
Chapter 6 Status Reporting ServicesXE "Status
Reporting:Services"§

TSAPI Status Services are those function calls and events that are related to unsolicited
TSAPI event messagesXE "Events:Unsolicited"§. External
telephony activity on the switch, External telephony activity at a
device, or human user activity can all cause unsolicited TSAPI
events. Such events messages are asynchronousXE
"Events:Asynchronous"§ in nature. An application typically
cannot anticipate their arrival. For example, an event informing
the application of an incoming call to a device (e.g. a telephone
station) is an unsolicited, asynchronous TSAPI event (since the
application did not initiate the call and such a call can arrive at
any time).

Applications use the status reporting request function to turn-on
or turn-off status event reporting for a CSTA device (e.g. a
desktop telephone). An application can use this function to turn-
on/turn-off status reporting for any stations on the switch where
monitoring is required (assuming proper access permissions are
administered at the Telephony Server).

DRAFT 2.0 Telephony Services API 6-1

Status Reporting Functions XE "Status
Reporting:Functions "§and Confirmation EventsXE
"Status Reporting:Confirmation Events"§

Applications may use Event reporting to determine the changes
in the state of a call or a connection associated with a device
which is of interest to the application. This section describes the
functions that an application uses to request unsolicited event
reports for a telephony device or for calls. In the case of calls,
the application must first control the calls.

Events provide the application with information about the state
of calls or connection. The application may keep track of device
or call states. If the application needs to maintain call state
information for a specific device or call within the switch, it
must establish a device or call "monitor" to keep track of the
real-time state information for the call or device.

 Applications should always be "event driven" and use events received from the
Telephony Server react to changes in call or connection state rather using a specific
switch implementation’s call state mode. Following this guideline will simplify the
support of applications across various switch implementations of TSAPI.

An application calls the cstaMonitorDevice(),
cstaMonitorCall(), or cstaMonitorCallsViaDevice() function
to initiate event reporting for a specific device or call. Event
reporting can be provided for a device, a call, or for calls at a
monitored device. An application can request two different types
of event monitors using these functions. The monitor types are:

u Call-type monitorXE "Call-type monitor"§ - call-type
monitors provide monitoring (event reporting) for
unsolicited events about a specific call from "cradle-to-
grave". In other words, a call-type monitor provides events

6-2 Status Reporting Services

for a specific call regardless of the devices at which the call
may appear for the duration of the call.

Using call-type monitoring, an application can determine
the current state of the call using the TSAPI events. For
example, if a call monitor exists for a specific call and that
call transfers or forwards to other devices, the sending
device ceases to participate in the call, but event reporting
continues (telling the application about the new devices
participating in the call). Thus, a call-type monitor will
provide call state information as the switch, other
applications, and human users interact to route a call..

 A switch may assign a new call identifier to a call as it is
transferred or conferenced. The new call identifier will be
provided in the event report associated with the conference
or transfer function being requested by the controller of the
call.

u Device-type monitorXE "Device-type monitor"§ -
device-type monitors provide the application with call or
connection state information about calls at a specific device
(the monitored device). TSAPI reports any events about the
calls at the monitored device on a device-type monitor. If a
call is transfers drops, or forwards from the monitored
device, TSAPI stops reporting events for that call.

If an application begins monitoring a device when call(s)
are already in progress at the monitored device, TSAPI will
not provide events for those calls. TSAPI provides events
for calls that arrive at the device after it sends the
confirmation event for the device monitor request.

An application may request a monitor on a call or a device but
not both. Each monitor must be either a call or device monitor.
An application may request multiple monitors, with various
monitors being of various types. An application must setup

DRAFT 2.0 Telephony Services API 6-3

multiple monitors if it wants to monitor multiple devices or calls
at the same time. The switch may impose limitations on the
maximum number of simultaneous monitors which can exist for
any given switch, call, or device. TSAPI does not place any such
restrictions on the application.

When an application requests a device or call monitor, it can also
specify an event filter. An event filter causes TSAPI to discard
those events which the application is not interested in. An
application may specify a filter when it establishes the monitor
for a device or call. An application may also use the
cstaChangeMonitorFilter() to change the filter after the
monitor is active.

To receive events, an application must have an active ACS
Stream and an implement an event handling mechanism.
Further, the reception of unsolicited eventsXE
"Events:Unsolicited"§ requires an active monitor. See the
Control Services and Status Reporting Services sections for
more information on events.

6-4 Status Reporting Services

cstaMonitorDevice(XE "cstaMonitorDevice("§)

The Monitor Start service is used to initiate unsolicited event
reporting for a device type monitoring on a device object. The
unsolicited event reports will be provided for all endpoints
within a CSTA switching sub-domain and optionally for
endpoints outside of the CSTA switching sub-domain
(implementation specific) which are involved with a monitored
device.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaMonitorDevice (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *deviceID;CSTAMonitorFilter_t *monitorFilter,
PrivateData_t *privateData),

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the
Invoke ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS
Library when the Stream is set for Library-generated invoke IDs.

deviceID
Device ID of the device to be monitored.

monitorFilter
This parameter is used to specify a filter type to be used with the

DRAFT 2.0 Telephony Services API 6-5

object being monitored. Setting a bit to true in the monitorFilter
structure causes the specific event to be filtered out, so the
application will never see this event. Initialize the structure to all
0's to receive all types of monitor events. See
cstaMonitorDeviceConfEvent for a definition of a monitorFilter
structure.

privateData
Private data extension mechanism. Setting this parameter is
optional. If the parameter is not used, the pointer should be set to
NULL.

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the
CSTAMonitorStartConfEvent message to insure that the
service request has been acknowledged and processed by the
Telephony Server and the switch.

The following are possible negative error conditions for this
function:

6-6 Status Reporting Services

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

DRAFT 2.0 Telephony Services API 6-7

Comments

This function is used to start a device monitor on a CSTA device
. The confirmation event for this function, i.e.
CSTAMonitorConfEvent will provide the application with the
CSTA association handle to the monitored device or call, i.e. the
Monitor Cross Reference Identifier (monitorCrossRefID) which
defines the CSTA association on which the monitor will exist.

6-8 Status Reporting Services

cstaMonitorCall()XE "cstaMonitorCall()"§

The Monitor Start service is used to initiate unsolicited event
reporting for a call type monitoring on a call object. The
unsolicited event reports will be provided for all endpoints
within a CSTA switching sub-domain and optionally for
endpoints outside of the CSTA switching sub-domain
(implementation specific) which are involved with a monitored
device.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaMonitorCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *call,
CSTAMonitorFilter_t *monitorFilter,
PrivateData_t *privateData),

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the
Invoke ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS
Library when the Stream is set for Library-generated invoke IDs.

call
Connection ID of the call to be monitored.

DRAFT 2.0 Telephony Services API 6-9

monitorFilter
This parameter is used to specify a filter type to be used with the
object being monitored. Setting a bit to true in the monitorFilter
structure causes the specific event to be filtered out, so the
application will never see this event. Initialize the structure to all
0's to receive all types of monitor events. See
cstaMonitorDeviceConfEvent for a definition of a monitorFilter
structure.

privateData
Private data extension mechanism. Setting this parameter is
optional. If the parameter is not used, the pointer should be set to
NULL.

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the
CSTAMonitorStartConfEvent message to insure that the
service request has been acknowledged and processed by the
Telephony Server and the switch.

6-10 Status Reporting Services

The following are possible negative error conditions for this
function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

Comments

This function is used to start a call monitor on a CSTA device .
The confirmation event for this function, i.e.
CSTAMonitorConfEvent will provide the application with the
CSTA association handle to the monitored device or call, i.e. the
Monitor Cross Reference Identifier (monitorCrossRefID) which
defines the CSTA association on which the monitor will exist.

DRAFT 2.0 Telephony Services API 6-11

cstaMonitorCallsViaDevice()XE "cstaMonitorCallsViaDevice()"§

The Monitor Start service is used to initiate unsolicited event
reporting for a call type monitoring on a device object. The
unsolicited event reports will be provided for all endpoints
within a CSTA switching sub-domain and optionally for
endpoints outside of the CSTA switching sub-domain
(implementation specific) which are involved with a monitored
device.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaMonitorCallsViaDevice (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *deviceID,
CSTAMonitorFilter_t *monitorFilter,
PrivateData_t *privateData),

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the
Invoke ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS
Library when the Stream is set for Library-generated invoke IDs.

device
The deviceID of the device for which call monitoring should be
started.

6-12 Status Reporting Services

monitorFilter
This paramater is used to specify a filter type to be used with the
object being monitored. Setting a bit to true in the monitorFilter
structure causes the specific event to be filtered out, so the
application will never see this event. Initialize the structure to all
0's to receive all types of monitor events. See
cstaMonitorDeviceConfEvent for a definition of a monitorFilter
structure.

privateData
Private data extension mechanism. Setting this parameter is
optional. If the parameter is not used, the pointer should be set to
NULL.

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the
CSTAMonitorStartConfEvent message to insure that the
service request has been acknowledged and processed by the
Telephony Server and the switch.

DRAFT 2.0 Telephony Services API 6-13

The following are possible negative error conditions for this
function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

Comments

This function is used to start a monitor on a CSTA object (a
device or a call). The confirmation event for this function, i.e.
CSTACallMonitorStartConfEvent will provide the application
with the CSTA association handle to the monitored device or
call, i.e. the Monitor Cross Reference Identifier
(monitorCrossRefID) which defines the CSTA association on
which the monitor will exist. There are two-types of Monitor
Service: call-type and device-type.

6-14 Status Reporting Services

CSTAMonitorConfEventXE "CSTAMonitorConfEvent"§

This event is in response to the cstaMonitorDevice(),
cstaMonitorCall or cstaMonitorCallsViaDevice function and
contains the association handle being assigned to the CSTA
association being used for status reporting.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See ACS Data Types and CSTA Data
Types in Section 4 for a complete description of the event
structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

CSTAMonitorConfEvent_t monitorStart;
} u; } cstaConfirmation;

} event;} CSTAEvent_t;

typedef struct CSTAMonitorConfEvent_t {
 CSTAMonitorCrossRefID_t monitorCrossRefID;
 CSTAMonitorFilter_t monitorFilter;
} CSTAMonitorConfEvent_t;

typedef long CSTAMonitorCrossRefID_t;

typedef unsigned short CSTACallFilter_t;#define CF_CALL_CLEARED
0x8000#define CF_CONFERENCED 0x4000#define
CF_CONNECTION_CLEARED 0x2000#define CF_DELIVERED
0x1000#define CF_DIVERTED 0x0800#define
CF_ESTABLISHED 0x0400#define CF_FAILED 0x0200#define
CF_HELD 0x0100#define CF_NETWORK_REACHED 0x0080#define
CF_ORIGINATED 0x0040#define CF_QUEUED 0x0020#define
CF_RETRIEVED 0x0010#define CF_SERVICE_INITIATED 0x0008#define
CF_TRANSFERRED 0x0004typedef unsigned char CSTAFeatureFilter_t;#define
FF_CALL_INFORMATION 0x80#define FF_DO_NOT_DISTURB
0x40#define FF_FORWARDING 0x20#define
FF_MESSAGE_WAITING 0x10typedef unsigned char CSTAAgentFilter_t;#define

DRAFT 2.0 Telephony Services API 6-15

AF_LOGGED_ON 0x80#define AF_LOGGED_OFF 0x40#define
AF_NOT_READY 0x20#define AF_READY 0x10#define
AF_WORK_NOT_READY 0x08#define AF_WORK_READY 0x04typedef
unsigned char CSTAMaintenanceFilter_t;#define MF_BACK_IN_SERVICE
0x80#define MF_OUT_OF_SERVICE 0x40typedef struct
CSTAMonitorFilter_t { CSTACallFilter_t call; CSTAFeatureFilter_t feature;
CSTAAgentFilter_t agent; CSTAMaintenanceFilter_t maintenance; Boolean

private;} CSTAMonitorFilter_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION,
which identifies this message as an CSTA confirmation
event.

eventType
This is a tag with the value CSTA_MONITOR_CONF, which
identifies this message as an CSTAMonitorDeviceConfEvent.

invokeID
This parameter specifies the requested instance of the function or
event. It is used to match a specific functions call request with its
confirmation events. Unsolicited events will have this parameter
set to zero.

monitorCrossRefID
This parameter contains the handle to the CSTA association for
which the requested monitor has been established. This handle is
typically chosen by the switch and should be used by the
application as a reference to a specific established association.

monitorFilter
This paramater is used to specify the filter type which is active
on the object being monitored by the application. Possible
classes of values are: CALL_FILTER, FEATURE_FILTER,
AGENT_FILTER, MAINTENANCE_FILTER, and
PRIVATE_FILTER.

6-16 Status Reporting Services

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

Comments

This confirmation event should be check by the application to
obtain the monitorCrossRefID being assigned by the switch and
to insure that the event filter requested has been activated. The
events informs the application which filters is active on the given
CSTA association.

DRAFT 2.0 Telephony Services API 6-17

cstaMonitorStop()XE "cstaMonitorStop()"§

The Monitor Stop Service is used to cancel a previously
registered Monitor Start Service on an existing CSTA monitor
association, i.e. an active monitorCrossRefID.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaMonitorStop (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
CSTAMonitorCrossRefID_t monitorCrossRefID,
PrivateData_t *privateData),

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the
Invoke ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS
Library when the Stream is set for Library-generated invoke IDs.

monitorCrossRefID
This parameter identifies the original CSTA monitor association
for which unsolicited event monitoring is to be canceled. This
identifier is provided as a result of a monitor start service request
(cstaMonitorStart()) in a CSTAMonitorStartConfEvent for a
call or device monitor within the switching domain.

privateData
Private data extension mechanism. Setting this parameter is

6-18 Status Reporting Services

optional. If the parameter is not used, the pointer should be set to
NULL.

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the
CSTAMonitorStopConfEvent message to insure that the
service request has been acknowledged and processed by the
Telephony Server and the switch.

The following are possible negative error conditions for this
function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

DRAFT 2.0 Telephony Services API 6-19

Comments

This function is used to cancel a previously registered monitor
association on a CSTA object (a device or a call object). Once a
confirmation event is issued for this function, i.e. a
CSTAMonitorStopConfEvent; it will terminate the previously
active monitoring association and thus end event reporting for
the monitored call or device.

6-20 Status Reporting Services

CSTAMonitorStopConfEventXE "CSTAMonitorStopConfEvent"§

This event is in response to the cstaMonitorStop() function and
provides the application with a confirmation that the monitor
association has been canceled. Once this confirmation event is
issued all event reporting for the specific monitoring association
will be discontinued.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See ACS Data Types and CSTA Data
Types in Section 4 for a complete description of the event
structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
} cstaConfirmation;

} event;} CSTAEvent_t;Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION, which
identifies this message as an CSTA confirmation event.

eventType
This is a tag with the value CSTA_MONITOR_STOP_CONF,
which identifies this message as an
CSTAMonitorStopConfEvent.

DRAFT 2.0 Telephony Services API 6-21

invokeID
This parameter specifies the requested instance of the function or
event. It is used to match a specific functions call request with its
confirmation events. Unsolicited events will have this parameter
set to zero.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

Comments

This confirmation event indicates a cancellation of a CSTA
monitoring association. After this event is issued by the
Telephony Server, no further events will be sent to the
application on the monitoring association (monitorCrossRefID)
which was canceled.

6-22 Status Reporting Services

cstaChangeMonitorFilter()XE "cstaChangeMonitorFilter()"§

This function is used to request a change in the filter options for
CSTA event reporting for a specific CSTA association. It allows
the application to specify for which event category the
application wishes to receive events.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t CSTAChangeMonitorFilter (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
CSTAMonitorCrossRefID_t monitorCrossRefID,
CSTAMonitorFilter_t *filterlist,
PrivateData_t *privateData),

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the
Invoke ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS
Library when the Stream is set for Library-generated invoke IDs.

monitorCrossRefID
This parameter identifies the CSTA association (association
handle) for which a change in event filtering is required. The
association identifier is provided by the server/switch when the
association is established.

DRAFT 2.0 Telephony Services API 6-23

filterlist
This parameter identifies the filter type being requested. Possible
classes of values are CALL_FILTER, FEATURE_FILTER,
AGENT_FILTER, MAINTENANCE_FILTER, and
PRIVATE_FILTER. This parameter also identifies the events
to be filtered.

privateData
Private data extension mechanism. Setting this parameter is
optional. If the parameter is not used, the pointer should be set to
NULL.

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the
CSTAChangeMonitorFilterConfEvent message to insure that
the service request has been acknowledged and processed by the
Telephony Server and the switch.

The following are possible negative error conditions for this
function:

6-24 Status Reporting Services

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

Comments

The cstaEventFilter() function is used to inform the API Client
Library and the server that only certain types of events are
required. All events not requested will be filtered by the server
and not provided to the application

CSTAChangeMonitorFilterConfEventXE
"CSTAChangeMonitorFilterConfEvent"§

This event occurs as a result of the cstaEventFilter() function
and informs the application which event filter was set by the
server.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See ACS Data Types and CSTA Data
Types in Section 4 for a complete description of the event
structure.
typedef struct
{ ACSHandle_tacsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID_t;
union
{

CSTAChangeMonitorFilterConfEvent changeMonitorFilter;
} u;

DRAFT 2.0 Telephony Services API 6-25

} cstaConfirmation;
} event;} CSTAEvent_t;

typedef struct CSTAChangeMonitorFilterConfEvent_t
{

CSTAMonitorFitler_t filterlist;
}

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION, which
identifies this message as an CSTAConfirmation event.

eventType
This is a tag with the value
CSTA_CHANGE_MONITOR_FILTER_CONF, which
identifies this message as an
CSTAChangeMonitorFilterConfEvent.

invokeID
This parameter specifies the requested instance of the function or
event. It is used to match a specific functions call request with its
confirmation events. Unsolicited events will have this parameter
set to zero.

filterlist
This parameter identifies the filter type being requested. Possible
classes of values are CALL_FILTER, FEATURE_FILTER,
AGENT_FILTER, MAINTENANCE_FILTER, and
PRIVATE_FILTER.

This parameter also identifies the events to be filtered.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()

6-26 Status Reporting Services

function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

Comments

This confirmation event should be check by the application to
insure that the event filter requested has been activated and
which filters are already active on the given CSTA association.

DRAFT 2.0 Telephony Services API 6-27

CSTAMonitorEndedXE "CSTAMonitorEnded"§

This unsolicited indication is sent by the driver/switch to indicate
to the application that the monitor associated with the
monitorCrossRefID has been stopped.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See Sections ACS Data Types and CSTA
Data Types for a complete description of the event structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTAMonitorEnded_t monitorEnded;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct CSTAMonitorEndedEvent_t {
 CSTAEventCause_t cause;
} CSTAMonitorEndedEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies this message as an CSTA unsolicited event.

eventType
This is a tag with the value CSTA_MONITOR_ENDED_IND,

6-28 Status Reporting Services

which identifies this message as an CSTAMonitorStopEvent.

monitorCrossRefID,
This parameter contains the handle to the CSTA association for
which this event is associated. This handle is typically chosen by
the switch and should be used by the application as a reference
to a specific established association.

cause
The cause code indicating the reason the monitor was stopped.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

Comments

This event is provided by the driver/switch when it can no
longer provided the requested events associated with the
monitorCrossRefId.

DRAFT 2.0 Telephony Services API 6-29

Call Event Reports (Unsolicited)XE "Events"§

This section defines the unsolicited TSAPI Event Reports that
result from call activity at the Device or the switch. These events
provide an application with call status information. Applications,
users, and switch administrators may also use switch features
that interact with monitored devices and calls, resulting in
additional call events. One example of such a feature is call
coverage paths.

6-30 Status Reporting Services

CSTACallClearedEventXE "cstaCallClearedEvent"§

This event report indicates when a call is torn down. This can
occur when the last device has disconnected from the call or
when a call is dissolved by another party to the call - like a
conference call being dissolved by the conference controller.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See ACS Data Types and CSTA Data
Types in Section 4 for a complete description of the event
structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTACallClearedEvent callClear;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef enum LocalConnectionState_t { CS_NULL = 0,
 CS_INITIATE = 1, CS_ALERTING = 2, CS_CONNECT = 3, CS_HOLD = 4,

CS_QUEUED = 5, CS_FAIL = 6} LocalConnectionState_t;typedef enum
CSTAEventCause_t { ACTIVE_MONITOR = 1, ALTERNATE = 2, BUSY = 3,
CALL_BACK = 4, CALL_CANCELLED = 5, CALL_FORWARD_ALWAYS = 6,
CALL_FORWARD_BUSY = 7, CALL_FORWARD_NO_ANSWER = 8,
CALL_FORWARD = 9, CALL_NOT_ANSWERED = 10, CALL_PICKUP = 11,
CAMP_ON = 12, DEST_NOT_OBTAINABLE = 13, DO_NOT_DISTURB = 14,
INCOMPATIBLE_DESTINATION = 15, INVALID_ACCOUNT_CODE = 16,
KEY_CONFERENCE = 17, LOCKOUT = 18, MAINTENANCE = 19,
NETWORK_CONGESTION = 20, NETWORK_NOT_OBTAINABLE = 21,
NEW_CALL = 22, NO_AVAILABLE_AGENTS = 23, OVERRIDE = 24, PARK =
25, OVERFLOW = 26, RECALL = 27, REDIRECTED = 28, REORDER_TONE =
29, RESOURCES_NOT_AVAILABLE = 30, SILENT_MONITOR = 31, TRANSFER
= 32, TRUNKS_BUSY = 33, VOICE_UNIT_INITIATOR = 34} CSTAEventCause_t;

typedef struct
{

ConnectionID_t clearedCall;
LocalConnectionState_t localConnectionInfo;

DRAFT 2.0 Telephony Services API 6-31

CSTAEventCause_t cause;
} CSTACallClearedEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies this message as an CSTA unsolicited event.

eventType
This is a tag with the value CSTA_CALL_CLEARED, which
identifies this message as an CSTACallClearedEvent.

monitorCrossRefID,
This parameter contains the handle to the CSTA association for
which this event is associated. This handle is typically chosen by
the switch and should be used by the application as a reference
to a specific established association.

clearedCall
This parameter identifies the call which has been cleared.

localConnectionInfo
This parameter defines the local connection state of the call after
it has been cleared. This could be null, initiated, alerting,
connected, held, queued, or failed.

cause
This parameter contains the cause value which indicates the
reason or explanation for the occurrence of this event. The
possible events are defined by CSTAEventCause_t.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData

6-32 Status Reporting Services

pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

DRAFT 2.0 Telephony Services API 6-33

Comments

This event is usually provided after the cstaClearCall()
function has been called by the application. It can also occur,
unsolicited, when another endpoint (device) clears a call and the
device being monitored by the API is part of the call cleared by
the another endpoint. The event is also generated when the last
remaining device has disconnected from the call.

Figure 6-1
Call Cleared Event Reporttc "Call Cleared Event Report" \f f \l3§
µ §

6-34 Status Reporting Services

CSTAConferencedEventXE "cstaConferencedEvent"§

This event report provides indication that two separate calls have
been conferenced (merged) into a single. This occurs without
either party being removed from the resulting call.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See Data Types and CSTA Data
Types in Section 4 for a complete description of the event
structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTAConferencedEvent_t conferenced;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

ConnectionID_t primaryOldCall;
ConnectionID_t secondaryOldCall;
SubjectDeviceID_t confController;
SubjectDeviceID_t addedParty;
ConnectionList_t conferenceConnections;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAConferencedEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

DRAFT 2.0 Telephony Services API 6-35

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies this message as an CSTA unsolicited event.

eventType
This is a tag with the value CSTA_CONFERENCED, which
identifies this message as an CSTAConferencedEvent.

monitorCrossRefID
This parameter contains the handle to the CSTA association for
which this event is associated. This handle is typically chosen by
the switch and should be used by the application as a reference
to a specific established association.

primaryOldCall
This parameter identifies the primary known call to be
conferenced. This is usually the held call pending the
conference.

secondaryOldCall
This parameter identifies the secondary call (e.g. the consultative
call) which is to be conferenced. This is usually the active call
which is to be conferenced to the held call pending the
conference.

confController
This structure identifies the device which is controlling the
conference. This is the device which setup the conference. If the
device is not specified, then the parameter will indicate that the
device was not known or that it was not required.

addedParty
This parameter identifies the device which is being added to the
conference. If the device is not specified, then the parameter will
indicate that the device was not known or that it was not
required.

6-36 Status Reporting Services

conferenceConnections
This is a list of connections (parties) on the call which resulted
from the conference. The call ID may be different from either
the primary or secondary old call (or both).

localConnectionInfo
This parameter defines the local connection state of the call after
it has been conferenced. This could be null, initiated, alerting,
connected, held, queued, or failed.

cause
This parameter contains the cause value which indicates the
reason or explanation for the occurrence of this event. The
possible events are defined by CSTAEventCause_t.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

Comments

This event provides information regarding a conference after is
has been requested by the application using the
CSTAConferenceCall() function or other endpoints on the
switch. The changes in the call states are as follows:

Figure 6-2
Conferenced Event Reporttc "Conferenced Event Report" \f f \l3§
µ §

DRAFT 2.0 Telephony Services API 6-37

6-38 Status Reporting Services

CSTAConnectionClearedEventXE "CSTAConnectionClearedEvent"§

This event report indicates that a device associated with a call
disconnects from the call or is dropped from the call. The event
does not indicate that a transferring device has left a call through
the act of transferring that call.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See Data Types and CSTA Data
Types in Section 4 for a complete description of the event
structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
 union
 {
 CSTAConnectionClearedEvent_t connectionCleared;
 } u;
} cstaUnsolicited;

} event;} CSTAEvent_t;
typedef struct
{

ConnectionID_t droppedConnection;
SubjectDeviceID_t releasingDevice;
SubjectDeviceID_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAConnectionClearedEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED, which

DRAFT 2.0 Telephony Services API 6-39

identifies this message as an CSTA unsolicited event.

eventType
This is a tag with the value
CSTA_CONNECTION_CLEARED, which identifies this
message as an CSTAConnectionClearedEvent.

monitorCrossRefID
This parameter contains the handle to the CSTA association for
which this event is associated. This handle is typically chosen by
the switch and should be used by the application as a reference
to a specific established association.

droppedConnection
This parameter identifies the Connection which was dropped
from the call as a result of a device dropping from the call.

releasingDevice
This parameter identifies the device which dropped the call.

localConnectionInfo
This parameter defines the local connection state of the call after
the connection has been cleared. This could be null, initiated,
alerting, connected, held, queued, or failed.

cause
This parameter contains the cause value which indicates the
reason or explanation for the occurrence of this event. The
possible events are defined by CSTAEventCause_t.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

6-40 Status Reporting Services

Comments

This event is used to determine which device disconnects from a
multi-party call. The deviceID identifies the devices which
disconnected or was disconnected from the call. The
LocalConnectionInfo defines the state of the call at the
monitored device after the device has been dropped from the
call.

Figure 6-3
Connection Cleared Event Reporttc "Connection Cleared Event Report" \f f \
l3§
µ §

DRAFT 2.0 Telephony Services API 6-41

CSTADeliveredEventXE "CSTADeliveredEvent"§

This event report indicates that a call is alerting (e.g. ringing) at
a specific device or that the server has detected that a call is
alerting at a specific device.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See Chapter 4 Data Types and CSTA
Data Types for a complete description of the event structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTADeliveredEvent_t delivered;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

ConnectionID_t connection;
SubjectDeviceID_t alertingDevice;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
RedirectionDevice_t lastRedirectionDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTADeliveredEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED, which

6-42 Status Reporting Services

identifies this message as an CSTA unsolicited event.

eventType
This is a tag with the value CSTA_DELIVERED, which
identifies this message as an CSTADeliveredEvent.

monitorCrossRefID
This parameter contains the handle to the CSTA association for
which this event is associated. This handle is typically chosen by
the switch and should be used by the application as a reference
to a specific established association.

connection
This parameter identifies the Connection which is alerting

alertingDevice
This parameter indicates which device is alerting. If the device is
not specified, then the parameter will indicate that the device
was not known or that it was not required.

callingDevice
This parameter identifies the calling device. If the device is not
specified, then the parameter will indicate that the device was
not known or that it was not required

calledDevice
This parameter identifies the originally called device. If the
device is not specified, then the parameter will indicate that the
device was not known or that it was not required

lastRedirectionDevice
This parameter will identify the previously alerted device in
cases where the call was redirected or diverted to the alerting
device. If the device is not specified, then the parameter will
indicate that the device was not known or that it was not
required.

DRAFT 2.0 Telephony Services API 6-43

localConnectionInfo
This parameter defines the local connection state of the call after
the Connection has alerted. This could be null, initiated, alerting,
connected, held, queued, or failed.

cause
This parameter contains the cause value which indicates the
reason or explanation for the occurrence of this event. The
possible events are defined by CSTAEventCause_t.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

Comments

This event provides all the necessary information required when
a new call arrives at a device. This will include the calling and
called numbers.

Figure 6-4
Delivered Event Reporttc "Delivered Event Report" \f f \l3§
µ §

6-44 Status Reporting Services

CSTADivertedEventXE "CSTADivertedEvent"§

This event report identifies a call which has been deflected or
diverted from a monitored device. The call is no longer present
or associated with the device.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See Data Types and CSTA Data Types
in Section 4 for a complete description of the event structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTADivertedEvent_t diverted;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

ConnectionID_t connection;
SubjectDeviceID_t divertingDevice;
CalledDeviceID_t newDestination;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTADivertedEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies this message as an CSTA unsolicited event.

DRAFT 2.0 Telephony Services API 6-45

eventType
This is a tag with the value CSTA_DIVERTED, which
identifies this message as an CSTADivertedEvent.

monitorCrossRefID
This parameter contains the handle to the CSTA association for
which this event is associated. This handle is typically chosen by
the switch and should be used by the application as a reference
to a specific established association.

connection
This parameter indicates the Connection which was previously
alerting. This can be the intended Connection for the call before
it was diverted.

divertingDevice
This parameter indicates the device from which the call was
diverted. If the device is not specified, then the parameter will
indicate that the device was not known or that it was not
required.

newDestination
This parameter indicates the device to which the call was
diverted. If the device is not specified, then the parameter will
indicate that the device was not known or that it was not
required.

localConnectionInfo
This parameter defines the local connection state of the device
being monitored. This could be null, initiated, alerting,
connected, held, queued, or failed.

cause
This parameter contains the cause value which indicates the
reason or explanation for the occurrence of this event. The
possible events are defined by CSTAEventCause_t.

6-46 Status Reporting Services

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

Comments

This event is used to determine information about a call which
has been diverted from a monitored device. This includes
information on which device the call is being diverted.

Figure 6-5
Diverted Event Reporttc "Diverted Event Report" \f f \l3§
µ §

DRAFT 2.0 Telephony Services API 6-47

CSTAEstablishedEventXE "CSTAEstablishedEvent"§

This event report identifies a call which has been deflected or
diverted from a monitored device. The call is no longer present
or associated with the device.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See Data Types and CSTA Data
Types in Section 4 for a complete description of the event
structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTAEstablishedEvent_t established;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

ConnectionID_t establishedConnection;
SubjectDeviceID_t answeringDevice;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
REdirectionDeviceID_t lastRedirectionDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAEstablishedEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

6-48 Status Reporting Services

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies this message as an CSTA unsolicited event.

eventType
This is a tag with the value CSTA_ESTABLISHED, which
identifies this message as an CSTAEstablishedEvent.

monitorCrossRefID
This parameter contains the handle to the CSTA association for
which this event is associated. This handle is typically chosen by
the switch and should be used by the application as a reference
to a specific established association.

establishedConnection
This parameter identifies the Connection which joined the call as
a result of answering the call.

answeringDevice
This parameter indicates the device which has joined the call, i.e.
the answering device. If the device is not specified, then the
parameter will indicate that the device was not known or that it
was not required.

callingDevice
This indicates which device made the call, i.e. the calling device.
If the device is not specified, then the parameter will indicate
that the device was not known or that it was not required.

calledDevice
This parameter indicates the originally called device. This may
not always be the device answering a call as is the case with call
forwarding or coverage, i.e. call redirection. If the device is not
specified, then the parameter will indicate that the device was
not known or that it was not required.

DRAFT 2.0 Telephony Services API 6-49

lastRedirectionDevice
This parameter indicates the previously alerted device in cases
where a call is redirected. If the device is not specified, then the
parameter will indicate that the device was not known or that it
was not required.

localConnectionInfo
This parameter defines the local connection state of the device
for the call which has been established. This could be null,
initiated, alerting, connected, held, queued, or failed.

cause
This parameter contains the cause value which indicates the
reason or explanation for the occurrence of this event. The
possible events are defined by CSTAEventCause_t.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

Comments

This event is typically used to determined when a call is
answered by an endpoint being called by the application. This
includes the calling and called number identification.

Figure 6-6
Established Event Reporttc "Established Event Report" \f f \l3§
µ §

6-50 Status Reporting Services

DRAFT 2.0 Telephony Services API 6-51

CSTAFailedEventXE "CSTAFailedEvent"§

This event report indicates that a call cannot be completed. The
event applies only to a single Connection.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See Data Types and CSTA Data Types
in Section 4 for a complete description of the event structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTAFailedEvent_t failed;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

ConnectionID_t failedConnection;
SubjectDeviceID_t failingDevice;
CalledDeviceID_t calledDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAFailedEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies this message as an CSTA unsolicited event.

6-52 Status Reporting Services

eventType
This is a tag with the value CSTA_FAILED, which identifies
this message as an CSTAFailedEvent.

monitorCrossRefID
This parameter contains the handle to the CSTA association for
which this event is associated. This handle is typically chosen by
the switch and should be used by the application as a reference
to a specific established association.

failedConnection
This parameter indicates which Connection has failed.

failingDevice
This parameter indicates which device has failed. If the device is
not specified, then the parameter will indicate that the device
was not known or that it was not required.

calledDevice
This parameter indicates which device was called when the call
failed. If the device is not specified, then the parameter will
indicate that the device was not known or that it was not
required.

localConnectionInfo
This parameter defines the local connection state of the call after
the Connection has failed. This could be null, initiated, alerting,
connected, held, queued, or failed.

cause
This parameter contains the cause value which indicates the
reason or explanation for the occurrence of this event. The
possible events are defined by CSTAEventCause_t.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData

DRAFT 2.0 Telephony Services API 6-53

pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

Comments

This event occurs anytime a call cannot be completed for any
reason (e.g. Stations Busy, Reorder Tone, Trunks Busy, etc.).
The cause parameter contains the reason why the call failed.

Figure 6-7
Failed Event Reporttc "Failed Event Report" \f f \l3§
µ §

6-54 Status Reporting Services

CSTAHeldEventXE "CSTAHeldEvent"§

This event report indicates that the server has detected that
communications on a particular Connection has be interrupted
(i.e. put on hold) by one of the devices on the call. This event is
usually associated with a call being placed on hold at a device.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See Data Types and CSTA Data Types
in Section 4 for a complete description of the event structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTAHeldEvent_t held;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

ConnectionID_t heldConnection;
SubjectDeviceID_t holdingDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAHeldEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED, which

DRAFT 2.0 Telephony Services API 6-55

identifies this message as an CSTA unsolicited event.

eventType
This is a tag with the value CSTA_HELD, which identifies
this message as an CSTAHeldEvent.

monitorCrossRefID
This parameter contains the handle to the CSTA association for
which this event is associated. This handle is typically chosen by
the switch and should be used by the application as a reference
to a specific established association.

heldConnection
This parameter identifies the Connection which was put on hold
by the device.

holdingDevice
This parameter identifies the device which placed the connection
on hold. If the device is not specified, then the parameter will
indicate that the device was not known or that it was not
required.

localConnectionInfo
This parameter defines the local connection state of the call after
the Connection has been put on hold. This could be null,
initiated, alerting, connected, held, queued, or failed.

cause
This parameter contains the cause value which indicates the
reason or explanation for the occurrence of this event. The
possible events are defined by CSTAEventCause_t.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these

6-56 Status Reporting Services

functions, then no private data will be delivered to the
application.

Comments

This event occurs after a call has been placed on hold at a
specific device. This informs the application what device placed
the connection on hold.

Figure 6-8
Held Event Reporttc "Held Event Report" \f f \l3§
µ §

DRAFT 2.0 Telephony Services API 6-57

CSTANetworkReachedEventXE "CSTANetworkReachedEvent"§

This event report informs the application that a call has left the
switch on an outbound trunk and is being routed through the
telephone network.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See Data Types and CSTA Data Types
in Section 4 for a complete description of the event structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{
 CSTANetworkReachedEvent_t networkReached;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

ConnectionID_t connection;
SubjectDeviceID_t trunkUsed;
CalledDeviceID_t calledDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAHeldEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies this message as an CSTA unsolicited event.

6-58 Status Reporting Services

eventType
This is a tag with the value CSTA_NETWORK_REACHED,
which identifies this message as an
CSTANetworkReachedEvent.

monitorCrossRefID
This parameter contains the handle to the CSTA association for
which this event is associated. This handle is typically chosen by
the switch and should be used by the application as a reference
to a specific established association.

connection
This parameter specifies the Connection ID for the outbound
connection associated with the trunk and its connection to the
network (see figure below).

trunkUsed
This parameter specifies the trunk that was used to establish the
Connection with the telephone network. If the device (i.e. the
trunk) is not specified, then the parameter will indicate that the
device was not known or that it was not required.

calledDevice
This parameter indicates the destination device for the call. If the
device is not specified, then the parameter will indicate that the
device was not known or that it was not required.

localConnectionInfo
This parameter defines the local connection state of the call after
the Connection has cut-through into the telephone network. This
could be null, initiated, alerting, connected, held, queued, or
failed.

cause
This parameter contains the cause value which indicates the
reason or explanation for the occurrence of this event. The
possible events are defined by CSTAEventCause_t.

DRAFT 2.0 Telephony Services API 6-59

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

Comments

Once this event occurs the level of call related status information
may decrease depending on the type of trunk being used to route
the call to it's destination across the telephone network. The
amount of call related status information provided by the
network will depend on the type of trunk and telephone network
being used to complete the call. Call status information may be
limited to the disconnect or drop event. This only applies for
calls to other network endpoints and not to calls within the
switch being controlled by the server.

Figure 6-9
Network Reached Event Reporttc "Network Reached Event Report" \f f \l3§
µ §

6-60 Status Reporting Services

CSTAOriginatedEventXE "CSTAOriginatedEvent"§

This event report informs the application that the switch is
attempting to establish a call as a result of a completed request
from the application.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See Data Types and CSTA Data Types
in Section 4 for a complete description of the event structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTAOriginatedEvent_t orginated;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

ConnectionID_t orginatedConnection;
SubjectDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAOrginatedEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies this message as an CSTA unsolicited event.

DRAFT 2.0 Telephony Services API 6-61

eventType
This is a tag with the value CSTA_ORGINATED, which
identifies this message as an CSTAOriginatedEvent.

monitorCrossRefID
This parameter contains the handle to the CSTA association for
which this event is associated. This handle is typically chosen by
the switch and should be used by the application as a reference
to a specific established association.

originatedConnection
This parameter identifies the Connection where a call has been
originated.

callingDevice
This parameter identifies the device from which the call has been
originated. If the device is not specified, then the parameter will
indicate that the device was not known or that it was not
required.

calledDevice
This parameter identifies the device for which the originated call
is intended. If the device is not specified, then the parameter will
indicate that the device was not known or that it was not
required.

localConnectionInfo
This parameter defines the local connection state of the call after
the Connection has been originated. This could be null, initiated,
alerting, connected, held, queued, or failed.

cause
This parameter contains the cause value which indicates the
reason or explanation for the occurrence of this event. The
possible events are defined by CSTAEventCause_t.

6-62 Status Reporting Services

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

Comments

This event indicates that a call is being launched by the switch
on behalf of the request from the application. The event only
indicates that the switch is attempting to make the call. The
application should check for additional events to determine the
status of the call as it proceeds either through the switch or out to
the telephone network.

Figure 6-10
Originated Event Reporttc "Originated Event Report" \f f \l3§
µ §

DRAFT 2.0 Telephony Services API 6-63

CSTAQueuedEventXE "CSTAQueuedEvent"§

This event report indicates that a call has been queued to an
ACD Split, a hunt group, or others devices which support call
queues. Call can also be queued during network re-routing
without specifying a device.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See Data Types and CSTA Data Types
in Section 4 for a complete description of the event structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTAQueuedEvent_t queued;
} u;

} cstaUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

ConnectionID_t queuedConnection;
SubjectDeviceID_t queue;
SubjectDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
RedirectionDeviceID_t lastRedirectionDevice;
int numberQueued;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAQueuedEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

6-64 Status Reporting Services

eventClass
This is a tag with the value CSTAUNSOLICITED, which
identifies this message as an CSTA unsolicited event.

eventType
This is a tag with the value CSTA_QUEUED, which identifies
this message as an CSTAQueuedEvent.

monitorCrossRefID
This parameter contains the handle to the CSTA association for
which this event is associated. This handle is typically chosen by
the switch and should be used by the application as a reference
to a specific established association.

queuedConnection
This indicates the Connection was queued to the device.

queue
This parameter specifies the device to which the call has been
queued. If the device is not specified, then the parameter will
indicate that the device was not known or that it was not
required.

callingDevice
This parameter indicates the device who queued the call. If the
device is not specified, then the parameter will indicate that the
device was not known or that it was not required.

calledDevice
This parameter indicates the device which was called (the
intended recipient of the call). If the device is not specified, then
the parameter will indicate that the device was not known or that
it was not required.

lastRedirectionDevice
This parameter identifies the last device which redirected the
call, if the call has been redirected. If the device is not specified,

DRAFT 2.0 Telephony Services API 6-65

then the parameter will indicate that the device was not known
or that it was not required.

numberQueued
This parameter indicates how many calls are queued to the
queuing device.

localConnectionInfo
This parameter defines the local connection state of the call after
the call has been queued. This could be null, initiated, alerting,
connected, held, queued, or failed.

cause
This parameter contains the cause value which indicates the
reason or explanation for the occurrence of this event. The
possible events are defined by CSTAEventCause_t.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

Comments

This event usually occurs when an application is monitoring a
call, a Vector Directory Number (VDN), an ACD Split, or a hunt
group. The event also provides information pertaining to the
number of calls that have been queued to a device. This
information can be useful to applications managing the queue at
the device.

Figure 6-11
Queued Event Reporttc "Queued Event Report" \f f \l3§

6-66 Status Reporting Services

µ §

DRAFT 2.0 Telephony Services API 6-67

	TSAPI Status Services are those function calls and events that are related to unsolicited TSAPI event messagesXE "Events:Unsolicited"§. External telephony activity on the switch, External telephony activity at a device, or human user activity can all cause unsolicited TSAPI events. Such events messages are asynchronousXE "Events:Asynchronous"§ in nature. An application typically cannot anticipate their arrival. For example, an event informing the application of an incoming call to a device (e.g. a telephone station) is an unsolicited, asynchronous TSAPI event (since the application did not initiate the call and such a call can arrive at any time).
	Applications use the status reporting request function to turn-on or turn-off status event reporting for a CSTA device (e.g. a desktop telephone). An application can use this function to turn-on/turn-off status reporting for any stations on the switch where monitoring is required (assuming proper access permissions are administered at the Telephony Server).
	Status Reporting Functions XE "Status Reporting:Functions "§and Confirmation EventsXE "Status Reporting:Confirmation Events"§
	Applications may use Event reporting to determine the changes in the state of a call or a connection associated with a device which is of interest to the application. This section describes the functions that an application uses to request unsolicited event reports for a telephony device or for calls. In the case of calls, the application must first control the calls.
	Events provide the application with information about the state of calls or connection. The application may keep track of device or call states. If the application needs to maintain call state information for a specific device or call within the switch, it must establish a device or call "monitor" to keep track of the real-time state information for the call or device.
	Applications should always be "event driven" and use events received from the Telephony Server react to changes in call or connection state rather using a specific switch implementation’s call state mode. Following this guideline will simplify the support of applications across various switch implementations of TSAPI.
	An application calls the cstaMonitorDevice(), cstaMonitorCall(), or cstaMonitorCallsViaDevice() function to initiate event reporting for a specific device or call. Event reporting can be provided for a device, a call, or for calls at a monitored device. An application can request two different types of event monitors using these functions. The monitor types are:
	An application may request a monitor on a call or a device but not both. Each monitor must be either a call or device monitor. An application may request multiple monitors, with various monitors being of various types. An application must setup multiple monitors if it wants to monitor multiple devices or calls at the same time. The switch may impose limitations on the maximum number of simultaneous monitors which can exist for any given switch, call, or device. TSAPI does not place any such restrictions on the application.
	When an application requests a device or call monitor, it can also specify an event filter. An event filter causes TSAPI to discard those events which the application is not interested in. An application may specify a filter when it establishes the monitor for a device or call. An application may also use the cstaChangeMonitorFilter() to change the filter after the monitor is active.
	To receive events, an application must have an active ACS Stream and an implement an event handling mechanism. Further, the reception of unsolicited eventsXE "Events:Unsolicited"§ requires an active monitor. See the Control Services and Status Reporting Services sections for more information on events.

	cstaMonitorDevice(XE "cstaMonitorDevice("§)
	The Monitor Start service is used to initiate unsolicited event reporting for a device type monitoring on a device object. The unsolicited event reports will be provided for all endpoints within a CSTA switching sub-domain and optionally for endpoints outside of the CSTA switching sub-domain (implementation specific) which are involved with a monitored device.

	cstaMonitorCall()XE "cstaMonitorCall()"§
	The Monitor Start service is used to initiate unsolicited event reporting for a call type monitoring on a call object. The unsolicited event reports will be provided for all endpoints within a CSTA switching sub-domain and optionally for endpoints outside of the CSTA switching sub-domain (implementation specific) which are involved with a monitored device.

	cstaMonitorCallsViaDevice()XE "cstaMonitorCallsViaDevice()"§
	The Monitor Start service is used to initiate unsolicited event reporting for a call type monitoring on a device object. The unsolicited event reports will be provided for all endpoints within a CSTA switching sub-domain and optionally for endpoints outside of the CSTA switching sub-domain (implementation specific) which are involved with a monitored device.

	CSTAMonitorConfEventXE "CSTAMonitorConfEvent"§
	This event is in response to the cstaMonitorDevice(), cstaMonitorCall or cstaMonitorCallsViaDevice function and contains the association handle being assigned to the CSTA association being used for status reporting.

	cstaMonitorStop()XE "cstaMonitorStop()"§
	The Monitor Stop Service is used to cancel a previously registered Monitor Start Service on an existing CSTA monitor association, i.e. an active monitorCrossRefID.

	CSTAMonitorStopConfEventXE "CSTAMonitorStopConfEvent"§
	This event is in response to the cstaMonitorStop() function and provides the application with a confirmation that the monitor association has been canceled. Once this confirmation event is issued all event reporting for the specific monitoring association will be discontinued.

	cstaChangeMonitorFilter()XE "cstaChangeMonitorFilter()"§
	This function is used to request a change in the filter options for CSTA event reporting for a specific CSTA association. It allows the application to specify for which event category the application wishes to receive events.

	CSTAChangeMonitorFilterConfEventXE "CSTAChangeMonitorFilterConfEvent"§
	This event occurs as a result of the cstaEventFilter() function and informs the application which event filter was set by the server.

	CSTAMonitorEndedXE "CSTAMonitorEnded"§
	This unsolicited indication is sent by the driver/switch to indicate to the application that the monitor associated with the monitorCrossRefID has been stopped.

	Call Event Reports (Unsolicited)XE "Events"§
	This section defines the unsolicited TSAPI Event Reports that result from call activity at the Device or the switch. These events provide an application with call status information. Applications, users, and switch administrators may also use switch features that interact with monitored devices and calls, resulting in additional call events. One example of such a feature is call coverage paths.
	cstaCallClearedEventXE "cstaCallClearedEvent"§
	This event report indicates when a call is torn down. This can occur when the last device has disconnected from the call or when a call is dissolved by another party to the call - like a conference call being dissolved by the conference controller.
	Figure 6-1<bookmark clear_event>

	cstaConferencedEventXE "cstaConferencedEvent"§
	This event report provides indication that two separate calls have been conferenced (merged) into a single. This occurs without either party being removed from the resulting call.
	Figure 6-2<bookmark conf_event>

	CSTAConnectionClearedEventXE "CSTAConnectionClearedEvent"§
	This event report indicates that a device associated with a call disconnects from the call or is dropped from the call. The event does not indicate that a transferring device has left a call through the act of transferring that call.
	Figure 6-3<bookmark conn_event>

	CSTADeliveredEventXE "CSTADeliveredEvent"§
	This event report indicates that a call is alerting (e.g. ringing) at a specific device or that the server has detected that a call is alerting at a specific device.
	Figure 6-4<bookmark xxx>

	CSTADivertedEventXE "CSTADivertedEvent"§
	This event report identifies a call which has been deflected or diverted from a monitored device. The call is no longer present or associated with the device.
	Figure 6-5<bookmark divert_event>

	CSTAEstablishedEventXE "CSTAEstablishedEvent"§
	This event report identifies a call which has been deflected or diverted from a monitored device. The call is no longer present or associated with the device.
	Figure 6-6<bookmark estab_event>

	CSTAFailedEventXE "CSTAFailedEvent"§
	This event report indicates that a call cannot be completed. The event applies only to a single Connection.
	Figure 6-7<bookmark fail_event>

	CSTAHeldEventXE "CSTAHeldEvent"§
	This event report indicates that the server has detected that communications on a particular Connection has be interrupted (i.e. put on hold) by one of the devices on the call. This event is usually associated with a call being placed on hold at a device.
	Figure 6-8<bookmark held_event>

	CSTANetworkReachedEventXE "CSTANetworkReachedEvent"§
	This event report informs the application that a call has left the switch on an outbound trunk and is being routed through the telephone network.
	Figure 6-9<bookmark xxx>

	CSTAOriginatedEventXE "CSTAOriginatedEvent"§
	This event report informs the application that the switch is attempting to establish a call as a result of a completed request from the application.
	Figure 6-10<bookmark orig_event>

	CSTAQueuedEventXE "CSTAQueuedEvent"§
	This event report indicates that a call has been queued to an ACD Split, a hunt group, or others devices which support call queues. Call can also be queued during network re-routing without specifying a device.
	Figure 6-11<bookmark queue_event>

