
chapter 5 SWITCHING FUNCTION SERVICESXE
"Switching Function Services"§

This section describes Telephony Services. Applications use
Telephony Services to control calls and activate switch features.
Switching Functions Services are divided into Basic Call
Control ServicesXE "Switching Function Services:Basic Call
Control Services"§XE "Basic Call Control:Services"§ and
Telephony Supplementary ServicesXE ""Switching Function
Services:Telephony Supplementary Services"§XE "Telephony
Supplementary Services"§.

Basic Call Control ServicesXE "Basic Call Control
Services"§

Basic Call Control Services allows applications to:

u establish, control, and "tear-down" calls at a device or
within the switch,

u answer incoming calls at a device, and

u activate/de-activate switch features.

Each Basic Call Control Service request has an associated
confirmation event message. The confirmation message returns

DRAFT 2.0 Telephony Services API Specification 5-1

the status and other service-specific information to the
application. TSAPI always returns confirmation event messages
for successful function calls. If TSAPI cannot successfully
process a function call then

u TSAPI does not send the service request to the PBX Driver

u TSAPI does not generate a confirmation event

As noted in Chapter 4, section Sending CSTA Requests and
Responses, the application sets the invokeID type (when it
opens the stream) to either library generatedXE
"InvokeID:Library generated"§ or application generatedXE "
InvokeID:Application generated"§. As described in that
section, applications may use application generated invokeIDs to
index into data structures in various ways. The application may
also use the invokeID to match results with specific service
requestsXE "IinvokeID:Correlating responses"§.

When TSAPI successfully processes an application request,
TSAPI sends the application a confirmation eventXE
"Events:Confirmation"§. This conformation means that TSAPI
has successfully processed the request, not that the PBX driver
or PBX has successfully processed the request. For example,
TSAPI will send an application a CSTAMakeCallConfEvent
after it successfully processes a cstaMakeCall() request.
Further information from the PBX Driver or PBX will arrive in
call events or unsolicited status eventsXE
"Events:Unsolicited"§. An application interested in the results
of a request should check for a function confirmation event and
any applicable unsolicited status events (see Status Reporting
Services).

To receive events, an application must have an active ACS
Stream and an implement an event handling mechanism.
Further, the reception of unsolicited eventsXE
"Events:Unsolicited"§ requires an active monitor. See the

5-2 Switching Function Services

Control Services and Status Reporting Services sections for
more information on events.

 Not every Driver implementation will support all Telephony functions. The
application should use the cstaGetAPICapsXE "cstaGetAPICaps"§ function to
determine which Telephony services are supportedXE "CSTA:Services:Available
on ACS Stream"§.

CSTAUniversalFailureConfEventXE "CSTAUniversalFailureConfEvent"§

The CSTA universal failure confirmation event provides a
generic negative response from the server/switch for a previous
requested service. The CSTAUniversalFailureConfEvent will
be sent in place of any confirmation event described in this
section when the requested function fails. The confirmation
events defined for each function in this section are only sent
when that function completes successfully.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See ACS Data Types and CSTA Data
Types in Chapter 4 for a complete description of the event
structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union

{
CSTAUniversalFailureConfEvent universalFailure; } u;
} cstaConfirmation;

} event;} CSTAEvent_t;

typedef struct
{

DRAFT 2.0 Telephony Services API Specification 5-3

UniversalFailure_t error;
} CSTAUniversalFailureConfEvent_t;

typedef enum CSTAUniversalFailure_t {
 GENERIC_UNSPECIFIED = 0,
 GENERIC_OPERATION = 1,
 REQUEST_INCOMPATIBLE_WITH_OBJECT = 2,
 VALUE_OUT_OF_RANGE = 3,
 OBJECT_NOT_KNOWN = 4,
 INVALID_CALLING_DEVICE = 5,
 INVALID_CALLED_DEVICE = 6,
 INVALID_FORWARDING_DESTINATION = 7,
 PRIVILEGE_VIOLATION_ON_SPECIFIED_DEVICE = 8,
 PRIVILEGE_VIOLATION_ON_CALLED_DEVICE = 9,
 PRIVILEGE_VIOLATION_ON_CALLING_DEVICE = 10,
 INVALID_CSTA_CALL_IDENTIFIER = 11,
 INVALID_CSTA_DEVICE_IDENTIFIER = 12,
 INVALID_CSTA_CONNECTION_IDENTIFIER = 13,
 INVALID_DESTINATION = 14,
 INVALID_FEATURE = 15,
 INVALID_ALLOCATION_STATE = 16,
 INVALID_CROSS_REF_ID = 17,
 INVALID_OBJECT_TYPE = 18,
 SECURITY_VIOLATION = 19,
 GENERIC_STATE_INCOMPATIBILITY = 21,
 INVALID_OBJECT_STATE = 22,
 INVALID_CONNECTION_ID_FOR_ACTIVE_CALL = 23,
 NO_ACTIVE_CALL = 24,
 NO_HELD_CALL = 25,
 NO_CALL_TO_CLEAR = 26,
 NO_CONNECTION_TO_CLEAR = 27,
 NO_CALL_TO_ANSWER = 28,
 NO_CALL_TO_COMPLETE = 29,
 GENERIC_SYSTEM_RESOURCE_AVAILABILITY = 31,
 SERVICE_BUSY = 32,
 RESOURCE_BUSY = 33,
 RESOURCE_OUT_OF_SERVICE = 34,
 NETWORK_BUSY = 35,
 NETWORK_OUT_OF_SERVICE = 36,
 OVERALL_MONITOR_LIMIT_EXCEEDED = 37,
 CONFERENCE_MEMBER_LIMIT_EXCEEDED = 38,
 GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY = 41,
 OBJECT_MONITOR_LIMIT_EXCEEDED = 42,
 EXTERNAL_TRUNK_LIMIT_EXCEEDED = 43,
 OUTSTANDING_REQUEST_LIMIT_EXCEEDED = 44,
 GENERIC_PERFORMANCE_MANAGEMENT = 51,
 PERFORMANCE_LIMIT_EXCEEDED = 52,
 UNSPECIFIED_SECURITY_ERROR = 60
 SEQUENCE_NUMBER_VIOLATED = 61,
 TIME_STAMP_VIOLATED = 62,
 PAC_VIOLATED = 63,
 SEAL_VIOLATED = 64
 GENERIC_UNSPECIFIED_REJECTION = 70
 GENERIC_OPERATION_REJECTION = 71
 DUPLICATE_INVOCATION_REJECTION = 72
 UNRECOGNIZED_OPERATION_REJECTION = 73
 MISTYPED_ARGUMENT_REJECTION = 74

5-4 Switching Function Services

 RESOURCE_LIMITATION_REJECTION = 75
 ACS_HANDLE_TERMINATION_REJECTION = 76
 SERVICE_TERMINATION_REJECTION = 77
 REQUEST_TIMEOUT_REJECTION = 78
 REQUESTS_ON_DEVICE_EXCEEDED_REJECTION = 79
 UNRECOGNIZED_APDU_REJECTION = <<SEE R2 HEADER FILE>>
 MISTYPED_APDU_REJECTION = <<SEE R2 HEADER FILE>>
 BADLY STRUCTURED_APDU_REJECTION = <<SEE R2 HEADER FILE>>
 INITIATOR RELEASING_REJECTION = <<SEE R2 HEADER FILE>>
 UNRECOGNIZED_LINKEDID_REJECTION = <<SEE R2 HEADER FILE>>
 LINKED_RESPONSE_UNEXPECTED_REJECTION = <<SEE R2 HEADER FILE>>
 UNEXPECTED_CHILD_OPERATION_REJECTION = <<SEE R2 HEADER FILE>>
 MISTYPED_RESULT_REJECTION = <<SEE R2 HEADER FILE>>
 UNRECOGNIZED_ERROR_REJECTION = <<SEE R2 HEADER FILE>>
 UNEXPECTED_ERROR_REJECTION = <<SEE R2 HEADER FILE>>
 MISTYPED_PARAMETER_REJECTION = <<SEE R2 HEADER FILE>>
} CSTAUniversalFailure_t;

Parameters

acsHandle
This is the handle for the newly opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION, which
identifies this message as an CSTA confirmation event.

eventType
This tag with a value, CSTA_UNIVERSAL_FAILURE_CONF,
identifies this message as an CSTAUniversalFailureConfEvent.

invokeID
This parameter specifies the function service request instance
that has failed at the server or at the switch. This identifier is
provided to the application when a service request is made.

error
This parameter contains an error value from one of the following
classes: Unspecified, Operation, State Incompatibility, System
Resource, Subscribed Resource, Performance Management, or
Security. The headings the follow contain the specific errors in
these classes.

DRAFT 2.0 Telephony Services API Specification 5-5

Unspecified ErrorsXE "CSTA Universal Failure:Unspecified
errors"§

Error values in this category indicate that an error has occurred
that is not among the other error types. This type includes the
following specific error value:

GENERIC_UNSPECIFIED

GENERIC_UNSPECIFIED_REJECTION

Operation errorsXE "CSTA Universal Failure:Operation errors"§

Error values in this category indicate that there is an error in the
Service Request. This type includes one of the following
specific error values:

GENERIC_OPERATIONXE "CSTA Universal
Failure:Generic Operation"§

GENERIC_OPERATION_REJECTIONXE
"CSTA Universal Failure:Generic Operation
Rejection"§
This error indicate that the server has detected an
error in the operation class, but that it is not one
of the defined errors, or the server cannot be any
more specific

REQUEST_INCOMPATIBLE_WITH_OBJECT
XE "CSTA Universal Failure:Request
Incompatible with Object"§
The request is not compatible with the object.

DUPLICATE_INVOCATIONXE "CSTA
Universal Failure:Duplicate Invocation"§
The invokeID violates X.208 or X.209
assignment rules.

5-6 Switching Function Services

UNRECOGNIZED_OPERATION_REJECTIO
NXE "CSTA Universal Failure:Unrecognized
Operation"§
The operation is not defined in TSAPI.

VALUE_OUT_OF_RANGEXE "CSTA
Universal Failure:Value Out Of Range"§
The parameter has a value that is not in the range
defined for the server.

OBJECT_NOT_KNOWNXE "CSTA Universal
Failure:Object not Known"§
The parameter has a value that is not known to
the server.

INVALID_CALLING_DEVICEXE "CSTA
Universal Failure:Invalid Calling Device"§
The calling device is not valid.

INVALID_CALLED_DEVICEXE "CSTA
Universal Failure:Invalid Called Device"§
The called device is not valid.

PRIVILEGE_VIOLATION_ON_SPECIFIED_
DEVICEXE "CSTA Universal
Failure:Privilege Violation on Specified
Device"§
The request cannot be provided because the
specified device is not authorized for the Service.

INVALID_FORWARDING_DESTINATIONXE
"CSTA Universal Failure:Invalid Forwarding
Destination"§
The request cannot be provided because the
forwarding destination device is not valid.

DRAFT 2.0 Telephony Services API Specification 5-7

PRIVILEGE_VIOLATION_ON_CALLED_DE
VICEXE "CSTA Universal Failure:Privilege
Violation on Called Device"§
The request cannot be provided because the called
device is not authorized for the Service.

PRIVILEGE_VIOLATION_ON_CALLING_DE
VICEXE "CSTA Universal Failure:Privilege
Violation on Calling Device"§
The request cannot be provided because the
calling device is not authorized for the Service.

INVALID_CSTA_CALL_IDENTIFIERXE
"CSTA Universal Failure:Invalid CSTA Call
Identifier"§
The call identifier is not valid.

INVALID_CSTA_DEVICE_IDENTIFIERXE
"CSTA Universal Failure:Invalid CSTA Device
Identifier"§
The Device Identifier is not valid.

INVALID_CSTA_CONNECTION_IDENTIFIE
RXE "CSTA Universal Failure:Invalid CSTA
Connection Identifier"§
The Connection identifier is not valid.

INVALID_DESTINATIONXE "CSTA
Universal Failure:Invalid Destination"§
The Service Request specified a destination that is
not valid.

INVALID_FEATUREXE "CSTA Universal
Failure:Invalid Feature"§
The Service Request specified a feature that is not
valid.

5-8 Switching Function Services

INVALID_ALLOCATION_STATEXE "CSTA
Universal Failure:Invalid Allocation State"§
The Service Request indicated an allocation
condition that is not valid.

INVALID_CROSS_REF_IDXE "CSTA
Universal Failure:Invalid Cross Ref ID"§
The Service Request specified a Cross Reference
Id that is not in use at this time.

INVALID_OBJECT_TYPEXE "CSTA
Universal Failure:Invalid Object Type"§
The Service Request specified an object type that
is outside the range of valid object types for the
Service.

SECURITY_VIOLATIONXE "CSTA Universal
Failure:Security Violation"§
The request violates a security requirement.

State incompatibility errorsXE "CSTA Universal Failure:State
incompatibility errors"§

XE "CSTA Universal Failure:State incompatibility errors"§Error
values in this category indicate that the Service Request was not
compatible with the condition of a related CSTA object. This
type includes the following specific error values:

GENERIC_STATE_INCOMPATIBILITYXE
"CSTA Universal Failure:Generic State
Incompatibility"§
The server is unable to be any more specific.

INVALID_OBJECT_STATEXE "CSTA
Universal Failure:Incorrect Object State"§
The object is in the incorrect state for the Service.
This general error value may be used when the

DRAFT 2.0 Telephony Services API Specification 5-9

server isn't able to be any more specific.

INVALID_CONNECTION_ID_FOR_ACTIVE_
CALLXE "CSTA Universal Failure:Invalid
CSTA Connection Identifier For Active Call"§
The Connection identifier specified in the Active
Call parameter of the request is not in the correct
state.

NO_ACTIVE_CALLXE "CSTA Universal
Failure:No Active Call"§
The requested Service operates on an active call,
but there is no active call.

NO_HELD_CALLXE "CSTA Universal
Failure:No Held Call"§
The requested Service operates on a held call, but
the specified call is not in the Held state.

NO_CALL_TO_CLEARXE "CSTA Universal
Failure:No Call To Clear"§
There is no call associated with the CSTA
Connection identifier of the Clear Call request.

NO_CONNECTION_TO_CLEARXE "CSTA
Universal Failure:No Connection To Clear"§
There is no Connection for the CSTA Connection
identifier specified as Connection To Be Cleared.

NO_CALL_TO_ANSWERXE "CSTA Universal
Failure:No Call To Answer"§
There is no call active for the CSTA Connection
identifier specified as Call To Be Answered.

5-10 Switching Function Services

NO_CALL_TO_COMPLETEXE "CSTA
Universal Failure:No Call To Complete"§XE
"Generic State Incompatibility"§
There is no call active for the CSTA Connection
identifier specified as Call To Be Completed.

System resource availability errorsXE "CSTA Universal
Failure:System resource availability errors"§

XE "CSTA Universal Failure:System resource availability
errors"§Error values in this category indicate that the Service
Request cannot be completed because of a lack of system
resources within the serving sub-domain. This type includes one
of the following specific error values:

GENERIC_SYSTEM_RESOURCE_AVAILABI
LITYXE "CSTA Universal Failure:Generic
System Resource Availability Error"§
The server is unable to be any more specific.

SERVICE_BUSYXE "CSTA Universal
Failure:Service Busy"§
The Service is supported by the server, but is
temporarily unavailable.

RESOURCE_BUSYXE "CSTA Universal
Failure:Resource Busy"§
An internal resource is busy. There is high
probability that the Service will succeed if retried.

RESOURCE_OUT_OF_SERVICEXE "CSTA
Universal Failure:Resource Out Of Service"§
The Service requires a resource that is Out Of
Service. A Service Request that encounters this
condition could initiate system problem
determination actions (e.g. notification of the
network administrator).

DRAFT 2.0 Telephony Services API Specification 5-11

NETWORK_BUSYXE "CSTA Universal
Failure:Network Busy"§
The server sub-domain is busy.

NETWORK_OUT_OF_SERVICEXE "CSTA
Universal Failure:Network Out Of Service"§
The server sub-domain is Out Of Service.

OVERALL_MONITOR_LIMIT_EXCEEDEDX
E "CSTA Universal Failure:Overall Monitor
Limit Exceeded."§
This request would exceed the server's overall
limit of monitors.

CONFERENCE_MEMBER_LIMIT_EXCEED
ED.XE "CSTA Universal Failure:Conference
Member Limit Exceeded."§
This request would exceed the server's limit on
the number of members of a conference.

Subscribed resource availability errorsXE "CSTA Universal
Failure:Subscribed resource availability errors"§

XE "CSTA Universal Failure:Subscribed resource availability
errors"§Error values in this category indicate that the Service
Request cannot be completed because a required resource must
be purchased or contracted by the client system. This type
includes the following specific error values:

GENERIC_SUBSCRIBED_RESOURCE_AVAIL
ABILITYXE "CSTA Universal Failure:Generic
Subscribed Resource Availability Error"§
The server is unable to be any more specific.

5-12 Switching Function Services

OBJECT_MONITOR_LIMIT_EXCEEDEDXE
"CSTA Universal Failure:Object Monitor Limit
Exceeded"§
This request would exceed the server's limit of
monitors for the specified object.

EXTERNAL_TRUNK_LIMIT_EXCEEDEDXE
"CSTA Universal Failure:External Trunk Limit
Exceeded"§
The limit of external trunks would be exceeded by
this request.

OUTSTANDING_REQUEST_LIMIT_EXCEED
EDXE "Outstanding Requests Limit Exceeded"§
The limit of outstanding requests would be
exceeded by this request.

Performance management errorsXE "CSTA
Universal Failure:Performance management
errors"§

XE "CSTA Universal Failure:Performance management
errors"§Error values in this category indicate that an error has
been returned as a performance management mechanism. This
type includes the following specific error values:

GENERIC_PERFORMANCE_MANAGEMENT
XE "CSTA Universal Failure:Generic
Performance Management Error"§
The server is unable to be any more specific.

PERFORMANCE_LIMIT_EXCEEDEDXE
"CSTA Universal Failure:Performance Limit
Exceeded"§
A performance limit is exceeded.

DRAFT 2.0 Telephony Services API Specification 5-13

Security errorsXE "CSTA Universal Failure:Security errors"§

Error values in this category indicate that there is a security
error. This type includes the following specific error values:

UNSPECIFIED_SECURITY_ERROR XE
"CSTA Universal Failure:Unspecified Security
Error"§
The server is unable to be any more specific.

SEQUENCE_NUMBER_VIOLATEDXE
"CSTA Universal Failure:Sequence Number
Violated"§
This error indicates that the server has detected an
error in the Sequence Number of the operation.

TIME_STAMP_VIOLATEDXE "CSTA
Universal Failure:Time Stamp Error"§
This error indicates that the server has detected an
error in the Time Stamp of the operation.

PAC_VIOLATEDXE "CSTA Universal
Failure:PAC Violated"§
This error indicates that the server has detected an
error in the PAC of the operation.

SEAL_VIOLATEDXE "CSTA Universal
Failure:Seal Violated"§
This error indicates that the server has detected an
error in the Seal of the operation.

CSTA Driver Interface ErrorsXE "CSTA Universal Failure:CSTA
Driver Interface Errors"§

These errors derive from the Remote Operations CCITT
Specification X.219 and may occur when a PBX Driver uses
the CSTA interface to the Telephony Services NLM.

5-14 Switching Function Services

UNRECOGNIZED_APDU_REJECTION
The given type of the APDU is not defined in the
protocol.

MISTYPED_APDU_REJECTION
The structure of the APDU does not conform to
the protocol.

BADLY STRUCTURED_APDU_REJECTION
APDU does not conform to X.208 or X.209
standard encoding.

INITIATOR RELEASING_REJECTION
The requester is not willing to do the invoked
operation because it is about to release the
stream.

UNRECOGNIZED_LINKEDID_REJECTION
There is no operation in progress with an invoke
ID equal to the specified link ID.

LINKED_RESPONSE_UNEXPECTED_REJEC
TION
The invoked operation that the linked ID refers
to is not a parent operation.

UNEXPECTED_CHILD_OPERATION_REJEC
TION
The linked ID refers to a parent operation that
does not allow the invoked operation.

MISTYPED_RESULT_REJECTION
The type of the Result parameter does not
conform to the protocol.

UNRECOGNIZED_ERROR_REJECTION
The reported error is not in the protocol

DRAFT 2.0 Telephony Services API Specification 5-15

definition.

UNEXPECTED_ERROR_REJECTION
The reported error is not one that the operation
may report.

MISTYPED_ARGUMENT_REJECTION

MISTYPED_PARAMETER_REJECTION
The type of a supplied parameter is not consistent
with the protocol specification

TSAPIXE "CSTA Universal Failure:TSAPI errors"§

The error codes below can occur within the TSAPI
implementation of the ECMA CSTA standards. The ECMA
standards do not define these errors.

RESOURCE_LIMITATION_REJECTION
A Telephony Services NLM or PBX Driver
resource limitation prevents the system from
processing the application request

ACS_HANDLE_TERMINATION_REJECTION

SERVICE_TERMINATION_REJECTION

REQUEST_TIMEOUT_REJECTION

REQUESTS_ON_DEVICE_EXCEEDED_REJ
ECTION

Private DataXE "CSTA Universal Failure:Private Data errors"§

If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

5-16 Switching Function Services

DRAFT 2.0 Telephony Services API Specification 5-17

cstaAlternateCall()XE "cstaAlternateCall()"§

The Alternate Call Service provides a higher-level, compound
action of the Hold Call Service followed by Retrieve Call
Service. This function will place an existing active call on hold
and then either retrieves a previously held call or connects an
alerting call at the same device.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaAlternateCall(
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *activeCall,
ConnectionID_t *otherCall,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the
Invoke ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS
Library when the Stream is set for Library-generated invoke IDs.

activeCall
This parameter points to the connection identifier for the
"Connected" or active call which is to be alternated.

otherCall
This parameter points to the connection identifier for the

5-18 Switching Function Services

"Alerting" or "Held" call which is to be alternated.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not used,
the pointer should be set to NULL.

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the
CSTAAlternateCallConfEvent message to ensure that the
service request has been acknowledged and processed by the
Telephony Server and the switch.

The following are possible negative error conditions for this
function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

DRAFT 2.0 Telephony Services API Specification 5-19

ACSERR_STREAM_FAILED
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

A successful call to this function will causes the held-or-
delivered call to be swapped with the active call

As shown in the figure below, the Alternate Call Service places
the user's active call to device D2 on hold and, in a combined
action, establishes or retrieves the call between device D1 and
device D3 as the active call. Device D2 can be considered as
being automatically placed on hold immediately prior to the
retrieval/establishment of the held/active call to device D3.

Figure 5-1 shows the operation of the Alternate Call Service.

Figure 5-2
Alternate Call Servicetc "Alternate Call Service" \f f \l3§
µ §

5-20 Switching Function Services

CSTAAlternateCallConfEventXE "CSTAAlternateCallConfEvent"§

The Alternate Call confirmation event provides the positive
response from the server for a previous alternate call request.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See ACS Data Types and CSTA Data
Types in section 4 for a complete description of the event
structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

CSTAAlternateCallConfEvent_t alternateCall;
} u;

} cstaConfirmation;
} event;

} CSTAEvent_t;

typedef struct CSTAAlternateCallConfEvent_t {
 Nulltype null;
} CSTAAlternateCallConfEvent_t;

Parameters

acsHandle
This is the handle for the newly opened ACS

Stream.

eventClass
This is a tag with the value CSTACONFIRMATION, which
identifies this message as an CSTA confirmation event.

DRAFT 2.0 Telephony Services API Specification 5-21

eventType
This is a tag with the value
CSTA_ALTERNATE_CALL_CONF, which identifies this
message as an CSTAAlternateCallConfEvent.

invokeID
This parameter specifies the function service request instance for
the service which was processed at the Telephony Server or at
the switch. This identifier is provided to the application when a
service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

5-22 Switching Function Services

cstaAnswerCall()XE "cstaAnswerCall()"§

The Answer Call function will connect an alerting call at the
device which is alerting. The call must be associated with a
device that can answer a call without requiring physical user
manipulation.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaAnswerCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *alertingCall,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS

Stream.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the
Invoke ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS
Library when the Stream is set for Library-generated invoke IDs.

alertingCall
This parameter points to the connection identifier of the call to
be answered.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not used,
the pointer should be set to NULL.

DRAFT 2.0 Telephony Services API Specification 5-23

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the
CSTAAnswerCallConfEvent message to ensure that the service
request has been acknowledged and processed by the Telephony
Server and the switch.

The following are possible negative error conditions for this
function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been

5-24 Switching Function Services

denied by the Client Library Software Driver.

Comments

The Answer Call Service works for an incoming call that is
alerting a device. In the following figure the call C1 is delivered
to device D1. The cstaAnswerCall() is typically used with
telephones that have attached speakerphone units to establish the
call in a hands-free operation.

Figure 5-3
Answer Call Servicetc "Answer Call Service" \f f \l3§

µ §

DRAFT 2.0 Telephony Services API Specification 5-25

CSTAAnswerCallConfEventXE "CSTAAnswerCallConfEvent"§

The Answer Call confirmation event provides the positive
response from the server for a previous answer call request.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See ACS Data Types and CSTA Data
Types in section 4 for a complete description of the event
structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

CSTAAnswerCallConfEvent_t answerCall;
} u;

} cstaConfirmation;
} event;} CSTAEvent_t;

typedef struct CSTAAnswerCallConfEvent_t {
 Nulltype null;
} CSTAAnswerCallConfEvent_t;

Parameters

acsHandle
This is the handle for the newly opened ACS

Stream.

eventClass
This is a tag with the value CSTACONFIRMATION, which
identifies this message as an CSTA confirmation event.

5-26 Switching Function Services

eventType
This is a tag with the value CSTA_ANSWER_CALL_CONF,
which identifies this message as an
CSTAAnswerCallConfEvent.

invokeID
This parameter specifies the function service request instance for
the service which was processed at the Telephony Server or at
the switch. This identifier is provided to the application when a
service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

DRAFT 2.0 Telephony Services API Specification 5-27

cstaCallCompletion()XE " cstaCallCompletion()"§

The Call Completion Service invokes specific switch features
that may complete a call that would otherwise fail. The feature
to be activated is passed as a parameter to the function.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaCallCompletion (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
Feature_t feature,
ConnectionID_t *call,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS

Stream.

invokeID
A handle provided by the application to be used for

matching a specific instance of a function service request with its
associated confirmation event. This parameter is only used
when the Invoke ID mechanism is set for Application-generated
IDs in the acsOpenStream(). The parameter is ignored by the
ACS Library when the Stream is set for Library-generated
invoke IDs.

feature
Specifies the call completion feature that is desired.

These include:

CAMP_ON - queues the call until the device is available.

CALL_BACK - requests the called device to return the call when it returns
to idle.

INTRUDE - adds the caller to an existing active call at the called

5-28 Switching Function Services

device. This feature requires the appropriate user
security level at the server.
typedef enum Feature_t {
 FT_CAMP_ON = 0,
 FT_CALL_BACK = 1,
 FT_INTRUDE = 2
} Feature_t;

call
This is a pointer to a connection identifier for the call to be
completed.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not used,
the pointer should be set to NULL.

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the
CSTACallCompletionConfEvent message to ensure that the
service request has been acknowledged and processed by the
Telephony Server and the switch.

DRAFT 2.0 Telephony Services API Specification 5-29

The following are possible negative error conditions for this
function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

Generally this Service is invoked when a call is established and
it encounters a busy or no answer at the far device.

The Camp On feature allows queuing for availability of the far
end device. Generally, Camp On makes the caller wait until the
called party finishes the current call and any previously camped
on calls. Call Back allows requesting the called device to return
the call when it returns to idle. Call Back works much like Camp
On, but the caller is allowed to hang up after invoking the
service, and the CSTA Switching Function calls both parties
when the called party becomes free. Intrude allows the caller to
be added into an existing call at the called device.

5-30 Switching Function Services

CSTACallCompletionConfEventXE "CSTACallCompletionConfEvent"§

The Call Completion confirmation event provides the positive
response from the server for a previous call completion request.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See ACS Data Types and CSTA Data
Types in section 4 for a complete description of the event
structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

CSTACallCompletionConfEvent_t callCompletion;
}u; } cstaConfirmation;

} event;} CSTAEvent_t;

typedef struct CSTACallCompletionConfEvent_t {
 Nulltype null;
} CSTACallCompletionConfEvent_t;

Parameters

acsHandle
This is the handle for the newly opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION, which
identifies this message as an CSTA confirmation event.

eventType
This is a tag with the value

DRAFT 2.0 Telephony Services API Specification 5-31

CSTA_CALL_COMPLETION_CONF, which identifies this
message as an CSTACallCompletionConfEvent.

invokeID
This parameter specifies the function service request instance for
the service which was processed at the Telephony Server or at
the switch. This identifier is provided to the application when a
service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

5-32 Switching Function Services

cstaClearCall()XE "cstaClearCall()"§

The Clear Call Service releases all of the devices from the
specified call, and eliminates the call itself. The call ceases to
exist and the connection identifiers used for observation and
manipulation are released.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaClearCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *call,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS

Stream.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the
Invoke ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS
Library when the Stream is set for Library-generated invoke IDs.

call
This is a pointer to the connection identifier for the call

to be cleared.

privateData
This is a pointer to the private data extension mechanism.

Setting this parameter is optional. If the parameter is not used,
the pointer should be set to NULL.

DRAFT 2.0 Telephony Services API Specification 5-33

Return Values

This function returns the following values depending on
whether the application is using library or application-generated
invoke identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the
CSTAClearCallConfEvent message to ensure that the service
request has been acknowledged and processed by the Telephony
Server and the switch.

The following are possible negative error conditions for this
function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been

5-34 Switching Function Services

denied by the Client Library Software Driver.

Comments

This function will cause each device associated with a call to be
released and the CSTA Connection Identifiers (and their
components) are freed.

Figure 5-4 illustrates the results of a Clear Call (CSTA
Connection
ID = C1,D1), where call C1 connects devices D1, D2 and D3.

Figure 5-5
Clear Call Servicetc "Clear Call Service" \f f \l3§
µ §

DRAFT 2.0 Telephony Services API Specification 5-35

CSTAClearCallConfEventXE "CSTAClearCallConfEvent"§

The Clear Call confirmation event provides the positive response
from the server for a previous clear call request.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See ACS Data Types and CSTA Data
Types in section 4 for a complete description of the event
structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass;

EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

CSTAClearCallConfEvent_t clearCall;
}u; } cstaConfirmation;

} event;} CSTAEvent_t;

typedef struct CSTAClearCallConfEvent_t {
 Nulltype null;
} CSTAClearCallConfEvent_t;

Parameters

acsHandle
This is the handle for the newly opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION, which
identifies this message as an CSTA confirmation event.

eventType
This is a tag with the value CSTA_CLEAR_CALL_CONF,

5-36 Switching Function Services

which identifies this message as an
CSTAClearCallConfEvent.

invokeID
This parameter specifies the function service request

instance for the service which was processed at the Telephony
Server or at the switch. This identifier is provided to the
application when a service request is made.

privateData
If private data accompanied this event, then the private

data would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is set to
NULL in these functions, then no private data will be delivered
to the application.

Comments

This confirmation indicates that all instances of the ACS
Connection Identifiers for all the endpoints in the call and in the
current association have become invalid. The instances of
identifiers should not be used to request additional services of
the Telephony Server.

DRAFT 2.0 Telephony Services API Specification 5-37

cstaClearConnection()XE "cstaClearConnection()"§

The Clear Connection Service releases the specified device from
the designated call. The Connection is left in the Null state.
Additionally, the CSTA Connection Identifier provided in the
Service Request is released.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaClearConnection (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *call,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the
Invoke ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS
Library when the Stream is set for Library-generated invoke IDs.

call
This is a pointer to the connection identifier for the connection to
be cleared.

privateData
This is a pointer to the private data extension mechanism.

Setting this parameter is optional. If the parameter is not used,
the pointer should be set to NULL.

5-38 Switching Function Services

acsHandle
This is the value of the unique handle to the opened ACS

Stream.

invokeID
A handle which can be provided by the application to match a
specific instance of a function service request with its associated
confirmation event. If the application provides an invokeID of
zero (0), the API Client Library will select a unique positive
invoke identifier on behalf of the application. A library-
generated invoke identifier is returned upon a successful call to
this function (RetCode_t). The invoke identifier can also be
specified by the application. For application-generated invoke
identifiers the invokeID parameter must be set to any non-zero
value. In this case the API Client Library will not select an
invoke identifier and the return value (RetCode_t) will return
either zero (0) if successful or a negative error condition. In
either case (library or application invoke identifiers), the
invokeID for a specific service request will be included in its
associated confirmation event.

Library-generated invoke identifiers will be created sequentially
without regards to application-generated invoke identifiers.
Mixing the two methods is not recommended since invoke
identifiers should be unique.

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

DRAFT 2.0 Telephony Services API Specification 5-39

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the
CSTAClearConnectionConfEvent message to ensure that the
service request has been acknowledged and processed by the
Telephony Server and the switch.

The following are possible negative error conditions for this
function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

This Service releases the specified Connection and CSTA
Connection Identifier instance from the designated call. The
result is as if the device had hung up on the call. It is interesting
to note that the phone may not be physically returned to the
switch hook, which may result in silence, dial tone, or some
other condition. Generally, if only two Connections are in the
call, the effect of cstaClearConnection() function is the same
as cstaClearCall().

5-40 Switching Function Services

Figure 5-6 is an example of the results of a Clear Connection
(CSTA Connection Id = C1,D3), where call C1 connects devices
D1, D2 and D3. Note that it is likely that the call is not cleared
by this Service if it is some type of conference.

Figure 5-7
Clear Connection Servicetc "Clear Connection Service" \f f \l3§
µ §

DRAFT 2.0 Telephony Services API Specification 5-41

CSTAClearConnectionConfEventXE "CSTAClearConnectionConfEvent"§

The Clear Connection confirmation event provides the positive
response from the server for a previous clear connection request.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See ACS Data Types and CSTA Data
Types in section 4 for a complete description of the event
structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass;

EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

 CSTAClearConnectionConfEvent_t clearConnection;
} u;

} cstaConfirmation;
} event;} CSTAEvent_t;

typedef struct CSTAClearConnectionConfEvent_t {
 Nulltype null;
} CSTAClearConnectionConfEvent_t;

Parameters

acsHandle
This is the handle for the newly opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION, which
identifies this message as an CSTA confirmation event.

eventType
This tag with the value CSTA_CLEAR_CONNECTION_CONF

5-42 Switching Function Services

identifies this message as an CSTAClearConnectionConfEvent.

invokeID
This parameter specifies the function service request instance for
the service which was processed at the Telephony Server or at
the switch. This identifier is provided to the application when a
service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

Comments

This confirmation event indicates that the instance of the ACS
Connection Identifier for the cleared Connection is released. The
identifier should not be used to request additional services of the
Telephony Server.

DRAFT 2.0 Telephony Services API Specification 5-43

cstaConferenceCall()XE " cstaConferenceCall()"§

This function provides the conference of an existing held call
and another active call at a device. The two calls are merged into
a single call and the two Connections at the conferencing device
are resolved into a single Connection in the Connected state. The
pre-existing CSTA Connection Identifiers associated with the
device creating the conference are released, and a new CSTA
Connection Identifier for the resulting conferenced Connection is
provided.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaConferenceCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *heldCall,
ConnectionID_t *activeCall,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the
Invoke ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS
Library when the Stream is set for Library-generated invoke IDs.

helical
This is a pointer to the connection identifier for the call which is
on hold and is to be conferenced with an active call.

5-44 Switching Function Services

activeCall
This is a pointer to the connection identifier for the call which is
active or proceeding and is to be conferenced with the held call.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not used,
the pointer should be set to NULL.

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the
CSTAConferenceCallConfEvent message to ensure that the
service request has been acknowledged and processed by the
Telephony Server and the switch. The following are possible
negative error conditions for this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

DRAFT 2.0 Telephony Services API Specification 5-45

ACSERR_STREAM_FAILED
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

Figure 5-8 is an example of the starting conditions for the
cstaConferenceCall() function, which are: the call C1 from D1
to D2 is in the held state. A call C2 from D1 to D3 is in progress
or active.

Figure 5-9
Conference Call Servicetc "Conference Call Service" \f f \l3§
µ §

D1, D2 and D3 are conferenced or joined together into a single
call, C3. The value of the Connection identifier (D1,C3) may
be that of one of the CSTA Connection Identifiers provided in
the request (D1,C1 or D1,C2).

5-46 Switching Function Services

CSTAConferenceCallConfEventXE "CSTAConferenceCallConfEvent"§

The Conference Call confirmation event provides the positive
response from the server for a previous conference call request.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See ACS Data Types and CSTA Data
Types in section 4 for a complete description of the event
structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass;

EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union

{ CSTAConferenceCallConfEvent_t conferenceCall;
} u; } cstaConfirmation;

} event;} CSTAEvent_t;

typedef struct Connection_t {
 ConnectionID_t party;
 DeviceID_t staticDevice;
} Connection_t;

typedef struct ConnectionList {
 int count;
 Connection_t *connection;
} ConnectionList;

typedef struct CSTAConferenceCallConfEvent_t {
 ConnectionID_t newCall;
 ConnectionList connList;
} CSTAConferenceCallConfEvent_t;

Parameters

acsHandle
This is the handle for the newly opened ACS Stream.

DRAFT 2.0 Telephony Services API Specification 5-47

eventClass
This is a tag with the value CSTACONFIRMATION, which
identifies this message as an CSTA confirmation event.

eventType
This is a tag with the value
CSTA_CONFERENCE_CALL_CONF, which identifies this
message as an CSTAClearConnectionConfEvent.

invokeID
This parameter specifies the function service request instance for
the service which was processed at the Telephony Server or at
the switch. This identifier is provided to the application when a
service request is made.

newCall
This parameter specifies the resulting connection identifier for
the calls which were conferenced at the Conferencing device.
This connection identifier replaces the two previous connection
identifier at that device.

connList
Specifies the resulting number of known devices in the
conference. This field contains a count (count) of the number of
devices in the conference and a pointer (*connection) to an
array of Connection_t structures which define each connection
in the call.

Each Connection_t record contains the following:

Party - indicates the Connection ID of the
party in the conference.

Device - provides the static reference for the party
in the conference. This parameter may have a
value that indicates the static identifier is not
known.

5-48 Switching Function Services

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

DRAFT 2.0 Telephony Services API Specification 5-49

cstaConsultationCall()XE "cstaConsultationCall()"§

The cstaConsultationCall() function will provide the
compound or combined action of the Hold Call service followed
by Make Call service. This service places an existing active call
at a device on hold and initiates a new call from the same device
using a single function call.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaConsultationCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *activeCall,
DeviceID_t *calledDevice,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the
Invoke ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS
Library when the Stream is set for Library-generated invoke IDs.

activeCall
This is a pointer to the connection identifier for the active
call which is to be placed on hold before the new call is
established.

5-50 Switching Function Services

calledDevice
This is a pointer to the destination device address for the new
call to be established.

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not used,
the pointer should be set to NULL.

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the
CSTAConsultationCallConfEvent message to ensure that the
service request has been acknowledged and processed by the
Telephony Server and the switch.

The following are possible negative error conditions for this
function:

ACSERR_BADHDL
This return value indicates that a bad or unknown

DRAFT 2.0 Telephony Services API Specification 5-51

acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments
This compound service allows the application to place an
existing call on hold and at the same time establish a new call to
another device. In this case an active call C1 exists at D1 (see
Figure 5.7) and a consultative call is desired to D3. After this
function is called, the original active call (C1) is placed on hold
and a new call, C2, is placed to device D3.

Figure 5-10
Consultation Call Servicetc "Consultation Call Service" \f f \l3§
µ §

5-52 Switching Function Services

CSTAConsultationCallConfEventXE "CSTAConsultationCallConfEvent"§

The Consultation Call confirmation event provides the positive
response from the server for a previous consultation call request.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See ACS Data Types and CSTA Data
Types in section 4 for a complete description of the event
structure.

typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass;

EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

CSTAConsultationCallConfEvent_t consultationCall; } u;
} cstaConfirmation;

} event;} CSTAEvent_t;
typedef struct CSTAConsultationCallConfEvent_t {

 ConnectionID_t newCall;
} CSTAConsultationCallConfEvent_t;

Parameters

acsHandle
This is the handle for the newly opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION, which
identifies this message as an CSTA confirmation event.

eventType
This tag with the value
CSTA_CONSULTATION_CALL_CONF, identifies this

DRAFT 2.0 Telephony Services API Specification 5-53

message as an CSTAConsultationCallConfEvent.

invokeID
This parameter specifies the function service request

instance for the service which was processed at the Telephony
Server or at the switch. This identifier is provided to the
application when a service request is made.

newCall
Specifies the Connection ID for the originating

connection of the new call originated by the Consultation Call
request.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

5-54 Switching Function Services

cstaDeflectCall()XE " cstaDeflectCall()"§

The cstaDeflectCall() service takes an alerting call at a device
and redirects the call to a given dialed numbernother device on
the switch.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaDeflectCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *deflectCall,
DeviceID_t *calledDevice,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the
Invoke ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS
Library when the Stream is set for Library-generated invoke IDs.

deflectCall
This is a pointer to the connection identifier of the call

which is to be deflected to another device within the switch.

calledDevice
A pointer to the device identifier where the original call is to be
deflected.

DRAFT 2.0 Telephony Services API Specification 5-55

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not used,
the pointer should be set to NULL.

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the
CSTADeflectCallConfEvent message to ensure that the service
request has been acknowledged and processed by the Telephony
Server and the switch.

The following are possible negative error conditions for this
function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously

5-56 Switching Function Services

active ACS Stream has been abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

The Deflect Call Service takes a ringing (alerting) call at a
device (D1) and sends it to a new destination (D3). This function
replaces the original called device, as specified in the deflectCall
parameter, with a different device within the switch, as specified
in the calledDevice parameter.

Figure 5-11
Deflect Call Servicetc "Deflect Call Service" \f f \l3§
µ §

DRAFT 2.0 Telephony Services API Specification 5-57

CSTADeflectCallConfEventXE "CSTADeflectCallConfEvent"§

The Deflect Call confirmation event provides the positive
response from the server for a previous deflect call request.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See ACS Data Types and CSTA Data
Types in section 4 for a complete description of the event
structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass; EventType_t

eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{
 CSTADeflectCallConfEvent_t deflectCall;
} u;

} cstaConfirmation;
} event;} CSTAEvent_t;

typedef struct CSTADeflectCallConfEvent_t {
 Nulltype null;
} CSTADeflectCallConfEvent_t;

Parameters

acsHandle
This is the handle for the newly opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION, which
identifies this message as an CSTA confirmation event.

eventType
This is a tag with the value CSTA_DEFLECT_CALL_CONF,

5-58 Switching Function Services

which identifies this message as an
CSTADeflectCallConfEvent.

invokeID
This parameter specifies the function service request instance for
the service which was processed at the Telephony Server or at
the switch. This identifier is provided to the application when a
service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

DRAFT 2.0 Telephony Services API Specification 5-59

cstaGroupPickupCall()XE " cstaGroupPickupCall()"§

The cstaGroupPickupCall() service moves an alerting call (at
one or more devices in a device pickup group) to a specified
device.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaGroupPickupCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *deflectCall,
DeviceID_t *pickupDevice,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the
Invoke ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS
Library when the Stream is set for Library-generated invoke IDs.

deflectCall
This is a pointer to the call being picked up.

pickupDevice
This is a pointer to the device which is picking up calls from the
group.

5-60 Switching Function Services

privateData
This is a pointer to the private data extension mechanism.

Setting this parameter is optional. If the parameter is not used,
the pointer should be set to NULL.

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the
CSTAGroupPickupConfEvent message to ensure that the
service request has been acknowledged and processed by the
Telephony Server and the switch. The following are possible
negative error conditions for this function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously
active ACS Stream has been abnormally aborted.

DRAFT 2.0 Telephony Services API Specification 5-61

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

The cstaGroupPickupCall() service redirects an alerting call (at
one of more devices in a device pickup) to a specified device,
the pickupDevice.

Figure 5-12
Group Pickup Call Servicetc "Group Pickup Call Service" \f f \l3§
µ §

5-62 Switching Function Services

CSTAGroupPickupCallConfEventXE "CSTAGroupPickupCallConfEvent"§

The Group Pickup Call confirmation event provides the positive
response from the server for a previous Group Pickup call
request.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See ACS Data Types and CSTA Data
Types in section 4 for a complete description of the event
structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass;

EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{
 CSTAGroupPickupCallConfEvent_t groupPickupCall;
}u; } cstaConfirmation;

} event;} CSTAEvent_t;

typedef struct CSTAGroupPickupCallConfEvent_t {
 Nulltype null;
} CSTAGroupPickupCallConfEvent_t;

Parameters

acsHandle
This is the handle for the newly opened ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION, which
identifies this message as an CSTA confirmation event.

DRAFT 2.0 Telephony Services API Specification 5-63

eventType
This is a tag with the value CSTA_GROUP_PICKUP_-
CALL_CONF, which identifies this message as an
CSTAGroupPickupCallConfEvent.

invokeID
This parameter specifies the function service request instance for
the service which was processed at the Telephony Server or at
the switch. This identifier is provided to the application when a
service request is made.

privateData
f private data accompanied this event, then the private

data would be copied to the location pointed to by the
privateData pointer in the acsGetEventBlock() or
acsGetEventPoll() function. If the privateData pointer is set to
NULL in these functions, then no private data will be delivered
to the application.

5-64 Switching Function Services

cstaHoldCall()XE "cstaHoldCall()"§

The cstaHoldCall() service places an existing Connection in the
held state.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaHoldCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *activeCall,
Boolean_t reservation,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the
Invoke ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS Library
when the Stream is set for Library-generated invoke IDs.

activeCall
A pointer to the connection identifier for the active call to be
placed on hold.

reservation
Reserves the facility for reuse by the held call. This option is not
appropriate for most non-ISDN telephones. The default is no
connection reservation. This parameter is optional.

DRAFT 2.0 Telephony Services API Specification 5-65

privateData
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not used,
the pointer should be set to NULL.

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the
CSTAHoldCallConfEvent message to ensure that the service
request has been acknowledged and processed by the Telephony
Server and the switch.

The following are possible negative error conditions for this
function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a

5-66 Switching Function Services

previously active ACS Stream has been
abnormally aborted.

CSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

A call to this function will interrupt communications for an
existing call at a device. The call is usually, but not always, in
the active state. A call may be placed on hold by the user some
time after completion of dialing. The associated connection for
the held call is made available for other uses, depending on the
reservation option (ISDN-case). As shown in Figure 5-13, if the
Hold Call service is invoked for device D1 on call C1, then call
C1 is placed on hold at device D1. The hold relationship is
affected at the holding device.

Figure 5-14
Hold Call Servicetc "Hold Call Service" \f f \l3§
µ §

The cstaHoldCall() service maintains a relationship between
the holding device and the held call that lasts until the call is
retrieved from the hold status, or until the call is cleared.

DRAFT 2.0 Telephony Services API Specification 5-67

CSTAHoldCallConfEventXE "CSTAHoldCallConfEvent"§

The Hold Call confirmation event provides the positive response
from the server for a previous Hold call requestXE "Hold call
request"§

Syntax

The following structure shows only the relevant portions of the
unions for this message. See ACS Data Types and CSTA Data
Types in Section 4 for a complete description of the event
structure.
typedef struct
{ ACSHandle_t acsHandle;EventClass_t eventClass;

EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID;
union
{

CSTAHoldCallConfEvent_t holdCall;
}u; } cstaConfirmation;

} event;} CSTAEvent_t;

typedef struct CSTAHoldCallConfEvent_t {
 Nulltype null;
} CSTAHoldCallConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream

eventClass
This is a tag with the value CSTACONFIRMATION, which
identifies this message as an CSTA confirmation event.

5-68 Switching Function Services

eventType
This is a tag with the value CSTA_HOLD_CALL_CONF,
which identifies this message as an
CSTAHoldCallConfEvent.

invokeID
This parameter specifies the function service request

instance for the service which was processed at the Telephony
Server or at the switch. This identifier is provided to the
application when a service request is made.

privateData
If private data accompanied this event, then the private data
would be copied to the location pointed to by the privateData
pointer in the acsGetEventBlock() or acsGetEventPoll()
function. If the privateData pointer is set to NULL in these
functions, then no private data will be delivered to the
application.

DRAFT 2.0 Telephony Services API Specification 5-69

cstaMakeCall()XE " cstaMakeCall()"§

The cstaMakeCall() service originates a callXE "Call
origination"§ between two devices on the switch. The service
attempts to create a new call and establish a connection between
the calling device (originator) and the called device
(destination). The Make Call service also provides a CSTA
Connection Identifier that indicates the Connection of the
originating device.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaMakeCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *callingDevice,
DeviceID_t *calledDevice,
PrivateData_t *privateData);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the
Invoke ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS
Library when the Stream is set for Library-generated invoke IDs.

callingDevice
A pointer to the device identifier of the device which is to
originate the new call.

5-70 Switching Function Services

calledDevice
This is a pointer to the private data extension mechanism.
Setting this parameter is optional. If the parameter is not used,
the pointer should be set to NULL.

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the
CSTAMakeCallConfEvent message to ensure that the service
request has been acknowledged and processed by the Telephony
Server and the switch.

The following are possible negative error conditions for this
function:

ACSERR_BADHDL
This return value indicates that a bad or unknown
acsHandle was provided by the application.

ACSERR_STREAM_FAILED
This return value indicates that a previously

DRAFT 2.0 Telephony Services API Specification 5-71

active ACS Stream has been abnormally aborted.

ACSTAERR_REQDENIED
This return value indicates that a ACS Stream is
established but a requested capability has been
denied by the Client Library Software Driver.

Comments

The cstaMakeCall() service originates a call between two
application designated devices. When the service is initiated, the
calling device is prompted (if necessary), and, when that device
acknowledges, a call to the called device is originated.
Figure 5-15 illustrates the results of a Make Call service request
(Calling device = D1, Called device = D2). A call is established
as if D1 had called D2, and the client is returned the Connection
id: (C1,D1).

Figure 5-16
Make Call Servicetc "Make Call Service" \f f \l3§
µ §

The establishment of a complete call connection can be a multi-
stepped process depending on the destination of the call. Call
status event reports (see Status Reporting Service) may be sent
by the Telephony Server to the service requesting client
application as the connection establishment progresses. These
events are in addition to the standard confirmation events (e.g.
CSTAMakeCallConfEvent) which only indicates that the
switch is attempting to establish a connection between the two
devices. The application should be aware that the requested call
is not guaranteed to succeed even after a successful Make Call
service confirmation event has been received. The application
must monitor status events to be informed of the call status as it

5-72 Switching Function Services

progresses. Status event reports can be established by using the
cstaMonitorStart() service (see Status Reporting Services).

DRAFT 2.0 Telephony Services API Specification 5-73

	This section describes Telephony Services. Applications use Telephony Services to control calls and activate switch features. Switching Functions Services are divided into Basic Call Control ServicesXE "Switching Function Services:Basic Call Control Services"§XE "Basic Call Control:Services"§ and Telephony Supplementary ServicesXE ""Switching Function Services:Telephony Supplementary Services"§XE "Telephony Supplementary Services"§.
	Basic Call Control ServicesXE "Basic Call Control Services"§
	Basic Call Control Services allows applications to:
	Each Basic Call Control Service request has an associated confirmation event message. The confirmation message returns the status and other service-specific information to the application. TSAPI always returns confirmation event messages for successful function calls. If TSAPI cannot successfully process a function call then
	As noted in Chapter 4, section Sending CSTA Requests and Responses, the application sets the invokeID type (when it opens the stream) to either library generatedXE "InvokeID:Library generated"§ or application generatedXE " InvokeID:Application generated"§. As described in that section, applications may use application generated invokeIDs to index into data structures in various ways. The application may also use the invokeID to match results with specific service requestsXE "IinvokeID:Correlating responses"§.
	When TSAPI successfully processes an application request, TSAPI sends the application a confirmation eventXE "Events:Confirmation"§. This conformation means that TSAPI has successfully processed the request, not that the PBX driver or PBX has successfully processed the request. For example, TSAPI will send an application a CSTAMakeCallConfEvent after it successfully processes a cstaMakeCall() request. Further information from the PBX Driver or PBX will arrive in call events or unsolicited status eventsXE "Events:Unsolicited"§. An application interested in the results of a request should check for a function confirmation event and any applicable unsolicited status events (see Status Reporting Services).
	To receive events, an application must have an active ACS Stream and an implement an event handling mechanism. Further, the reception of unsolicited eventsXE "Events:Unsolicited"§ requires an active monitor. See the Control Services and Status Reporting Services sections for more information on events.
	Not every Driver implementation will support all Telephony functions. The application should use the cstaGetAPICapsXE "cstaGetAPICaps"§ function to determine which Telephony services are supportedXE "CSTA:Services:Available on ACS Stream"§.
	CSTAUniversalFailureConfEventXE "CSTAUniversalFailureConfEvent"§
	The CSTA universal failure confirmation event provides a generic negative response from the server/switch for a previous requested service. The CSTAUniversalFailureConfEvent will be sent in place of any confirmation event described in this section when the requested function fails. The confirmation events defined for each function in this section are only sent when that function completes successfully.

	cstaAlternateCall()XE "cstaAlternateCall()"§
	Figure 5-2<bookmark alternate call>

	CSTAAlternateCallConfEventXE "CSTAAlternateCallConfEvent"§
	The Alternate Call confirmation event provides the positive response from the server for a previous alternate call request.

	cstaAnswerCall()XE "cstaAnswerCall()"§
	The Answer Call function will connect an alerting call at the device which is alerting. The call must be associated with a device that can answer a call without requiring physical user manipulation.
	Figure 5-3<bookmark answer call>

	CSTAAnswerCallConfEventXE "CSTAAnswerCallConfEvent"§
	The Answer Call confirmation event provides the positive response from the server for a previous answer call request.

	cstaCallCompletion()XE " cstaCallCompletion()"§
	The Call Completion Service invokes specific switch features that may complete a call that would otherwise fail. The feature to be activated is passed as a parameter to the function.

	CSTACallCompletionConfEventXE "CSTACallCompletionConfEvent"§
	The Call Completion confirmation event provides the positive response from the server for a previous call completion request.

	cstaClearCall()XE "cstaClearCall()"§
	The Clear Call Service releases all of the devices from the specified call, and eliminates the call itself. The call ceases to exist and the connection identifiers used for observation and manipulation are released.
	Figure 5-5<bookmark clear_call>

	CSTAClearCallConfEventXE "CSTAClearCallConfEvent"§
	The Clear Call confirmation event provides the positive response from the server for a previous clear call request.

	cstaClearConnection()XE "cstaClearConnection()"§
	The Clear Connection Service releases the specified device from the designated call. The Connection is left in the Null state. Additionally, the CSTA Connection Identifier provided in the Service Request is released.
	Figure 5-7<bookmark clear_connection>

	CSTAClearConnectionConfEventXE "CSTAClearConnectionConfEvent"§
	The Clear Connection confirmation event provides the positive response from the server for a previous clear connection request.

	cstaConferenceCall()XE " cstaConferenceCall()"§
	This function provides the conference of an existing held call and another active call at a device. The two calls are merged into a single call and the two Connections at the conferencing device are resolved into a single Connection in the Connected state. The pre-existing CSTA Connection Identifiers associated with the device creating the conference are released, and a new CSTA Connection Identifier for the resulting conferenced Connection is provided.
	Figure 5-9<bookmark conference_call>

	CSTAConferenceCallConfEventXE "CSTAConferenceCallConfEvent"§
	The Conference Call confirmation event provides the positive response from the server for a previous conference call request.

	cstaConsultationCall()XE "cstaConsultationCall()"§
	The cstaConsultationCall() function will provide the compound or combined action of the Hold Call service followed by Make Call service. This service places an existing active call at a device on hold and initiates a new call from the same device using a single function call.
	Figure 5-10<bookmark consult_call>

	CSTAConsultationCallConfEventXE "CSTAConsultationCallConfEvent"§
	The Consultation Call confirmation event provides the positive response from the server for a previous consultation call request.

	cstaDeflectCall()XE " cstaDeflectCall()"§
	The cstaDeflectCall() service takes an alerting call at a device and redirects the call to a given dialed numbernother device on the switch.
	Figure 5-11<bookmark deflect_call>

	CSTADeflectCallConfEventXE "CSTADeflectCallConfEvent"§
	The Deflect Call confirmation event provides the positive response from the server for a previous deflect call request.

	cstaGroupPickupCall()XE " cstaGroupPickupCall()"§
	The cstaGroupPickupCall() service moves an alerting call (at one or more devices in a device pickup group) to a specified device.
	Figure 5-12<bookmark group_pickup>

	CSTAGroupPickupCallConfEventXE "CSTAGroupPickupCallConfEvent"§
	The Group Pickup Call confirmation event provides the positive response from the server for a previous Group Pickup call request.

	cstaHoldCall()XE "cstaHoldCall()"§
	The cstaHoldCall() service places an existing Connection in the held state.
	Figure 5-14<bookmark hold_call>

	CSTAHoldCallConfEventXE "CSTAHoldCallConfEvent"§
	The Hold Call confirmation event provides the positive response from the server for a previous Hold call requestXE "Hold call request"§

	cstaMakeCall()XE " cstaMakeCall()"§
	The cstaMakeCall() service originates a callXE "Call origination"§ between two devices on the switch. The service attempts to create a new call and establish a connection between the calling device (originator) and the called device (destination). The Make Call service also provides a CSTA Connection Identifier that indicates the Connection of the originating device.
	Figure 5-16<bookmark make_call>

