
Chapter 8 CSTA COMPUTING FUNCTION
SERVICES

XE "CSTA:Computing Function Services"§XE "Computing
Function Services"§CSTA Computing Functions are those
functions where the switching domain is the client (service
requester) and the computing domain is the server. Presently,
Application Call RoutingXE "Application Call Routing"§ is the
only CSTA Computing Function. A switch uses application call
routing when it needs the application to supply call destinations
on a call-by-call basis. Applications can use internal databases
together with call information to determine a destination for each
call. For Example, an application might use the caller's number,
caller-entered digits (provided as private data), or information in
an application database to route incoming calls.

DRAFT 2.0 Telephony Services API 8-1

Application Call Routing

XE "Application Call Routing"§Application call routing requires
that the switch be configured to direct calls to a special type of
device know as the "routing device". When a call arrives at a
routing deviceXE "Routing device"§, the switch sends a message
to the Telephony Server requesting a route for the call.

XE "Routing Registration"§Before an application can route calls,
it must register with the Telephony Server as a routing server.
The application may either register as the routing server for a
specific routing device or as the default routing serverXE
"default routing server"§ for an advertised serviceXE "advertised
service"§. Recall that a PBX driverXE "PBX driver"§ advertises
its services. Often these services correspond to a CTI linkXE
"CTI link"§, so an application can, in effect, register to be the
default routing server for a CTI link. An application uses
cstaRouteRegisterReq() to register as a routing server. This
request has an associated confirmation event,
CSTARouteRegisterReqConfEvent.

 At any one time, one, and only one application can be the routing server for a
routing device. Similarly, one, and only one application can be the default routing
server for an advertised service.

Routing ProcedureXE "Routing Procedure"§

 1. The switch queues an incoming call at a special device
object, the routing deviceXE "Routing:Device"§. The
routing device may be a "soft" extension on the switch
for application-based routing, or similar device defined
within the switching domain.

8-2 CSTA Computing Function Services

2. When the call arrives at the routing device, the switch
and the Telephony Services PBX driver create a CSTA
routing dialog for the call. An application uses a handle
known as the routing cross reference identifierXE
"Routing:Cross reference identifier"§
(routingCrossRefID)to refer to this routing dialog.

3. The PBX Driver directs the route request to the
application registered as the routing server for the
routing device. If no application is registered for that
specific routing device, then the PBX Driver directs the
route request to the default routing serverXE "default
routing server"§ application for its advertised service.
The routing application receives an unsolicited route
request XE "Route:Request "§event
(CSTARouteRequestEvent) for the call. This event
contains call related information (calling and called
numbers). The application which provides the call
routing destination is called the "routing server" for the
routing device.

4. the routing server sends the switch a route select
message (cstaRouteSelect) containing a a destination for
the call. The routing server typically uses information
from the route request event together with information
from an application database to determine this destina-
tion. The routing server may include an optional flag in
the route select (routeUsedReq) instructing the switch to
inform it of the final destination for the call. The final
destination may be different than the application-
provided destination when switch features such as call
forwarding redirect the call.

5. the switch receives the route select message
(cstaRouteSelect) and attempts to route the call to the

DRAFT 2.0 Telephony Services API 8-3

application-provided destination. If the destination is
valid, the switch routes the call to that destination and
sends the application a route end event (cstaRouteEnd).
This terminates the routing dialog for that call. If the
application-provided destination is not valid (an
invalidXE "Route:Invalid"§ extension number, the
destination is busy, etc.), then the switch may send a re-
routeXE "Route:Re-route"§ event (CSTAReRouteEvent)
to the application to request another route to a different
destination.

6. If the application receives a re-route event
(CSTAReRouteEvent) it can select a different destination
for the call and send the switch another route select
message (cstaRouteSelect). Depending on the switch
implementation, the re-routing message exchange can
repeat until the application provides a valid route. The
routing server application will find out about a
successful routeXE "Route:successful route"§ if the
switch sends a route end event (cstaRouteEnd) or if the
application included the routeUsedReq flag in its last
route select message (cstaRouteSelect).

Either the switch or the routing server (application) may send a
route end event (cstaRouteEnd) to end the routing process and
terminateXE "Routing:Terminating"§ the CSTA routing dialog
(this invalidates the routing cross reference identifier,
routingCrossRefID). Either endpoint may send a route end at
any time. This message indicates that the routing server does not
want to route the call, or the switchXE "Routing:Switch default
route"§ (usually in the absence of a cstaRouteSelect message)
routed the call using some mechanism within the switching
domain.

8-4 CSTA Computing Function Services

 Certain switch implementations may not support the optional flags described above.

Figure 8-1 illustrates the Routing Procedure.

Figure 8-2
Routing Proceduretc "Routing Procedure" \f f \l3§
µ §

DRAFT 2.0 Telephony Services API 8-5

Routing Registration Functions and EventsXE
"Routing Registration Functions and Events"§

This section describes the service requests and events that an
application uses to register with the Telephony Server as a call
routing server

8-6 CSTA Computing Function Services

cstaRouteRegisterReq()XE "cstaRouteRegisterReq()"§

An application uses cstaRouteRegisterReq() to register as a
routing server for a specific routing device or as a default routing
server for an advertised service. The application must register for
routing services before it can receive any route requests for a
routing device. An application may be a routing server for more
than one routing device. However, only one application may be
a routing server for any given routing device. Similarly, only
one application may register as the default routing server for an
advertised service.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaRouteRegisterReq (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *routingDevice,
PrivateData_t *privateData);

Parameters

acsHandle
This is the handle to an active ACS Stream over which
the routing dialog will take place.

invokeID
This is an application provided handle that the
application uses to match a specific instance of
cstaRouteRegisterReq() request with its
CSTARouteRegisterReqConfEvent confirmation
event. The application supplies this parameter only when
the Invoke ID mechanism is set for Application-
generated IDs in acsOpenStream(). The ACS Library
ignores this parameter when the Stream is set for
Library-generated invoke IDs.

DRAFT 2.0 Telephony Services API 8-7

routingDevice
This is a pointer to a device id for the routing deviceXE "
routing device"§ for which the application requests to be
the routing server. The routing device can be any device
type which the switch implementation supports as a
routing device. A NULL value indicates that the request-
ing application will be the default routing server XE
"default routing server "§for the ServerID associated
with the acsHandle in the cstaRouteRegisterReq(). The
default routing server will receive switch routing requests
for any routing devices making routing requests on that
advertised service that do not have registered routing
servers. Thus, the default routing server will receive
route requests when a routing device sends a route
request and there is no corresponding registered routing
server for that routing device.

privateData
This is an optional pointer to CSTA private data.

Return Values

cstaRouteRegisterReq() returns the following
values depending on whether the application is
using library or application-generated invoke
identifiers: Library-generated Identifiers - if the
function call completes successfully it will return
a positive value, the invoke identifier. If the call
fails it will return a negative error (<0). For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails it will return a negative
error (<0). For application-generated identifiers
the return is never positive (>0).

8-8 CSTA Computing Function Services

An application should always check the
CSTARouteRegisterReqConfEvent message to ensure
to ensure that the Telephony Server and switch have ac-
knowledged the cstaRouteRegisterReq().

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
The application provided a bad or unknown
acsHandle.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been
abnormally aborted.

Comments

In order for an application to route calls the application
must successfully call cstaRouteRegisterReq(). An
application can register as:

u a routing server for the specified routing
device, or

u as the default routing server for all routing
devices making requests of a specific
Telephony Server.

To register as a default routing server, an
application sets the routingDevice parameter
to NULL. One, and only one, application is
allowed to register as the routing server for a
routingDevice, or as the default routing
Server for an advertised service. Applications
may register for routing services for a specific
device even when a default routing server has
registered. A default routing server will not
receive any routing requests from any routing

DRAFT 2.0 Telephony Services API 8-9

device for which there is a registered routing
server. Once a routing server is registered,
CSTARouteRequestEvents convey the route
requests to the routing server.

8-10 CSTA Computing Function Services

CSTARouteRegisterReqConfEventXE
"CSTARouteRegisterReqConfEvent"§

The RouteRegisterReqConfEvent indicates successful
registration to an application. That application is now the call
routing server for the requested routing device (or is the default
routing server for the advertised service).

Syntax

The following structure shows only the relevant portions
of the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID; union
{ CSTARouteRegisterReqConfEvent_t routeReg;
} u; } cstaConfirmation;

} event;} CSTAEvent_t;
typedef struct {

RouteRegisterReqID_t routeRegisterReqID;}
CSTARouteRegisterReqConfEvent_t;
typedef long RouteRegisterReqID_t;

Parameters

acsHandle
This is the handle for the ACS Stream over which the
RouteRegisterReqConfEvent confirmation arrived.
This is the same as the ACS Stream over which the
application made the corresponding
cstaRouteRegisterReq() request.

DRAFT 2.0 Telephony Services API 8-11

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType
This is a tag with the value
CSTA_ROUTE_REGISTER, which identifies this
message as an CSTARouteRegisterReqConfEvent.

invokeID
This parameter specifies the service request instance for
the cstaRouteRegisterReq(). The application uses this
parameter to correlate RouteRegisterReqConfEvent re-
sponses with requests.

routeRegisterReqID
This parameter contains a handle to the routing
registration session for a specific routing device (or for
the default routing server depending on the registration
request). All routing dialogs (routingCrossRefIDs) for a
routing device occur over this routing registration
session. The PBX Driver selects routeRegisterReqIDs
so that they will be unique within the acsHandle.

privateData
If private data accompanies this event, then the private
data would be stored in the location that the application
specified as the privateData parameter in the
acsGetEventBlock() or acsGetEventPoll() request. If
the privateData pointer is set to NULL in these requests,
then CSTARouteRegisterReqConfEvent does not
deliver private data to the application.

Comments

This event provides the application with a positive
confirmation to a request for routing registration.

8-12 CSTA Computing Function Services

DRAFT 2.0 Telephony Services API 8-13

cstaRouteRegisterCancel()XE "cstaRouteRegisterCancel()"§

Applications (routing servers) use cstaRouteRegisterCancel()
to cancelXE "Routing:Cancel"§ a previously registered routing
server session. This request terminates the routing session and
the application receives no further routing messages for that
session once it receives the confirmation to the cancel request.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaRouteRegisterCancel (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
RouteRegisterReqID_t routeRegisterReqID,
PrivateData_t *privateData);

Parameters

acsHandle
This is the handle to an active ACS Stream over which
the cstaRouteRegisterCancel() request will be made.

invokeID
This is an application provided handle that the
application uses to match a specific instance of a
cstaRouteRegisterCancel() request with its
confirmation event. The application supplies this
parameter only when the Invoke ID mechanism is set for
Application-generated IDs in acsOpenStream(). The
ACS Library ignores this parameter when the Stream is
set for Library-generated invoke IDs.

routeRegisterReqID
This parameter is the handle to the routing registration
session which the application is canceling. The
application received this handle in the confirmation event

8-14 CSTA Computing Function Services

for the route register service request, a
CSTARouteRegisterReqConfEvent.

privateData
This is an optional pointer to CSTA private data.

Return Values

cstaRouteRegisterCancel() returns the following values
depending on whether the application is using library or
application-generated invoke identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, the invoke identifier. If the call fails it will
return a negative error (<0). For library-generated
identifiers the return will never be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails it will return a negative
error (<0). For application-generated identifiers
the return is never positive (>0).

The application should always check the
CSTARouteRegisterCancelConfEvent message to
ensure that the Telephony Server and switch have ac-
knowledged and processed the cstaRouteRegisterCan-
cel() request.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
The application provided a bad or unknown
acsHandle.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been

DRAFT 2.0 Telephony Services API 8-15

abnormally aborted.

Comments

The application must continue to process outstanding
routing requests from the routing device until it receives
CSTARouteRegisterCancelConfEvent. The Telephony
Server will not send any further requests once it has sent
this confirmation event.

8-16 CSTA Computing Function Services

CSTARouteRegisterCancelConfEventXE
"CSTARouteRegisterCancelConfEvent"§

CSTARouteRegisterCancelConfEvent confirms a previously
issued cstaRouteRegisterCancel() request for a routing
registration. Once tan application receives this event, it
invalidates the routing registration session.

Syntax

The following structure shows only the relevant portions
of the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle; EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID; union
{

CSTARouteRegisterCancelConfEvent_t routeCancel; } u;
} cstaConfirmation;

} event;} CSTAEvent_t;
typedef struct {

RouteRegisterReqID_t routeRegisterReqID;}
CSTARouteRegisterCancelConfEvent_t;
typedef long RouteRegisterReqID_t;

Parameters

acsHandle
This is the handle for the ACS Stream over which the
CSTARouteRegisterCancelConfEvent confirmation
arrived. This is the same as the ACS Stream over which
the cstaRouteRegisterCancel() request was made.

DRAFT 2.0 Telephony Services API 8-17

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType
This is a tag with the value
CSTA_ROUTE_REGISTER_CANCEL, which
identifies this message as an
CSTARouteRegisterCancelConfEvent.

invokeID
This parameter specifies the service request instance for
the cstaRouteRegisterCancel(). The application uses
this parameter to correlate the
CSTARouteRegisterCancelConfEvent responses with
requests.

routeRegisterReqID
This parameter contains the handle to a routing
registration for which the application is providing routing
services. The application obtained this handle from a
CSTARouteRegisterReqConfEvent. This
routeRegisterReqID handle is no longer valid once the
Telephony Server sends
CSTARouteRegisterCancelConfEvent.

privateData
If private data accompanies this event, then the private
data would be stored in the location that the application
specified as the privateData parameter in the
acsGetEventBlock() or acsGetEventPoll() request. If
the privateData pointer is set to NULL in these requests,
then CSTASnapshotCallConfEvent does not deliver
private data to the application.

8-18 CSTA Computing Function Services

Comments

CSTARouteRegisterCancelConfEvent confirms an
application's cstaRouteRegisterCancel() service
request, which cancels a routing registration session. The
Telephony Server will send any further requests from the
routing device to the default routing server.

DRAFT 2.0 Telephony Services API 8-19

CSTARouteRegisterAbortEventXE
"CSTARouteRegisterAbortEvent"§

The Telephony Server sends an application an unsolicited
CSTARouteRegisterAbortEvent to cancelXE
"Routing:Cancel"§ an active routing dialog. This event
invalidates a routing registration session.

Syntax

The following structure shows only the relevant portions
of the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ union
{ CSTARouteRegisterAbortEvent_t routeCancel;
} u; } cstaEventReport;

} event;} CSTAEvent_t;
typedef struct {

RouteRegisterReqID_t routeRegisterReqID;}
CSTARouteRegisterAbortEvent_t;
typedef long RouteRegisterReqID_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream. The
routing dialog being canceled is occurring on this ACS
Stream.

eventClass
This is a tag with the value CSTAEVENTREPORT,

8-20 CSTA Computing Function Services

which identifies this message as an CSTA event report.

eventType
This is a tag with the value
CSTA_ROUTE_REGISTER_ABORT, which
identifies this message as an
CSTARouteRegisterAbortEvent.

routeRegisterReqID
This parameter is the handle to a routing registration for
which the application is providing routing services. The
application received this handle in a
CSTARouteRegisterReqConfEvent. The CSTARoute-
RegisterAbortEvent invalidates this handle.

privateData
If private data accompanies
CSTARouteRegisterAbortEvent, then the private data
would be stored in the location that the application
specified as the privateData parameter in the
acsGetEventBlock() or acsGetEventPoll() request. If
the privateData pointer is set to NULL in these requests,
then CSTARouteRegisterAbortEvent does not deliver
private data to the application.

Comments

CSTARouteRegisterAbortEvent notifies the
application that the PBX driver or switch aborted a
routing registration session.

DRAFT 2.0 Telephony Services API 8-21

Routing Functions and EventsXE
"Routing:Functions"§XE "Routing:Events"§

This section defines the CSTA call routing services for
application call routing. The switch queues calls at the routing
deviceXE "Routing:Device"§ until the application provides a
destination for the call or a time-out condition occurs within the
switching domain. Figure 8-3 shows the Application-based call
routing dialogue between a switch and the routing server (the
application).

Once an application registers as a routing server, the application
uses the services in this section to route calls. The application
receives a CSTARouteRequestEvent for each call which
requires a routing destination. The application sends the switch a
destination in cstaRouteSelect(). The switch then attempts to
route the call to that application-provided destination. The
switch will respond with a CSTARouteEndEvent and/or a
CSTARouteUsedEvenXE "Route:Used"§t. If the application-
provided destination is invalid, the switch may send a
CSTAReRouteEventXE "Route:Re-route"§ to request an
additional destination. See Figure 8-4 for a typical sequence of
these events and service requests.

8-22 CSTA Computing Function Services

Register Request ID and the Routing Cross Reference ID

XE "Register Request ID"§XE "Routing Cross Reference
ID"§The routing services use two handlesXE "Handle:Register
Request ID"§XE "Handle:Routing Cross Reference ID"§
(identifiers) to refer to different software objects in the
Telephony Server. The register request identifier
(routeRegisterReqID) identifies a routing session over which
an application will receive routing requests. This handle is tied
to a routing deviceXE "Routing:Device"§ on the switch, or it
may indicate that the application is the default routing serverXE
"Routing:Default routing server"§XE "Default routing
server:See Routing (Default Routing Server)"§ for an advertised
service. When the application uses cstaRouteRegisterReq() to
register for routing services, it receives a routeRegisterReqID
in the confirmation. The routeRegisterReqID is valid until the
registration is canceled or abortedXE
"routeRegisterReqID:Duration"§.

Within a routing session (routeRegisterReqID) the switch may
initiate many routing dialogs (shown in Figure 8-5) to route
multiple calls. An application uses a routing cross reference
identifier (routingCrossRefID) to refer to each routing dialog.
The application receives a routingCrossRefID in each
CSTARouteRequestEvent. The CSTARouteRequestEvent
initiates a routing dialog. The routingCrossRefID is valid for the
duration of the call routing dialogXE
"routingCrossRefID:Duration"§.

The routing cross reference identifier (routingCrossRefID) is
uniqueXE "routingCrossRefID:Uniqueness"§ within the
routing session (routeRegisterReqID). Some switch
implementationsXE "Switch:Specific"§ may provide the
additional benefit of a unique routing cross reference identifier
across the entire switching domain. Routing session identifiers

DRAFT 2.0 Telephony Services API 8-23

(routeRegisterReqIDs) are uniqueXE
"routeRegisterReqID:Uniqueness"§ within an ACS Stream
(acsHandle).

 If a call is not successfully routed by the routing server this does not necessarily
mean that the call is cleared or not answered. Most switch implementations will
have a default mechanism for handling a call at a routing device when the routing
server has failed to provide a valid destination for the call.

8-24 CSTA Computing Function Services

CSTARouteRequestEventXE "CSTARouteRequestEvent"§XE
"CSTARouteRequestEvent"§

A routing server application receives a
CSTARouteRequestEvent when the switch requests a route for
a call. The application may have registered as the routing server
for the routing device on the switch that is making the request, or
it may have registered as the default routing server for the
advertised service. The CSTARouteRequestEvent event
includes call related information (such as the called and calling
number, when available). A routing server application typically
combines the call related information with an application data-
base to determine a destination for the call. A routing server
application receives a CSTARouteRequestEvent for every call
queued at the routing device.

Syntax

The following structure shows only the relevant portions
of the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct { ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t
eventType;

} ACSEventHeader_t;

typedef struct {
ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

CSTARouteRequestEvent_t routeRequest;
} u;

} cstaRequestEvent;
} event;} CSTAEvent_t;

DRAFT 2.0 Telephony Services API 8-25

typedef struct {
RouteRegisterReqID_t routeRegisterReqID;
RoutingCrossRefID_t routingCrossRefID;
CalledDeviceID_t currentRoute;
DeviceID_t currentRoute;
CallingDeviceID_t callingDevice;
DeviceID_t callingDevice;
ConnectionID_t routedCall;
SelectValue_t routedSelAlgorithm;
Boolean priority;
SetUpValues_t setupInformation;

} CSTARouteRequestEvent_t;

typedef enum SelectValue_t {
SV_NORMAL = 0,
SV_LEAST_COST = 1,
SV_EMERGENCY = 2,
SV_ACD = 3,
 SV_USER_DEFINED = 4

} SelectValue_t;
typedef struct SetUpValues_t { int length; unsigned char *value;} SetUpValues_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream on which
the route request event arrives.

eventClass
This is a tag with the value CSTAREQUEST, which
identifies this message as an CSTA request message.

eventType
This is a tag with the value
CSTA_ROUTE_REQUEST, which identifies this
message as an CSTARouteRequestEvent.

monitorCrossRefID
Does not apply to this event.

routeRegisterReqID
This parameter contains the handle to the routing
registration session for which the application is providing
routing services. The application received this handle in a
CSTARouteRegisterReqConfEvent confirmation to a

8-26 CSTA Computing Function Services

route register service request.

routingCrossRefID
The application receives this new handle for the routing
dialog for this call. This identifier has a new, unique
value within the scope of the routing session
(routeRegisterReqID).

currentRoute
This parameter indicates the originally requested
destination for the call being application routed. Often,
this is the DNIS, or dialed number.

callingDevice
This is the originating device of the call, i.e. the calling
party number (when available. If not available, it may be
trunk information).

routedCall
This parameter is a CSTA Connection ID that identifies
the call being routed.

routedSelAlgorithm
This parameter identifies the routing algorithm being
used.

priority
This parameter indicates the priority of the call.

setupInformation
This parameter includes an ISDN call setup message, if
available.

privateData
If private data accompanies CSTARouteRequestEvent,
then the private data would be stored in the location that
the application specified as the privateData parameter in
the acsGetEventBlock() or acsGetEventPoll() request.

DRAFT 2.0 Telephony Services API 8-27

If the privateData pointer is set to NULL in these
requests, then CSTARouteRequestEvent does not
deliver private data to the application.

Comments

CSTARouteRequestEvent informs the routing server
(application) that the switch is requesting a destination
for a call queued at the routing device. The application
uses cstaRouteSelect() to respond with a destination.

 CSTA requires that all events contain an invoke ID. During routing, the
RouteRegisterReqID and the RoutingCrossRefID identify the routing dialogue. The
invokeID is not used.

8-28 CSTA Computing Function Services

CSTAReRouteEventXE "CSTAReRouteEvent"§

The switch sends an unsolicited CSTAReRouteEvent to request
an another destination for a call. Typically, the destination that
the application previously sent was invalid or busy. The switch
previously sent Call related information (such as the called and
calling numbers) in the CSTARouteRequestEvent; Call related
information is not re-sent in the CSTAReRouteEvent. The
routing server application responds using the cstaRouteSelect()
service.

Syntax
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

CSTAReRouteRequest_treRouteRequest;
} u;

} cstaRequestEvent;
} event;} CSTAEvent_t;

typedef struct
{

RouteRegisterReqID_t routeRegisterReqID;
RoutingCrossRefID_t routingCrossRefID;

} CSTAReRouteEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream on which
the re-route request arrives.

eventClass
This is a tag with the value CSTAREQUEST, which

DRAFT 2.0 Telephony Services API 8-29

identifies this message as a CSTA request message.

eventType
This is a tag with the value
CSTA_RE_ROUTE_REQUEST, which identifies this
message as a CSTAReRouteEvent.

monitorCrossRefID
Does not apply to this event.

routeRegisterReqID
This parameter contains the handle to the routing
registration session for which the application is providing
routing services. The application received this handle in a
CSTARouteRegisterReqConfEvent confirmation to a
route register service request.

routingCrossRefID
This parameter contains the handle to the CSTA call
routing dialog for this call. The application previously
received this handle in a CSTARouteRequestEvent for
the call.

privateData
If private data accompanies CSTAReRouteEvent, then
the private data would be stored in the location that the
application specified as the privateData parameter in the
acsGetEventBlock() or acsGetEventPoll() request. If
the privateData pointer is set to NULL in these requests,
then CSTAReRouteEvent does not deliver private data
to the application.

Comments

The switch can send CSTAReRouteEvent to the routing
server application when the application previously sent a
destination that was is invalid or other circumstances

8-30 CSTA Computing Function Services

exist where routing of the call to the destination is not
possible (e.g. the destination is busy). The switch uses
CSTAReRouteEvent to request another destination for
the call queued at the routing device. The application
uses cstaRouteSelect() to provide the new destination.

The number of re-route requests that a switchXE
"Switch:Specific"§ may send depends on the
implementation or administration within the switch. The
application should be prepared to respond to all re-route
requests or terminate the routing dialog by using the
cstaRouteEnd() service request when it cannot provide
additional destinations.

 CSTA requires that all events contain an invoke ID. During routing, the
RouteRegisterReqID and the RoutingCrossRefID identify the routing dialogue. The
invokeID is not used.

DRAFT 2.0 Telephony Services API 8-31

cstaRouteSelect()XE "cstaRouteSelect()"§

The routing server application uses cstaRouteSelect to send a
routing destination to the switch in response to a
CSTARouteRequestEvent for a call.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaRouteSelect (
ACSHandle_t acsHandle,
RouteRegisterReqID_t routeRegisterReqID,
RoutingCrossRefID_t routingCrossRefID,
DeviceID_t *routeSelected,
RetryValue_t remainRetry,
SetUpValues_t *setupInformation,
Boolean routeUsedReq,
PrivateData_t *privateData);

Parameters

acsHandle
This is the handle to the ACS Stream on which the
routing dialog for the call is taking place.

routeRegisterReqID
This parameter contains the active handle to the routing
registration session for which the application is providing
routing services. The application received this handle in
the confirmation event for the route register service
request,CSTARouteRegisterReqConfEvent, for the
call.

routingCrossRefID
This parameter contains the handle to the CSTA call
routing dialog for this call. The application previously
received this handle in the CSTARouteRequestEvent
for the call.
The application passes the routingCrossRefID for the call

8-32 CSTA Computing Function Services

that it previously received in the application received this
handle in the confirmation event for the route register
service request,CSTARouteRegisterReqConfEvent, for
the call.

routeSelected
The application provides this parameter containing a
Device ID that specifies the destination for the call.

remainRetry
The application indicates the number of times it is
willing to receive a CSTAReRouteRequestEvent for
this call in the case that the switch needs to request an
alternate route. This element may have a special value
that shall indicate that the routing server does not keep
count, or that there is no limit.

setupInformation
The application provides this optional parameter that
contains information for the ISDN call setup message
that the switch will use to route the call. Some
switchesXE "Switch:Specific"§ may not support this
option.

routeUsedReq
The routing application uses this parameter to request a
CSTARouteUsedEvent for the call. The route used
event informs the application of the final destination of
the call once it has been routed.

privateData
This is an optional pointer to CSTA private data.

Return Values

cstaRouteSelect() returns a non-zero value if it
completes successfully.

DRAFT 2.0 Telephony Services API 8-33

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
The application provided a bad or unknown
acsHandle.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been
abnormally aborted.

 There is no confirmation event for this service request,
however this service request can generate a universal
failure event.

Comments

An application should call cstaRouteSelect only in
response to a CSTARouteRequestEvent. The
cstaRouteSelect service request will fail if the
application does not provide valid identifiers from a
previous CSTARouteRequestEvent, (acsHandle,
routeRegisterReqID, and routingCrossRefID). The
application should check the return value for this
function and any resulting universal failure event for
errors.

8-34 CSTA Computing Function Services

CSTARouteUsedEventXE "CSTARouteUsedEvent"§

The CSTARouteUsed event provides a routing server
application with the actual destinationXE "Routing:Actual
destination"§ of a call for which the application previously sent a
cstaRouteSelect(). To receive a CSTARouteUsed, the
application must set the cstaRouteSelect() parameter
routeUsedReq to TRUE when it sends the cstaRouteSelect().

Syntax

The following structure shows only the relevant portions
of the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ union
{

CSTARouteUsedEvent_t routeUsed;
} u;

} cstaEventReport;
} event;} CSTAEvent_t;

typedef struct
{

RouteRegisterReqID_t routeRegisterReqID;
RoutingCrossRefID_t routingCrossRefID;
DeviceID_t routeUsed;
DeviceID_t callingDevice;
Boolean domain;

} CSTARouteUsedEvent_t;

Parameters

acsHandle
This is the handle to the ACS Stream on which the

DRAFT 2.0 Telephony Services API 8-35

routing dialog for the call is taking place.

eventClass
This is a tag with the value CSTAEVENTREPORT,
which identifies this message as an CSTA unsolicited
event.

eventType
This is a tag with the value CSTA_ROUTE_USED,
which identifies this message as an
CSTARouteUsedEvent.

routeRegisterReqID
This parameter contains the active handle to the routing
registration session for which the application is providing
routing services. The application received this handle in
the confirmation event for the route register service
request,CSTARouteRegisterReqConfEvent, for the
call.

routingCrossRefID
This parameter contains the handle to the CSTA call
routing dialog for this call. The application previously
received this handle in the CSTARouteRequestEvent
for the call.This routing cross reference ID for the call
will match a routing cross reference ID that the
application previously received in the
CSTARouteRegisterReqConfEvent for the call.

routeUsed
This parameter identifies the selected and final
destination for the call.

callingDevice
This parameter contains the originating device of the call,
i.e. the calling party number (when available).

8-36 CSTA Computing Function Services

domain
This parameter will indicate whether the call has left the
switching domain accessible to the Telephony Server (the
ServerID defined in the active acsHandle). Typically, a
call leaves a switching domain when it is routed to a
trunk connected to another switch or to the public
switched network.

privateData
If private data accompanies CSTARouteUsedEvent,
then the private data would be stored in the location that
the application specified as the privateData parameter in
the acsGetEventBlock() or acsGetEventPoll() request.
If the privateData pointer is set to NULL in these
requests, then CSTARouteUsedEvent does not deliver
private data to the application.

Comments

An application uses CSTARouteUsedEvent to
determine the final destination of a call that it routed
using the cstaRouteSelect(). Switch features such as
forwarding or routing tables may direct the call to a
device other than the application supplied destination.
The CSTARouteUsedEvent indicates the final
destination for the call.

DRAFT 2.0 Telephony Services API 8-37

CSTARouteEndEventXE "CSTARouteEndEvent"§

The switch sends CSTARouteEndEvent to terminate a routing
dialog. The event includes a cause value giving the reason for
the dialog termination.

Syntax

The following structure shows only the relevant portions
of the unions for this message. See ACS Data Types and
CSTA Data Types in section 4 for a complete description
of the event structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ union
{

CSTARouteEndEvent_t routeEnd,
} u;

} cstaEventReport;
} event;} CSTAEvent_t;

typedef struct
{

RouteRegisterReqID_t routeRegisterReqID;
RoutingCrossRefID_t routingCrossRefID;
CSTAUniversalFailure_t errorValue;

} CSTARouteEndEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream on which
routing dialog is ending.

eventClass
This is a tag with the value CSTAEVENTREPORT,
which identifies this message as a CSTA unsolicited

8-38 CSTA Computing Function Services

event.

eventType
This is a tag with the value CSTA_ROUTE_END,
which identifies this message as a
CSTARouteEndEvent.

routeRegisterReqID
This parameter contains the handle to the routing
registration session for which the application is providing
routing services. The application received this handle in a
CSTARouteRegisterReqConfEvent confirmation to a
route register service request.

routingCrossRefID
This parameter contains the handle to the CSTA call
routing dialog for this call. The application previously
received this handle in the CSTARouteRequestEvent
for the call.

errorValue
This parameter contains a cause code which giving the
reason why the routing dialog ended.

privateData
If private data accompanies CSTARouteEndEvent, then
the private data would be stored in the location that the
application specified as the privateData parameter in the
acsGetEventBlock() or acsGetEventPoll() request. If
the privateData pointer is set to NULL in these requests,
then CSTARouteEndEvent does not deliver private data
to the application.

Comments

The switch sends CSTARouteEndEvent when a call has
been successfully routed, cleared, or when the routing

DRAFT 2.0 Telephony Services API 8-39

server has failed to provide a route select within the
switch's time limit. This event is unsolicited and can
occur at any time.

8-40 CSTA Computing Function Services

cstaRouteEnd()XE "cstaRouteEnd()"§

The routing server (application) uses cstaRouteEnd() to cancel
an active routing dialog for a call. The service request includes a
cause value giving the reason for the routing dialog termination.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaRouteEnd (
ACSHandle_t acsHandle,
RouteRegisterReqID_t routeRegisterReqID,
RoutingCrossRefID_t routingCrossRefID,
CSTAUniversalFailure_t errorValue;
PrivateData_t *privateData);

Parameters

acsHandle
This is the handle for the opened ACS Stream on which
the application is terminating a routing dialog for a call.

routeRegisterReqID
This parameter contains the handle to the routing
registration session for which the application is providing
routing services. The application received this handle in a
CSTARouteRegisterReqConfEvent confirmation to a
route register service request.

routingCrossRefID
This parameter contains the handle to the CSTA call
routing dialog for a call. The application previously
received this handle in the CSTARouteRequestEvent
for the call. This is the routing dialog that the application
is ending.

errorValue
The application supplies this cause code giving the

DRAFT 2.0 Telephony Services API 8-41

reason why it is ending the routing dialog.

privateData
This is an optional pointer to CSTA private data.

Return Values

cstaRouteEnd() returns a non-negative value when
successful.

The following are possible negative error conditions for
this function:

ACSERR_BADHDL
The application provided a bad or unknown
acsHandle.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been
abnormally aborted.

Comments

A routing server application can use cstaRouteEnd()
when it cannot route a call. This can occur if:

u the application receives a routing request for a
call without sufficient call information and it
cannot determine a routing destination.

u the application has already routed calls to all
available destinations and those calls remain
active at those destinations.

u the application does not have access to a database
necessary to route the call

In these cases, the application uses cstaRouteEnd() to
inform the switch that it will not route the call in

8-42 CSTA Computing Function Services

question. cstaRouteEnd() will terminate the
CSTA routing dialog (routingCrossRefID) for
the call. cstaRouteEnd() does not clear the call.
The switch will continue to process the call using
whatever default routing algorithm is available
(implementation specific).

DRAFT 2.0 Telephony Services API 8-43

	XE "CSTA:Computing Function Services"§XE "Computing Function Services"§CSTA Computing Functions are those functions where the switching domain is the client (service requester) and the computing domain is the server. Presently, Application Call RoutingXE "Application Call Routing"§ is the only CSTA Computing Function. A switch uses application call routing when it needs the application to supply call destinations on a call-by-call basis. Applications can use internal databases together with call information to determine a destination for each call. For Example, an application might use the caller's number, caller-entered digits (provided as private data), or information in an application database to route incoming calls.
	Application Call Routing
	XE "Application Call Routing"§Application call routing requires that the switch be configured to direct calls to a special type of device know as the "routing device". When a call arrives at a routing deviceXE "Routing device"§, the switch sends a message to the Telephony Server requesting a route for the call.
	XE "Routing Registration"§Before an application can route calls, it must register with the Telephony Server as a routing server. The application may either register as the routing server for a specific routing device or as the default routing serverXE "default routing server"§ for an advertised serviceXE "advertised service"§. Recall that a PBX driverXE "PBX driver"§ advertises its services. Often these services correspond to a CTI linkXE "CTI link"§, so an application can, in effect, register to be the default routing server for a CTI link. An application uses cstaRouteRegisterReq() to register as a routing server. This request has an associated confirmation event, CSTARouteRegisterReqConfEvent.
	At any one time, one, and only one application can be the routing server for a routing device. Similarly, one, and only one application can be the default routing server for an advertised service.
	Either the switch or the routing server (application) may send a route end event (cstaRouteEnd) to end the routing process and terminateXE "Routing:Terminating"§ the CSTA routing dialog (this invalidates the routing cross reference identifier, routingCrossRefID). Either endpoint may send a route end at any time. This message indicates that the routing server does not want to route the call, or the switchXE "Routing:Switch default route"§ (usually in the absence of a cstaRouteSelect message) routed the call using some mechanism within the switching domain.

	Certain switch implementations may not support the optional flags described above.
	Figure 8-1 illustrates the Routing Procedure.
	Figure 8-2<bookmark route_procl>

	Routing Registration Functions and EventsXE "Routing Registration Functions and Events"§
	This section describes the service requests and events that an application uses to register with the Telephony Server as a call routing server
	cstaRouteRegisterReq()XE "cstaRouteRegisterReq()"§
	An application uses cstaRouteRegisterReq() to register as a routing server for a specific routing device or as a default routing server for an advertised service. The application must register for routing services before it can receive any route requests for a routing device. An application may be a routing server for more than one routing device. However, only one application may be a routing server for any given routing device. Similarly, only one application may register as the default routing server for an advertised service.

	CSTARouteRegisterReqConfEventXE "CSTARouteRegisterReqConfEvent"§
	The RouteRegisterReqConfEvent indicates successful registration to an application. That application is now the call routing server for the requested routing device (or is the default routing server for the advertised service).

	cstaRouteRegisterCancel()XE "cstaRouteRegisterCancel()"§
	Applications (routing servers) use cstaRouteRegisterCancel() to cancelXE "Routing:Cancel"§ a previously registered routing server session. This request terminates the routing session and the application receives no further routing messages for that session once it receives the confirmation to the cancel request.

	CSTARouteRegisterCancelConfEventXE "CSTARouteRegisterCancelConfEvent"§
	CSTARouteRegisterCancelConfEvent confirms a previously issued cstaRouteRegisterCancel() request for a routing registration. Once tan application receives this event, it invalidates the routing registration session.

	CSTARouteRegisterAbortEventXE "CSTARouteRegisterAbortEvent"§
	The Telephony Server sends an application an unsolicited CSTARouteRegisterAbortEvent to cancelXE "Routing:Cancel"§ an active routing dialog. This event invalidates a routing registration session.

	Routing Functions and EventsXE "Routing:Functions"§XE "Routing:Events"§
	This section defines the CSTA call routing services for application call routing. The switch queues calls at the routing deviceXE "Routing:Device"§ until the application provides a destination for the call or a time-out condition occurs within the switching domain. Figure 8-3 shows the Application-based call routing dialogue between a switch and the routing server (the application).
	Once an application registers as a routing server, the application uses the services in this section to route calls. The application receives a CSTARouteRequestEvent for each call which requires a routing destination. The application sends the switch a destination in cstaRouteSelect(). The switch then attempts to route the call to that application-provided destination. The switch will respond with a CSTARouteEndEvent and/or a CSTARouteUsedEvenXE "Route:Used"§t. If the application-provided destination is invalid, the switch may send a CSTAReRouteEventXE "Route:Re-route"§ to request an additional destination. See Figure 8-4 for a typical sequence of these events and service requests.
	Register Request ID and the Routing Cross Reference ID
	XE "Register Request ID"§XE "Routing Cross Reference ID"§The routing services use two handlesXE "Handle:Register Request ID"§XE "Handle:Routing Cross Reference ID"§ (identifiers) to refer to different software objects in the Telephony Server. The register request identifier (routeRegisterReqID) identifies a routing session over which an application will receive routing requests. This handle is tied to a routing deviceXE "Routing:Device"§ on the switch, or it may indicate that the application is the default routing serverXE "Routing:Default routing server"§XE "Default routing server:See Routing (Default Routing Server)"§ for an advertised service. When the application uses cstaRouteRegisterReq() to register for routing services, it receives a routeRegisterReqID in the confirmation. The routeRegisterReqID is valid until the registration is canceled or abortedXE "routeRegisterReqID:Duration"§.
	Within a routing session (routeRegisterReqID) the switch may initiate many routing dialogs (shown in Figure 8-5) to route multiple calls. An application uses a routing cross reference identifier (routingCrossRefID) to refer to each routing dialog. The application receives a routingCrossRefID in each CSTARouteRequestEvent. The CSTARouteRequestEvent initiates a routing dialog. The routingCrossRefID is valid for the duration of the call routing dialogXE "routingCrossRefID:Duration"§.
	The routing cross reference identifier (routingCrossRefID) is uniqueXE "routingCrossRefID:Uniqueness"§ within the routing session (routeRegisterReqID). Some switch implementationsXE "Switch:Specific"§ may provide the additional benefit of a unique routing cross reference identifier across the entire switching domain. Routing session identifiers (routeRegisterReqIDs) are uniqueXE "routeRegisterReqID:Uniqueness"§ within an ACS Stream (acsHandle).

	If a call is not successfully routed by the routing server this does not necessarily mean that the call is cleared or not answered. Most switch implementations will have a default mechanism for handling a call at a routing device when the routing server has failed to provide a valid destination for the call.
	CSTARouteRequestEventXE "CSTARouteRequestEvent"§XE "CSTARouteRequestEvent"§
	A routing server application receives a CSTARouteRequestEvent when the switch requests a route for a call. The application may have registered as the routing server for the routing device on the switch that is making the request, or it may have registered as the default routing server for the advertised service. The CSTARouteRequestEvent event includes call related information (such as the called and calling number, when available). A routing server application typically combines the call related information with an application database to determine a destination for the call. A routing server application receives a CSTARouteRequestEvent for every call queued at the routing device.

	CSTA requires that all events contain an invoke ID. During routing, the RouteRegisterReqID and the RoutingCrossRefID identify the routing dialogue. The invokeID is not used.
	CSTAReRouteEventXE "CSTAReRouteEvent"§
	The switch sends an unsolicited CSTAReRouteEvent to request an another destination for a call. Typically, the destination that the application previously sent was invalid or busy. The switch previously sent Call related information (such as the called and calling numbers) in the CSTARouteRequestEvent; Call related information is not re-sent in the CSTAReRouteEvent. The routing server application responds using the cstaRouteSelect() service.

	CSTA requires that all events contain an invoke ID. During routing, the RouteRegisterReqID and the RoutingCrossRefID identify the routing dialogue. The invokeID is not used.
	cstaRouteSelect()XE "cstaRouteSelect()"§
	The routing server application uses cstaRouteSelect to send a routing destination to the switch in response to a CSTARouteRequestEvent for a call.

	CSTARouteUsedEventXE "CSTARouteUsedEvent"§
	The CSTARouteUsed event provides a routing server application with the actual destinationXE "Routing:Actual destination"§ of a call for which the application previously sent a cstaRouteSelect(). To receive a CSTARouteUsed, the application must set the cstaRouteSelect() parameter routeUsedReq to TRUE when it sends the cstaRouteSelect().

	CSTARouteEndEventXE "CSTARouteEndEvent"§
	The switch sends CSTARouteEndEvent to terminate a routing dialog. The event includes a cause value giving the reason for the dialog termination.

	cstaRouteEnd()XE "cstaRouteEnd()"§
	The routing server (application) uses cstaRouteEnd() to cancel an active routing dialog for a call. The service request includes a cause value giving the reason for the routing dialog termination.

