending on the driver/switch implementation
even at regular intervals (e.g. the Normal cause value) to
indicate that the system status is O.K. and operating
normally. This can be turned off by the application to
avoid the overhead associated with processing these
normal messages. This is accomplished by changing the
event filter type by using the
cstaChangeSysStatFilter() service. This service can be
used to discontinue the delivery of "non-essential" system
status events to the application.

9-58 Escape and Maintenance Services

cstaSysStatEndedEventXE "cstaSysStatEndedEvent"§

This service is used by the driver to cancel a previously
registered monitor for System Status information.

Syntax

The following structure shows only the relevant portions
of the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{ union

{
CSTASysStatEndedEvent_t sysStatEnded;

} u;
} cstaEventReport;

} event;} CSTAEvent_t;
typedef struct CSTASysStatEndedEvent_t {
 Nulltype null;
} CSTASysStatEndedEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This is a tag with the value CSTAEVENTREPORT,
which identifies this message as an CSTA unsolicited
event.

DRAFT 2.0 Telephony Services API 9-59

eventType
This is a tag with the value
CSTA_SYS_STAT_ENDED, which identifies this
message as an CSTASysStatStopEvent.

monitorCrossRefID
This parameter is unused in this message.

privateData
If private data accompanied this event, then the private
data would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer
is set to NULL in these functions, then no private data
will be delivered to the application.

9-60 Escape and Maintenance Services

System Status : Driver/Switch as the Client

XE "System status:Driver/switch as the client"§This section
defines the services which provide system level status
information to the driver/switch form the application. The
System Status service is bi-directional and thus the client/server
relationship (see Figure 9-2) can be reversed.

DRAFT 2.0 Telephony Services API 9-61

CSTASysStatReqEventXE "CSTASysStatReqEvent"§

This unsolicited event is sent by the driver/switch to request
system status information from the application.

Syntax

The following structure shows only the relevant portions
of the unions for this message. See section 4.3 ACS Data
Types and 4.6 CSTA Data Types for a complete
description of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

CSTASysStatReqEvent_t sysStatRequest;
} u;

} cstaRequestEvent;
} event;} CSTAEvent_t;

typedef struct CSTASysStatReqEvent_t {
 Nulltype null;
} CSTASysStatReqEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED,
which identifies this message as an CSTA unsolicited
event.

9-62 Escape and Maintenance Services

eventType
This is a tag with the value CSTA_SYS_STAT_REQ,
which identifies this message as an
CSTASysStatReqEvent.

InvokeID
This parameter identifies the instance of the request
generated by the switch/driver. This same value must be
used, unchanged, in the response to this event
(cstaSysStatReqConf()).

privateData
If private data accompanied this event, then the private
data would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer
is set to NULL in these functions, then no private data
will be delivered to the application.

Comments

This event is sent by the driver/switch to request status
information pertaining to the application. It is the bi-
directional equivalent of the cstaSysStatReq() function
which is issued by the application to request status
information from the driver/switch. The application re-
sponds to this unsolicited event request utilizing the
cstaSysStatReqConf() function.

DRAFT 2.0 Telephony Services API 9-63

cstaSysStatReqConf()XE "cstaSysStatReqConf()"§

This service is used to respond to a CSTASysStatReqEvent
unsolicited event from the driver/switch. It provides the
driver/switch with information regarding the status of the
application.

Syntax
#include <csta.h>

RetCode_t cstaSysStatReqConf (

ACSHandle_t acsHandle,
InvokeID_t *invokeID,
SystemStatus_t systemStatus,
PrivateData_t *privateData);

typedef enum SystemStatus_t { SS_INITIALIZING = 0, SS_ENABLED = 1, SS_NORMAL
= 2, SS_MESSAGES_LOST = 3, SS_DISABLED = 4, SS_OVERLOAD_IMMINENT
= 5, SS_OVERLOAD_REACHED = 6, SS_OVERLOAD_RELIEVED = 7}
SystemStatus_t;

Parameters

acsHandle
This is the handle to an active ACS Stream.

InvokeID
The value of this parameter must be the same
(unchanged) as that provided in the
cstaSysStatReqEvent so that the driver/switch can
match an instance of a service request with the response
to that request.

systemStatus
This parameter provides the driver/switch with a cause
code defining the overall system status. See Table 9-6
for the possible values of this parameter.

9-64 Escape and Maintenance Services

privateData
Private data extension mechanism. This is optional.

Return Values

This function never returns an invoke identifier since
there is no confirmation event for this service. The
function does return errors conditions during the
processing of the request by the API Client Library. A
return value of zero (0) indicates that the request has
been accepted by the Library.

Possible local error returns are (negative returns):

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_NOCONN
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

ACSERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

This confirmation response provides the driver/switch
with certain information regarding the state of the overall
application. The information can be used by the
driver/switch to determine the overall state of the
application. The driver/switch may act on this
information in order to insure proper end-to-end system
operation and performance. Frequent occurrence of the
Overload Imminent cause value can be a symptoms of a
poorly engineered application system which should re-

DRAFT 2.0 Telephony Services API 9-65

viewed for proper loading.

9-66 Escape and Maintenance Services

cstaSysStatEventSend()XE "cstaSysStatEventSend()"§

This service is used to send application system status
information in the form of an unsolicited event to the
driver/switch without a formal request for the information. This
status information can be sent at any time.

Syntax
#include <csta.h>

RetCode_t cstaSysStatEvent (
ACSHandle_t acsHandle,
SystemStatus_t systemStatus,
PrivateData_t *privateData);

typedef enum SystemStatus_t { SS_INITIALIZING = 0, SS_ENABLED = 1, SS_NORMAL
= 2, SS_MESSAGES_LOST = 3, SS_DISABLED = 4, SS_OVERLOAD_IMMINENT
= 5, SS_OVERLOAD_REACHED = 6, SS_OVERLOAD_RELIEVED = 7}
SystemStatus_t;

Parameters

acsHandle
This is the handle to an active ACS Stream.

systemStatus
This parameter provides the driver/switch with a cause
code defining the overall system status. See Table 9-7
for the possible values of this parameter.

privateData
Private data extension mechanism. This is optional.

Return Values

This function never returns an invoke identifier since
there is no confirmation event for this service. The
function does return errors conditions during the
processing of the request by the API Client Library. A
return value of zero (0) indicates that the request has

DRAFT 2.0 Telephony Services API 9-67

been accepted by the Library.

Possible local error returns are (negative returns):

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_NOCONN
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

ACSERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

This unsolicited service event is sent to the driver/switch
in order to inform it of the state of the overall application
system. The driver/switch may act on this information in
order to insure proper end-to-end system operation and
performance. Frequent occurrence of the Overload
Imminent cause value can be a symptoms of a poorly
engineered application system which should reviewed for
proper loading.

9-68 Escape and Maintenance Services

	This chapter describes the CSTA Escape and Maintenance Services.
	Escape Services
	XE "Escape Service"§Switching domains use Escape Services to enhance TSAPI functions with "private" services which are specific to the switch or PBX Driver implementation (see Section 2.3). Each switch vendor may define functions within the CSTA private services framework, even though CSTA does not incorporate these services. Although the functions defined within escape services can vary from one implementation to the next, the way the application accesses these functions is consistent. Escape Services use the same programming model as all other CSTA services. Figure 9-1 illustrates this model.
	When an application requests an escape service from a server it receives a confirmation event or a Universal Failure in the same fashion as for other TSAPI services. The Escape Service request parameters are an acsHandle (to the open stream), an invokeID and a private data parameter. The confirmation event includes the acsHandle, the invokeID, and the private data response.
	Escape Services also includes an unsolicited private event which a server can send to an application at any time a CSTA monitor association exists on a CSTA call or device object (see Section 6 - cstaMonitorStart()).
	Figure 9-2<bookmark escape_svc>
	Applications can also send Escape Services requests to a switch. For most CSTA services the application is always a client in the computing domain. However, an escape service could operate in the opposite direction (such as routing does). Although the client/server role may change, services are always uni-directional where either the switch or application is always the requester for a service.
	TSAPI includes escape service definitions for both the "Application as the Client" and the "Switch as the Client".

	See vendor specific documentation for more information on what, if any, Escape Services are supported by a specific vendor. Escape Service Functions are generally not portable across different vendor implementations. Some implementations may support Escape Services either bi-directionally or unidirectional (one-way only) depending on the needs and capabilities of the switch driver

	Maintenance Services
	XE "Maintenance Services"§There are two different types of CSTA maintenance services:
	The device status events inform the application when the switch places a monitored device in or out of service. When a device object is removed from service, the application may monitor the device (e.g. cstaMonitorStart() or cstaDevSnapshotReq()) but may not request services for that device. For example, an application request for a cstaMakeCall() returns an error when the device is out of service.
	System Status services inform applications or switches about the status of the switching or computing domains, respectively. Table 9-1 shows the System Status Services’ system status information (cause codes).
	Table 9-2<bookmark ss_cc>
	The System Status services are bi-directional and thus can originate at the application domain or at the driver/switch domain. Figure 9-3 shows System Status Maintenance Services.

	Figure 9-4<bookmark mtce_svc>
	An application can obtain System Status information in one of two different ways :
	A switch or application may issue the System Status request (cstaSysStatReq()) to obtain status information from the "server" (the application or switch, respectively, depending on the direction of the request). A System Status response (CSTASysStatReqConfEvent) provides the "client" with the current system status information for the "server". The "server" may send unsolicited events can be sent to the client if the client used the cstaSysStatStart() service to register for System Status events. The System Status unsolicited event (CSTASysStatEvent) is the same in structure as the confirmation event (CSTASysStatReqConfEvent) except that the "server" sends it to the "client" automatically.

	Escape Services : Application as Client
	XE "Escape Service:Application as Client"§This section defines escape services for situation where the application is the service requester in the client/server relationship (see Figure 9-5). The services include an escape service request, a confirmation event to the request, and an unsolicited escape service event that originates at the driver or switching domain.
	cstaEscapeService()XE "cstaEscapeService()"§
	This service allows the application to request a service which is not defined by the CSTA Standard but rather by a switch vendor. A service request made by this function will be specific to an implementation.

	CSTAEscapeServiceConfEventXE "CSTAEscapeServiceConfEvent"§
	This confirmation event is sent in response to the cstaEscapeService() service and provides the positive acknowledgment to the request. The event includes any private information that is to be provided as part of a confirmation event to the service request.

	CSTAPrivateEventXE "CSTAPrivateEvent"§
	This event report allows for unsolicited, implementation specific event reporting. The informational contents of this event will be defined by a specific implementation.

	CSTAPrivateStatusEventXE "CSTAPrivateStatusEvent"§
	This event report allows for unsolicited, implementation specific event reporting for a monitored object. The informational contents of this event will be defined by a specific implementation.

	Escape Service : Driver/Switch as the ClientXE "Escape Service:Driver/Switch as the Client"§
	This section defines escape services for cases where the Driver/Switch is the service requester in the client/server relationship (see Figure 9-1). The services include an escape service request event, a confirmation function for the request, and an unsolicited escape service event that originates at the application domain.
	CSTAEscapeServiceReqXE "CSTAEscapeServiceReq"§
	This unsolicited event is sent by the driver/switch to request a private service from the application. The event includes the service request as private information for which the application must provide a positive or negative acknowledgment.

	cstaEscapeServiceConf()XE "cstaEscapeServiceConf()"§
	This service allows the application to respond to a CSTAEscapeServiceEvent which originated at the driver/switch. A service response made by this function will be specific to an implementation.

	cstaSendPrivateEvent()XE "cstaSendPrivateEvent()"§
	This service allows the application to send an unsolicited private event to the driver/switch. An event sent by this function will be specific to an implementation.

	Maintenance Services: Device StatusXE "Maintenance Services"§
	This section describes the CSTA Maintenance Services which provide device status information. To receive device status information, an application must monitor the device(e.g. the application must have an active monitorCrossRefID for the device). These events are unidirectional and always originate in the switch domain.
	CSTABackInServiceEventXE "CSTABackInServiceEvent"§
	This event report indicates that a monitored device object has returned to services and operates normally.

	CSTAOutOfServiceEventXE "CSTAOutOfServiceEvent"§
	This event report indicates that a monitored device object has entered a maintenance state and can no longer accept calls or be actively manipulated by the application.

	System Status - Application as the ClientXE "System status:Application as the client"§
	This section defines the services which provide system level status information to the application or the driver/switch. The System Status service is bi-directional and thus the client/server relationship (see Figure 9-2) can be reversed.
	cstaSysStatReq()
	This service allows the application to request system status information from the driver/switch domain.XE "cstaSysStatReq()"§

	CSTASysStatReqConfEventXE "CSTASysStatReqConfEvent"§
	This event is in response to the cstaSysStatReq() service and informs the application of the overall system status of the driver/switch.
	Table 9-4<bookmark sys_stat>

	cstaSysStatStart()XE "cstaSysStatStart()"§
	This services allows the application to register for System Status event reporting. It can be used by an application to automatically receive a CSTASysStatEvent each time the status of the driver/switch changes.

	CSTASysStatStartConfEventXE "CSTASysStatStartConfEvent"§
	This event is in response to the cstaSysStatStart() function and confirms an active System Status monitor. Once this event is issued the application will start to automatically receive unsolicited System Status events.

	cstaSysStatStop()XE "cstaSysStatStop()"§
	This service is used to cancel a previously registered monitor for System Status information.

	CSTASysStatStopConfEventXE "CSTASysStatStopConfEvent"§
	This event is in response to the cstaSysStatStop() function and confirms a cancellation of the active System Status monitor. Once this event is issued the application will not continue to receive unsolicited System Status events.

	cstaChangeSysStatFilter()XE "cstaChangeSysStatFilter()"§
	This function is used to request a change in the filter options for automatic System Status event reporting for a specific ACS Stream. It allows the application to specify which System Status events it requires.

	CSTAChangeSysStatFilterConfEventXE "CSTAChangeSysStatFilterConfEvent"§
	This event occurs as a result of the cstaChangeSysStatFilter() service and informs the application which event filter was set by the server.

	CSTASysStatEventXE "CSTASysStatEvent"§
	This unsolicited event informs the application of the overall system status of the driver/switch. The application must register for System Status events before this event is sent to the application.

	cstaSysStatEndedEventXE "cstaSysStatEndedEvent"§
	This service is used by the driver to cancel a previously registered monitor for System Status information.

	System Status : Driver/Switch as the Client
	XE "System status:Driver/switch as the client"§This section defines the services which provide system level status information to the driver/switch form the application. The System Status service is bi-directional and thus the client/server relationship (see Figure 9-2) can be reversed.
	CSTASysStatReqEventXE "CSTASysStatReqEvent"§
	This unsolicited event is sent by the driver/switch to request system status information from the application.

	cstaSysStatReqConf()XE "cstaSysStatReqConf()"§
	This service is used to respond to a CSTASysStatReqEvent unsolicited event from the driver/switch. It provides the driver/switch with information regarding the status of the application.

	cstaSysStatEventSend()XE "cstaSysStatEventSend()"§
	This service is used to send application system status information in the form of an unsolicited event to the driver/switch without a formal request for the information. This status information can be sent at any time.

