
Chapter 10 OS Support Routines

This chapter is a technical reference for auxiliary OS support routines
that may be used by a CDM or HAM. These routines are not front-ended
by the NWPA so their interfaces are subject to change as the OS changes.
Generally, these OS support routines provide APIs that facilitate
initialization of memory blocks, movement of memory blocks, and
mapping of logical addresses to absolute addresses (and vice-versa) for
initializing DMA channels. These routines also include APIs essential to
making BIOS calls on EISA buses. The technical reference information
is listed in alphabetical order according to routine names. The following
is a list of the routines referenced in this chapter:

AllocateResourceTag 10-2
CCmpB 10-4
CCmpD 10-5
CFindB10-6
CFindD10-7
CFindW 10-8
CMovB10-9
CMovD 10-10
CMovW 10-11
CPSemaphore 10-12
CSetB 10-13
CSetD 10-14
CSetW 10-15
CVSemaphore 10-16
DisableAndRetFlags 10-17
DoRealModeInterrupt 10-18
DoRealModeInterrupt32 10-20
EnterDebugger 10-22
GetCurrentTime 10-23
GetHighResolutionTimer 10-24
GetReadAfterWriteVerifyStatus 10-25
GetRealModeWorkSpace 10-26
GetSectorsPerCacheBuffer 10-28
GetSuperHighResolutionTimer 10-29
InvertLong 10-30
MapDataOffsetToAbsoluteAddress 10-31
OutputToScreen10-32
SetFlags 10-33

Version 2.1d (September, 1995) 10-1

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

AllocateResourceTag
Purpose: Allocates OS resource tags for specific resource types.

10-2 Version 2.1d (September, 1995)

OS Support Routines
Architecture Type: All

Version 2.1d (September, 1995) 10-3

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Thread Context: Blocking

10-4 Version 2.1d (September, 1995)

OS Support Routines
Requirements: Must be called only from a blocking process level.

Version 2.1d (September, 1995) 10-5

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Syntax: LONG AllocateResourceTag(LONG nlmHandle,

void *resourceDescString,
LONG resourceSignature);

10-6 Version 2.1d (September, 1995)

OS Support Routines
Parameters:

Inputs:
nlmHandle

resourceDescString

resourceSignature

Outputs:

The module handle (LoadHandle) passed to the driver when its NLM load
routine was called.

Pointer to a null-terminated text string describing the resource, with a
maximum total length of 16 bytes, including the null terminator. For example:

"NDCB Driver"

A value used to identify a specific resource type. The signatures the driver must
pass (indicates to the OS the kind of resource tag to allocate, consequently do
not change the following definitions or the OS will fail the driver's request to
allocate a resource tag) to identify each resource tag type requested are defined
as follows:

#define AESProcessSignature
0x50534541
#define AllocSignature
0x54524C41
#define CacheBelow16MegMemorySignature
0x36314243
#define EventSignature
0x544E5645
#define DiskDriverSignature
0x4B534444
#define InterruptSignature
0x50544E49
#define IORegistrationSignature
0x53524F49
#define SemiPermMemorySignature
0x454D5053 *
#define TimerSignature
0x524D4954

*v3.12 only

None

Version 2.1d (September, 1995) 10-7

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Return Value: Returns a resource tag identifying specified entry type.

0 if the call failed.

10-8 Version 2.1d (September, 1995)

OS Support Routines
Description: Acquires a tracking identifier required by certain OS calls to track system

resources (and recover them from NLM or driver failure). Typically, a driver or
NLM must acquire a tag for each different type of resource it wants to allocate.
However, under the NWPA driver architecture, the NWPA takes care of
resource tags in behalf of CDMs and HAMs. The NWPA tracks allocated
resources through each module's NPAHandle. The one exception to this rule is
registration for event notification. Usuallly, CDMs and HAMs will not need to
use this routine unless they intend to use
NPA_Register_For_Event_Notification() to be aware of system events. Then, at
load-time initialization, they must use this routine to allocate a resource tag
using the EventSignature listed under the ResourceSignature parameter
above.

Version 2.1d (September, 1995) 10-9

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

CCmpB
Purpose: Performs a block comparison of two memory areas (BYTES).

10-10 Version 2.1d (September, 1995)

OS Support Routines
Architecture Type: All

Version 2.1d (September, 1995) 10-11

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Thread Context: Non-Blocking

10-12 Version 2.1d (September, 1995)

OS Support Routines
Requirements: None.

Version 2.1d (September, 1995) 10-13

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Syntax: LONG CCmpB (BYTE *address1,

BYTE *address2,
LONG count)

10-14 Version 2.1d (September, 1995)

OS Support Routines
Parameters:

Inputs:
address1

address2

count

Outputs:

Address of the first block of memory to be compared.

Address of the second block of memory to be compared.

Number of BYTES to be compared.

None

Version 2.1d (September, 1995) 10-15

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Return Value: -1 if the specified number of blocks match, or

Index of the first unmatched block pair.

10-16 Version 2.1d (September, 1995)

OS Support Routines
Description: CCmpB() compares two memory blocks BYTE per BYTE. It returns either a -

1 to indicate that the two blocks are identical or the block-index showing the
position where the blocks first differ.

Version 2.1d (September, 1995) 10-17

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

CCmpD
Purpose: Performs a block comparison of two memory areas (LONGS).

10-18 Version 2.1d (September, 1995)

OS Support Routines
Architecture Type: All

Version 2.1d (September, 1995) 10-19

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Thread Context: Non-Blocking

10-20 Version 2.1d (September, 1995)

OS Support Routines
Requirements: None.

Version 2.1d (September, 1995) 10-21

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Syntax: LONG CCmpD (LONG *address1,

LONG *address2,
LONG count)

10-22 Version 2.1d (September, 1995)

OS Support Routines
Parameters:

Inputs:
address1

address2

count

Outputs:

Address of the first block of memory to be compared.

Address of the second block of memory to be compared.

Number of LONGS to be compared.

None

Version 2.1d (September, 1995) 10-23

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Return Value: -1 if the specified number of blocks match, or

Index of the first unmatched block pair.

10-24 Version 2.1d (September, 1995)

OS Support Routines
Description: CCmpD() compares two memory blocks LONG per LONG. It returns either a

-1 to indicate that the two blocks are identical or the block-index showing the
position where the blocks first differ.

Version 2.1d (September, 1995) 10-25

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

CFindB
Purpose: Scans an array of BYTES for a particular value.

10-26 Version 2.1d (September, 1995)

OS Support Routines
Architecture Type: All

Version 2.1d (September, 1995) 10-27

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Thread Context: Non-Blocking

10-28 Version 2.1d (September, 1995)

OS Support Routines
Requirements: None.

Version 2.1d (September, 1995) 10-29

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Syntax: LONG CFindB(BYTE value,

BYTE *address,
LONG count);

10-30 Version 2.1d (September, 1995)

OS Support Routines
Parameters:

Inputs:
value

address

count

Outputs:

Target value being searched for.

Pointer to the starting address of the array.

Maximum number of BYTES to scan.

None

Version 2.1d (September, 1995) 10-31

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Return Value: -1 if the target value is not found, or

Index from address where the target value was found in the array.

10-32 Version 2.1d (September, 1995)

OS Support Routines
Description: CFindB() scans the array of BYTES pointed at by address either until value is

found or the maximum number of BYTES specified in count are scanned.

Version 2.1d (September, 1995) 10-33

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

CFindD
Purpose: Scans an array of LONGS for a particular value.

10-34 Version 2.1d (September, 1995)

OS Support Routines
Architecture Type: All

Version 2.1d (September, 1995) 10-35

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Thread Context: Non-Blocking

10-36 Version 2.1d (September, 1995)

OS Support Routines
Requirements: None.

Version 2.1d (September, 1995) 10-37

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Syntax: LONG CFindD(LONG value,

LONG *address,
LONG count);

10-38 Version 2.1d (September, 1995)

OS Support Routines
Parameters:

Inputs:
value

address

count

Outputs:

Target value being searched for.

Pointer to the starting address of the array.

Maximum number of LONGS to scan.

None

Version 2.1d (September, 1995) 10-39

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Return Value: -1 if the target value is not found, or

Index from address where the target value was found in the array.

10-40 Version 2.1d (September, 1995)

OS Support Routines
Description: CFindD() scans the array of LONGS pointed at by address either until value is

found or the maximum number of LONGS specified in count are scanned.

Version 2.1d (September, 1995) 10-41

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

CFindW
Purpose: Scans an array of WORDS for a particular value.

10-42 Version 2.1d (September, 1995)

OS Support Routines
Architecture Type: All

Version 2.1d (September, 1995) 10-43

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Thread Context: Non-Blocking

10-44 Version 2.1d (September, 1995)

OS Support Routines
Requirements: None.

Version 2.1d (September, 1995) 10-45

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Syntax: LONG CFindW(WORD value,

WORD *address,
LONG count);

10-46 Version 2.1d (September, 1995)

OS Support Routines
Parameters:

Inputs:
value

address

count

Outputs:

Target value being searched for.

Pointer to the starting address of the array.

Maximum number of WORDS to scan.

None

Version 2.1d (September, 1995) 10-47

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Return Value: -1 if the target value is not found, or

Index from address where the target value was found in the array.

10-48 Version 2.1d (September, 1995)

OS Support Routines
Description: CFindW() scans the array of WORDS pointed at by address either until value

is found or the maximum number of WORDS specified in count are scanned.

Version 2.1d (September, 1995) 10-49

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

CMovB
Purpose: Copies BYTES from one area to another.

10-50 Version 2.1d (September, 1995)

OS Support Routines
Architecture Type: All

Version 2.1d (September, 1995) 10-51

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Thread Context: Non-Blocking

10-52 Version 2.1d (September, 1995)

OS Support Routines
Requirements: None.

Version 2.1d (September, 1995) 10-53

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Syntax: VOID CMovB(BYTE *source

BYTE *destination,
LONG count);

10-54 Version 2.1d (September, 1995)

OS Support Routines
Parameters:

Inputs:
source

destination

count

Outputs:

Pointer to the starting BYTE of the block being copied.

Pointer to the starting BYTE where the block is being copied.

Number of BYTES to copy.

None.

Version 2.1d (September, 1995) 10-55

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Return Value: None.

10-56 Version 2.1d (September, 1995)

OS Support Routines
Description: CMovB() copies data from the source area to the destination area.

Version 2.1d (September, 1995) 10-57

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

CMovD
Purpose: Copies LONGS from one area to another.

10-58 Version 2.1d (September, 1995)

OS Support Routines
Architecture Type: All

Version 2.1d (September, 1995) 10-59

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Thread Context: Non-Blocking

10-60 Version 2.1d (September, 1995)

OS Support Routines
Requirements: None.

Version 2.1d (September, 1995) 10-61

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Syntax: VOID CMovD(LONG *source

LONG *destination,
LONG count);

10-62 Version 2.1d (September, 1995)

OS Support Routines
Parameters:

Inputs:
source

destination

count

Outputs:

Pointer to the starting LONG of the block being copied.

Pointer to the starting LONG where the block is being copied.

Number of LONGS to copy.

None.

Version 2.1d (September, 1995) 10-63

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Return Value: None.

10-64 Version 2.1d (September, 1995)

OS Support Routines
Description: CMovD() copies data from the source area to the destination area.

Version 2.1d (September, 1995) 10-65

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

CMovW
Purpose: Copies WORDS from one area to another.

10-66 Version 2.1d (September, 1995)

OS Support Routines
Architecture Type: All

Version 2.1d (September, 1995) 10-67

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Thread Context: Non-Blocking

10-68 Version 2.1d (September, 1995)

OS Support Routines
Requirements: None.

Version 2.1d (September, 1995) 10-69

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Syntax: VOID CMovW(WORD *source

WORD *destination,
LONG count);

10-70 Version 2.1d (September, 1995)

OS Support Routines
Parameters:

Inputs:
source

destination

count

Outputs:

Pointer to the starting WORD of the block being copied.

Pointer to the starting WORD where the block is being copied.

Number of WORDS to move.

None.

Version 2.1d (September, 1995) 10-71

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Return Value: None.

10-72 Version 2.1d (September, 1995)

OS Support Routines
Description: CMovW() copies data from the source area to the destination area.

Version 2.1d (September, 1995) 10-73

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

CPSemaphore
Purpose: Locks real mode workspace access.

10-74 Version 2.1d (September, 1995)

OS Support Routines
Architecture Type: Intel

Version 2.1d (September, 1995) 10-75

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Thread Context: Blocking

10-76 Version 2.1d (September, 1995)

OS Support Routines
Requirements: None.

Version 2.1d (September, 1995) 10-77

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Syntax: VOID CPSemaphore(LONG workSpaceSemaphore);

10-78 Version 2.1d (September, 1995)

OS Support Routines
Parameters:

Inputs:
workSpaceSemaphore

Outputs:

Handle to the workspace semaphore.

None.

Version 2.1d (September, 1995) 10-79

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Return Value: None.

10-80 Version 2.1d (September, 1995)

OS Support Routines
Description: CPSemaphore() is used to lock the real mode workspacer when making a

BIOS call. This routine is called with interrupts disabled
(NPA_Interrupt_Control()), and interrupts remain disabled.

Version 2.1d (September, 1995) 10-81

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

Warning: Do not use this call to handle critical sections local to the driver.

10-82 Version 2.1d (September, 1995)

OS Support Routines

CSetB
Purpose: Initializes an area of memory to a value.

Version 2.1d (September, 1995) 10-83

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Architecture Type: All

10-84 Version 2.1d (September, 1995)

OS Support Routines
Thread Context: Non-Blocking

Version 2.1d (September, 1995) 10-85

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Requirements: None.

10-86 Version 2.1d (September, 1995)

OS Support Routines
Syntax: void CSetB(BYTE value

void *address,
LONG count);

Version 2.1d (September, 1995) 10-87

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Parameters:

Inputs:
value

address

count

Outputs:

Value to which the memory area is being set.

Pointer to the starting address of the memory area.

Number of BYTES in the memory area to be initialized to value.

None.

10-88 Version 2.1d (September, 1995)

OS Support Routines
Return Value: None.

Version 2.1d (September, 1995) 10-89

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Description: CSetB() initializes the number of BYTES specified in count of the memory

area pointed at by Address to the value specified in value.

10-90 Version 2.1d (September, 1995)

OS Support Routines

CSetD
Purpose: Initializes an area of memory to a value.

Version 2.1d (September, 1995) 10-91

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Architecture Type: All

10-92 Version 2.1d (September, 1995)

OS Support Routines
Thread Context: Non-Blocking

Version 2.1d (September, 1995) 10-93

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Requirements: The storage locations in the memory area must be on LONG boundaries.

10-94 Version 2.1d (September, 1995)

OS Support Routines
Syntax: void CSetD(LONG value

void *address,
LONG count);

Version 2.1d (September, 1995) 10-95

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Parameters:

Inputs:
value

address

count

Outputs:

Value to which the memory area is being set.

Pointer to the starting address of the memory area.

Number of LONGS in the memory area to be initialized to value.

None.

10-96 Version 2.1d (September, 1995)

OS Support Routines
Return Value: None.

Version 2.1d (September, 1995) 10-97

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Description: CSetD() initializes the number of LONGS specified in count of the memory

area pointed at by address to the value specified in value.

10-98 Version 2.1d (September, 1995)

OS Support Routines

CSetW
Purpose: Initializes an area of memory to a value.

Version 2.1d (September, 1995) 10-99

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Architecture Type: All

10-100 Version 2.1d (September, 1995)

OS Support Routines
Thread Context: Non-Blocking

Version 2.1d (September, 1995) 10-101

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Requirements: The storage locations in the memory area must be on LONG boundaries.

10-102 Version 2.1d (September, 1995)

OS Support Routines
Syntax: void CSetW(WORD value

void *address,
LONG count);

Version 2.1d (September, 1995) 10-103

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Parameters:

Inputs:
value

address

count

Outputs:

Value to which the memory area is being set.

Pointer to the starting address of the memory area.

Number of WORDS in the memory area to be initialized to value.

None.

10-104 Version 2.1d (September, 1995)

OS Support Routines
Return Value: None.

Version 2.1d (September, 1995) 10-105

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Description: CSetW() initializes the number of WORDS specified in count of the memory

area pointed at by address to the value specified in value.

10-106 Version 2.1d (September, 1995)

OS Support Routines

CVSemaphore
Purpose: Unlocks real mode workspace access.

Version 2.1d (September, 1995) 10-107

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Architecture Type: Intel

10-108 Version 2.1d (September, 1995)

OS Support Routines
Thread Context: Blocking

Version 2.1d (September, 1995) 10-109

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Requirements: None.

10-110 Version 2.1d (September, 1995)

OS Support Routines
Syntax: VOID CVSemaphore(LONG workSpaceSemaphore);

Version 2.1d (September, 1995) 10-111

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Parameters:

Inputs:
workSpaceSemaphore

Outputs:

Handle to the workspace semaphore.

None.

10-112 Version 2.1d (September, 1995)

OS Support Routines
Return Value: None.

Version 2.1d (September, 1995) 10-113

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Description: CVSemaphore() is used to clear the semaphore that was set with

CPSemaphore(). Normally, CVSemaphore() is used when the driver has
finished making an EISA BIOS call so that other processes can be allowed to
use the workspace. CVSemaphore() returns with interuupts enabled.

10-114 Version 2.1d (September, 1995)

OS Support Routines

DisableAndRetFlags
Purpose: Saves the current state of the hardware’s interrupt mask and disables all

interrupts.

Version 2.1d (September, 1995) 10-115

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Architecture Type: All

10-116 Version 2.1d (September, 1995)

OS Support Routines
Thread Context: Non-Blocking

Version 2.1d (September, 1995) 10-117

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Requirements: None

10-118 Version 2.1d (September, 1995)

OS Support Routines
Syntax: LONG DisableAndRetFlags(void);

Version 2.1d (September, 1995) 10-119

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Parameters: None.

10-120 Version 2.1d (September, 1995)

OS Support Routines
Return Value: Value of the saved interrupt mask.

Version 2.1d (September, 1995) 10-121

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Description: DisableAndRetFlags() saves the current state of the hardware's interrupt mask

and then disables all interrupts. It returns the value of the saved interrupt mask.

10-122 Version 2.1d (September, 1995)

OS Support Routines

DoRealModeInterrupt
Purpose: Does real mode interrupt during initialization.

Version 2.1d (September, 1995) 10-123

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Architecture Type: Intel

10-124 Version 2.1d (September, 1995)

OS Support Routines
Thread Context: Blocking

Version 2.1d (September, 1995) 10-125

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Requirements: The input parameter structure (InputParamStruct) must already be initialized.

10-126 Version 2.1d (September, 1995)

OS Support Routines
Syntax: LONG DoRealModeInterrupt(struct InputParamStruct *inputParameters,

struct *OutputParamStruct *outputParameters);

Version 2.1d (September, 1995) 10-127

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Parameters:

Inputs:
inputParameters

Outputs:
outputParameters

Pointer to an initialized input parameter structure as defined below:
struct InputParamStruct
{
WORD IAXRegister;
WORD IBXRegister;
WORD ICXRegister;
WORD IDXRegister;
WORD IBPRegister;
WORD ISIRegister;
WORD IDIRegister;
WORD IDSRegister;
WORD IESRegister;
WORD IIntNumber;

};

Pointer to a filled in output parameter structure as defined below:
struct OutputParamStruct
{
WORD OAXRegister;
WORD OBXRegister;
WORD OCXRegister;
WORD ODXRegister;
WORD OBPRegister;
WORD OSIRegister;
WORD ODIRegister;
WORD ODSRegister;
WORD OESRegister;
WORD OFlags;

};

10-128 Version 2.1d (September, 1995)

OS Support Routines
Return Value: 0 if successful. The zero flag is set if the interrupt vector is called.

1 if unsuccessful. The zero flag is cleared if the interrupt vector is no longer
available because DOS has been removed.

Version 2.1d (September, 1995) 10-129

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Description: DoRealModeInterrupt() is used to perform real mode interrupts, such as

BIOS and DOS interrupts. This routine can only be called at process time, and
it may enable interrupts and put the calling process to sleep. EISA boards will
need to use DoRealModeInterrupt() to perform the INT 15h BIOS call that
returns the board configuration.

Note: For descriptions of the input/output parameter structures and
information about making real mode BIOS calls on EISA boards, refer to the
EISA specification.

10-130 Version 2.1d (September, 1995)

OS Support Routines

DoRealModeInterrupt32
Purpose: Does 32 bit real mode interrupt during initialization.

Version 2.1d (September, 1995) 10-131

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Architecture Type: Intel

10-132 Version 2.1d (September, 1995)

OS Support Routines
Thread Context: Blocking

Version 2.1d (September, 1995) 10-133

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Requirements: The input parameter structure (InputParamStruct32) must already be

initialized.

10-134 Version 2.1d (September, 1995)

OS Support Routines
Syntax: LONG DoRealModeInterrupt32(struct InputParamStruct32 *inputParameters,

struct *OutputParamStruct32 *outputParameters);

Version 2.1d (September, 1995) 10-135

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Parameters:

Inputs:
inputParameters

Outputs:
outputParameters

Pointer to an initialized input parameter structure as defined below:
struct InputParamStruct32
{
LONG IEAXRegister;
LONG IEBXRegister;
LONG IECXRegister;
LONG IEDXRegister;
LONG IEBPRegister;
LONG IESIRegister;
LONG IEDIRegister;
WORD IDSRegister;
WORD IESRegister;
WORD IEFSRegister;
WORD IEGSRegister
BYTE IIntNumber;

 BYTE IDummy32[3];
};

Pointer to a filled in output parameter structure as defined below:
struct OutputParamStruct32
{
LONG OEAXRegister;
LONG OEAXRegister;
LONG OECXRegister;
LONG OEDXRegister;
LONG OEBPRegister;
LONG OESIRegister;
LONG OEDIRegister;
WORD ODSRegister;
WORD OESRegister;
WORD OFSRegister;
WORD OGSRegister;
LONG OFlags32;

};

10-136 Version 2.1d (September, 1995)

OS Support Routines
Return Value: 0 if successful. The zero flag is set if the interrupt vector is called.

1 if unsuccessful. The zero flag is cleared if the interrupt vector is no longer
available because DOS has been removed.

Version 2.1d (September, 1995) 10-137

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Description: See Purpose.

10-138 Version 2.1d (September, 1995)

OS Support Routines

EnterDebugger
Purpose: Switches to the Novell internal debugger.

Version 2.1d (September, 1995) 10-139

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Architecture Type: All

10-140 Version 2.1d (September, 1995)

OS Support Routines
Thread Context: Non-Blocking

Version 2.1d (September, 1995) 10-141

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Requirements: This is for code development and debug purposes only. No EnterDebugger()

calls are allowed in shipping code.

10-142 Version 2.1d (September, 1995)

OS Support Routines
Syntax: VOID EnterDebugger(void);

Version 2.1d (September, 1995) 10-143

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Parameters:

Inputs:

Outputs:

None

None

10-144 Version 2.1d (September, 1995)

OS Support Routines
Return Value: None.

Version 2.1d (September, 1995) 10-145

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Description: EnterDebugger() stops execution of the NetWare OS and enters the internal

assembly language-oriented debugger.

10-146 Version 2.1d (September, 1995)

OS Support Routines

GetCurrentTime
Purpose: Returns the current time in clock ticks since the server was loaded.

Version 2.1d (September, 1995) 10-147

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Architecture Type: Intel

10-148 Version 2.1d (September, 1995)

OS Support Routines
Thread Context: Non-Blocking

Version 2.1d (September, 1995) 10-149

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Requirements: None

10-150 Version 2.1d (September, 1995)

OS Support Routines
Syntax: LONG GetCurrentTime(void);

Version 2.1d (September, 1995) 10-151

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Parameters:

Inputs:

Outputs:

None.

None.

10-152 Version 2.1d (September, 1995)

OS Support Routines
Return Value: The number of clock ticks (1/18th second) since the server was last loaded and

began execution.

Version 2.1d (September, 1995) 10-153

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Description: This call is useful to determine the current relative time in order to determine

the elapsed time between events. The current time value less the value
returned at the beginning of an event is the elapsed time since the event
occurred in 1/18th second clock ticks. It requires more than 2,761 days (over
7.5 years) of continuous server operation before this timer will roll over.

10-154 Version 2.1d (September, 1995)

OS Support Routines

GetHighResolutionTimer
Purpose: Returns the current time in 100 microsecond increments.

Version 2.1d (September, 1995) 10-155

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Architecture Type: Intel

10-156 Version 2.1d (September, 1995)

OS Support Routines
Thread Context: Non-Blocking

Version 2.1d (September, 1995) 10-157

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Requirements: Do not use this call within an interrupt service routine.

10-158 Version 2.1d (September, 1995)

OS Support Routines
Syntax: LONG GetHighResolutionTimer(void);

Version 2.1d (September, 1995) 10-159

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Parameters:

Inputs:

Outputs:

None

None

10-160 Version 2.1d (September, 1995)

OS Support Routines
Return Value: Time in approximately 100 microseconds per count.

Version 2.1d (September, 1995) 10-161

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Description: This timer combines the Current Time with the timer register to create a return

value that has a resolution of approximately 100 microseconds per count.

10-162 Version 2.1d (September, 1995)

OS Support Routines

Note: This call will enable interrupts. Do not make this call in a code path that requires interrupts to
be disabled. Do not make this call within an interrupt service routine.

Version 2.1d (September, 1995) 10-163

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

GetReadAfterWriteVerifyStatus
Purpose: Returns global Read-After-Write (RAW) verify status.

10-164 Version 2.1d (September, 1995)

OS Support Routines
Architecture Type: All

Version 2.1d (September, 1995) 10-165

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Thread Context: Non-Blocking

10-166 Version 2.1d (September, 1995)

OS Support Routines
Requirements: None.

Version 2.1d (September, 1995) 10-167

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Syntax: LONG GetReadAfterWriteVerifyStatus (void);

10-168 Version 2.1d (September, 1995)

OS Support Routines
Parameters: None.

Version 2.1d (September, 1995) 10-169

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Return Value: 0 if RAW verification is off.

1 if RAW verification is on.

10-170 Version 2.1d (September, 1995)

OS Support Routines
Description: GetReadAfterWriteVerifyStatus() is used to determine the current RAW

verification status (on or off). This is an information call only. The driver
cannot change the RAW status.

Version 2.1d (September, 1995) 10-171

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

GetRealModeWorkSpace
Purpose: Used in conjunction with DoRealModeInterrupt() to allow the HAM access to

memory in real mode.

10-172 Version 2.1d (September, 1995)

OS Support Routines
Architecture Type: Intel

Version 2.1d (September, 1995) 10-173

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Thread Context: Non-Blocking

10-174 Version 2.1d (September, 1995)

OS Support Routines
Requirements: None.

Version 2.1d (September, 1995) 10-175

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Syntax: void GetRealModeWorkSpace(LONG *workSpaceSemaphore,

LONG *protectedModeAddress,
WORD *realModeSegment,
WORD *realModeOffset,
LONG *workSpaceSize);

10-176 Version 2.1d (September, 1995)

OS Support Routines
Parameters:

Inputs:
workSpaceSemaphore

protectedModeAddress

realModeSegment

realModeOffset

workSpaceSize

Outputs:
workSpaceSemaphore

protectedModeAddress

realModeSegment

realModeOffset

workSpaceSize

Address of a local variable of type LONG.

Address of a local variable of type LONG.

Address of a local variable of type WORD.

Address of a local variable of type WORD.

Address of a local variable of type LONG.

Receives a handle to the OS semaphore structure.

Receives a 32-bit logical address of the workspace block from the OS.

Receives the real mode segment of the workspace from the OS.

Receives the real mode offset into the workspace segment from the OS.

Receives the size of the workspace in BYTES from the OS.

Version 2.1d (September, 1995) 10-177

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Return Value: None.

10-178 Version 2.1d (September, 1995)

OS Support Routines
Description: GetRealModeWorkSpace() is used to provide a HAM with a real mode

workspace. Used in conjunction with DoRealModeInterrupt(), the HAM has
access to memory in real mode. Be aware that the HAM must provide the storage
locations for the outputs it receives during this call.

Note: Since NetWare v4.x runs in protected mode, it does not allow direct access to BIOS information.
DoRealModeInterrupt() allows the HAM to access the BIOS and get data from it.
DoRealModeInterrupt() turns on the system interrupts and executes in a critical section; therefore,
calls to CPSemaphore() and CVSemaphore() are necessary to keep other processes out of the
workspace.

Version 2.1d (September, 1995) 10-179

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

GetSectorsPerCacheBuffer
Purpose: Returns the number of sectors in server cache buffers.

10-180 Version 2.1d (September, 1995)

OS Support Routines
Architecture Type: All

Version 2.1d (September, 1995) 10-181

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Thread Context: Non-Blocking

10-182 Version 2.1d (September, 1995)

OS Support Routines
Requirements: None.

Version 2.1d (September, 1995) 10-183

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Syntax: LONG GetSectorsPerCacheBuffer(void);

10-184 Version 2.1d (September, 1995)

OS Support Routines
Parameters: None.

Version 2.1d (September, 1995) 10-185

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Return Value: An integer (8, 16, or 32) indicating the number of sectors in a system cache

buffer.

10-186 Version 2.1d (September, 1995)

OS Support Routines
Description: GetSectorsPerCacheBuffer() returns to the caller the number of sectors in a

server cache buffer. This value may allow drivers that allocate buffers in
SRAM to allocate the optimal buffer size, thus providing better performance.

Version 2.1d (September, 1995) 10-187

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

GetSuperHighResolutionTimer
Purpose: Returns the curent time in 838 nanosecond increments.

10-188 Version 2.1d (September, 1995)

OS Support Routines
Architecture Type: Intel

Version 2.1d (September, 1995) 10-189

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Thread Context: Non-Blocking

10-190 Version 2.1d (September, 1995)

OS Support Routines
Requirements: None.

Version 2.1d (September, 1995) 10-191

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Syntax: LONG GetSuperHighResolutionTimer (void);

10-192 Version 2.1d (September, 1995)

OS Support Routines
Parameters:

Inputs:

Outputs:

None

None

Version 2.1d (September, 1995) 10-193

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Return Value: Time in approximately 838 nanoseconds per count.

10-194 Version 2.1d (September, 1995)

OS Support Routines
Description: This is a high resolution timer that combines the lowest WORD of Current

Time with the timer register to give a timer resolution of approximately 838
nanoseconds per count. This call does not allow for possible tick count
rollover, so the programmer must take into consideration a “negative” time
count. This rollover will occur approximately every hour.

Version 2.1d (September, 1995) 10-195

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

InvertLong
Purpose: Reverses the byte order of a LONG.

10-196 Version 2.1d (September, 1995)

OS Support Routines
Architecture Type: All

Version 2.1d (September, 1995) 10-197

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Thread Context: Non-Blocking

10-198 Version 2.1d (September, 1995)

OS Support Routines
Requirements: None.

Version 2.1d (September, 1995) 10-199

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Syntax: LONG InvertLong (LONG longValue);

10-200 Version 2.1d (September, 1995)

OS Support Routines
Parameters:

Inputs:
longValue

Outputs:

The LONG that is to be inverted.

None.

Version 2.1d (September, 1995) 10-201

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Return Value: Inverted LONG. See description.

10-202 Version 2.1d (September, 1995)

OS Support Routines
Description: InvertLong() takes the input LONG value and reverses (inverts) the byte order

as follows:

If the input longValue is WWXXYYZZ. the Return value will be ZZYYXXWW.

Version 2.1d (September, 1995) 10-203

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

MapDataOffsetToAbsoluteAddress
Purpose: Converts a logical memory address to an absolute address.

10-204 Version 2.1d (September, 1995)

OS Support Routines
Architecture Type: All

Version 2.1d (September, 1995) 10-205

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Thread Context: Non-Blocking

10-206 Version 2.1d (September, 1995)

OS Support Routines
Requirements: None.

Version 2.1d (September, 1995) 10-207

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Syntax: LONG MapDataOffsetToAbsoluteAddress(LONG dataOffset);

10-208 Version 2.1d (September, 1995)

OS Support Routines
Parameters:

Inputs:
dataOffset

Outputs:

Logical NetWare 32-bit memory address.

None.

Version 2.1d (September, 1995) 10-209

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Return Value: Real 32-bit absolute hardware memory address.

10-210 Version 2.1d (September, 1995)

OS Support Routines
Description: MapDataOffsetToAbsoluteAddress() converts a logical NetWare address to

an absolute hardware memory address. The absolute addresss can be used to
initialize DMA channels and to validate hardware options.

Version 2.1d (September, 1995) 10-211

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

OutputToScreen
Purpose: This routine outputs a message to a selected screen.

10-212 Version 2.1d (September, 1995)

OS Support Routines
Architecture Type: All

Version 2.1d (September, 1995) 10-213

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Thread Context: Non-Blocking

10-214 Version 2.1d (September, 1995)

OS Support Routines
Requirements: Syntax:

Version 2.1d (September, 1995) 10-215

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
VOID OutputToScreen(
LONG screenHandle,
BYTE *controlString,
args...);

Parameters:
Inputs:

screenHandle

controlString

args

Outputs:

10-216 Version 2.1d (September, 1995)

OS Support Routines

Handle of the screen
where the message is to
be displayed.

Pointer to a null-
terminated, ASCII control
string similar to that used
with the C sprintf()
function, including
embedded returns, line
feeds, tabs, bells, and %
specifiers (except floating
point specifiers).

Arguments as indicated
by controlString.

None.

Return Value:

Version 2.1d (September, 1995) 10-217

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
None Description:

10-218 Version 2.1d (September, 1995)

OS Support Routines
See Purpose.

Version 2.1d (September, 1995) 10-219

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

SetFlags
Purpose: Sets the interrupt flags to the specified value.

10-220 Version 2.1d (September, 1995)

OS Support Routines
Architecture Type: All

Version 2.1d (September, 1995) 10-221

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Thread Context: Non-Blocking

10-222 Version 2.1d (September, 1995)

OS Support Routines
Requirements: None.

Version 2.1d (September, 1995) 10-223

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Syntax: VOID SetFlags(LONG flags);

10-224 Version 2.1d (September, 1995)

OS Support Routines
Parameters:

Inputs:
flags

Outputs:

Value of the hardware’s interrupt mask upon completion of this routine.

None.

Version 2.1d (September, 1995) 10-225

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Return Value: None.

10-226 Version 2.1d (September, 1995)

OS Support Routines
Description: SetFlags() sets the interrupt mask to the value specified in flags. Flags

contains a value previously obtained from a call to a critical-code function.

Version 2.1d (September, 1995) 10-227

