
Chapter 4 Control Services

TSAPI provides two kinds of control services: API1 Control
ServicesXE "Application Programming Interface Control
Services:See ACS" \t " "§XE "API Control Services:See ACS" \t
" "§, or ACSXE "ACS"§, and CSTA Control ServicesXE
"CSTA:Control Services"§. ApplicationsXE "Applications"§ use
ACS to manage their interactions with NetWare Telephony
Services. While most applications will use ACS to access CSTA
services, applications that administer PBX drivers use ACS to
interface to the PBX Driver. ACS functions manage the
interface, while CSTA functions (chapters 5 through 9) provide
the CSTA services. Applications use ACS to:

u Open an ACS streamXE "ACS stream:Opening"§ for
CSTA services

u Open an ACS stream to do PBX Driver administration

u Close an ACS stream

u Block or poll for eventsXE "Events:Blocking for"§XE
"Events:Polling for"§

u Initialize an operating system event notification facility.
On a Windows, OS/2, Macintosh, or NetWare client, this
initializes an Event Service RoutineXE "Event:Service

1 An API is an Application Programming Interface.

DRAFT 2.0 Telephony Services API 4-1

Routine (ESR):Also see acsSetESR" \t " "§ (ESR)XE
"Event:Service Routine (ESR):Initializing"§

u Get a list of available advertised servicesXE "Advertised
services:Getting list of available"§ (PBX Driver Services
and PBX Driver administration services)

Applications use the CSTA Control ServicesXE "CSTA:Control
Services"§, discussed in the later sections of this chapter, to:

u Query for the CSTA ServicesXE
"CSTA:Services:Available on ACS stream"§XE "ACS
stream:CSTA services available on"§ available on an open
ACS Stream

u Query for a list of DevicesXE "Device:Query:For
controllable devices"§ that CSTA Services can monitor,
control or route for on an open ACS Stream

u Query to determine if CSTA Call/Call MonitoringXE
"Query:Call/Call Monitoring"§ is available on an open ACS
Stream.

Opening, Closing and Aborting an ACS Stream

To obtain Telephony Services an application must open an ACS
streamXE "ACS stream:Opening"§XE "ACS
stream:Closing"§XE "ACS stream:Aborting"§ (or session). This
stream establishes a logical linkXE "Logical:Link"§ between the
application and call processing software on the switch. The
application requests CSTA services (such as making a call) over
the stream. Within a Telephony Server, the Telephony Server
NLM and the PBX Driver NLM cooperate to provide ACS
Streams. The Telephony Server NLM also does security
checkingXE "Administration"§ to ensure that an application

4-2 Control Services

receives CSTA services only for permitted Devices. Each
application must open an ACS Stream before it requests any
services.

An application should only open one stream per advertised
serviceXE "ACS stream:Per advertised service"§. An
application may open multiple ACS streams to multiple
advertised servicesXE "ACS stream:Multiple"§. As PBX drivers
initialize, they register the services that they offer
(administrative as well as CSTA) with a Telephony Services
NLM. The system then advertises these services to applications.
An application opens an ACS Stream to use an advertised
service. Each stream carries messages for the application to one
advertised service. Since the PBX DriversXE "PBX Drivers"§
are switch specificXE "Switch:Specific"§, some drivers may
provide services on a single CTI linkXE "CTI:Link"§, while
others provide services on multiple CTI links. An application
cannot correlate advertised telephony services with underlying
physical CTI links.
Opening an ACS StreamXE "ACS stream:Opening"§

 1. The application calls acsOpenStream().XE
"acsOpenStream()"§

acsOpenStream() is a request to establish an ACS Stream
with a Telephony Server. The acsOpenStream() function
returns an acsHandleXE "acsHandle"§ to the application.
The application will use this acsHandle to accessXE "ACS
stream:Access"§ the ACS Stream (make requests and
receive events).

2. The application receives an
ACSOpenStreamConfEventXE
"ACSOpenStreamConfEvent"§ event message that
corresponds to the acsOpenStream()XE
"acsOpenStream()"§ request.

DRAFT 2.0 Telephony Services API 4-3

The application monitors the acsHandleXE "acsHandle"§
(returned from the acsOpenStream()XE
"acsOpenStream()"§ request) for the corresponding
ACSOpenStreamConfEventXE
"ACSOpenStreamConfEvent"§. The application should
not request services on the ACS Stream until it receives this
corresponding ACSOpenStreamConfEvent.

After an application successfully receives the
ACSOpenStreamConfEventXE
"ACSOpenStreamConfEvent"§, it may request CSTA
ServicesXE "CSTA:Services"§ such as Device (telephone)
monitoring.

 The application should always check the ACSOpenStreamConfEventXE
"ACSOpenStreamConfEvent"§ to ensure that the ACS StreamXE "ACS
stream:Checking establishment of"§ has been successfully established before
making any CSTA Service requests.

An application is responsible for releasingXE "ACS
stream:Releasing"§ its ACS Stream(s). To release the system
resources associated with an ACS Stream the application may
either closeXE "ACS stream:Closing"§ the stream or abortXE
"ACS stream:Aborting"§ the stream. Failing to release the
resources may corrupt the client system, resulting in client
failure.
Closing an ACS StreamXE "ACS stream:Closing"§

 1. The application calls acsCloseStream()XE
"acsCloseStream()"§ to initiate the orderly shutdown
of an ACS Stream.

After the application calls acsCloseStream()XE
"acsCloseStream()"§ to close an ACS Stream, the
application may not request any further services on that
Stream. The acsCloseStream() function is a non-blocking
call. The application passes an acsHandleXE "acsHandle"§

4-4 Control Services

indicating which ACS Stream to close. Although the
application cannot make requests on that Stream, the
acsHandle remains valid until the application receives the
corresponding ACSCloseStreamConfEventXE
"ACSCloseStreamConfEvent"§.

 After an application calls acsCloseStream()XE "acsCloseStream()"§ it may
still receive eventsXE "ACS stream:Receiving events on"§ on the
acsHandleXE "acsHandle"§ for that ACS Stream. The application must
continue to poll until it receives the ACSCloseStreamConfEventXE
"ACSCloseStreamConfEvent"§ so that the system releases all stream
resources. The stream remains open until the application receives the
ACSCloseStreamConfEventXE "ACSCloseStreamConfEvent"§.

2. The application receives an
ACSCloseStreamConfEventXE
"ACSCloseStreamConfEvent"§ event message that
corresponds to the acsCloseStream()XE
"acsCloseStream()"§ request.

An ACSCloseStreamConfEventXE
"ACSCloseStreamConfEvent"§ indicates that the
acsHandleXE "acsHandle:Freeing"§ for the Stream is no
longer valid and that the system has freed all system
resources associated with the ACS StreamXE "ACS
stream:Freeing associated resources"§. The last event the
application will receive on the ACS Stream is the
ACSCloseStreamConfEventXE
"ACSCloseStreamConfEvent"§. Closing an ACS
StreamXE "ACS stream:Closing"§ terminates any CSTA
call control sessions on that Stream. Terminating CSTA call
control sessions in this way does not affect the switch
processing of controlled calls. The application can no longer
control them on this Stream.

Aborting an ACS StreamXE "ACS stream:Aborting"§

DRAFT 2.0 Telephony Services API 4-5

1. The application calls acsAbortStream().XE
"acsAbortStream()"§

 An application may use acsAbortStream() XE
"acsAbortStream()"§ to unilaterally (and synchronously)
terminate an ACS Stream when

u it does not require confirmation of successful
Stream closure, and
u it does not need to receive any events that may be
queued for it on that Stream.

The application passes an acsHandleXE "acsHandle"§
indicating which ACS Stream to abort. The
acsAbortStream() function is non-blocking and returns to
the application immediately. When acsAbortStream()XE
"acsAbortStream()"§ returns, the acsHandle is invalid
(unlike acsCloseStream()XE "acsCloseStream()"§). The
system frees all resourcesXE "ACS stream:Freeing
associated resources"§ associated the aborted ACS Stream,
including any events queued on this Stream. Aborting an
ACS Stream terminates any CSTA call control on that
Stream. Aborting CSTA call control in this way does not
affect the switch processing of controlled calls. It terminates
the application's control of them on this Stream. There is no
confirmation event for an acsAbortStream()XE
"acsAbortStream()"§ call.

Sending CSTA Requests and Responses

XE "ACS stream:Sending requests and responses over"§After an
application opens an ACS Stream (including reception of the
ACSOpenStreamConfEventXE
"ACSOpenStreamConfEvent"§) it may request CSTA
services and receive events. In each service request, the
application passes the acsHandleXE "acsHandle"§ of the Stream
over which it is making the request.

4-6 Control Services

Each service request requires an invokeIDXE "InvokeID:In
service request"§ that the system will return in the confirmation
eventXE "InvokeID:In confirmation event"§ (or failure event) for
the function call. Since applications may have multiple requests
for the same service outstanding within the same ACS Stream,
invokeIDs provide a way to match the confirmation event (or
failure event) to the corresponding requestXE
"InvokeID:Correlating responses"§. When an application opens
an ACS Stream, it specifies (for that Stream) whether it will:

u specify whether it will generate and manage invokeIDsXE
"InvokeID:Application generated"§ internally, or,

u have the TSAPI library generateXE "InvokeID:Library
generated"§ unique invokeID for each service request.

Once an application specifies this invokeID typeXE
"InvokeID:Type"§ for an ACS stream, the application cannot
change invokeID type for the stream.

 In general, having the TSAPI library generateXE "InvokeID:Library generated"§
unique invokeIDs simplifies application design. However, when service requests
correspond to entries in a data structure, it may simplify application design to use
indexesXE "InvokeID:Application generated"§ into the data structure as
invokeIDsXE "InvokeID:Type"§. Application-generated invokeIDs might also point
to window handles. Application-generated invokeIDs may take on any 32 bit value.

Receiving Events

XE "Events"§When an application successfully opens an ACS
Stream, the TSAPI Library queues the
ACSOpenStreamConfEventXE
"ACSOpenStreamConfEvent"§ event message for the
application. To receive this event, and subsequent event
messages, the application must use one of two event reception
methods:

DRAFT 2.0 Telephony Services API 4-7

u a blocking modeXE "Events:Blocking for"§, which blocks
the application from executing until an event becomes
available. Blocking is appropriate in threaded or
preemptive operating system environments only (NetWare,
UnixWare, OS/2).

u a non-blocking modeXE "Events:Polling for"§ that returns
control to the application regardless of whether an event is
available.

 Blocking on event reports may be appropriate for applications that monitor a
Device and only require processing cycles when an event occurs. However, there
may be operating system specificXE "Events:Polling for"§ implications. For
example, if a Windows application blocks waiting for CSTA events, then it cannot
process events from it's Windows event queue.

Regardless of the mode that an application uses to receive
events, it may elect to receive an event either from a designated
ACS Stream (that it opened) or from any ACS Stream (that it
has opened)XE "Events:From all streams"§. TSAPI gives the
application the events in chronological order from the selected
Stream(s). Thus, if the application receives events from all ACS
Streams, then it receives the events in chronological orderXE
"Events:Chronological order"§ from all the Streams.
Blocking Event ReceptionXE "Events:Blocking for"§

 1. The application calls acsGetEventBlock() XE
"acsGetEventBlock() "§

acsGetEventBlock()XE "acsGetEventBlock()"§ function
gets the next event or blocks if no events are available. The
application passes a acsHandleXE "acsHandle"§ parameter
containing the handle of an open ACS Stream or a zero
value (indicating that it desires events from any open ACS
Stream)XE "Events:From all streams"§.

2. acsGetEventBlock()XE "acsGetEventBlock()"§ returns

4-8 Control Services

when an event is available.
Non-Blocking Event ReceptionXE "Events:Polling for"§

 1. The application calls acsGetEventPoll()XE
"acsGetEventPoll()"§

Applications use acsGetEventPoll()XE
"acsGetEventPoll()"§ to get poll for events at their own
pace. An application calls acsGetEventPoll() any time it
wants to process an event. The application passes an
acsHandleXE "acsHandle"§ containing the handle of an
open ACS Stream or a zero value (indicating that it desires
events from any open ACS Stream)XE "Events:From all
streams"§.In addition, the numevents parameter tells the
application how many events are on the queue.

2. acsGetEventPoll() returns immediately

a. If one or more events are available on the ACS Stream
acsGetEventPoll()XE "acsGetEventPoll()"§ returns
the next event from the specified Stream (or from any
Stream, if the application selected that option).

 b. When the event queue is empty the function returns
immediately with a "no message" indication.

The application must receive events (using either the blocking or polling
method) frequently enough so that the event queue does not
overflowXE "Events:Preventing queue overflow"§. TSAPI will stop
acknowledging messages from the Telephony Server when the queue
fills up, ultimately resulting in a loss of the stream. When a message is
available, it does not matter which function an application uses to
retrieve it.

In some operating system environments (including the Windows,
OS/2, Macintosh, NetWare Client), an application can use an
Event Service Routine (ESR)XE "Event:Service Routine
(ESR)"§ to receive asynchronous notification of arriving events.

DRAFT 2.0 Telephony Services API 4-9

The ESR mechanism notifies the application of arriving events.
It does not remove the events from the event queue. The
application must use acsGetEventBlock() or
acsGetEventPoll() to receive the message. The application can
use an ESR to trigger a specific action when an event arrives in
the event queue (i.e. post a Windowsä message for the
application, or signal a semaphore in the NetWareâ
environment). See the manual page for acsSetESR()XE
"acsSetESR()"§ for more information about ESR use in
specific operating system environments.

TSAPI makes one other event handling function available to
applications, acsFlushEventQueue(). An application uses
acsFlushEventQueue() to flush all events from an ACS Stream
event queue (or, if the application selects, from all ACS Stream
event queues).

Querying for Available Services

Applications can use the acsEnumServerNames() function to
obtain a list of the advertised service names. The presence of an
advertised service name in the list does not mean that it is
available.

API Control Services (ACS) Functions and
Confirmation Events

This section defines the ACS function calls and their
confirmation events. Applications use these functions to open
ACS streams and to and manage events on ACS Streams
between client workstations and the Telephony Server.

4-10 Control Services

acsOpenStream ()

An application uses XE "acsOpenStream()"§acsOpenStream()
to open an ACS stream to an advertised service. An application
needs an ACS stream to access other ACS Control Services or
CSTA Services. Thus, an application must call
acsOpenStream() before requesting any other ACS or CSTA
service. acsOpenStream() immediately returns an acsHandle; a
confirmation event arrives later.

Syntax

#include <csta.h>

#include <acs.h>

RetCode_t acsOpenStream(
ACSHandle_t *acsHandle, /* RETURN */
InvokeIDType_t invokeIDType, /* INPUT */
InvokeID_t invokeID, /* INPUT */
StreamType_t streamType, /* INPUT */
ServerID_t *serverID, /* INPUT */
LoginID_t *loginID, /* INPUT */
Passwd_t *passwd, /* INPUT */
AppName_t *applicationName, /* INPUT */
Level_t acsLevelReq /* INPUT */
Version_t *apiVer, /* INPUT */
unsigned short sendQSize, /* INPUT */
unsigned short sendExtraBufs, /* INPUT */
unsigned short recvExtraBufs /* INPUT */
PrivateData_t *privateData); /* INPUT */

Parameters

acsHandle
acsOpenStream() returns this value that identifies of the ACS
Stream that was opened. TSAPI sets this value so that it is
unique to the ACS Stream. Once acsOpenStream() is
successful, the application must be use this acshandle in all other
function calls to TSAPI on this stream. If acsOpenStream() is
successful, TSAPI guarantees that the application has a valid
acshandle. If acsOpenStream() is not successful, then the
function return code gives the cause of the failure.

DRAFT 2.0 Telephony Services API 4-11

invokeIDType
The application sets the type of invoke identifiers used on the
stream being opened.

The possible types are: Application-Generated invokeIDs
(APP_GEN_ID) or Library generated invokeIDs
(LIB_GEN_ID).

When APP_GEN_ID is selected then the application will
provide an invokeID with every TSAPI function call that
requires an invokeID. TSAPI will return the supplied invokeID
value to the application in the confirmation event for the service
request. Application-generated invokeID values can be any 32-
bit value.

When LIB_GEN_ID is selected, the ACS Library will
automatically generate an invokeID and will return its value
upon successful completion of the function call. The value will
be the return from the function call (RetCode_t). Library-
generated invoke IDs are always in the range 1 to 32767.

invokeID
The application supplies this handle for matching the
acsOpenStream() service request with its confirmation event.
An application supplies a value for invokeID only when the
invokeIDtype parameter is set to APP_GEN_ID. TSAPI ignores
the invokeID parameter when invokeIDtype parameter is set to
LIB_GEN_ID.

streamType
The application provides the type of stream in streamType. The
possible values are:

ST_CSTA - requests a CSTA call control stream.
This stream can be used for TSAPI service
requests and responses which begin with the
prefix "csta" or "CSTA".

ST_OAM - requests an OAM stream.

4-12 Control Services

serverID

The application provides a null-terminated string of maximum
size ACS_MAX_SERVICEID. This string contains the name
of an advertised service (in ASCII format). The application
must ensure that the serverID provides services of the type given
in the streamType parameter.

loginID
The application provides a pointer to a null terminated string of
maximum size ACS_MAX_LOGINID. This string contains the
login ID of the user requesting access to the advertised service
given in the serviceID parameter.

passwd
The application provides a pointer to a null terminated string of
maximum size ACS_MAX_PASSWORD. This string contains
the password of the user given loginID.

applicationName
The application provides a pointer to a null terminated string of
maximum size ACS_MAX_APPNAME. This string contains
an application name. The system uses the application name on
certain administration and maintenance status displays.

acsLevelReq
This release of TSAPI ignores this parameter.

apiVer
An application gives the version of TSAPI that it desires in
apiVer. Future TSAPI versions may provide enhanced services
or events that earlier applications will not wish to see for
compatibility reasons. This parameter, in the future, will let an
application request that TSAPI provide an earlier version of the
TSAPI interface. Release 1 does not use this parameter. The
CSTA_API_VERSION in the csta.h header file gives the API
version of a Software Development Kit (SDK).

DRAFT 2.0 Telephony Services API 4-13

sendQSize
The application specifies in sendQSize the maximum number of
outgoing messages the TSAPI Client Library will queue before
returning ACSERR_QUEUE_FULL. If the application supplies
a zero (0) value, then a default queue size will be used. The
UnixWare TASPI client library does not use the sendQSize
parameter.

sendExtraBufs
The application specifies the number of additional packet buffers
TSAPI allocates for the send queue. If sendExtraBufs is set to
zero (0), the number of buffers is equal to the queue size (i.e.,
one buffer per message). If messages will exceed the size of a
network packet, as in the case where private data is used
extensively, or the application frequently sees the
ACSERR_NOBUFFERS error, then the application should use
sendExtraBuf to allocate additional buffers. The UnixWare
TASPI client library does not use the sendExtraBufs parameter.

recvQSize
The application specifies the maximum number of incoming
messages the TSAPI Client Library queues before it ceases
acknowledgment to the Telephony Server. TSAPI uses a default
queue size when recvQSize is set to zero (0). The UnixWare
TASPI client library does not use the recvQSize parameter.

recvExtraBufs
The application specifies the number of additional packet buffers
that TSAPI allocates for the receive queue. If recvExtraBufs is
set to zero (0), the number of buffers is equal to the queue size
(i.e., one buffer per message). If messages will exceed the size of
a network packet, as in the case where private data is used
extensively, or the application frequently sees
ACSERR_STREAM_FAILED, then the application should use
recvExtraBufs to allocate additional buffers. The UnixWare
TASPI client library does not use the recvExtraBufs parameter.

4-14 Control Services

privateData
The application may provide a this pointer to a data structure
that contains any implementation-specific (PBX Driver specific)
initialization. TSAPI does not interpret the data in this structure.
Some PBX Drivers may use Private Data as an “escape
mechanism” to provide implementation specific information
between the application and the PBX Driver. An application
gives a NULL pointer when Private Data is not present.

Return Values

acsOpenStream() returns the following values depending on
whether the application is using library or application-generated
invoke identifiers:

Library-generated invokeIDs - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated invokeIDs - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

An application should always check the
ACSOpenStreamConfEvent message to ensure
that the Telephony Server has acknowledged the
acsOpenStream() request.

acsOpenStream() returns the negative error conditions below:

ACSERR_APIVERDENIED
TSAPI does not provide the version given in

DRAFT 2.0 Telephony Services API 4-15

apiVer.

ACSERR_BADPARAMETER
One or more of the parameters is invalid.

ACSERR_DUPSTREAM
An ACS Stream is already established with the
advertised service given in serverID.

ACSERR_NODRIVER
No TSAPI Client Library Driver was found or
installed on the system.

ACSERR_NOSERVER
The advertised service (serverID) is not available
in the network.

ACSERR_NORESOURCE
There are insufficient resources to open a ACS
Stream.

Comments

An application uses acsOpenStream() to open a network or
local communication channel (ACS Stream) with an advertised
service (PBX Driver). The stream will establish an ACS
client/server session between the application and the server. The
application can use the ACS stream to access all the server-
provided services (e.g. for a typical PBX Driver this would
include cstaMakeCall, cstaTransferCall, etc.).
acsOpenStream() returns an acsHandle for the stream. The
application uses the acsHandle to wait for a
ACSOpenStreamConfEvent. The application uses the
ACSOpenStreamConfEvent to determine whether the stream
opened successfully. The application then uses the acsHandle in
any further requests that it sends over the stream. An application
should only open one stream for any advertised service.

4-16 Control Services

When an application calls acsOpenStream() the call may block
for up to ten (10) seconds while TSAPI obtains names and
addresses from the network Name Server.

 The UnixWare TASPI client library does not use the
sendQsize, sendExtraBufs, recvQsize, or recvExtraBufs
parameters.

Application Notes

A Telephony Server advertises services for each registered PBX
Driver. A PBX Driver may support a single CTI link or multiple
CTI links. Each advertised service name is unique on the
network.

TSAPI guarantees that the ACSOpenStreamConfEvent is
guaranteed the first event the application will receive on ACS
Stream if no errors occurred during the ACS Stream
initialization process.

The application is responsible for terminating ACS streams. To
do so, an application either calls acsCloseStream() function
(and receives the ACSCloseStreamConfEvent), or calls
acsAbortStream(). It is imperative that an application close all
active stream(s) during its exit or cleanup routine in order to free
resources in the client and server for other applications on the
network.

The application must be prepared to receive an
ACSUniversalFailureConfEvent (for any stream type),
CSTAUniversalFailureConfEvent (for a CSTA stream type) or
an ACSUniversalFailureEvent (for any stream type) anytime
after the acsOpenStream() function completes. These events
indicate that a failure has occurred on the stream.

DRAFT 2.0 Telephony Services API 4-17

ACSOpenStreamConfEventXE "ACSOpenStreamConfEvent"§

This event is generated in response to the acsOpenStream()
function and provides the application with status information
regarding the requested open of an ACS Stream with the
Telephony Server. The application may only perform the ACS
functions acsEventNotify(), acsSetESR(),
acsGetEventBlock(), acsGetEventPoll(), and
acsCloseStream() on an acsHandle until this confirmation
event has been received.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See section 4.3, ACS Data Types and
4.6, CSTA Data Types for a complete description of the event
structure.
typedef struct
{ ACSHandle_t acsHandle; EventClass_t

eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{

ACSOpenStreamConfEvent_t acsopen;
} u;

} acsConfirmation;
} event;} CSTAEvent_t;

typedef struct ACSOpenStreamConfEvent_t
{

Version_t apiVer;
Version_t libVer;
Version_t tsrvVer;
Version_t drvrVer;

} ACSOpenStreamConfEvent_t;

4-18 Control Services

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value ACSCONFIRMATION, which
identifies this message as an ACS confirmation event.

eventType
This is a tag with the value ACS_OPEN_STREAM, which
identifies this message as an ACSOpenStreamConfEvent.

invokeID
This parameter specifies the requested instance of the function or
event. It is used to match a specific function request with its
confirmation events.

apiVer
This parameter indicates which version of the API was granted.

libVer
This parameter indicates which version of the Library is running.

tsrvVer
This parameter indicates which version of the TSERVER is
running.

drvrVer
This parameter indicates which version of the Driver is running.

Comments

This message is an indication that the ACS Stream requested by
the application via the acsOpenStream() function is available
to provide communication with the Telephony Server. The
application may now request call control services from the
Telephony Server on the acsHandle identifying this ACS

DRAFT 2.0 Telephony Services API 4-19

Stream. This message contains the Level of the stream opened,
the identification of the server that is providing service, and any
Private data returned by the Telephony Server.

Application Notes

The ACSOpenStreamConfEvent is guaranteed to be the first
event on the ACS Stream the application will receive if no errors
occurred during the ACS Stream initialization.

4-20 Control Services

acsCloseStream()XE "acsCloseStream ()"§

This function closes an ACS Stream to the Telephony Server.
The application will be unable to request services from the
Telephony Server after the acsCloseStream() function has
returned. The acsHandle is valid on this stream after the
acsCloseStream() function returns, but can only be used to
receive events via the acsGetEventBlock() or
acsGetEventPoll() functions. The application must receive the
ACSCloseStreamConfEvent associated with this function call
to indicate that the ACS Stream associated with the specified
acsHandle has been terminated and to allow stream resources to
be freed.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t acsCloseStream (
ACSHandle_t acsHandle, /* INPUT */
InvokeID_t invokeID, /* INPUT */
PrivateData_t *privateData); /* INPUT */

Parameters

acsHandle
This is the handle for the active ACS Stream which is to be
closed. Once the confirmation event associated with this function
returns, the handle is no longer valid.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the Invoke
ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS Library
when the Stream is set for Library-generated invoke IDs.

DRAFT 2.0 Telephony Services API 4-21

privateData
This points to a data structure which defines any
implementation-specific information needed by the server. The
data in this structure is not interpreted by the API Client Library
and can be used as an escape mechanism to provide
implementation specific commands between the application and
the Telephony Server.

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive value,
i.e. the invoke identifier. If the call fails a negative
error (<0) condition will be returned. For library-
generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call
completes successfully it will return a zero (0) value.
If the call fails a negative error (<0) condition will be
returned. For application-generated identifiers the
return will never be positive (>0).

The application should always check the
ACSCloseStreamConfEvent message to ensure that
the service request has been acknowledged and
processed by the Telephony Server and the switch.

acsCloseStream() returns the negative error conditions below:

ACSERR_BADHDL
This indicates that the acsHandle being used is
not a valid handle for an active ACS Stream. No
changes occur in any existing streams if a bad
handle is passed with this function.

4-22 Control Services

Comments

Once this function returns, the application must also check the
ACSCloseStreamConfEvent message to ensure that the ACS
Stream was closed properly and to see if any Private Data was
returned by the server.

No other service request will be accepted to the specified
acsHandle after this function successfully returns. The handle is
an active and valid handle until the application has received the
ACSCloseStreamConfEvent.

Application Notes

The Client is responsible for receiving the
ACSCloseStreamConfEvent to free all resources associated
with the ACS Stream.

The application must be prepared to receive multiple events on
the ACS Stream after the acsCloseStream() function has
completed, but the ACSCloseStreamConfEvent is guaranteed
to be the last event on the ACS Stream.

The acsGetEventBlock() and acsGetEventPoll() functions can
only be called after the acsCloseStream() function has returned
successfully.

DRAFT 2.0 Telephony Services API 4-23

ACSCloseStreamConfEventXE "ACSCloseStreamConfEvent"§

This event is generated in response to the acsCloseStream()
function and provides information regarding the closing of the
ACS Stream The acsHandle is no longer valid after this event
has been received by the application, so the
ACSCloseStreamConfEvent is the last event the application
will receive for this ACS Stream.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See section 4.2 ACS Data Types and
4.6 CSTA Data Types for a complete description of the event
structure.
typedef struct
{ ACSHandle_t acsHandle; EventClass_t

eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{
InvokeID_t invokeID;

union
{

ACSCloseStreamConfEvent_t acsclose;
} u;

} acsConfirmation;
} event;} CSTAEvent_t;

typedef struct ACSCloseStreamConfEvent_t
{
Nulltype null;

} ACSCloseStreamConfEvent_t;

Parameters

acsHandle
This is the handle for the opened ACS Stream.

4-24 Control Services

eventClass
This is a tag with the value ACSCONFIRMATION, which
identifies this message as an ACS confirmation event.

eventType
This is a tag with the value ACS_CLOSE_STREAM, which
identifies this message as an ACSCloseStreamConfEvent.

invokeID
This parameter specifies the requested instance of the function. It
is used to match a specific acsCloseStream() function request
with its confirmation event.

Comments

This message indicates that the ACS Stream to the Telephony
Server has closed and that the associated acsHandle is no longer
valid. This message contains any Private data returned by the
Telephony Server.

DRAFT 2.0 Telephony Services API 4-25

ACSUniversalFailureConfEventXE "ACSUniversalFailureConfEvent"§

This event can occur at any time in place of a confirmation event
for any of the CSTA functions which have their own
confirmation event and indicates a problem in the processes of
the requested function. It does not indicate a failure or lost of the
ACS Stream with the Telephony Server. If the ACS Stream has
failed, then an ACSUniversalFailureEvent (unsolicited version
of this confirmation event) is sent to the application.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See section ACS Data Types and CSTA
Data Types for a complete description of the event structure.
typedef struct
{ ACSHandle_t acsHandle; EventClass_t

eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{
union
{
ACSUniversalFailureConfEvent_t failureEvent;
} u;

} acsConfirmation;
} event;} CSTAEvent_t;
typedef struct
{

int failedStatus;
} ACSUniversalFailureConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

4-26 Control Services

eventClass
This is a tag with the value ACSCONFIRMATION, which
identifies this message as an ACS unsolicited event.

eventType
This is a tag with the value
ACS_UNIVERSAL_FAILURE_CONF , which identifies this
message as an ACSUniversalConfEvent.

failedStatus
This parameter indicate the cause value for the failure of the
original Telephony request. These cause values are the same set
as those shown for ACSUniversalFailureEvent.

Comments

This event will occur anytime when a non-telephony problem
(no memory, Tserver Security check failed, etc.) in processing a
Telephony request in encountered and is sent in place of the
confirmation event that would normally be received for that
function (i.e., CSTAMakeCallConfEvent in response to a
cstaMakeCall() request). If the problem which prevents the
telephony function from being processed is telephony based,
then a CSTAUniversalFailureConfEvent will be received
instead.

DRAFT 2.0 Telephony Services API 4-27

acsAbortStream()XE "acsAbortStream()"§

This function unilaterally closes an ACS Stream to the
Telephony Server. The application will be unable to request
services from the Telephony Server or receive events after the
acsAbortStream() function has returned. The acsHandle is
invalid on this stream after the acsAbortStream() function
returns. There is no associated confirmation event for this
function.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t acsAbortStream (
ACSHandle_t acsHandle, /* INPUT */
PrivateData_t *privateData); /* INPUT */

Parameters

acsHandle
This is the handle for the active ACS Stream which is to be
closed. There is no confirmation event for this function. Once
this function returns success, the ACS Stream is no longer valid.

privateData
This points to a data structure which defines any
implementation-specific information needed by the server. The
data in this structure is not interpreted by the API Client Library
and can be used as an escape mechanism to provide
implementation specific commands between the application and
the Telephony Server.

Return Values

This function always returns zero (0) if successful.

The following are possible negative error conditions for this

4-28 Control Services

function:

ACSERR_BADHDL
This indicates that the acsHandle being used is
not a valid handle for an active ACS Stream. No
changes occur in any existing streams if a bad
handle is passed with this function.

Comments

Once this function returns, the ACS stream is dismantled and the
acsHandle is invalid

DRAFT 2.0 Telephony Services API 4-29

acsGetEventBlock()XE "acsGetEventBlock()"§

This function is used when an application wants to receive an
event in a Blocking mode. In the Blocking mode the application
will be blocked until there is an event from the ACS Stream
indicated by the acsHandle. If the acsHandle is set to zero (0),
then the application will block until there is an event from any
ACS stream opened by this application. The function will return
after the event has been copied into the applications data space.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t acsGetEventBlock (
ACSHandle_t acsHandle, /* INPUT */
void *eventBuf, /* INPUT */
unsigned short *eventBufSize, /* INPUT/RETURN */
PrivateData_t *privateData, /* RETURN */
unsigned short *numEvents); /* RETURN */

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream. If a handle of zero (0) is given, then the next message on
any of the open ACS Streams for this application is returned.

eventBuf
This is a pointer to an area in the application address space large
enough to hold one incoming event that is received by the
application. This buffer should be large enough to hold the
largest event the application expected to receive. Typically the
application will reserve a space large enough to hold a
CSTAEvent_t.

4-30 Control Services

eventBufSize
This parameter indicates the size of the user buffer pointed to by
eventBuf. If the event is larger the eventBuf, then this parameter
will be returned with the size of the buffer required to receive
the event. The application should call this function again with a
larger buffer.

privateData
This parameter points to a buffer which will receive any private
data that accompanies this event. The length field of the
PrivateData_t structure must be set to the size of the data buffer.
If the application does not wish to receive private data, then
privateData should be set to NULL.

numEvents
The library will return the number of events queued for the
application on this ACS Stream (not including the current event)
via the numEvents parameter. If this parameter is NULL, then no
value will be returned.

Return Values

This function returns a positive acknowledgment or a negative
error condition (< 0). There is no confirmation event for this
function. The positive return value is:

ACSPOSITIVE_ACK
The function completed successfully as requested
by the application, and an event has been copied
to the application data space. No errors were
detected.

Possible local error returns are (negative returns):

ACSERR_BADHDL
This indicates that the acsHandle being used is
not a valid handle for an active ACS Stream. No
changes occur in any existing streams if a bad

DRAFT 2.0 Telephony Services API 4-31

handle is passed with this function.

ACSERR_UBUFSMALL
The user buffer size indicated in the eventBufSize
parameter was smaller than the size of the next
available event for the application on the ACS
stream. The eventBufSize variable has been reset
by the API Library to the size of the next message
on the ACS stream. The application should call
acsGetEventBlock() again with a larger buffer.
The ACS event is still on the API Library queue.

Comments

The acsGetEventBlock() and acsGetEventPoll() functions can
be intermixed by the application. For example, if bursty event
message traffic is expected an application may decide to block
initially for the first event and wait until it arrives. When the first
event arrives the blocking function returns, at which time the
application can process this event quickly and poll for the other
events which may have been placed in queue while the first
event was being processed. The polling can be continued until a
ACSERR_NOMESSAGE is returned by the polling function.
At this time the application can then call the blocking function
again and start the whole cycle over again.

There is no confirmation event for this function.

Application Notes

The application is responsible for calling the
acsGetEventBlock() or acsGetEventPoll() function frequently
enough that the API Client Library does not overflow its receive
queue and refuse incoming events from the Telephony Server.

4-32 Control Services

acsGetEventPoll()XE "acsGetEventPoll()"§

This function is used when an application wants to receive an
event in a Non-Blocking mode. In the Non-Blocking mode the
oldest outstanding event from any active ACS Stream will be
copied into the applications data space and control will be
returned to the application. If no events are currently queued for
the application, the function will return control immediately to
the application with an error code indicating that no events were
available.

Syntax

#include <csta.h>
#include <acs.h>

RetCode_t acsGetEventPoll (
ACSHandle_t acsHandle, /* INPUT */
void *eventBuf, /* INPUT */
unsigned short *eventBufSize, /* INPUT/RETURN */
PrivateData_t *privateData, /* RETURN */
unsigned short *numEvents; /* RETURN */

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream. If a handle of zero (0) is given, then the next message on
any of the open ACS Streams for this application is returned.

eventBuf
This is a pointer to an area in the application address space large
enough to hold one incoming event that is received by the
application. This buffer should be large enough to hold the
largest event the application expected to receive. Typically the
application will reserve a space large enough to hold a
CSTAEvent_t.

DRAFT 2.0 Telephony Services API 4-33

eventBufSize
This parameter indicates the size of the user buffer pointed to by
eventBuf. If the event is larger the eventBuf, then this parameter
will be returned with the size of the buffer required to receive
the event. The application should call this function again with a
larger buffer.

privateData
This parameter points to a buffer which will receive any private
data that accompanies this event. The length field of the
PrivateData_t structure must be set to the size of the data buffer.
If the application does not wish to receive private data, then
privateData should be set to NULL.

numEvents
The library will return the number of events queued for the
application on this ACS Stream (not including the current event)
via the numEvents parameter. If this parameter is NULL, then no
value will be returned.

Return Values

This function returns a positive acknowledgment or a negative
error condition (< 0). There is no confirmation event for this
function. The positive return value is:

ACSPOSITIVE_ACK
The function completed successfully as requested
by the application, and an event has been copied
to the application data space. No errors were
detected.

Possible local error returns are (negative returns):

ACSERR_BADHDL
This indicates that the acsHandle being used is
not a valid handle for an active ACS Stream. No
changes occur in any existing streams if a bad

4-34 Control Services

handle is passed with this function.

ACSERR_NOMESSAGE
The function were no messages available to return
to the application.

ACSERR_UBUFSMALL
The user buffer size indicated in the eventBufSize
parameter was smaller than the size of the next
available event for the application on the ACS
stream. The eventBufSize variable has been reset
by the API Library to the size of the next message
on the ACS stream. The application should call
acsGetEventPoll() again with a larger buffer.
The ACS event is still on the API Library queue.

Comments

When this function is called, it returns immediately, and the user
must examine the return code to determine if a message was
copied into the user's data space. If an event was available, the
function will return ACSPOSITIVE_ACK.

If no events existed on the ACS Stream for the application, this
function will return ACSERR_NOMESSAGE.

The acsGetEventBlock() and acsGetEventPoll() functions can
be intermixed by the application. For example, if bursty event
message traffic is expected an application may decide to block
initially for the first event and wait until it arrives. When the first
event arrives the blocking function returns, at which time the
application can process this event quickly and poll for the other
events which may have been placed in queue while the first
event was being processed. The polling may continue until the
ACSERR_NOMESSAGE is returned by the polling function.
At this time the application can then call the blocking function
again and start the whole cycle over again.

There is no confirmation event for this function.

DRAFT 2.0 Telephony Services API 4-35

Application Notes

The application is responsible for calling the
acsGetEventBlock() or acsGetEventPoll() function frequently
enough that the API Client Library does not overflow its receive
queue and refuse incoming events from the Telephony Server.

4-36 Control Services

acsGetFile() (UnixWare)XE "acsGetFile() (UnixWare)"§

The acsGetFile() function returns the Unix file descriptor
associated with an ACS stream. This is to enable multiplexing
of input sources via, for example, the poll() system call.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t acsGetFile (ACSHandle_t acsHandle);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream whose Unix file descriptor is to be returned.

Return Values

This function returns either a Unix file descriptor greater than
or equal to zero(0), or ACSERR_BADHDL if the acsHandle
being used is not a valid handle for an active ACS Stream.

Application Notes

The acsGetFile() function returns the Unix file descriptor used
by an ACS stream. This enables an application to simultaneously
block on the stream and any other file-oriented input sources by
using poll(), select(), XtAddInput() or similar multiplexing
functions. The application should never perform any direct I/O
operations on this file descriptor.

There is no confirmation event for this function.

DRAFT 2.0 Telephony Services API 4-37

acsSetESR() (Windows)XE "acsSetESR():Windows"§

The acsSetESR() function also allows the application to
designate an Event Service Routine (ESR) that will be called
when an incoming event is available.

Syntax
#include <csta.h>
#include <acs.h>

#typedef void (*EsrFunc)(unsigned short esrParam)

RetCode_t acsSetESR (
ACSHandle_t acsHandle,
EsrFunc esr,
unsigned short esrParam,
Boolean notifyAll);

Parameters

acsHandle

This is the value of the unique handle to the opened Stream for
which this ESR routine will apply. Only one ESR is allowed
per active acsHandle.esr

This is a pointer to the ESR (the address of a function). An
application passes a NULL pointer indicates to clear an existing
ESR..

esrParam
This is a user-defined parameter which will be passed to the ESR
when it is called.

notifyAll
If this parameter is TRUE then the ESR will be called for every
event. If it is FALSE then the ESR will only be called each time
the receive queue becomes non-empty, i.e. the queue count
changes from zero (0) to one (1). This option may be used to
reduce the overhead of notification.

4-38 Control Services

Return Values

This function returns a positive acknowledgment or a negative
error condition (< 0). There is no confirmation event for this
function. The positive return value is:

ACSPOSITIVE_ACK
The function completed successfully as requested
by the application. No errors were detected.

Possible local error returns are (negative returns):

ACSERR_BADHDL
This indicates that the acsHandle being used is
not a valid handle for an active ACS Stream. No
changes occur in any existing streams if a bad
handle is passed with this function.

Comments

The ESR mechanism can be used by the application to receive an
asynchronous notification of the arrival of an incoming event
from the Open ACS Stream. The ESR routine will receive one
user-defined parameter. The ESR should not call ACS functions,
otherwise the results will be indeterminate. The ESR should note
the arrival of the incoming event, and complete its operation as
quickly as possible. The application must still call
acsGetEventBlock or acsGetEventPoll() to retrieve the event
from the Client API Library queue.

If there are already events in the receive queue waiting to be
retrieved when acsSetESR() is called, the esr will be called for
each of them.

The esr in the acsSetESR() function will replace the current
ESR maintained by the API Client Library. A NULL esr will
disable the current ESR mechanism.

There is no confirmation event for this function.

DRAFT 2.0 Telephony Services API 4-39

Application Notes

The application can use the ESR mechanism to trigger platform
specific events (e.g. post a Windowsä message for the
application, or signal a semaphore in the NetWareâ
environment).

The application may use the ESR mechanism for asynchronous
notification of the arrival of incoming events, but most API
Library environments provide other mechanisms for receiving
asynchronous notification.

The application should not call ACS functions from within the
ESR.

The application should complete its ESR processing as quickly
as possible.

The ESR function may be called while (some level of) interrupts
are disabled. This is API implementation specific, so the
application programmer should consult the API documentation.
Under Windowsä, the ESR function must be exported and its
address obtained from MakeProcInstance().

Windows Client Note:

Use acsSetESR() with care. ESR code and data must be
immune to swapping (i.e., fixed and page locked). The ESR
must reside in a DLL so as to be fixed. Interrupts are disabled
when an ESR is called. Within the ESR, do not call any
function that may enable interrupts (including most Windows
APIs) or which is not “nailed down”.

4-40 Control Services

acsSetESR() (Macintosh)xe "acsSetESR():Macintosh"§

The acsSetESR() function allows application to designate an Event Service Routine (ESR) that
will be called when an incoming event is available.

Syntax
#include <csta.h>
#include <acs.h>

typedef pascal void (*EsrFunc)(unsigned long esrParam)

enum {
uppESRFuncProcInfo = kPascalStackBased

| RESULT_SIZE(SIZE_CODE(0))
| STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(long))

};

#if USESROUTINEDESCRIPTORS
typedef UniversalProcPtr EsrFuncUPP;

#define NewEsrFuncProc(userRoutine)
(EsrFuncUPP) NewRoutineDescriptor((ProcPtr)(userRoutine),

uppEsrFuncProcInfo, GetCurrentISA())
#else
typedef EsrFunc EsrFuncUPP;
#define NewEsrFuncProc(userRoutine)

(EsrFuncUPP)(userRoutine)
#endif

RetCode_t acsSetESR (ACSHandle_t acsHandle,
EsrFuncUPP esr,
unsigned long esrParam,
Boolean notifyAll);

Parameters

acsHandle
This is the value of the unique handle to the opened Stream for
which this ESR routine will apply. Only one ESR is allowed
per active acsHandle.

esr
This is a universal procedure pointer to the ESR (the address of
a 680x0 function or routine descriptor). An application passes a
NULL pointer indicates to clear an existing ESR..

DRAFT 2.0 Telephony Services API 4-41

esrParam
This is a user-defined parameter which will be passed to the
ESR when it is called.

notifyAll
If this parameter is TRUE then the ESR will be called for every
event. If it is FALSE then the ESR will only be called each time
the receive queue becomes non-empty, i.e. the queue count
changes from zero (0) to one (1). This option may be used to
reduce the overhead of notification.

Return Values

This function returns a positive acknowledgment or a
negative error condition (< 0). There is no confirmation
event for this function. The positive return value is:

ACSPOSITIVE_ACK
The function completed successfully as
requested by the application. No errors were
detected.

Possible local error returns are (negative returns):

ACSERR_BADHDL
This indicates that the acsHandle being used is
not a valid handle for an active ACS Stream. No
changes occur in any existing streams if a bad
handle is passed with this function.

Comments

The ESR mechanism can be used by the application to receive
an asynchronous notification of the arrival of an incoming
event from the Open ACS Stream. The ESR routine will receive
one user-defined parameter. The ESR should not call ACS
functions, otherwise the results will be indeterminate. The ESR
should note the arrival of the incoming event, and complete its

4-42 Control Services

operation as quickly as possible. The application must still call
acsGetEventBlock or acsGetEventPoll() to retrieve the event
from the Client API Library queue.

If there are already events in the receive queue waiting to be
retrieved when acsSetESR() is called, the esr will be called for
each of them.

The esr in the acsSetESR() function will replace the current
ESR maintained by the API Client Library. A NULL esr will
disable the current ESR mechanism.

There is no confirmation event for this function.

Application Notes

The application may use the ESR mechanism for
asynchronous notification of the arrival of incoming events,
particularly when rapid notification is desired. By using the
ESR to set an application global, the application may
determine whether events have arrived by examining that
global rather than using acsGetEventPoll() or
acsGetEventBlock().

The ESR function is defined as a universal procedure pointer.
Under PPC, providing a native or fat routine descriptor will
result in the best performance as there will be no mode switch
involved when calling the ESR.

The application may not call ACS functions from within the
ESR.

The application should complete its ESR processing as quickly
as possible.

The ESR function may be called while (some level of) interrupts
are disabled; refer to Inside Macintosh for information about
programming with interrupts disabled. Ensure that the ESR
function — and routine descriptor under PPC — remain loaded
and page-locked in memory. In particular, do not make
synchronous I/O calls or access memory that is not page-locked.

DRAFT 2.0 Telephony Services API 4-43

On Macintosh — as with other interrupt service routines — the
ESR is prohibited from using the Macintosh memory manager
— directly or indirectly. In addition, the ESR must set any
global context it needs. On the 680x0 Macintosh, this means that
the ESR must set A5 before accessing application globals or
making inter-segment jumps; before returning, the ESR must
restore A5 to its value on entry. On PowerPC, the runtime model
automatically manages this context. See references [3]and [5]
for more information.

4-44 Control Services

acsSetESR() (OS/2 2.1)XE "acsSetESR()"§

The acsSetESR() function allows the application to designate
an Event Service Routine (ESR) that will be called when an
incoming event is available.

Syntax
#include <os2,h>
#include <csta.h>
#include <acs.h>

typedef void (*EsrFunc)(ULONG esrParam)

RetCode_t acsSetESR (ACSHandle_t acsHandle,
EsrFunc esr,
ULONG esrParam,
Boolean notifyAll);

Parameters

acsHandle

This is the value of the unique handle to the opened Stream for
which this ESR routine will apply. Only one ESR is allowed
per active acsHandle.esr

This is a pointer to the ESR (the address of a function). This
function must use the _Optlink calling convention. A multi-
threaded application that registers the same ESR for multiple
open streams needs to ensure that this function is reentrant. An
application passes a NULL pointer indicates to clear an existing
ESR..

esrParam
This is a user-defined parameter which will be passed to the
ESR when it is called.

notifyAll
If this parameter is TRUE then the ESR will be called for every
event. If it is FALSE then the ESR will only be called each
time the receive queue becomes non-empty, i.e. the queue count

DRAFT 2.0 Telephony Services API 4-45

changes from zero (0) to one (1). This option may be used to
reduce the overhead of notification.

Return Values

This function returns a positive acknowledgment or a
negative error condition (< 0). There is no confirmation
event for this function. The positive return value is:

ACSPOSITIVE_ACK
The function completed successfully as
requested by the application. No errors were
detected.

Possible local error returns are (negative returns):

ACSERR_BADHDL
This indicates that the acsHandle being used is
not a valid handle for an active ACS Stream. No
changes occur in any existing streams if a bad
handle is passed with this function.

Comments

The ESR mechanism can be used by the application to receive
an asynchronous notification of the arrival of an incoming
event from the Open ACS Stream. The application can use the
ESR mechanism to trigger specific events (e.g. post an event
semaphore). The ESR routine will receive one user-defined
parameter. The ESR should not call ACS functions, otherwise
the results will be indeterminate. The application must still call
acsGetEventBlock() or acsGetEventPoll() to actually retrieve
the event from the Client API Library queue.

If there are already events in the receive queue waiting to be
retrieved when acsSetESR() is called, the esr will be called for
each of them.

The esr in the acsSetESR() function will replace the current

4-46 Control Services

ESR maintained by the API Client Library. A NULL esr will
disable the current ESR mechanism.

There is no confirmation event for this function.

DRAFT 2.0 Telephony Services API 4-47

acsEventNotify() (Windows 3.1) XE "acsEventNotify():Windows 3.1"§

The acsEventNotify() function allows a Windows application
to request that a message be posted to its application queue when
an incoming ACS event is available.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t acsEventNotify (
ACSHandle_t acsHandle,
HWND msg,
Boolean notifyAll);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS Stream
for which event notification messages will be posted.

hwnd
This is the handle of the window which is to receive event
notification messages. If this parameter is NULL, event
notification is disabled.

msg
This is the user-defined message to be posted when an incoming
event becomes available. The wParam and lParam parameters of
the message will contain the following members of the
ACSEventHeader_t structure:

wParam acsHandle
HIWORD(lParam) eventClass
LOWORD(lParam) eventType

notifyAll
If this parameter is TRUE then a message will be posted for
every event. If it is FALSE then a message will only be posted

4-48 Control Services

each time the receive queue becomes non-empty, i.e. the queue
count changes from zero (0) to one (1). This option may be used
to reduce the overhead of notification, or the likelihood of
overflowing the application's message queue (see below).

Return Values

This function returns a positive acknowledgment or a negative
error condition (< 0). There is no confirmation event for this
function. The positive return value is:

ACSPOSITIVE_ACK
The function completed successfully as requested
by the application. No errors were detected.

Possible local error returns are (negative returns):

ACSERR_BADHDL
This indicates that the acsHandle being used is
not a valid handle for an active ACS Stream. No
changes occur in any existing streams if a bad
handle is passed with this function.

Application Notes

This function only enables notification of an incoming event.
Use acsGetEventPoll() to actually retrieve the complete event
structure.

If there are already events in the receive queue waiting to be
retrieved when acsEventNotify() is called, a message will be
posted for each of them.

Applications which process a high volume of incoming events
may cause the default application queue (8 messages max) to
overflow. In this case, use the Windows API call
SetMessageQueue() to increase the size of the application
queue. Also, the rate of notifications may be reduced by setting
notifyAll to FALSE.

DRAFT 2.0 Telephony Services API 4-49

There is no confirmation event for this function.

4-50 Control Services

Example

This example uses the acsEventNotify function to enable event
notification.
#define WM_ACSEVENT WM_USER + 99

// or use RegisterWindowMessage()

long FAR PASCAL
WndProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
{

// declare local variables...

switch (msg)
{
case WM_CREATE:

// post WM_ACSEVENT to this window
// whenever an ACS event arrives

acsEventNotify (acsHandle, hwnd, WM_ACSEVENT,
TRUE);

// other initialization, etc...
return 0;

case WM_ACSEVENT:

// wParam contains an ACSHandle_t
// HIWORD(lParam) contains an EventClass_t
// LOWORD(lParam) contains an EventType_t

// dispatch the event to user-defined
// handler function here

return 0;

// process other window messages...

}
return DefWindowProc (hwnd, msg, wParam, lParam);

}

DRAFT 2.0 Telephony Services API 4-51

acsEventNotify() (Macintosh) xe "acsEventNotify():Macintosh"§

The acsEventNotify() function allows a Macintosh application to request that it receive an Apple
Event when an incoming ACS event is available.

Syntax
#include <csta.h>
#include <acs.h>
#include <EPPC.h> /* for Apple Event types */

RetCode_t acsEventNotify (ACSHandle_t acsHandle,
AEAddressDesc *targetAddr,
Boolean notifyAll);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream for which event notification messages will be posted.

targetAddr
This is a pointer to an AEAddressDesc data structure. The
event notification Apple Events will be sent to address specified
by the AEAddressDesc. A NULL targetAddr indicates no
notification.

notifyAll
If this parameter is TRUE then a message will be posted for
every event. If it is FALSE then a message will only be posted
each time the receive queue becomes non-empty, i.e. the queue
count changes from zero (0) to one (1). This option may be used
to reduce the overhead of notification (see below).

Return Values

This function returns a positive acknowledgment or a
negative error condition (< 0). There is no confirmation
event for this function. The positive return value is:

4-52 Control Services

ACSPOSITIVE_ACK
The function completed successfully as
requested by the application. No errors were
detected.

Possible local error returns are (negative returns):

ACSERR_BADHDL
This indicates that the acsHandle being used is
not a valid handle for an active ACS Stream. No
changes occur in any existing streams if a bad
handle is passed with this function.

Application Notes

The Apple Events posted as the result of calling
acsEventNotify() have the following attributes:

Event Class kTSAPIEventClass

Event ID kTSAPIEventArrived

Required
Parameter

Keyword: keyTSAPIEventClass

Descriptor
Type:

typeShortInteger

Data
:

The EventClass_t
corresponding to the
incoming TSAPI

DRAFT 2.0 Telephony Services API 4-53

event.

Required
Parameter

Keyword: keyTSAPIEventType

Descriptor
Type:

typeShortInteger

Data
:

The EventType_t
corresponding to the
incoming TSAPI
event.

Required
Parameter

Keyword: keyStreamHandle

Descriptor
Type:

typeLongInteger

Data
:

The ACSHandle_t
that may be used to
retrieve the
incoming TSAPI
event.

4-54 Control Services

See reference [4] for information on how to create an
AEAddressDesc and extract information from the notification
Apple Events.

After calling acsEventNotify(), properly dispose of the
AEAddressDesc specified by targetAddr.

This function only enables notification of an incoming event.
Use acsGetEventPoll() to actually retrieve the complete event
structure.

If there are already events in the receive queue waiting to be
retrieved when acsEventNotify() is called, an Apple Event will
be sent for each of them.

Applications which process a high volume of incoming events
should either set notifyAll to TRUE or use acsSetESR(); the
current theoretical upper bound on sending Apple Events is sixty
messages per second. In practice — depending on processor
speed and available memory — this number may be significantly
lower.

There is no confirmation event for this function.

DRAFT 2.0 Telephony Services API 4-55

Example

This example uses the acsEventNotify function to enable event
notification.
/*
 * handleTSAPIEvent - install as AppleEvent handler (callback)
 * before using acsEventNotify()
 */

pascal OSErr
handleTSAPIEvent(const AppleEvent *theAppleEvent,

const AppleEvent *reply,
long handlerRefcon)

{
EventClass_t theTSAPIClass;
EventType_t theTSAPIType;
ACSHandle_t theStream;
DescType actualType; /* scratch */
Size actualSize; /* scratch */
OSErr myErr;
/*
 * other local variables
 */

/* extract TSAPI event class */

myErr = AEGetParamPtr (theAppleEvent, keyTSAPIEventClass,
typeShortInteger, &actualType,
&theTSAPIClass,
sizeof(theTSAPIClass),
&actualSize);

if (myErr != noErr)
return myErr;

/* extract TSAPI event type */

myErr = AEGetParamPtr (theAppleEvent, keyTSAPIEventType,
typeShortInteger, &actualType,
&theTSAPIType, sizeof(theTSAPIType),
&actualSize);

if (myErr != noErr)
return myErr;

/* extract stream handle */

myErr = AEGetParamPtr (theAppleEvent, keyStreamHandle,
typeLongInteger, &actualType,
&theStream, sizeof(theStream),
&actualSize);

if (myErr != noErr)
return myErr;

/*
 * Dispatch event to user-defined handler function here
 */

4-56 Control Services

return noErr;
}

DRAFT 2.0 Telephony Services API 4-57

/* example - cont. */

OSErr
InstallTSAPIEventHandler (void)
{

/*
 * This code only works when compiled for 68K; it needs a
 * routine descriptor for handleTSAPIEvent to work with the
 * Mixed Mode manager.
 */

return AEInstallEventHandler (

kTSAPIEventClass,
kTSAPIEventArrived
(AEEventHandlerUPP)handleTSAPIEvent,
0,
FALSE);

}

4-58 Control Services

acsEventNotify() (OS/2 2.1) XE "acsEventNotify() (Windows 3.1) "§

The acsEventNotify() function allows an OS/2 PM application
to request that a message be posted to its application queue when
an incoming ACS event is available.

Syntax
#include <os2.h>
#include <csta.h>
#include <acs.h>

RetCode_t acsEventNotify (
ACSHandle_t acsHandle,
HWND hwnd,
ULONG msg,
BOOL notifyAll);

Parameters

acsHandle
This is the value of the unique handle to the opened ACS
Stream for which event notification messages will be posted.

hwnd
This is the handle of the window which is to receive event
notification messages. If this parameter is NULL, event
notification is disabled.

msg
This is the user-defined message to be posted when an
incoming event becomes available. The mp1 and mp2
parameters of the message will contain the following members
of the ACSEventHeader_t structure:

mp1 acsHandle
SHORT2FROMMP(mp2) eventClass
SHORT1FROMMP(mp2) eventType

notifyAll
If this parameter is TRUE then a message will be posted for
every event. If it is FALSE then a message will only be posted

DRAFT 2.0 Telephony Services API 4-59

each time the receive queue becomes non-empty, i.e. the queue
count changes from zero (0) to one (1). This option may be used
to reduce the overhead of notification, or the likelihood of
overflowing the application's message queue (see below).

Return Values

This function returns a positive acknowledgment or a
negative error condition (< 0). There is no confirmation
event for this function. The positive return value is:

ACSPOSITIVE_ACK
The function completed successfully as
requested by the application. No errors were
detected.
Possible local error returns are (negative
returns):

ACSERR_BADHDL
This indicates that the acsHandle being used is
not a valid handle for an active ACS Stream. No
changes occur in any existing streams if a bad
handle is passed with this function.

Application Notes

This function only enables notification of an incoming event.
Use acsGetEventPoll() to actually retrieve the complete event
structure.

If there are already events in the receive queue waiting to be
retrieved when acsEventNotify() is called, a message will be
posted for each of them.

Applications which process a high volume of incoming events
may cause the default application queue (10 messages max) to
overflow. In this case, increase the size of the application queue
that is created by specifying a larger size in the
WinCreateMsgQueue() function. Also, the rate of notifications

4-60 Control Services

may be reduced by setting notifyAll to FALSE.

There is no confirmation event for this function.

DRAFT 2.0 Telephony Services API 4-61

Example

This example uses the acsEventNotify function to enable event
notification.
#define WM_ACSEVENT WM_USER + 99

MRESULT EXPENTRY
WndProc (HWND hwnd, ULONG msg, MPARAM mp1, MPARAM mp2)
{

// declare local variables...

switch (msg)
{
case WM_CREATE:

// post WM_ACSEVENT to this window
// whenever an ACS event arrives

acsEventNotify (acsHandle, hwnd, WM_ACSEVENT, TRUE);

// other initialization, etc...
return 0;

case WM_ACSEVENT:

// mp1 contains an ACSHandle_t
// SHORT2FROMMP(mp2) contains an EventClass_t
// SHORT1FROMMP(mp2) contains an EventType_t

// dispatch the event to user-defined
// handler function here

return 0;

// process other window messages...

}
return WinDefWindowProc (hwnd, msg, mp1, mp2);

}

4-62 Control Services

acsFlushEventQueue()XE "acsFlushEventQueue()"§

This function removes all events for the application on a ACS
Stream associated with the given handle and maintained by the
API Client Library. Once this function returns the application
may receive any new events that arrive on this ACS Stream.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t ACSFlushEventQueue (ACSHandle_t acsHandle);

Parameters

acsHandle
This is the handle to an active ACS Stream. If the acsHandle is
zero (0), then TSAPI will flush all active ACS Streams for this
application.

Return Values

This function returns a positive acknowledgment or a negative
error condition (< 0). There is no confirmation event for this
function. The positive return value is:

ACSPOSITIVE_ACK
The function completed successfully as requested
by the application. No errors were detected.

Possible local error returns are (negative returns):

ACSERR_BADHDL
This indicates that the acsHandle being used is
not a valid handle for an active ACS Stream. No
changes occur in any existing streams if a bad
handle is passed with this function.

DRAFT 2.0 Telephony Services API 4-63

Comments

Once this function returns the API Client Library will not have
any events queued for the application on the specified ACS
Stream. The application is ready to start receiving new events
from the Telephony Server.

There is no confirmation event for this function.

Application Notes

The application should exercise caution when calling this
function, since all events from the switch on the associated ACS
Stream have been discarded. The application has no way to
determine what kinds of events have been destroyed, and may
have lost events that relay important status information from the
switch.

This function does not delete the ACSCloseStreamConfEvent,
since this function can not be called after the acsCloseStream()
function.

The acsFlushEventQueue() function will delete all other
events queued to the application on the ACS Stream. The
ACSUniversalFailureEvent and the
CSTAUniversalFailureConfEvent, in particular, will be
deleted if they are currently queued to the application.

4-64 Control Services

acsEnumServerNames()XE "acsEnumServerNames()"§

This function is used to enumerate the names of all the
advertised services of a specified stream type. This function is a
synchronous call and has no associated confirmation event.

Syntax
#include <acs.h>

typedef Boolean (*EnumServerNamesCB) (
char *serverName,
unsigned long lParam);

RetCode_t acsEnumServerNames (
StreamType_t streamType,
EnumServerNamesCB callback ,
unsigned long lParam);

Parameters

streamType
indicates the type of stream requested. The currently defined
stream types are ST_CSTA and ST_OAM.

callback
This is a pointer to a callback function which will be invoked for
each of the enumerated server names, along with the user-
defined parameter lParam. If the callback function returns
FALSE (0), enumeration will terminate.

lParam
A user-defined parameter which is passed on each invocation of
the callback function.

Return Values

This function returns a positive acknowledgment or a negative
error condition (< 0). There is no confirmation event for this
function. The positive return value is:

DRAFT 2.0 Telephony Services API 4-65

ACSPOSITIVE_ACK
The function completed successfully as requested
by the application. No errors were detected.

The following are possible negative error conditions for this
function:

ACSERR_UNKNOWN
The request has failed due to unknown network
problems.

Comments

This function enumerates all the known advertised services,
invoking the callback function for each advertised service name.
The serverName parameter points to automatic storage; the
callback function must make a copy if it needs to preserve this
data. Under Windowsä, the callback function must be exported
and its address obtained from MakeProcInstance().

An active ACS Stream is NOT required to call this function.

4-66 Control Services

ACS Unsolicited EventsXE "ACS:Unsolicited
Events"§XE "Unsolicited Events"§

This section describes unsolicited ACS Status Events.

DRAFT 2.0 Telephony Services API 4-67

ACSUniversalFailureEventXE "ACSUniversalFailureEvent"§

This event can occur at any time (unsolicited) and can indicate,
among other things, a failure or lost of the ACS Stream with the
Telephony Server.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See the ACS Data Types and CSTA
Data Types sections for a complete description of the event
structure.
typedef struct
{ ACSHandle_t acsHandle; EventClass_t

eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{
union
{
 ACSUniversalFailureEvent_t failureEvent;
} u;

} acsUnsolicited;
} event;} CSTAEvent_t;

typedef struct
{

ACSUniversalFailure_t error;
}
ACSUniversalFailureEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value ACSUNSOLICITED, which
identifies this message as an ACS unsolicited event.

4-68 Control Services

eventType
This is a tag with the value ACS_UNIVERSAL_FAILURE,
which identifies this message as an
ACSUniversalFailureEvent.

error
This parameter contains a TServer operation error (or “cause
value”), TServer security database error, or driver error for the
ACS Stream given in acsHandle.

 Not all of the errors listed below will occur in a ACS Universal Failure message.
Some of the errors occur only in error logs generated by the Tserver.

The possible valuesXE "ACSUniversalFailureEvent:Possible
values"§ are:

typedef enum ACSUniversalFailure_t {
TSERVER_STREAM_FAILED = 0,
TSERVER_NO_THREAD = 1,
TSERVER_BAD_DRIVER_ID = 2,
TSERVER_DEAD_DRIVER = 3,
TSERVER_MESSAGE_HIGH_WATER_MARK = 4,
TSERVER_FREE_BUFFER_FAILED = 5,
TSERVER_SEND_TO_DRIVER = 6,
TSERVER_RECEIVE_FROM_DRIVER = 7,
TSERVER_REGISTRATION_FAILED = 8,
TSERVER_SPX_FAILED = 9,
TSERVER_TRACE = 10,
TSERVER_NO_MEMORY = 11,
TSERVER_ENCODE_FAILED = 12,
TSERVER_DECODE_FAILED = 13,
TSERVER_BAD_CONNECTION = 14,
TSERVER_BAD_PDU = 15,
TSERVER_NO_VERSION = 16,
TSERVER_ECB_MAX_EXCEEDED = 17,
TSERVER_NO_ECBS = 18,
TSERVER_NO_SDB = 19,
TSERVER_NO_SDB_CHECK_NEEDED = 20,
TSERVER_SDB_CHECK_NEEDED = 21,
TSERVER_BAD_SDB_LEVEL = 22,
TSERVER_BAD_SERVERID = 23,
TSERVER_BAD_STREAM_TYPE = 24,
TSERVER_BAD_PASSWORD_OR_LOGIN = 25,
TSERVER_NO_USER_RECORD = 26,
TSERVER_NO_DEVICE_RECORD = 27,
TSERVER_DEVICE_NOT_ON_LIST = 28,
TSERVER_USERS_RESTRICTED_HOME = 30,
TSERVER_NO_AWAYPERMISSION = 31,
TSERVER_NO_HOMEPERMISSION = 32,

DRAFT 2.0 Telephony Services API 4-69

TSERVER_NO_AWAY_WORKTOP = 33,
TSERVER_BAD_DEVICE_RECORD = 34,
TSERVER_DEVICE_NOT_SUPPORTED = 35,
TSERVER_INSUFFICIENT_PERMISSION = 36,
TSERVER_NO_RESOURCE_TAG = 37,
TSERVER_INVALID_MESSAGE = 38,
TSERVER_EXCEPTION_LIST = 39,
TSERVER_NOT_ON_OAM_LIST = 40,
TSERVER_PBX_ID_NOT_IN_SDB = 41,
TSERVER_USER_LICENSES_EXCEEDED = 42,
TSERVER_OAM_DROP_CONNECTION = 43,
TSERVER_NO_VERSION_RECORD = 44,
 TSERVER_OLD_VERSION_RECORD = 45,
TSERVER_BAD_PACKET = 46,
TSERVER_OPEN_FAILED = 47,
TSERVER_OAM_IN_USE = 48,
TSERVER_DEVICE_NOT_ON_HOME_LIST = 49,
TSERVER_DEVICE_NOT_ON_CALL_CONTROL_LIST = 50,
TSERVER_DEVICE_NOT_ON_AWAY_LIST = 51,
TSERVER_DEVICE_NOT_ON_ROUTE_LIST = 52,
TSERVER_DEVICE_NOT_ON_MONITOR_DEVICE_LIST = 53,
TSERVER_DEVICE_NOT_ON_MONITOR_CALL_DEVICE_LIST = 54,
TSERVER_NO_CALL_CALL_MONITOR_PERMISSION = 55,
TSERVER_HOME_DEVICE_LIST_EMPTY = 56,
TSERVER_CALL_CONTROL_LIST_EMPTY = 57,
TSERVER_AWAY_LIST_EMPTY = 58,
TSERVER_ROUTE_LIST_EMPTY = 59,
TSERVER_MONITOR_DEVICE_LIST_EMPTY = 60,
TSERVER_MONITOR_CALL_DEVICE_LIST_EMPTY = 61,
TSERVER_USER_AT_HOME_WORKTOP = 62,
TSERVER_DEVICE_LIST_EMPTY = 63,
TSERVER_BAD_GET_DEVICE_LEVEL = 64,
TSERVER_DRIVER_UNREGISTERED = 65,
TSERVER_NO_ACS_STREAM = 66,
TSERVER_DROP_OAM = 67,
TSERVER_ECB_TIMEOUT = 68,
TSERVER_BAD_ECB = 69,
TSERVER_ADVERTISE_FAILED = 70,
TSERVER_NETWARE_FAILURE = 71,
TSERVER_TDI_QUEUE_FAULT = 72,
TSERVER_DRIVER_CONGESTION = 73,
TSERVER_NO_TDI_BUFFERS = 74,
TSERVER_OLD_INVOKEID = 75,
TSERVER_HWMARK_TO_LARGE = 76,
TSERVER_SET_ECB_TO_LOW = 77,
TSERVER_NO_RECORD_IN_FILE = 78,
TSERVER_DRIVER_CONGESTION = 73,
DRIVER_DUPLICATE_ACSHANDLE = 1000,
DRIVER_INVALID_ACS_REQUEST = 1001,
DRIVER_ACS_HANDLE_REJECTION = 1002,
DRIVER_INVALID_CLASS_REJECTION = 1003,
DRIVER_GENERIC_REJECTION = 1004,
DRIVER_RESOURCE_LIMITATION = 1005,
DRIVER_ACSHANDLE_TERMINATION = 1006,
DRIVER_LINK_UNAVAILABLE = 1007

} ACSUniversalFailure_t;

4-70 Control Services

Tserver Operation errorsXE
"ACSUniversalFailureEvent:Tserver operation errors"§

TServer operation errors indicate that there is an error in the
Service Request. These include the following specific error
values:

TSERVER_STREAM_FAILED
XE "Tserver Errors:Stream Failed"§The Client
Library detected that the ACS Stream failed.

TSERVER_NO_THREAD
XE "Tserver Errors:No Thread"§One or more
the threads (processes) that make up the Tserver
could not be created.

TSERVER_BAD_DRIVER_ID
XE "Tserver Errors:Bad Driver ID"§One of
the threads (processes) that make up the Tserver
encountered a bad Driver Identification number
during processing.

TSERVER_DEAD_DRIVER
XE "Tserver Errors:Dead Driver"§A Driver
has not sent a heart beat messages to the Tserver
form the last three minutes. The Driver may be in
an inoperable state.

TSERVER_MESSAGE_HIGH_WATER_MARK
XE "Tserver Errors:Message High Water
Mark"§The message rate between a client and
the Tserver or the Tserver and a Driver has
exceeded the high water mark rate.

TSERVER_FREE_BUFFER_FAILED
XE "Tserver Errors:Free Buffer Failed"§The
Tserver was unable to free Tserver Driver

DRAFT 2.0 Telephony Services API 4-71

Interface (TDI) memory.

TSERVER_SEND_TO_DRIVER
XE "Tserver Errors:Send To Driver"§The Tserver
was unable to send a message to a Driver.

TSERVER_RECEIVE_FROM_DRIVER
XE "Tserver Errors:Receive From Driver"§The
Tserver was unable to receive a message from a
Driver.

TSERVER_REGISTRATION_FAILED
XE "Tserver Errors:Registration Failed"§A
Driver's attempt to register with the Tserver
failed.

TSERVER_SPX_FAILED
XE "Tserver Errors:Spx Failed"§ A NetWare SPX
call failed in the Tserver.

TSERVER_TRACE
XE "Tserver Errors:Trace"§Used by the Tserver
for debugging purposes only.

TSERVER_NO_MEMORY
XE "Tserver Errors:No Memory"§The Tserver
was unable to allocate a piece of memory.

TSERVER_ENCODE_FAILED
XE "Tserver Errors:Encode Failed"§The Tserver
was unable to encode a message for shipment to a
client workstation.

TSERVER_DECODE_FAILED
XE "Tserver Errors:Decode Failed"§ The
Tserver was unable to decode a message from a
client workstation.

4-72 Control Services

TSERVER_BAD_CONNECTION
XE "Tserver Errors:Bad Connection"§The
Tserver tried to process a request with a bad client
connection ID number.

TSERVER_BAD_PDU
XE "Tserver Errors:Bad PDU"§The Tservers
internal table of Protocol Descriptor Units is
corrupted.

TSERVER_NO_VERSION
XE "Tserver Errors:No Version"§The Tserver
processed a ACSOpenStreamConfEvent from a
Driver in which one or more the version fields
was not set.

TSERVER_ECB_MAX_EXCEEDED
XE "Tserver Errors:ECB Max Exceeded"§The
Tserver can not process a message from the driver
because the message is larger than the sum of the
ECBs allocated for this driver.

TSERVER_NO_ECBS
XE "Tserver Errors:No ECBS"§The Tserver
has no available ECBs to send events to the client.

TSERVER_NO_RESOURCE_TAG
XE "Tserver Errors:No Resource Tag"§The
Tserver was unable to get a resource tag for the
purpose of allocating memory.

TSERVER_INVALID_MESSAGE
XE "Error:Tserver:See TServer Errors"§XE
"Tserver Errors:Invalid Message"§The Tserver
received an invalid Tserver OAM message.

DRAFT 2.0 Telephony Services API 4-73

Tserver Security Data Base errorsXE
"ACSUniversalFailureEvent:Security database errors"§

Error values in this category indicate that there is an error in the
process of an event which requires a check against the Security
Data Base. This type includes one of the following specific error
values:

TSERVER_NO_SDB
XE "Error:Tserver No SDB"§XE "Tserver
Errors:No SDB"§One or more the files that
makeup the Security Data Base is not present on
the server or can not be opened.

TSERVER_NO_SDB_CHECK_NEEDED
XE "Error:Tserver No SDB Check Needed"§XE
"Tserver Errors:No SDB Check Needed"§The
requested service event does not require a
Security Data Base check.

TSERVER_SDB_CHECK_NEEDED
XE "Error:Tserver SDB Check Needed"§XE
"Tserver Errors:SDB Check Needed"§The
requested service event does require a Security
Data Base check.

TSERVER_BAD_SDB_LEVEL
XE "Error:Tserver Bad SDB Level"§XE
"Tserver Errors:Bad SDB Level"§The Tservers
internal table of API calls indicating which level
of security to perform on the request is corrupted.

TSERVER_BAD_SERVERID
XE "Error:Tserver Bad Server ID"§XE
"Tserver Errors:Bad Server ID"§The Tserver
rejected an ACSOpenStream request because the
Server ID in the message did not match a Driver

4-74 Control Services

supported by this Tserver.

TSERVER_BAD_STREAM_TYPE
XE "Error:Tserver Bad Stream Type"§XE
"Tserver Errors:Bad Stream Type"§The stream
type an ACSOpenStream request was invalid.

TSERVER_BAD_PASSWORD_OR_LOGIN
XE "Error:Tserver Bad Password Or
Login"§XE "Tserver Errors:Bad Password Or
Login"§The Password or Login or both from an
ACSOpenStream request did not match an entry
in the Bindery on the server the Tserver is
running on.

TSERVER_NO_USER_RECORD
XE "Error:Tserver No User Record"§XE
"Tserver Errors:No User Record"§No user
record was found in the Security Data Base for
the login specified in the ACSOpenStream
request.

TSERVER_NO_DEVICE_RECORD
XE "Error:Tserver No Device Record"§XE
"Tserver Errors:No Device Record"§No device
record was found in the Security Data Base for
the device specified in the API call.

TSERVER_DEVICE_NOT_ON_LIST
XE "Error:Tserver Device Not On List"§XE
"Tserver Errors:Device Not On List"§The
specified device in an API call was not found on
any device list administered for this user.

TSERVER_USERS_RESTRICTED_HOME
XE "Error:Tserver Users Restricted
Home"§XE "Tserver Errors:Users Restricted

DRAFT 2.0 Telephony Services API 4-75

Home"§The Tserver is administered to restrict
users to home worktops so no checking is done
against away worktop devices.

TSERVER_NO_AWAYPERMISSION
XE "Error:Tserver No Away Permission"§XE
"Tserver Errors:No Away Permission"§The
Tserver rejected a service request because the
device did not match a device associated with an
away worktop.

TSERVER_NO_HOMEPERMISSION
XE "Error:Tserver No Home
Permisssion"§XE "Tserver Errors:No Home
Permisssion"§The Tserver rejected a service
request because the device did not match a device
associated with a home worktop.

TSERVER_NO_AWAY_WORKTOP
XE "Error:Tserver No Away Worktop"§XE
"Tserver Errors:No Away Worktop"§The
away worktop the user is working from is not
administered in the Security Data Base.

TSERVER_BAD_DEVICE_RECORD
XE "Error:Tserver Bad Device Record"§XE
"Tserver Errors:Bad Device Record"§The
Tserver read a device record from the Security
Data Base that contained corrupted information.

TSERVER_DEVICE_NOT_SUPPORTED
XE "Error:Tserver Device Not
Supported"§XE "Tserver Errors:Device Not
Supported"§The device in the API call is
administered to be supported by a different
Tserver.

4-76 Control Services

TSERVER_INSUFFICIENT_PERMISSION
XE "Error:Tserver Insufficient
Permission"§XE "Tserver Errors:Insufficient
Permission"§The device in the API call is at the
users away worktop and the device has a higher
permission level than the user, preventing the user
from controlling the device.

TSERVER_EXCEPTION_LIST
XE "Error:Tserver Exception List"§XE
"Tserver Errors:Exception List"§The device in
the API call is on an exception list which is
administered as part of the information for this
user.

Driver ErrorsXE "ACSUniversalFailureEvent:Driver errors"§

XE "Driver errors"§Error values in this category indicate that
the driver detected an error. This type includes one of the
following specific error values:

DRIVER_DUPLICATE_ACSHANDLE
XE "Error:Driver:See Driver Errors"§XE "Driver
errors:Duplicate ACSHandle"§The acsHandle
given for an ACSOpenStream request is already
in use for a session. The already open session
with the acsHandle is remains open.

DRIVER_INVALID_ACS_REQUEST
XE "Driver errors:Invalid ACS Request"§The
ACS message contains an invalid or unknown
request. The request is rejected.

DRIVER_ACS_HANDLE_REJECTION
XE "Driver ACS Handle Rejection"§XE
"Driver errors:ACS Handle Rejection"§A
CSTA request was issued with no prior

DRAFT 2.0 Telephony Services API 4-77

ACSOpenStream request. The request is
rejected.

DRIVER_INVALID_CLASS_REJECTION
XE "Driver errors:Invalid Class
Rejection"§The driver received a message
containing an invalid or unknown message class.
The request is rejected.

DRIVER_GENERIC_REJECTION
XE "Driver errors:Generic Rejection"§The
driver detected an invalid message for something
other than message type or message class. This is
an internal error and should be reported.

DRIVER_RESOURCE_LIMITATION
XE "Driver errors:Resource Limitation"§The
driver did not have adequate resources (i.e.
memory, etc.) to complete the requested
operation. This is an internal error and should be
reported.

DRIVER_ACSHANDLE_TERMINATION
XE "Driver ACSHandle Termination"§XE
"Driver errors:ACSHandle Termination"§Due
to problems with the link to the switch the driver
has found it necessary to terminate the session
with the given acsHandle. The session will be
closed, and all outstanding requests will
terminate.

DRIVER_LINK_UNAVAILABLE
XE "Driver errors:Link Unavailable"§The
driver was unable to open the new session
because no link was available to the PBX. The
link may have been placed in the BLOCKED
state, or it may have been taken off-line.

4-78 Control Services

DRAFT 2.0 Telephony Services API 4-79

ACS Data TypesXE "ACS Data Types"§XE "Data
Types:ACS"§

This section defines all the data types which are used with the
ACS functions and messages and may repeat data types already
shown in the ACS Control Functions. Refer to the specific
commands for any operational differences in these data types.
The ACS data types are type defined in the acs.h header file.

ACS Common Data TypesXE "ACS Data Types:Common"§

This section specifies the common ACS data types.
typedef int RetCode_t;

#define ACSPOSITIVE_ACK 0 /* Successful function return */

/* Error Codes */

#define ACSERR_APIVERDENIED -1 /* The API Version
 * requested is invalid
 * and not supported by
 *the API Client Library

 */

#define ACSERR_BADPARAMETER -2 /* One or more of the
.* parameters is invalid
 */

#define ACSERR_DUPSTREAM -3 /* This return indicates
 * that an ACS Stream is
 * already established
 * with the requested
 * Server.
 */

#define ACSERR_NODRIVER -4 /* This error return
 * value indicates that
 * no API Client Library * Driver was

found or
 *installed on the system */

#define ACSERR_NOSERVER -5 /* the requested Server
 * is not present in the * network.
 */

4-80 Control Services

#define ACSERR_NORESOURCE -6 /* there are insufficient
 * resourcesto open a
 * ACS Stream.
 */

#define ACSERR_UBUFSMALL -7 /* The user buffer size
 * was smaller than the
 * size of the next
 * available event.
 */

#define ACSERR_NOMESSAGE -8 /* There were no messages
 *available to return to
 * the application.
 */

#define ACSERR_UNKNOWN -9 /* The ACS Stream has
 * encounteredan
 * unspecified error.
 */

#define ACSERR_BADHDL -10 /* The ACS Handle is
 * invalid
 */

#define ACSERR_STREAM_FAILED -11 /* The ACS Stream has
 * failed due to
 * network problems.
 * No further
 * operations are
 * possible on this *

stream.
 */

#define ACSERR_NOBUFFERS -12 /* There were not
 * enough buffers
 * available to place
 * an outgoing message
 * on the send queue.
 * No message has been *

sent.
 */

#define ACSERR_QUEUE_FULL -13 /* The send queue is
 * full. No message
 *has been sent.
 */

typedef unsigned long InvokeID_t;

typedef enum {
APP_GEN_ID, // application will provide invokeIDs;

// any 4-byte value is legal
LIB_GEN_ID // library will generate invokeIDs in

// the range 1-32767
} InvokeIDType_t;

DRAFT 2.0 Telephony Services API 4-81

typedef unsigned short ACSHandle_t;

typedef unsigned short EventClass_t;

// defines for ACS event classes

#define ACSREQUEST 0
#define ACSUNSOLICITED 1
#define ACSCONFIRMATION 2

typedef unsigned short EventType_t; // event types are
// defined in acs.h
// and csta.h

typedef char Boolean;
typedef char Nulltype;

#define ACS_OPEN_STREAM 1
#define ACS_OPEN_STREAM_CONF 2
#define ACS_CLOSE_STREAM 3
#define ACS_CLOSE_STREAM_CONF 4
#define ACS_ABORT_STREAM 5
#define ACS_UNIVERSAL_FAILURE_CONF 6
#define ACS_UNIVERSAL_FAILURE 7

typedef enum StreamType_t {
ST_CSTA = 1,
ST_OAM = 2,

} StreamType_t;

typedef char ServerID_t[49];

typedef char LoginID_t[49];

typedef char Passwd_t[49];

typedef char AppName_t[21];

typedef enum Level_t {
ACS_LEVEL1 = 1,
ACS_LEVEL2 = 2,
ACS_LEVEL3 = 3,
ACS_LEVEL4 = 4

} Level_t;

typedef char Version_t[21];

ACS Event Data TypesXE "ACS Data Types:Event"§

This section specifies the ACS data types used in the
construction of generic ACSEvent_t structures (see section 4.6).

4-82 Control Services

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;
EventType_t eventType;

} ACSEventHeader_t;

typedef struct
{

union
{
ACSUniversalFailureEvent_t failureEvent;
} u;

} ACSUnsolicitedEvent;

typedef struct
{

InvokeID_t invokeID;
union
{
ACSOpenStreamConfEvent_t acsopen;
ACSCloseStreamConfEvent_t acsclose;
ACSUniversalFailureConfEvent_t failureEvent;
} u;

} ACSConfirmationEvent;

DRAFT 2.0 Telephony Services API 4-83

CSTA Control Services and Confirmation Events

XE "CSTA:Control Services"§XE "CSTA:Confirmation
Events"§This section defines the CSTA functions associated
with the Telephony Server's Services. These functions are used
to determine types and capabilities of Telephony Servers and
Drivers connected to Telephony Servers and to determine the set
of devices an application can control, monitor and query.

4-84 Control Services

cstaGetAPICaps()XE " cstaGetAPICaps()"§

cstaGetAPICaps() obtains the CSTA API function and event
capabilities which are supported by the Telephony Servers on the
system. The servers could be a local client Telephony Server or a
remote Telephony Server across a network or internetwork. If a
capability is supported then any corresponding confirmation
event is also supported.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaGetAPICaps(
ACSHandle_t acsHandle,
InvokeID_t invokeID);

Parameters

acsHandle
This is the handle to an active ACS Stream.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the
Invoke ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS
Library when the Stream is set for Library-generated invoke IDs.

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive

DRAFT 2.0 Telephony Services API 4-85

value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the
CSTAGetAPICapsConfEvent message to ensure that the
service request has been acknowledged and processed by the
Telephony Server and the switch.

The following are possible negative error conditions for this
function:

ACSERR_BADHDL
This indicates that the acsHandle being used is
not a valid handle for an active ACS Stream. No
changes occur in any existing streams if a bad
handle is passed with this function.

Comments

If this function returns with a POSITIVE_ACK, the request has
been forwarded to the Telephony Server, and the application
will receive an indication of the support for the capabilities in a
CSTAGetAPICapsConfEvent. An active ACS Stream is
required to the server before this function is called.

The application may use this command to determine which
functions and events are supported by the requested Telephony
Server. This will avoid unnecessary negative acknowledgments
from the Telephony Server when a specific API function or
event is not supported..

4-86 Control Services

DRAFT 2.0 Telephony Services API 4-87

CSTAGetAPICapsConfEventXE "CSTAGetAPICapsConfEvent"§

This event is in response to the cstaGetAPICaps() function and
it provides an indication of whether the requested function or
event is supported by a specific Telephony Server.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See CSTA Data Types for a complete
description of the event structure.
typedef struct
{ ACSHandle_t acsHandle; EventClass_t

eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union

{ struct
{ InvokeID_t invokeID; union

{
 CSTAGetAPICapsConfEvent_t getAPIcaps;

} u;
} cstaConfirmation;

} event;} CSTAEvent_t;
typedef struct CSTAGetAPICapsConfEvent_t {
 short alternateCall;
 short answerCall;
 short callCompletion;
 short clearCall;
 short clearConnection;
 short conferenceCall;
 short consultationCall;
 short deflectCall;
 short pickupCall;
 short groupPickupCall;
 short holdCall;
 short makeCall;
 short makePredictiveCall;
 short queryMwi;
 short queryDnd;
 short queryFwd;
 short queryAgentState;
 short queryLastNumber;
 short queryDeviceInfo;
 short reconnectCall;

4-88 Control Services

 short retrieveCall;
 short setMwi;
 short setDnd;
 short setFwd;
 short setAgentState;
 short transferCall;
 short eventReport;
 short callClearedEvent;
 short conferencedEvent;
 short connectionClearedEvent;
 short deliveredEvent;
 short divertedEvent;
 short establishedEvent;
 short failedEvent;
 short heldEvent;
 short networkReachedEvent;
 short originatedEvent;
 short queuedEvent;
 short retrievedEvent;
 short serviceInitiatedEvent;
 short transferedEvent;
 short callInformationEvent;
 short doNotDisturbEvent;
 short forwardingEvent;
 short messageWaitingEvent;
 short loggedOnEvent;
 short loggedOffEvent;
 short notReadyEvent;
 short readyEvent;
 short workNotReadyEvent;
 short workReadyEvent;
 short backInServiceEvent;
 short outOfServiceEvent;
 short privateEvent;
 short routeRequestEvent;
 short reRoute;
 short routeSelect;
 short routeUsedEvent;
 short routeEndEvent;
 short monitorDevice;
 short monitorCall;
 short monitorCallsViaDevice;
 short changeMonitorFilter;
 short monitorStop;
 short monitorEnded;
 short snapshotDeviceReq;
 short snapshotCallReq;
 short escapeService;
 short privateStatusEvent;
 short escapeServiceEvent;
 short escapeServiceConf;
 short sendPrivateEvent;
 short sysStatReq;
 short sysStatStart;
 short sysStatStop;
 short changeSysStatFilter;
 short sysStatReqEvent;

DRAFT 2.0 Telephony Services API 4-89

 short sysStatReqConf;
 short sysStatEvent;
} CSTAGetAPICapsConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION, which
identifies this message as an ACS confirmation event.

eventType
This is a tag with the value CSTA_GETAPI_CAPS_CONF ,
which identifies this message as an
CSTAGetAPICapsConfEvent.

getAPIcaps
This structure contains a integer for each possible CSTA
capability which indicates whether the capability is supported.
A value of 0 indicates the capability is not supported, a positive
value indicates the version of the API (this version is distinct
from the version of the API requested in the ACSopen) call that
is supported.

For this release of the API, all API calls are on version 1.

Comments

This event will provide the application with compatibility
information for a specific Telephony Server on a
command/event basis. All the commands and events supported
by a Telephony Server must be supported as defined in this
document.

4-90 Control Services

cstaGetDeviceList()XE " cstaGetDeviceList()"§

This is used to obtain the list of Devices that can be controlled,
monitored, queried or routed for the ACS Stream indicated by
the acsHandle.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaGetDeviceList(
ACSHandle_t acsHandle,
InvokeID_t invokeID,
long index,
CSTALevel_t level)

Parameters

acsHandle
This is the handle to an active ACS Stream.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the
Invoke ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS
Library when the Stream is set for Library-generated invoke IDs.

index
The security data base could contain a large number of devices
that a user has privilege over, so this API call will return only
CSTA_MAX_GETDEVICE devices in any one
CSTAGetDeviceListConfEvent, which means several calls to
cstaGetDeviceList() may be necessary to retrieve all the devices.
Index should be set of -1 the first time this API is called and
then set to the value of Index returned in the confirmation event.
Index will be set back to -1 in the

DRAFT 2.0 Telephony Services API 4-91

CSTAGetDeviceListConfEvent which contains the last batch
of devices.

level
This parameter specifies the class of service for which the user
wants to know the set of devices that can be controlled via this
ACS stream. level must be set to one of the following:

typedef enum CSTALevel_t {
 CSTA_HOME_WORK_TOP = 1,
 CSTA_AWAY_WORK_TOP = 2,
 CSTA_DEVICE_DEVICE_MONITOR = 3,
 CSTA_CALL_DEVICE_MONITOR = 4,
 CSTA_CALL_CONTROL = 5,
 CSTA_ROUTING = 6,
 CSTA_CALL_CALL_MONITOR = 7
} CSTALevel_t;

To determine if an ACS stream has permission to do
call/call monitoring, use the API call
CSTAQueryCallMonitor.

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the

4-92 Control Services

CSTAGetDeviceListConfEvent message to ensure that the
service request has been acknowledged and processed by the
Telephony Server and the switch.

The following are possible negative error conditions for this
function:

ACSERR_BADHDL
This indicates that the acsHandle being used is
not a valid handle for an active ACS Stream. No
changes occur in any existing streams if a bad
handle is passed with this function.

DRAFT 2.0 Telephony Services API 4-93

CSTAGetDeviceListConfEventXE "CSTAGetDeviceListConfEvent"§

This event is in response to the cstaGetDeviceList() function
and it provide a list of the devices which can be controlled for
the indicated ACS Level.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See ACS Data Types and CSTA Data
Types for a complete description of the event structure.
typedef struct
{ ACSHandle_t acsHandle; EventClass_t

eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID; union
{
 CSTAGetDeviceListConfEvent_t getDeviceList;
} event;

} cstaConfirmation;
} u;} CSTAEvent_t;

typedef enum SDBLevel_t {
 NO_SDB_CHECKING = 1,
 ACS_ONLY = 2,
 ACS_AND_CSTA_CHECKING = 3
} SDBLevel_t;

typedef struct CSTAGetDeviceList_t {
 long index;
 CSTALevel_t level;
} CSTAGetDeviceList_t;

typedef struct DeviceList {
 short count;
 DeviceID_t device[20];

4-94 Control Services

} DeviceList;

typedef struct CSTAGetDeviceListConfEvent_t {
 SDBLevel_t driverSdbLevel;
 CSTALevel_t level;
 long index;
 DeviceList devList;
} CSTAGetDeviceListConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION, which
identifies this message as an ACS confirmation event.

eventType
This is a tag with the value
CSTA_GET_DEVICE_LIST_CONF, which identifies this
message as an CSTAGetDeviceListConfEvent.

invokeID
This parameter specifies the requested instance of the function. It
is used to match a specific function request with its confirmation
events.

driverSdbLevel
This parameter indicates the Security Level with which the
Driver registered. Possible values are:

NO_SDB_CHECKING Not Used.

ACS_ONLY Check ACSOpenStream requests only

ACS_AND_CSTA_CHECKING Check ACSOpenStream and all

DRAFT 2.0 Telephony Services API 4-95

applicable CSTA messages

index
This parameter indicates to the client application the current
index the Tserver is using for returning the list of devices. The
client application should return this value in the next call to
CSTAGetDeviceList to continue receiving devices. A value of (-
1) indicates there are no more devices in the list.

devlist
This parameter is a structure which contains an array of
DeviceID_t which contain the devices for this stream.

4-96 Control Services

cstaQueryCallMonitor()XE "cstaQueryCallMonitor()"§

This is used to determine the if a given ACS stream has
permission to do call/call monitoring in the security database.

Syntax
#include <csta.h>
#include <acs.h>

RetCode_t cstaGetDeviceList(
ACSHandle_t acsHandle,
InvokeID_t invokeID)

Parameters

acsHandle
This is the handle to an active ACS Stream.

invokeID
A handle provided by the application to be used for matching a
specific instance of a function service request with its associated
confirmation event. This parameter is only used when the
Invoke ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS
Library when the Stream is set for Library-generated invoke IDs.

Return Values

This function returns the following values depending on whether
the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call
completes successfully it will return a positive
value, i.e. the invoke identifier. If the call fails a
negative error (<0) condition will be returned. For
library-generated identifiers the return will never
be zero (0).

DRAFT 2.0 Telephony Services API 4-97

Application-generated Identifiers - if the function
call completes successfully it will return a zero
(0) value. If the call fails a negative error (<0)
condition will be returned. For application-
generated identifiers the return will never be
positive (>0).

The application should always check the
CSTAQueryCallMonitorConfEvent message to ensure that the
service request has been acknowledged and processed by the
Telephony Server and the switch.

The following are possible negative error conditions for this
function:

ACSERR_BADHDL
This indicates that the acsHandle being used is
not a valid handle for an active ACS Stream. No
changes occur in any existing streams if a bad
handle is passed with this function.

4-98 Control Services

CSTAQueryCallMonitorConfEventXE "
CSTAQueryCallMonitorConfEvent"§

This event is in response to the cstaQueryCallMonitor() function
and it provide a list of the devices which can be controlled for
the indicated ACS Level.

Syntax

The following structure shows only the relevant portions of the
unions for this message. See the ACS Data Types and CSTA
Data Types sections for a complete description of the event
structure.
typedef struct
{ ACSHandle_t acsHandle; EventClass_t

eventClass; EventType_t eventType;
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{ struct

{ InvokeID_t invokeID; union
{
 CSTAQueryCallMonitorConfEvent_t queryCallMonitor;
} event;

} cstaConfirmation;
} u;} CSTAEvent_t;

typedef struct CSTAQueryCallMonitorConfEvent_t {
 Boolean callMonitor;
} CSTAQueryCallMonitorConfEvent_t;

Parameters

acsHandle
This is the handle for the ACS Stream.

eventClass
This is a tag with the value CSTACONFIRMATION, which
identifies this message as an ACS confirmation event.

DRAFT 2.0 Telephony Services API 4-99

eventType
This is a tag with the value CSTA_QUERY_CALL_MON-
ITOR_CONF, which identifies this message as an
CSTAQueryCallMonitorConfEvent.

invokeID
This parameter specifies the requested instance of the function. It
is used to match a specific function request with its confirmation
events.

callMonitor
This parameter indicates whether or not (TRUE or FALSE) the
ACS Stream has call/call monitoring privilege.

4-100 Control Services

CSTA Event Data TypesXE "CSTA:Event Data Types"§

This section defines all the event data types which are used with
the CSTA functions and messages and may repeat data types
already shown in the CSTA Control Functions. Refer to the
specific commands for any operational differences in these data
types. The complete set of CSTA data types is given in - CSTA
Data Types. The CSTA data types are type defined in the
CSTA.H header file.

An application always receives a generic CSTAEvent_t event
structure. This structure contains an ACSEventHeader_t structure
which contains information common to all events. This common
information includes:

¨ acsHandle: Specifies the ACS Stream the event
arrived on.

¨ eventClass: Identifies the event as an ACS confirma-
tion, ACS unsolicited, CSTA confirmation, or CSTA
unsolicited event.

¨ eventType: Identifies the specific type of message
(MakeCall, confirmation event, HoldCall event, etc.)

¨ privateData: Private data defined by the specified
driver vendor.

The CSTAEvent_t structure then consists of a union of the four
possible eventClass types; ACS confirmation, ACS unsolicited,
CSTA confirmation or CSTA unsolicited event. Each eventClass
type itself consists of a union of all the possible eventTypes for
that class. Each eventClass may contain common information
such as invokeID and monitorCrossRefID.

DRAFT 2.0 Telephony Services API 4-101

/* CSTA Control Services Header File <CSTA.H> */

#include <acs.h>// defines for CSTA event classes

#define CSTAREQUEST 3
#define CSTAUNSOLICITED 4
#define CSTACONFIRMATION 5
#define CSTAEVENTREPORT 6

typedef struct {
InvokeID_t invokeID;
union
{

CSTARouteRequestEvent_t routeRequest;
CSTAReRouteRequest_t reRouteRequest;
CSTAEscapeSvcReqEvent_t escapeSvcReqeust;
CSTASysStatReqEvent_t sysStatRequest;

} u;
} CSTARequestEvent;

typedef struct {
union
{

CSTARouteRegisterAbortEvent_t registerAbort;
CSTARouteUsedEvent_t routeUsed;
CSTARouteEndEvent_t routeEnd;
CSTAPrivateEvent_t privateEvent;
CSTASysStatEvent_t sysStat;
CSTASysStatEndedEvent_t sysStatEnded;

}u;
} CSTAEventReport;

4-102 Control Services

typedef struct {
CSTAMonitorCrossRefID_t monitorCrossRefId;
union
{

CSTACallClearedEvent_t callCleared;
CSTAConferencedEvent_t conferenced;
CSTAConnectionClearedEvent_t connectionCleared;
CSTADeliveredEvent_t delivered;
CSTADivertedEvent_t diverted;
CSTAEstablishedEvent_t established;
CSTAFailedEvent_t failed;
CSTAHeldEvent_t held;
CSTANetworkReachedEvent_t networkReached;
CSTAOriginatedEvent_t originated;
CSTAQueuedEvent_t queued;
CSTARetrievedEvent_t retrieved;
CSTAServiceInitiatedEvent_t serviceInitiated;
CSTATransferedEvent_t transfered;
CSTACallInformationEvent_t callInformation;
CSTADoNotDisturbEvent_t doNotDisturb;
CSTAForwardingEvent_t forwarding;
CSTAMessageWaitingEvent_t messageWaiting;
CSTALoggedOnEvent_t loggedOn;
CSTALoggedOffEvent_t loggedOff;
CSTANotReadyEvent_t notReady;
CSTAReadyEvent_t ready;
CSTAWorkNotReadyEvent_t workNotReady;
CSTAWorkReadyEvent_t workReady;
CSTABackInServiceEvent_t backInService;
CSTAOutOfServiceEvent_t outOfService;
CSTAPrivateStatusEvent_t privateStatus;
CSTAMonitorEndedEvent_t monitorEnded;

} u;
} CSTAUnsolicitedEvent;

DRAFT 2.0 Telephony Services API 4-103

typedef struct
{

InvokeID_t invokeID;
union
{

CSTAAlternateCallConfEvent_t alternateCall;
CSTAAnswerCallConfEvent_t answerCall;
CSTACallCompletionConfEvent_t callCompletion;
CSTAClearCallConfEvent_t clearCall;
CSTAClearConnectionConfEvent_t clearConnection;
CSTAConferenceCallConfEvent_t conferenceCall;
CSTAConsultationCallConfEvent_t consultationCall;
CSTADeflectCallConfEvent_t deflectCall;
CSTAPickupCallConfEvent_t pickupCall;
CSTAGroupPickupCallConfEvent_t groupPickupCall;
CSTAHoldCallConfEvent_t holdCall;
CSTAMakeCallConfEvent_t makeCall;
CSTAMakePredictiveCallConfEvent_t makePredictiveCall;
CSTAQueryMwiConfEvent_t queryMwi;
CSTAQueryDndConfEvent_t queryDnd;
CSTAQueryFwdConfEvent_t queryFwd;
CSTAQueryAgentStateConfEvent_t queryAgentState;
CSTAQueryLastNumberConfEvent_t queryLastNumber;
CSTAQueryDeviceInfoConfEvent_t queryDeviceInfo;
CSTAReconnectCallConfEvent_t reconnectCall;
CSTARetrieveCallConfEvent_t retrieveCall;
CSTASetMwiConfEvent_t setMwi;
CSTASetDndConfEvent_t setDnd;
CSTASetFwdConfEvent_t setFwd;
CSTASetAgentStateConfEvent_t setAgentState;
CSTATransferCallConfEvent_t ransferCall;
CSTAUniversalFailureConfEvent_t universalFailure;
CSTAMonitorConfEvent_t monitorStart;
CSTAChangeMonitorFilterConfEvent_t changeMonitorFilter;
CSTAMonitorStopConfEvent_t monitorStop;
CSTASnapshotDeviceConfEvent_t snapshotDevice;
CSTASnapshotCallConfEvent_t snapshotCall;
CSTARouteRegisterReqConfEvent_t sysStatStart;
CSTASysStatStopConfEvent_t sysStatStop;
CSTAChangeSysStatFilterConfEvent_t changeSysStatFilter;

} u;
} CSTAConfirmationEvent;

#define CSTA_MAX_HEAP 1024

4-104 Control Services

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

ACSUnsolicitedEvent acsUnsolicited;
ACSConfirmationEvent acsConfirmation;
CSTARequestEvent cstaRequest;
CSTAUnsolicitedEvent cstaUnsolicited;
CSTAConfirmationEvent cstaConfirmation;

} event;
char heap[CSTA_MAX_HEAP];
} CSTAEvent_t

DRAFT 2.0 Telephony Services API 4-105

	TSAPI provides two kinds of control services: API Control ServicesXE "Application Programming Interface Control Services:See ACS" t " "§XE "API Control Services:See ACS" t " "§, or ACSXE "ACS"§, and CSTA Control ServicesXE "CSTA:Control Services"§. ApplicationsXE "Applications"§ use ACS to manage their interactions with NetWare Telephony Services. While most applications will use ACS to access CSTA services, applications that administer PBX drivers use ACS to interface to the PBX Driver. ACS functions manage the interface, while CSTA functions (chapters 5 through 9) provide the CSTA services. Applications use ACS to:
	Applications use the CSTA Control ServicesXE "CSTA:Control Services"§, discussed in the later sections of this chapter, to:
	Opening, Closing and Aborting an ACS Stream
	To obtain Telephony Services an application must open an ACS streamXE "ACS stream:Opening"§XE "ACS stream:Closing"§XE "ACS stream:Aborting"§ (or session). This stream establishes a logical linkXE "Logical:Link"§ between the application and call processing software on the switch. The application requests CSTA services (such as making a call) over the stream. Within a Telephony Server, the Telephony Server NLM and the PBX Driver NLM cooperate to provide ACS Streams. The Telephony Server NLM also does security checkingXE "Administration"§ to ensure that an application receives CSTA services only for permitted Devices. Each application must open an ACS Stream before it requests any services.
	An application should only open one stream per advertised serviceXE "ACS stream:Per advertised service"§. An application may open multiple ACS streams to multiple advertised servicesXE "ACS stream:Multiple"§. As PBX drivers initialize, they register the services that they offer (administrative as well as CSTA) with a Telephony Services NLM. The system then advertises these services to applications. An application opens an ACS Stream to use an advertised service. Each stream carries messages for the application to one advertised service. Since the PBX DriversXE "PBX Drivers"§ are switch specificXE "Switch:Specific"§, some drivers may provide services on a single CTI linkXE "CTI:Link"§, while others provide services on multiple CTI links. An application cannot correlate advertised telephony services with underlying physical CTI links.
	After an application successfully receives the ACSOpenStreamConfEventXE "ACSOpenStreamConfEvent"§, it may request CSTA ServicesXE "CSTA:Services"§ such as Device (telephone) monitoring.
	The application should always check the ACSOpenStreamConfEventXE "ACSOpenStreamConfEvent"§ to ensure that the ACS StreamXE "ACS stream:Checking establishment of"§ has been successfully established before making any CSTA Service requests.
	An application is responsible for releasingXE "ACS stream:Releasing"§ its ACS Stream(s). To release the system resources associated with an ACS Stream the application may either closeXE "ACS stream:Closing"§ the stream or abortXE "ACS stream:Aborting"§ the stream. Failing to release the resources may corrupt the client system, resulting in client failure.

	After an application calls acsCloseStream()XE "acsCloseStream()"§ it may still receive eventsXE "ACS stream:Receiving events on"§ on the acsHandleXE "acsHandle"§ for that ACS Stream. The application must continue to poll until it receives the ACSCloseStreamConfEventXE "ACSCloseStreamConfEvent"§ so that the system releases all stream resources. The stream remains open until the application receives the ACSCloseStreamConfEventXE "ACSCloseStreamConfEvent"§.

	Sending CSTA Requests and Responses
	XE "ACS stream:Sending requests and responses over"§After an application opens an ACS Stream (including reception of the ACSOpenStreamConfEventXE "ACSOpenStreamConfEvent"§) it may request CSTA services and receive events. In each service request, the application passes the acsHandleXE "acsHandle"§ of the Stream over which it is making the request.
	Each service request requires an invokeIDXE "InvokeID:In service request"§ that the system will return in the confirmation eventXE "InvokeID:In confirmation event"§ (or failure event) for the function call. Since applications may have multiple requests for the same service outstanding within the same ACS Stream, invokeIDs provide a way to match the confirmation event (or failure event) to the corresponding requestXE "InvokeID:Correlating responses"§. When an application opens an ACS Stream, it specifies (for that Stream) whether it will:
	Once an application specifies this invokeID typeXE "InvokeID:Type"§ for an ACS stream, the application cannot change invokeID type for the stream.
	In general, having the TSAPI library generateXE "InvokeID:Library generated"§ unique invokeIDs simplifies application design. However, when service requests correspond to entries in a data structure, it may simplify application design to use indexesXE "InvokeID:Application generated"§ into the data structure as invokeIDsXE "InvokeID:Type"§. Application-generated invokeIDs might also point to window handles. Application-generated invokeIDs may take on any 32 bit value.

	Receiving Events
	XE "Events"§When an application successfully opens an ACS Stream, the TSAPI Library queues the ACSOpenStreamConfEventXE "ACSOpenStreamConfEvent"§ event message for the application. To receive this event, and subsequent event messages, the application must use one of two event reception methods:
	Blocking on event reports may be appropriate for applications that monitor a Device and only require processing cycles when an event occurs. However, there may be operating system specificXE "Events:Polling for"§ implications. For example, if a Windows application blocks waiting for CSTA events, then it cannot process events from it's Windows event queue.
	Regardless of the mode that an application uses to receive events, it may elect to receive an event either from a designated ACS Stream (that it opened) or from any ACS Stream (that it has opened)XE "Events:From all streams"§. TSAPI gives the application the events in chronological order from the selected Stream(s). Thus, if the application receives events from all ACS Streams, then it receives the events in chronological orderXE "Events:Chronological order"§ from all the Streams.

	The application must receive events (using either the blocking or polling method) frequently enough so that the event queue does not overflowXE "Events:Preventing queue overflow"§. TSAPI will stop acknowledging messages from the Telephony Server when the queue fills up, ultimately resulting in a loss of the stream. When a message is available, it does not matter which function an application uses to retrieve it.
	In some operating system environments (including the Windows, OS/2, Macintosh, NetWare Client), an application can use an Event Service Routine (ESR)XE "Event:Service Routine (ESR)"§ to receive asynchronous notification of arriving events. The ESR mechanism notifies the application of arriving events. It does not remove the events from the event queue. The application must use acsGetEventBlock() or acsGetEventPoll() to receive the message. The application can use an ESR to trigger a specific action when an event arrives in the event queue (i.e. post a Windowsä message for the application, or signal a semaphore in the NetWareâ environment). See the manual page for acsSetESR()XE "acsSetESR()"§ for more information about ESR use in specific operating system environments.
	TSAPI makes one other event handling function available to applications, acsFlushEventQueue(). An application uses acsFlushEventQueue() to flush all events from an ACS Stream event queue (or, if the application selects, from all ACS Stream event queues).

	Querying for Available Services
	Applications can use the acsEnumServerNames() function to obtain a list of the advertised service names. The presence of an advertised service name in the list does not mean that it is available.

	API Control Services (ACS) Functions and Confirmation Events
	This section defines the ACS function calls and their confirmation events. Applications use these functions to open ACS streams and to and manage events on ACS Streams between client workstations and the Telephony Server.
	acsOpenStream ()
	An application uses XE "acsOpenStream()"§acsOpenStream() to open an ACS stream to an advertised service. An application needs an ACS stream to access other ACS Control Services or CSTA Services. Thus, an application must call acsOpenStream() before requesting any other ACS or CSTA service. acsOpenStream() immediately returns an acsHandle; a confirmation event arrives later.
	Library-generated invokeIDs - if the function call completes successfully it will return a positive value, i.e. the invoke identifier. If the call fails a negative error (<0) condition will be returned. For library-generated identifiers the return will never be zero (0).
	Application-generated invokeIDs - if the function call completes successfully it will return a zero (0) value. If the call fails a negative error (<0) condition will be returned. For application-generated identifiers the return will never be positive (>0).

	ACSOpenStreamConfEventXE "ACSOpenStreamConfEvent"§
	This event is generated in response to the acsOpenStream() function and provides the application with status information regarding the requested open of an ACS Stream with the Telephony Server. The application may only perform the ACS functions acsEventNotify(), acsSetESR(), acsGetEventBlock(), acsGetEventPoll(), and acsCloseStream() on an acsHandle until this confirmation event has been received.

	acsCloseStream()XE "acsCloseStream ()"§
	This function closes an ACS Stream to the Telephony Server. The application will be unable to request services from the Telephony Server after the acsCloseStream() function has returned. The acsHandle is valid on this stream after the acsCloseStream() function returns, but can only be used to receive events via the acsGetEventBlock() or acsGetEventPoll() functions. The application must receive the ACSCloseStreamConfEvent associated with this function call to indicate that the ACS Stream associated with the specified acsHandle has been terminated and to allow stream resources to be freed.

	ACSCloseStreamConfEventXE "ACSCloseStreamConfEvent"§
	This event is generated in response to the acsCloseStream() function and provides information regarding the closing of the ACS Stream The acsHandle is no longer valid after this event has been received by the application, so the ACSCloseStreamConfEvent is the last event the application will receive for this ACS Stream.

	ACSUniversalFailureConfEventXE "ACSUniversalFailureConfEvent"§
	This event can occur at any time in place of a confirmation event for any of the CSTA functions which have their own confirmation event and indicates a problem in the processes of the requested function. It does not indicate a failure or lost of the ACS Stream with the Telephony Server. If the ACS Stream has failed, then an ACSUniversalFailureEvent (unsolicited version of this confirmation event) is sent to the application.

	acsAbortStream()XE "acsAbortStream()"§
	This function unilaterally closes an ACS Stream to the Telephony Server. The application will be unable to request services from the Telephony Server or receive events after the acsAbortStream() func­tion has returned. The acsHandle is invalid on this stream after the acsAbortStream() function returns. There is no associated confirma­tion event for this function.

	acsGetEventBlock()XE "acsGetEventBlock()"§
	This function is used when an application wants to receive an event in a Blocking mode. In the Blocking mode the application will be blocked until there is an event from the ACS Stream indicated by the acsHandle. If the acsHandle is set to zero (0), then the application will block until there is an event from any ACS stream opened by this application. The function will return after the event has been copied into the applications data space.

	acsGetEventPoll()XE "acsGetEventPoll()"§
	This function is used when an application wants to receive an event in a Non-Blocking mode. In the Non-Blocking mode the oldest outstanding event from any active ACS Stream will be copied into the applications data space and control will be returned to the application. If no events are currently queued for the application, the function will return control immediately to the application with an error code indicating that no events were available.

	acsGetFile() (UnixWare)XE "acsGetFile() (UnixWare)"§
	The acsGetFile() function returns the Unix file descriptor associated with an ACS stream. This is to enable multiplexing of input sources via, for example, the poll() system call.

	acsSetESR() (Windows)XE "acsSetESR():Windows"§
	The acsSetESR() function also allows the application to designate an Event Service Routine (ESR) that will be called when an incoming event is available.
	acsSetESR() (Macintosh)xe "acsSetESR():Macintosh"§
	The acsSetESR() function allows application to designate an Event Service Routine (ESR) that will be called when an incoming event is available.

	acsSetESR() (OS/2 2.1)XE "acsSetESR()"§
	The acsSetESR() function allows the application to designate an Event Service Routine (ESR) that will be called when an incoming event is available.

	acsEventNotify() (Windows 3.1) XE "acsEventNotify():Windows 3.1"§
	The acsEventNotify() function allows a Windows application to request that a message be posted to its application queue when an incoming ACS event is available.
	acsEventNotify() (Macintosh) xe "acsEventNotify():Macintosh"§
	The acsEventNotify() function allows a Macintosh application to request that it receive an Apple Event when an incoming ACS event is available.

	acsEventNotify() (OS/2 2.1) XE "acsEventNotify() (Windows 3.1) "§
	The acsEventNotify() function allows an OS/2 PM application to request that a message be posted to its application queue when an incoming ACS event is available.

	acsFlushEventQueue()XE "acsFlushEventQueue()"§
	This function removes all events for the application on a ACS Stream associated with the given handle and maintained by the API Client Library. Once this function returns the application may receive any new events that arrive on this ACS Stream.

	acsEnumServerNames()XE "acsEnumServerNames()"§
	This function is used to enumerate the names of all the advertised services of a specified stream type. This function is a synchronous call and has no associated confirmation event.

	ACS Unsolicited EventsXE "ACS:Unsolicited Events"§XE "Unsolicited Events"§
	ACSUniversalFailureEventXE "ACSUniversalFailureEvent"§
	This event can occur at any time (unsolicited) and can indicate, among other things, a failure or lost of the ACS Stream with the Telephony Server.

	Not all of the errors listed below will occur in a ACS Universal Failure message. Some of the errors occur only in error logs generated by the Tserver.

	ACS Data TypesXE "ACS Data Types"§XE "Data Types:ACS"§
	This section defines all the data types which are used with the ACS functions and messages and may repeat data types already shown in the ACS Control Functions. Refer to the specific commands for any operational differences in these data types. The ACS data types are type defined in the acs.h header file.
	ACS Common Data TypesXE "ACS Data Types:Common"§
	This section specifies the common ACS data types.

	ACS Event Data TypesXE "ACS Data Types:Event"§
	This section specifies the ACS data types used in the construction of generic ACSEvent_t structures (see section 4.6).

	CSTA Control Services and Confirmation Events
	XE "CSTA:Control Services"§XE "CSTA:Confirmation Events"§This section defines the CSTA functions associated with the Telephony Server's Services. These functions are used to determine types and capabilities of Telephony Servers and Drivers connected to Telephony Servers and to determine the set of devices an application can control, monitor and query.
	cstaGetAPICaps()XE " cstaGetAPICaps()"§
	cstaGetAPICaps() obtains the CSTA API function and event capabilities which are supported by the Telephony Servers on the system. The servers could be a local client Telephony Server or a remote Telephony Server across a network or internetwork. If a capability is supported then any corresponding confirmation event is also supported.

	CSTAGetAPICapsConfEventXE "CSTAGetAPICapsConfEvent"§
	This event is in response to the cstaGetAPICaps() function and it provides an indication of whether the requested function or event is supported by a specific Telephony Server.

	cstaGetDeviceList()XE " cstaGetDeviceList()"§
	This is used to obtain the list of Devices that can be controlled, monitored, queried or routed for the ACS Stream indicated by the acsHandle.

	CSTAGetDeviceListConfEventXE "CSTAGetDeviceListConfEvent"§
	This event is in response to the cstaGetDeviceList() function and it provide a list of the devices which can be controlled for the indicated ACS Level.

	cstaQueryCallMonitor()XE "cstaQueryCallMonitor()"§
	This is used to determine the if a given ACS stream has permission to do call/call monitoring in the security database.

	CSTAQueryCallMonitorConfEventXE " CSTAQueryCallMonitorConfEvent"§
	This event is in response to the cstaQueryCallMonitor() function and it provide a list of the devices which can be controlled for the indicated ACS Level.

	CSTA Event Data TypesXE "CSTA:Event Data Types"§
	This section defines all the event data types which are used with the CSTA functions and messages and may repeat data types already shown in the CSTA Control Functions. Refer to the specific commands for any operational differences in these data types. The complete set of CSTA data types is given in - CSTA Data Types. The CSTA data types are type defined in the CSTA.H header file.
	An application always receives a generic CSTAEvent_t event structure. This structure contains an ACSEventHeader_t structure which contains information common to all events. This common information includes:
	The CSTAEvent_t structure then consists of a union of the four possible eventClass types; ACS confirmation, ACS unsolicited, CSTA confirmation or CSTA unsolicited event. Each eventClass type itself consists of a union of all the possible eventTypes for that class. Each eventClass may contain common information such as invokeID and monitorCrossRefID.

