
Chapter 7 Technical Reference for
NWPA Routines

This chapter is a technical reference for the routines that are part of the
NWPA. Technical information is supplied for the routines that are
provided by the NWPA, and functional descriptions are supplied for the
routines that a HAM or CDM is expected to implement.

CDM-Specific
∙ Custom-Device-Interface routines that are identified in the text by a

CDI_ prefix. These routines are part of the NWPA, and they provide
CDMs with an interface to the NWPA allowing them to register as
CDM modules and build and initiate HACB requests.

∙ Functional descriptions of the interface routines that a CDM is
required to implement. These routines are identified in the text by a
CDM_ prefix. In general, these routines are expected to succeed
with a return value of zero. However, three of the routines
(CDM_Abort_CDMMessage(), CDM_Unload_Check(), and
CDM_Execute_CDMMessage()) give return values based on certain
conditions. These conditions and their respective return values are
specified.

HAM-Specific
∙ Host-Adapter-Interface routines that are identified in the text by the

HAI_ prefix. These routines provide HAMs with an interface to the
NWPA allowing them to register as HAM modules and report HACB
request completions.

∙ Functional descriptions of the interface routines that a HAM is
required to implement. These routines are identified in the text by a
HAM_ prefix. In general, these routines are expected to succeed
with a return value of zero. However, three of the routines,
HAM_Abort_HACB(), HAM_Unload_Check(), and HAM_ISR(), give
return values based on certain conditions. These conditions and their
respective return values are specified.

General NWPA
∙ General NWPA support routines that are identified in the text by the

NPA_ prefix. These routines provide CDMs and HAMs with a stable
interface to the NetWare OS.

Version 2.1d (September, 1995) 1-1

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
The technical reference information is listed in alphabetical order
according to routine names. The following is a list of the routines
referenced in this chapter:

CDI_Abort_HACB 7-4
CDI_Allocate_HACB 7-5
CDI_Bind_CDM_To_Object 7-6
CDI_Blocking_Execute_HACB 7-8
CDI_Chain_Message 7-9
CDI_Complete_Message 7-11
CDI_Execute_HACB 7-13
CDI_Non_Blocking_Execute_HACB 7-14
CDI_Object_Update 7-15
CDI_Queue_Message 7-18
CDI_Register_CDM 7-20
CDI_Register_Object_Attribute 7-22
CDI_Return_HACB 7-24
CDI_Rescan_Bus 7-25
CDI_Unbind_CDM_From_Object 7-26
CDI_Unregister_CDM 7-27
CDM_Abort_CDMMessage 7-28
CDM_Callback 7-29
CDM_Check_Option 7-31
CDM_Execute_CDMMessage 7-33
CDM_Get_Attribute 7-34
CDM_Inquiry 7-35
CDM_Set_Attribute 7-38
CDM_Load 7-39
CDM_Unload 7-40
CDM_Unload_Check 7-41
HAI_Activate_Bus 7-42
HAI_Complete_HACB 7-43
HAI_Deactivate_Bus 7-44
HAI_PreProcess_HACB_Completion 7-45
HAM_Abort_HACB 7-46
HAM_Check_Option 7-48
HAM_Execute_HACB 7-50
HAM_ISR 7-51
HAM_Load 7-53
HAM_Software_Hot_Replace 7-54
HAM_Timeout 7-55
HAM_Unload 7-57
HAM_Unload_Check 7-58
Inx 7-59
InBuffx 7-60
NPA_Add_Option 7-62
NPA_Allocate_Memory7-63
NPA_Cancel_Thread 7-65

1-2 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines
NPA_CDM_Passthru 7-66
NPA_Delay_Thread7-68
NPA_Exchange_Message 7-69
NPA_Get_Version_Number 7-70
NPA_HACB_Passthru 7-71
NPA_Interrupt_Control 7-72
NPA_Micro_Delay 7-74
NPA_Parse_Options 7-75
NPA_Register_CDM_Module 7-76
NPA_Register_For_Event_Notification 7-78
NPA_Register_HAM_Module 7-82
NPA_Register_Options 7-84
NPA_Return_Bus_Type 7-85
NPA_Return_Memory 7-86
NPA_Spawn_Thread 7-87
NPA_System_Alert 7-89
NPA_Unload_Module_Check 7-91
NPA_Unregister_Event_Notification 7-92
NPA_Unregister_Module 7-93
NPA_Unregister_Options 7-94
NPAB_Get_Alignment 7-95
NPAB_Get_Bus_Info 7-96
NPAB_Get_Bus_Name 7-97
NPAB_Get_Bus_Tag 7-98
NPAB_Get_Bus_Type 7-99
NPAB_Get_Card_Config_Info 7-100
NPAB_Get_Unique_Identifier 7-102
NPAB_Read_Config_Space 7-104
NPAB_Scan_Bus_Info 7-106
NPAB_Search_Adapter 7-108
NPAB_Write_Config_Space 7-110
Outx 7-112
OutBuffx 7-113

Version 2.1d (September, 1995) 1-3

CDI_Abort_HACB

Purpose: Issues an abort request to a device.

1-4 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-5

Thread Context: Non-Blocking

1-6 Version 2.1d (September, 1995)

Syntax: LONG CDI_Abort_HACB (LONG reserved,
LONG hacbPutHandle,
LONG flag);

Version 2.1d (September, 1995) 1-7

Parameters:
Inputs:

reserved

hacbPutHandle

flag

Outputs:

The CDM should set this parameter to zero.

Handle to the HACB request being aborted. The value of this parameter
is obtained from the hacbPutHandle field of the original SHACB's
member HACB.

Flag indicating the type of abort the HAM is to perform. Its possible
values are as follows:

0x00000000 This value tells the HAM to unconditionally abort
the HACB even if it has already been sent to the device.

0x00000001 This value tells the HAM to conditionally abort the
HACB if aborting only entails the unlinking of the HACB from the
device queue. This is referred to as a clean abort.

0x00000002 This value tells the HAM to check and see if the
HACB can be cleanly aborted, but not to perform an abort.

None

1-8 Version 2.1d (September, 1995)

Return Value: 0 if successful.
Non-zero if unsuccessful.

Version 2.1d (September, 1995) 1-9

Description: CDI_Abort_HACB() is used by a CDM to abort a HACB sent to a HAM.

1-10 Version 2.1d (September, 1995)

CDI_Allocate_HACB

Purpose: Allocates SHACBs that are used to communicate with the HAM.

Version 2.1d (September, 1995) 1-11

Architecture Type: All

1-12 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-13

Syntax: LONG CDI_Allocate_HACB(LONG cdmosHandle,
struct SHACBStruct **SHACB);

1-14 Version 2.1d (September, 1995)

Parameters:
Inputs:

cdmosHandle

SHACB

Outputs:
SHACB

The CDM's handle for using the CDI_ APIs. The value of cdmosHandle
was assigned during CDI_Register_CDM(), and it is used in conjunction
with the CDM-generated cdmHandle to uniquely identify a CDM when it
interfaces with the NWPA through the CDI_ API set.

Address of a pointer to a memory storage location of type SHACBStruct.
For a detailed description of the data structure refer to Chapter 6. The
following is the structure's ANSI C definition:
typedef struct SHACBStruct
{

LONG cdmSpace[8];
struct HACBStruct HACB;

} SHACB;

Receives a pointer to the newly allocated SHACBStruct.

Version 2.1d (September, 1995) 1-15

Return Value: 0 if successful.
Non-zero if unsuccessful.

1-16 Version 2.1d (September, 1995)

Description: CDI_Allocate_HACB() is used by a CDM to allocate a SHACB. It is
during the context of this routine that the SHACB's HACBPutHandle
field is assigned a value by the NWPA. The CDM must not alter the
value in this field. A SHACB allocated with CDI_Allocate_HACB() is not
guaranteed to be below the 16 megabyte boundary. Also, certain fields in
the member HACB are pre-initialized by the NWPA at allocation, and
their values must be maintained. Therefore, do not clear or zero the
HACB. Additionally, to adhere to SFT III (System Fault Tolerance)
requirements, only the information in two of the HACB's fields get
returned to upper system layers. These are the Control_Info and
hacbCompletion fields described in section 3.3.2. The NWPA guarantees
the member HACB's data buffer to be physically contiguous.

Version 2.1d (September, 1995) 1-17

CDI_Bind_CDM_To_Object

Purpose: Binds a CDM to a device and registers with the NWPA the I/O and
control functions that the CDM will support for the device.

1-18 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-19

Thread Context: Blocking

1-20 Version 2.1d (September, 1995)

Syntax: LONG CDI_Bind_CDM_To_Object (LONG cdmosHandle,
LONG npaDeviceID,
LONG cdmBindHandle,
LONG *cdiBindHandle,
struct UpdateInfoStruct *info,
LONG infoSize);

Version 2.1d (September, 1995) 1-21

Parameters:
Inputs:

cdmosHandle

npaDeviceID

cdmBindHandle

cdiBindHandle

info

1-22 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines

infoSize

Outputs:
cdiBindHandle

The CDM's handle for using the CDI_ APIs. The value of cdmosHandle
was assigned during CDI_Register_CDM(), and it is used in conjunction
with the CDM-generated cdmHandle to uniquely identify a CDM when it
interfaces with the NWPA through the CDI_ API set.

The object ID that the NWPA assigned to the target device in its device
database. This value is passed to the CDM through its CDM_Inquiry()
entry point.

A unique handle generated by the CDM to identify the device to which it
intends to bind. Following the bind, this handle will be the token the
NWPA passes to the CDM when routing I/O messages to a device. From
this handle, the CDM must be able to locate the target device's
information including the HAM-generated DeviceHandle and the NWPA-
generated NPABusID.

Address of a local variable of type LONG.

A pointer to an UpdateInfoStruct. This structure contains the information
telling the NWPA what functions the CDM will support for the device.
For a detailed description of this structure, refer to Chapter 6. The
following is the structure's ANSI C definition:

struct UpdateInfoStruct
{

BYTE Name[64];
LONG mediaType;
LONG cartridgeType;
LONG unitSize;
LONG blockSize;
LONG capacity;
LONG preferredUnitsize;
LONG functionMask;
LONG controlMask;
LONG unfunctionMask;
LONG uncontrolMask;
LONG mediaSlot;
BYTE activateFlag;
BYTE removableFlag;
BYTE readOnlyFlag;
BYTE magazineLoadedFlag;
BYTE acceptsMagazinesFlag;
BYTE objectInChangerFlag;
BYTE objectIsLoadableFlag;
BYTE lockFlag;
LONG diskGeometry;
LONG reserved[7];
union
{

struct ChangerInfo
{

Version 2.1d (September, 1995) 1-23

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
LONG

numberOfSlots;
LONG

numberOfExchangeSlot
s;

LONG
numberOfDevices;

LONG
deviceObjects[n];

} ci;
} u1;

} ;

The size of the
UpdateInfoStruct
pointed at by info.

Receives an NWPA
generated handle for the
target device to which
the CDM is binding.
This handle is the
NWPA's counterpart to
the CDM's
cdmBindHandle.

Return Value:

1-24 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines
0 if successful.
Non-zero if
unsuccessful.

Description:

Version 2.1d (September, 1995) 1-25

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
CDI_Bind_CDM_To_Ob
ject() is used to bind a

device object to a CDM. This routine is used within the context of
CDM_Inquiry().

1-26 Version 2.1d (September, 1995)

CDI_Blocking_Execute_HACB

Purpose: Initiates the execution of a HACB request by issuing it to a HAM.

Version 2.1d (September, 1995) 1-27

Architecture Type: All

1-28 Version 2.1d (September, 1995)

Thread Context: Blocking

Version 2.1d (September, 1995) 1-29

Syntax: LONG CDI_Blocking_Execute_HACB (LONG npaBusID,
LONG hacbPutHandle);

1-30 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaBusID

hacbPutHandle

Outputs:

The object ID that the NWPA assigned to the target bus in its object
database. The CDM received this ID through its CDM_Inquiry() entry
point during which it bound to the device.

Handle to the HACB request being executed. The value of this parameter
is obtained from the HACBPutHandle field of the original SHACB's
member HACB.

None

Version 2.1d (September, 1995) 1-31

Return Value: 0 if successful.
Non-zero if unsuccessful.

1-32 Version 2.1d (September, 1995)

Description: CDI_Blocking_Execute_HACB() is used if the CDM must issue multiple
HACBs to the HAM to complete a single CDM message request. This
routine must be called from a blocking thread. Typically, a CDM will use
CDI_Blocking_Execute_HACB() within the context of CDM_Inquiry(),
also a blocking thread, to test a device to see if it should bind to the
device. CDI_Blocking_Execute_HACB() causes the OS to treat the
current thread as if it were the current process. This ensures that a request
is carried to completion, and instructions immediately following this call
can expect the request data to be present. Consequently, since
CDI_Blocking_Execute_HACB() runs a HACB request to completion, a
callback is not necessary unlike the requirement for its non-blocking
counterpart, CDI_Execute_HACB().

Version 2.1d (September, 1995) 1-33

CDI_Chain_Message

Purpose: Chains CDM message requests through layers of CDM filters prior to
being received by a translator CDM (also referred to as a base CDM)
where the message is converted to a SHACB. This routine is only used
by filter CDMs.

1-34 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-35

Thread Context: Non-Blocking

1-36 Version 2.1d (September, 1995)

Syntax: LONG CDI_Chain_Message(LONG cdiBindHandle,
LONG msgPutHandle,
LONG *cdmMessage,
void (*callback)(),
LONG parameter);

Version 2.1d (September, 1995) 1-37

Parameters:
Inputs:

cdiBindHandle

msgPutHandle

cdmMessage

callback

parameter

Outputs:

The NWPA-generated bind handle that was assigned to the calling CDM
when it bound to the target device using CDI_Bind_CDM_To_Object().

Handle to the CDM Message (CDMMessageStruct) being passed
downward. The value of this parameter is obtained from the
MsgPutHandle field of the CDMMessageStruct.

Pointer to the chained CDM Message casted to a pointer to LONG.

Address of the filter CDM's callback routine. The NWPA calls this
routine when the translator (base) CDM completes the CDM message
associated with the request. If the filter CDM does not require a callback,
then this field should be set to zero.

The input parameter of the filter CDM's callback routine. This routine
can be whatever is needed to identify the chained message. If the filter
CDM does not require a callback, then this field should be set to zero.

None.

1-38 Version 2.1d (September, 1995)

Return Value: 0 if successful.
Non-zero if unsuccessful.

Version 2.1d (September, 1995) 1-39

Description: CDI_Chain_Message() is used by filter CDMs to chain CDM messages
through each layer in a CDM filter chain until the message is received by
a translator (base) CDM. Each filter CDM in the chain has the ability to
alter ("massage") CDM message information before passing the message
to the next filter. The translator CDM is the last link in the chain,
meaning that no more data massaging of the CDM message is performed.
Instead, as the last link in the chain, the translator CDM converts the
CDM message into a SHACB request and initiates its execution.
CDI_Chain_Message() allows the filter CDM to specify a callback
routine, so that it can be notified when the request cycle associated with
the message has been completed. If there are multiple filter CDMs then
their respective callbacks are called in reverse order, thereby, rippling
completion-notification upward through the chain.

1-40 Version 2.1d (September, 1995)

CDI_Complete_Message

Purpose: Informs the NWPA that a message request has been completed.

Version 2.1d (September, 1995) 1-41

Architecture Type: All

1-42 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-43

Syntax: LONG CDI_Complete_Message(LONG msgPutHandle,
LONG npaCompletionCode,
LONG appReturnCode);

1-44 Version 2.1d (September, 1995)

Parameters:
Inputs:

msgPutHandle

npaCompletionCode

Version 2.1d (September, 1995) 1-45

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
appReturnCode

Outputs:
Handle to the CDM message (CDMMessageStruct) from which the
SHACB being completed was built. The value of this parameter is
obtained from the MsgPutHandle field of the CDMMessageStruct.

This is zero for no error or non-zero if it should contain an error code.
The NWPA completion codes are listed below:
#define ERROR_NO_ERROR_FOUND

0X00000000
#define ERROR_ABORT_UNCLEAN

0X00000003
#define ERROR_ABORT_CLEAN

0x0000000A
#define ERROR_CORRECTED_MEDIA_ERROR

0x00000010
#define ERROR_MEDIA_ERROR

0x00000011
#define ERROR_DEVICE_ERROR

0x00000012
#define ERROR_ADAPTER_ERROR

0x00000013
#define ERROR_NOT_SUPPORTED_BY_DEVICE

0x00000014
#define ERROR_NOT_SUPPORTED_BY_DRIVER

0x00000015
#define ERROR_PARAMETER_ERROR

0x00000016
#define ERROR_MEDIA_NOT_PRESENT

0x00000017
#define ERROR_MEDIA_CHANGED

0x00000018
#define ERROR_PREVIOUSLY_WRITTEN

0x00000019
#define ERROR_MEDIA_NOT_FORMATTED

0x0000001A
#define ERROR_BLANK_MEDIA

0x0000001B
#define ERROR_END_OF_MEDIA

0x0000001C
#define ERROR_FILE_MARK_DETECTED

1-46 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines

0x0000001D
#define
ERROR_SET_MARK_DETEC
TED
0x0000001E
#define
ERROR_WRITE_PROTECTE
D
0x0000001F
#define
ERROR_OK_EARLY_WARNI
NG
0x00000020
#define
ERROR_BEGINNING_OF_M
EDIA
0x00000021
#define
ERROR_MEDIA_NOT_FOUN
D
0x00000022
#define
ERROR_MEDIA_NOT_REMO
VED
0x00000023
#define
ERROR_UNKNOWN_COMPLE
TION
0x00000024
#define
ERROR_IO_ERROR
0x00000028
#define
ERROR_CHANGER_SOURCE
_EMPTY
0x00000029
#define
ERROR_CHANGER_DEST_F
ULL
0x0000002A
#define
ERROR_CHANGER_JAMMED

0x0000002B
#define
ERROR_MAGAZINE_NOT_P
RESENT
0x0000002D
#define
ERROR_MAGAZINE_SOURC
E_EMPTY
0x0000002E
#define
ERROR_MAGAZINE_DEST_
FULL
0x0000002F
#define
ERROR_MAGAZINE_JAMME

D

0x00000030
#define ERROR_ABORT_CAUSED_PRIOR_ERROR

0x00000031
#define ERROR_CHANGER_ERROR

0x00000032
#define ERROR_MAGAZINE_ERROR

0x00000033
#define ERROR_BLOCKSIZE_MISMATCH

0x00000034
#define ERROR_DECOMPRESSION_ALGORITHM_MISMATCH

0x00000035
Application return code. This parameter passes specific information
directly from the CDM to a NWPA application.

None

Version 2.1d (September, 1995) 1-47

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Return Value: 0 if successful.

Non-zero if unsuccessful.

1-48 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines
Description: CDI_Complete_Message() is used by a CDM to notify the NWPA that a

specific HACB request has been completed. CDI_Complete_Message() is
generally called within the context of the CDM's CDM_Callback()
routine, which is the point where the CDM is notified that a HACB
request has been completed. CDM_Callback() is responsible for
checking the value in the HACB's hacbCompletion field to determine the
request's completion status. If the field value is zero, it indicates that the
request completed without error, and CDI_Complete_Message() should be
called with npaCompletionCode = 0x00000000 (NO ERROR). If the
field value is non-zero, it indicates that an error occurred while
processing the request. In the error case, CDM_Callback() can do one of
the following:

Option 1: Map the error into one of the NWPA completion codes
applicable to the condition and call CDI_Complete_Message() with
NPACompletionCode equal to this code.

Option 2: Spawn a blocking, error handling thread using
NPA_Spawn_Thread() and return. The spawned error handling thread can
request sense information and try to remedy the error. If the error is
remedied and the request can be completed successfully, then
CDI_Complete_Message() should be called within the context of the error
handling routine with npaCompletionCode = 0x00. However, if the error
cannot be remedied, then the error handling routine should perform the
tasks prescribed in option 1. If the error is severe enough, the device may
need to be deactivated.

Additionally, CDI_Complete_Message() provides the channel for a CDM
to ripple specific information up to an application. For example, a tape
application may require an I/O request to return the actual number of
blocks read/written from/to a device. The CDM provides this information
via the appReturnCode parameter

Version 2.1d (September, 1995) 1-49

CDI_Execute_HACB

Purpose: Initiates the execution of a SHACB request.

1-50 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-51

Thread Context: Non-Blocking

1-52 Version 2.1d (September, 1995)

Syntax: LONG CDI_Execute_HACB (LONG msgPutHandle,
LONG hacbPutHandle,
LONG (*CDM_Callback)());

Version 2.1d (September, 1995) 1-53

Parameters:
Inputs:

msgPutHandle

hacbPutHandle

CDM_Callback

Outputs:

Handle to the CDM message (CDMMessageStruct) from which the
SHACB was built. The value of this parameter is obtained from the
MsgPutHandle field of the CDMMessageStruct.

Handle to the HACB request being executed. The value of this parameter
is obtained from the HACBPutHandle field of the original SHACB's
member HACB.

Address of the CDM routine to be called when the HACB request
completes. A callback routine must be specified for each issued request.

None

1-54 Version 2.1d (September, 1995)

Return Value: 0 if successful.
Non-zero if unsuccessful.

Version 2.1d (September, 1995) 1-55

Description: CDI_Execute_HACB() is used by a CDM to initiate the execution of a
HACB request by routing a HACB to the HAM supporting the target
device. Most HACB requests should be executed using this routine.

1-56 Version 2.1d (September, 1995)

CDI_Non_Blocking_Execute_HACB

Purpose: Allows the CDM to issue AEN HACBs to the HAM.

Version 2.1d (September, 1995) 1-57

Architecture Type: All

1-58 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-59

Syntax: LONG CDI_Non_Blocking_Execute_HACB(LONG npaBusID,
LONG hacbPutHandle,
LONG (*CDM_Callback)());

1-60 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaBusID

hacbPutHandle

CDM_Callback

Outputs:

The object ID that the NWPA assigned to the target bus in its object
database. The CDM received this ID through its CDM_Inquiry() entry
point during which it bound to the device.

Handle to the HACB request being issued. The value of this parameter is
obtained from the HACBPutHandle field of the original SHACB's
member HACB.

Address of the CDM routine to be called when the HACB request
completes. A callback routine must be specified for each issued request.

None

Version 2.1d (September, 1995) 1-61

Return Value: 0 if successful.
Non-zero if unsuccessful.

1-62 Version 2.1d (September, 1995)

Description: CDI_Non_Blocking_Execute_HACB() is used by a CDM to issue
Asynchronous Event Notification (AEN) HACBs to the HAM. The
CDM indicates which device it wants the AEN to monitor by placing the
appropriate handle in the HACB's DeviceHandle field. For more
information about AEN HACBs, refer to section 4.3.2.

Version 2.1d (September, 1995) 1-63

CDI_Object_Update

Purpose: Allows the CDM to update device object information

1-64 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-65

Thread Context: Non-Blocking

1-66 Version 2.1d (September, 1995)

Syntax: LONG CDI_Object_Update (LONG cdmosHandle,
LONG cdiBindHandle,
struct UpdateInfoStruct *info,
LONG infoSize,
LONG reasonFlag);

Version 2.1d (September, 1995) 1-67

Parameters:
Inputs:

cdmosHandle

cdiIBindHandle

info

1-68 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines

infoSize

reasonFlag

Outputs:

The CDM's handle for using the CDI_ APIs. The value of cdmosHandle
was assigned during CDI_Register_CDM(), and it is used in conjunction
with the CDM-generated CDMHandle to uniquely identify a CDM when
it interfaces with the NWPA through the CDI_ API set.

The NWPA-generated bind handle that was assigned to the calling CDM
when it bound to the target device using CDI_Bind_CDM_To_Object().

A pointer to an UpdateInfoStruct. This structure contains the information
telling the NWPA what items will be updated for the target device. For a
detailed description of this structure, refer to Chapter 6. The following is
the structure's ANSI C definition:
struct UpdateInfoStruct
{

BYTE name[64];
LONG mediaType;
LONG cartridgeType;
LONG unitSize;
LONG blockSize;
LONG capacity;
LONG preferredUnitsize;
LONG functionMask;
LONG controlMask;
LONG unfunctionMask;
LONG uncontrolMask;
LONG mediaSlot;
BYTE activateFlag;
BYTE removableFlag;
BYTE readOnlyFlag;
BYTE magazineLoadedFlag;
BYTE acceptsMagazinesFlag;
BYTE objectInChangerFlag;
BYTE objectIsLoadableFlag;
BYTE lockFlag;
LONG diskGeometry;
LONG reserved[7];
union
{

struct ChangerInfo
{

LONG numberOfSlots;
LONG numberOfExchangeSlots;
LONG numberOfDevices;
LONG deviceObjects[n];

} ci;
} u1;

} ;
The size of the UpdateInfoStruct pointed at by info.

A NWPA recognized code corresponding to the reason why the update is
being done. The following is a list of valid codes that may be placed in
this field:
ALERT_UNKNOWN

Version 2.1d (September, 1995) 1-69

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
0X00000000
ALERT_DRIVER_UNLOAD
0X00000001
ALERT_DEVICE_FAILURE

0X00000002
ALERT_PROGRAM_CONTRO
L
0X00000003
ALERT_MEDIA_DISMOUNT

0X00000004
ALERT_MEDIA_EJECT
0X00000005
RESERVED2
0X00000006
RESERVED3
0X00000007
ALERT_MEDIA_LOAD
0X00000008
ALERT_MEDIA_MOUNT
0X00000009
ALERT_DRIVER_LOAD
0X0000000A
RESERVED4
0X0000000B
RESERVED5
0X0000000C
ALERT_MAGAZINE_LOAD
0X0000000D
ALERT_MAGAZINE_UNLOA
D
0X0000000E
RESERVED6
0X0000000F
ALERT_CHECK_DEVICE
0X00000010
ALERT_CONFIGURATION_
CHANGE
0X00000011
RESERVED7
0X00000012
RESERVED8
0X00000013
ALERT_LOST_HARDWARE_
FAULT_TOLERANCE
0X00000014
RESERVED9
0X00000015
RESERVED10
0X00000016
RESERVED11
0X00000017
ALERT_DEVICE_END_OF_
MEDIA
0X00000018
ALERT_MEDIA_INSERTED

0X00000019

RESERVED12
0X0000001A
RESERVED13
0X0000001B
RESERVED14
0X0000001C

None

1-70 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines
Return Value: 0 if successful.

Non-zero if unsuccessful.

Version 2.1d (September, 1995) 1-71

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Description: CDI_Object_Update() is used by a CDM to update device object

information with the NWPA. Typically, object updating is done when the
CDM needs to deactivate a device or put in capacity, unitsize, or
blocksize information for a removable device on a mount. Although it is
not a specific NWPA requirement, it is good practice for a CDM to store
the device object information for each device it supports into a local
structure. Whenever device information is updated, the update
information should also be mirrored into the local storage structure.
Doing this allows the CDM to know the current operational information
for each device it supports. However, to save the NWPA time and
overhead in performing the update, the CDM should allocate a reusable
UpdateInfoStruct to use exclusively as an input parameter to
CDI_Object_Update(). Then, when an update is necessary, the CDM
should do the following:

1. Set all of the fields of the reusable UpdateInfoStruct to -
1. This is easily accomplished using the OS routine CSetB().

2. Place the new values in the fields that are to be updated,
thereby, leaving a -1 in all of the fields that are not to be updated. The -1
indicates a no-change condition to the NWPA.

Note: Updated field values should be mirrored into the corresponding
fields of device's local storage structure.

3. Call CDI_Object_Update() to update the device object
information with the NWPA.

1-72 Version 2.1d (September, 1995)

CDI_Queue_Message

Purpose: Registers an abort routine with the NWPA for a CDM that internally
queues CDM messages.

Version 2.1d (September, 1995) 1-73

Architecture Type: All

1-74 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-75

Syntax: LONG CDI_Queue_Message(LONG msgPutHandle,
LONG (*AbortRoutine)(),
LONG abortParameter,
void (*ExecuteRoutine)(),
LONG executeParameter);

1-76 Version 2.1d (September, 1995)

Parameters:
Inputs:

msgPutHandle

AbortRoutine

abortParameter

ExecuteRoutine

executeParameter

Outputs:

Handle to the CDM message (CDMMessageStruct) from which the
SHACB was built. The value of this parameter is obtained from the
MsgPutHandle field of the CDMMessageStruct.

Address of the CDM's internal queue abort routine. Since an abort
routine is registered on a per enqueue basis, a CDM can have more than
one. However, within this manual, this routine is generically referred to
as CDM_Abort_CDMMessage().

Input parameter to CDM_Abort_CDMMessage(). This parameter can
contain anything that the CDM needs to complete the abort. Typically,
this parameter is a handle to the original CDM message that initiated the
request. To avoid memory problems, however, this parameter should not
be a memory pointer.

(Optional) A pointer to a CDM entry point where the NWPA can send
postponed requests from the NetWare elevators. This functionality is
mainly applicable to CDM filters, and even then it is limited to a small
audience of developers. If a developer does not understand the
explanation given here, then this is not a feature the developer needs. If
not used, which is the typical case, this parameter should be set to zero.

(Optional) Input parameter to the routine specified in ExecuteRoutine.
Like ExecuteRoutine, this functionality is applicable to a limited
audience. Typically, this parameter should be set to zero.

None

Version 2.1d (September, 1995) 1-77

Return Value: 0 if successful.
Non-zero if unsuccessful.

1-78 Version 2.1d (September, 1995)

Description: CDI_Queue_Message() is used by a CDM that does internal queuing of
CDM messages. Generally, a CDM will not need to do internal queuing,
unless the CDM must build multiple HACB requests to accomplish a
single CDM message request issued by the NWPA. A CDM must call
CDI_Queue_Message() each time it queues a message, that is, every time
it does not call either CDI_Execute_HACB() or CDI_Chain_Message()
(filter CDMs only) within the context of CDM_Execute_CDMMessage()
for that message. For each message the CDM queues,
CDI_Queue_Message() registers an abort routine that can be called by the
NWPA in case an abort is issued on that request. CDI_Queue_Message()
only implies that a message is enqueued. The CDM must provide the
actual enqueue/dequeue functionality. Dequeuing is implied when either
CDI_Execute_HACB(), CDI_Blocking_Execute_HACB(), or
CDI_Complete_Message() is called on the message.

Version 2.1d (September, 1995) 1-79

CDI_Register_CDM

Purpose: Registers a CDM with the NWPA.

1-80 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-81

Thread Context: Non-Blocking

1-82 Version 2.1d (September, 1995)

Syntax: LONG CDI_Register_CDM(LONG *cdmHandle,
LONG cdmHandle,
LONG types,
BYTE *name,
LONG npaHandle);

Version 2.1d (September, 1995) 1-83

Parameters:
Inputs:

cdmosHandle

cdmHandle

types

1-84 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines

name

npaHandle

Outputs:
cdmosHandle

Address of a local variable of type LONG.

Handle that the CDM generated for itself. This handle is the CDM's own
unique identifier. It is used in conjunction with the OS-generated
cdmosHandle to uniquely identify a CDM when it interfaces with the
NWPA through the CDI_ API set.

A packed LONG containing information that identifies for the NWPA the
CDM's CDM type (filter, enhancer, or base-translator), and the device
types and host adapter type it supports. The parameter is divided as
follows:

Possible values for CDM types
0x01 Base-Translator
0x02 Enhancer
0x03 Filter

Possible values for device types:
0x00 Direct-access device (magnetic disk)
0x01 Sequential-access device (magnetic tape)
0x02 Printer device
0x03 Processor device
0x04 Write once device (some optical disks)
0x05 CD-ROM device
0x06 Scanner device
0x07 Optical memory device (some optical disks)
0x08 Media changer device (jukebox) or magazine
0x09 Communications device
0x0A-0B Defined by ASC IT8 (Graphic Arts Pre-Press)
0x0C-1E Reserved
0x1F Unknown or no device type
0xFF Call CDM_Inquiry() for every type of device

Version 2.1d (September, 1995) 1-85

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

Possible values for host
adapter types:

0x0001 SCSI
0x0002 IDE\

ATA
0x0003 Custom
0x0004-00FE

Reserved
0xFFFF Any

bus type

Length-preceded string
containing the CDM's
name. Maximum string
length is 64 bytes where
byte 0 contains the
string length and bytes
1 through 63 can
contain characters.

The CDM's handle for
using the NPA_ APIs.
Its value was assigned
during
NPA_Register_CDM_M
odule().

Receives a CDM-OS
handle used as a
communication token
between the CDM and
the NWPA. This handle
is used in conjunction
with the CDM-
generated CDMHandle
to uniquely identify a
CDM when it interfaces
with the NWPA through
the CDI_ API set.

Return Value:

1-86 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines
0 if successful.
Non-zero if
unsuccessful.

Description:

Version 2.1d (September, 1995) 1-87

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
CDI_Register_CDM() is
used to register the
module as a CDM and

make its entry points, registered during NPA_Register_CDM_Module(),
visible to the system. This is the last routine called within CDM_Load()
prior to CDM_Load() returning its thread to the OS calling process.

1-88 Version 2.1d (September, 1995)

CDI_Register_Object_Attribute

Purpose: Registers device attributes with the NWPA, which then makes these
attributes visible to the application layer.

Version 2.1d (September, 1995) 1-89

Architecture Type: All

1-90 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-91

Syntax: LONG CDI_Register_Object_Attribute(LONG npaHandle,
LONG cdmBindHandle,
struct AttributeInfo *info,
LONG (*GetRoutine),
LONG (*SetRoutine));

1-92 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaHandle

cdmBindHandle

info

GetRoutine

Version 2.1d (September, 1995) 1-93

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

SetRoutine

Outputs:

The CDM's handle for using the NPA_ APIs. Its value was assigned
during NPA_Register_CDM_Module().

Handle generated by the CDM to uniquely identify the device. This is the
handle the CDM passed to CDI_Bind_CDM_To_Object() when it bound
to the device.

A pointer to an AttributeInfoStruct structure. This structure contains
specific information about an attribute. For a detailed description of this
structure, refer to Chapter 6. The following is the ANSI C definition of
the structure:

struct AttributeInfoStruct
{

LONG attributeID;
LONG attributeType;
LONG attributeLength;
BYTE attributeName[64];

};

Pointer to a local CDM entry point (CDM_Get_Attribute()) responsible
for returning attribute information. The following is the ANSI C
prototype of this entry point:

LONG CDM_Get_Attribute (
LONG cdmBindHandle,
void *infoBuffer,
LONG infoBufferLength,
LONG attributeID);

For a given attribute, the CDM indicates the expected data type of the
InfoBuffer input parameter by the value it places in the AttributeType
field of the attribute's AttributeInfoStruct at registration. A pointer to this
structure is passed to the attribute registration routine,
CDM_Get_Attribute() places the return attribute information in the
location pointed at by the InfoBuffer input parameter and the byte-length
of the return information in the location pointed at by the
infoBufferLength input parameter.

If the attribute is not settable, this field is set to zero. If the attribute is
settable, this field contains a pointer to a local CDM entry point
(CDM_Set_Attribute()) responsible for setting attribute information. The
following is the ANSI C prototype of this entry point:

LONG CDM_Set_Attribute (
LONG cdmBindHandle,
void *infoBuffer,
LONG infoBufferLength,
LONG attributeID);

1-94 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines

CDM_Set_Attribute()
sets the attribute to the
information contained
in the infoBuffer input
parameter. The length of
this buffer is specified
in the infoBufferLength
input parameter. If the
attribute change affects
any of the information
that the CDM originally
reported to the NWPA
during its bind to the
device, it must update
these changes to the
NWPA by filling out the
appropriate fields of an
UpdateInfoStruct and
calling
CDI_Object_Update().
The context of the set
routine is blocking;
therefore, the CDM can
issue any necessary
commands to set the
mode of the device.

None

Return Value:

Version 2.1d (September, 1995) 1-95

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
0 if successful.
Non-zero if
unsuccessful.

Description:

1-96 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines
CDI_Register_Object_A
ttribute() allows a CDM
to present attribute
information about a
device it manages to the

application layer. To present the information, a CDM must register a get-
routine (CDM_Get_Attribute()) that returns attribute information into a
buffer provided by the calling process. If a device attribute can be
changed by an application, then the CDM must register a set-routine
(CDM_Set_Attribute()).

Version 2.1d (September, 1995) 1-97

CDI_Return_HACB

Purpose: Returns memory allocated for a SHACB back to the system memory
pool.

1-98 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-99

Thread Context: Non-Blocking

1-100 Version 2.1d (September, 1995)

Syntax: LONG CDI_Return_HACB (LONG cdmosHandle,
LONG hacbPutHandle);

Version 2.1d (September, 1995) 1-101

Parameters:
Inputs:

cdmosHandle

hacbPutHandle

Outputs:

The CDM's handle for using the CDI_ APIs. The value of cdmosHandle
was assigned during CDI_Register_CDM(), and it is used in conjunction
with the CDM-generated CDMHandle to uniquely identify a CDM when
it interfaces with the NWPA through the CDI_ API set.

Handle to the HACB being deallocated. The value of this parameter is
obtained from the hacbPutHandle field of the original SHACB's member
HACB.

None

1-102 Version 2.1d (September, 1995)

Return Value: 0 if successful.
Non-zero if unsuccessful.

Version 2.1d (September, 1995) 1-103

Description: CDI_Return_HACB() is used by a CDM to return the memory allocated
for a SHACB to the system memory pool. Typically,
CDI_Return_HACB() is called when a SHACB structure becomes
corrupted and cannot be reused for building subsequent requests or when
the CDM is ready to unload.

1-104 Version 2.1d (September, 1995)

CDI_Rescan_Bus

Purpose: This API is used by the CDM to update the NWPA's device object
database anytime the CDM changes the private/public status of a device
it controls.

Version 2.1d (September, 1995) 1-105

Architecture Type: All

1-106 Version 2.1d (September, 1995)

Thread Context: Blocking

Version 2.1d (September, 1995) 1-107

Syntax: LONG CDI_Rescan_Bus (LONG npaBusID):

1-108 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaBusID

Outputs:

The object ID that the NWPA assigned to the target bus in its object
database. The CDM received this target ID as an input parameter to its
CDM_Inquiry() entry point.

None

Version 2.1d (September, 1995) 1-109

Return Value: 0 if successful.
Non-zero if unsuccessful.

1-110 Version 2.1d (September, 1995)

Description: The primary use of this API is to place devices that were originally
detected by the CDM via the Case 2 scan (see HAM_Scan_For_Devices)
back into the object database maintained by the Media Manager so that
they can be available to other applications.

Version 2.1d (September, 1995) 1-111

CDI_Unbind_CDM_From_Object

Purpose: Unbinds a CDM from a device object.

1-112 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-113

Thread Context: Blocking

1-114 Version 2.1d (September, 1995)

Syntax: LONG CDI_Unbind_CDM_From_Object (LONG cdmosHandle,
LONG cdiBindHandle);

Version 2.1d (September, 1995) 1-115

Parameters:
Inputs:

cdmosHandle

cdiBindHandle

Outputs:

The CDM's handle for using the CDI_ APIs. The value of cdmosHandle
was assigned during CDI_Register_CDM(), and it is used in conjunction
with the CDM-generated CDMHandle to uniquely identify a CDM when
it interfaces with the NWPA through the CDI_ API set.

The NWPA-generated bind handle that was assigned to the calling CDM
when it bound to the target device using CDI_Bind_CDM_To_Object().

None

1-116 Version 2.1d (September, 1995)

Return Value: 0 if successful.
Non-zero if unsuccessful.

Version 2.1d (September, 1995) 1-117

Description: CDI_Unbind_CDM_From_Object() is used by the CDM to unbind itself
from a device. When a CDM is unbound, it no longer has to handle
requests for that device. Typically, the CDM calls this routine at unload
time within the context of CDM_Unload(). However, if somehow the
CDM determines that it should no longer support a device, it can call
CDI_Unbind_CDM_From_Object(), and it will no longer have to handle
requests for that device.

1-118 Version 2.1d (September, 1995)

CDI_Unregister_CDM

Purpose: Unregisters a CDM and its entry points from the NWPA.

Version 2.1d (September, 1995) 1-119

Architecture Type: All

1-120 Version 2.1d (September, 1995)

Thread Context: Blocking

Version 2.1d (September, 1995) 1-121

Syntax: LONG CDI_Unregister_CDM (LONG cdmosHandle,
LONG cdmHandle);

1-122 Version 2.1d (September, 1995)

Parameters:
Inputs:

cdmosHandle

cdmHandle

Outputs:

The CDM's handle for using the CDI_ APIs. The value of cdmosHandle
was assigned during CDI_Register_CDM(), and it is used in conjunction
with the CDM-generated CDMHandle to uniquely identify a CDM when
it interfaces with the NWPA through the CDI_ API set.

Handle that the CDM generated for itself. This handle is the CDM's own
unique identifier. It is used in conjunction with the OS-generated
cdmosHandle to uniquely identify a CDM when it interfaces with the
NWPA through the CDI_ API set. Also, the CDM must be able to access
its device list through this handle.

None

Version 2.1d (September, 1995) 1-123

Return Value: 0 if successful.
Non-zero if unsuccessful.

1-124 Version 2.1d (September, 1995)

Description: CDI_Unregister_CDM() is used to unregister the CDM from the NWPA
prior to being unloaded. It is called within the context of CDM_Unload()
to flush pending I/O before being the CDM is unloaded.

Version 2.1d (September, 1995) 1-125

CDM_Abort_CDMMessage

Purpose: The CDM's entry for receiving aborts on messages it has queued.

1-126 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-127

Syntax: LONG CDM_Abort_CDMMessage (LONG parameter);

1-128 Version 2.1d (September, 1995)

Parameters:
Inputs:

parameter

Outputs:

The NWPA passes the value of this parameter, which is the parameter
specified as an input argument to CDI_Queue_Message(). The CDM
decides the value of this parameter, which can be anything it needs to
complete the abort. Typically, this parameter is a handle to the original
CDM message that initiated the request. To avoid memory problems, this
parameter should not be a memory pointer.

None

Version 2.1d (September, 1995) 1-129

Return Value: 0 if successful.
Non-zero if unsuccessful.

1-130 Version 2.1d (September, 1995)

Description: CDM_Abort_CDMMessage() is the CDM's entry point for receiving
requests to abort messages in its process queue. This routine, and its
input parameter, become visible to the NWPA during
CDI_Queue_Message(). The CDM is required to provide
CDM_Abort_CDMMessage() only if it will provide its own internal
request queue. CDMs that support devices, such as tape devices, that
require multiple HACB requests to execute a command fall into this
category. For such devices, CDM_Abort_CDMMessage() must provide
the means to not only remove pending HACB requests from a queue, it
must be able to abort HACB requests already sent to the HAM by calling
CDI_Abort_HACB()

Version 2.1d (September, 1995) 1-131

CDM_Callback

Purpose: The CDM's entry point for being notified of the completion of a non-
blocking HACB request.

1-132 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-133

Syntax: LONG CDM_Callback(struct SHACBStruct *SHACB,
LONG npaCompletionCode);

1-134 Version 2.1d (September, 1995)

Parameters:
Inputs:

SHACB

npaCompletionCode

Outputs:

The NWPA passes the value of this parameter, which is a pointer to the
SHACBStruct encapsulating the HACBStruct that contains the data of
the request just completed. For a detailed description of this structure and
its member HACBStruct, refer to Chapter 3. The following is the
structure's ANSI C definition:
typedef struct SHACBStruct
{

LONG cdmSpace[8];
struct hacbStruct HACB;

} SHACB;

The NWPA generates and passes the value of this parameter, which is a
completion code for an internal NWPA process. If the value of this
parameter is zero, it means that the value in the HACB's hacbCompletion
field is valid; therefore, normal callback processing should be performed.
If the value of this parameter is non-zero, it means that an internal
messaging error has occurred. In this case, CDM_Callback() should
simply complete the request by calling CDI_Complete_Message() passing
it the value of NPACompletionCode as the API's NPACompletionCode
input parameter.

None

Version 2.1d (September, 1995) 1-135

Return Value: 0 to succeed

1-136 Version 2.1d (September, 1995)

Description: CDM_Callback() is the CDM's entry point for being notified of HACB
completion. Within the context of CDM_Callback(), the CDM can check
a HACB's completion status (provided NPACompletionCode == 0) and
determine a course of action. Depending on a HACB's completion status,
contained in the HACB's hacbCompletion field, the CDM can do one of
the following:

Option 1: If the HACB completion status is successful
(hacbCompletion=0x0000), complete the HACB by calling
CDI_Complete_Message() with a value of zero in the NPACode input
parameter.

Version 2.1d (September, 1995) 1-137

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Option 2:
If the HACB

completion status
indicates an error
(hacbCompletion=0x000
1 to 0x0008), translate
the error into an
appropriate NWPA error
code, and complete the
HACB by calling
CDI_Complete_Message
() with the NWPA error
code as the value in the
NPACode input
parameter.

Option 3:
If the HACB

completion status
indicates an error,

spawn a blocking, error handling thread to try and remedy the error. In
this situation, the CDM must provide some error handling routines. If the
error handling routine can remedy the error, then within its context it
should complete the HACB as described in option 1. If the error could
not be remedied, then the error handling routine should complete the
HACB as described in option 2.

CDM_Callback() becomes visible to the NWPA when the CDM executes
a HACB request by calling CDI_Execute_HACB(). Along with a pointer
to the HACB to be executed, the CDM supplies the address of the
CDM_Callback() as an input parameter to CDI_Execute_HACB(). The
CDM must supply these parameters for each HACB request it executes.
The NWPA associates the specified HACB request with the specified
callback routine, and makes the callback after the HACB request
completes. Since a callback routine is specified for each call to
CDI_Execute_HACB(), the CDM can provide either one all-inclusive
callback routine or a set of callback routines where each provides
specific functionality specially designed for a certain type of HACB
request. In this manual, however, the term CDM_Callback() is used to
generically refer to either case.

1-138 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines

Important: CDM_Callback() should not hold the current thread for any lengthy amount of
time, and it must not make any calls to blocking processes. If blocking threads such as error
handling threads are necessary, then CDM_Callback() should spawn them using
NPA_Spawn_Thread(), and then relinquish control by returning to the calling process.

Version 2.1d (September, 1995) 1-139

CDM_Check_Option

Purpose: The CDM's entry point for accepting and verifying the command line
options parsed by NPA_Parse_Options() are valid for the CDM.

1-140 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-141

Syntax: LONG CDM_Check_Option(struct NPAOptionStruct *option,
LONG instance,
LONG flag);

1-142 Version 2.1d (September, 1995)

Parameters:
Inputs:
option

instance

flag

Outputs:

The NWPA passes the value of this parameter, which is a pointer to the
NPAOptionStruct associated with this instance of the CDM module. The
following is the structure's ANSI C definition:

struct NPAOptionStruct
{

BYTE name[32];
LONG parameter0;
LONG parameter1;
LONG parameter2;
WORD type;
WORD flags;
BYTE string[n];

};

The NWPA passes the value of this parameter, which is a CDM-
generated number identifying a device instance. The NWPA will use this
number to associate different groups of options with a particular device
being managed by the CDM.

The NWPA passes the value of this parameter, which indicates the
process that called CDM_Check_Option(). This parameter is defined as
follows;

0x00000000 Called by NPA_Parse_Options().
0x00000001 Called by NPA_Register_Options().

None

Version 2.1d (September, 1995) 1-143

Return Value: 0 if successful.
Non-zero if unsuccessful.

1-144 Version 2.1d (September, 1995)

Description: CDM_Check_Option() is registered with the NWPA during
NPA_Register_CDM_Module(), and it is called by the NWPA during two
different phases of CDM initialization. CDM_Check_Option() is called
by NPA_Parse_Options() during the command-line parsing phase and
again by NPA_Register_Options() during the options registration phase.

Version 2.1d (September, 1995) 1-145

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
When called under the
context of
NPA_Parse_Options(),
the CDM should only
determine if the current
option is acceptable.
Under this context, the
NWPA has not
physically associated
the options with a
device instance in its
database.

When called under the context of NPA_Register_Options(), the NWPA
has already placed the options in its database, and the CDM can set its
operational states accordingly.

Since CDMs do not directly interface with the hardware, they should not
attempt to register for hardware options such as interrupts, DMA
channels, ports, etc. CDM command-line options should only set
software, operational modes for the CDM.

If the CDM determines that an error occurred in registering its options, it
will need the to unregister these options using NPA_Unregister_Options()
passing Instance as an input parameter.

1-146 Version 2.1d (September, 1995)

CDM_Execute_CDMMessage

Purpose: The CDM's entry point for receiving a CDM message which routes them
to the proper CDM control or I/O routine to build a SHACB request.

Version 2.1d (September, 1995) 1-147

Thread Context: Non-Blocking

1-148 Version 2.1d (September, 1995)

Syntax: LONG CDM_Execute_CDMMessage(LONG cdmBindHandle,
struct CDMMessageStruct *msg);

Version 2.1d (September, 1995) 1-149

Parameters:
Inputs:

cdmBindHandle

msg

Outputs:

The NWPA passes the value of this parameter, which is a handle to the
device being targeted by the CDM Message request
(CDMMessageStruct). The CDM generated the value of cdmBindHandle
during the context of CDM_Inquiry() when it bound to the device. The
CDM bound to the device by calling CDI_Bind_CDM_To_Object(). From
this handle, the CDM locates the target device's information including
the HAM-generated DeviceHandle and the NWPA-generated NPABusID.

The NWPA passes the value of this parameter, which is a pointer to the
CDMMessageStruct containing the data from which a CDM control or
I/O routine will build a SHACB. For a detailed description of this
structure refer to Chapter 6. The following is the ANSI C definition:

struct CDMMessageStruct
{

LONG msgPutHandle;
LONG function;
LONG parameter0;
LONG parameter1;
LONG parameter2;
LONG bufferLength;
void* buffer;
LONG cdmReserved[2]; } ;

None

1-150 Version 2.1d (September, 1995)

Return Value: Returns the return value of the internal CDM routine called to service the
request:
0 if the CDM routine executed successfully.
Non-zero if the specified function is not supported by the CDM.

Version 2.1d (September, 1995) 1-151

Description: CDM_Execute_CDMMessage() is the CDM's entry point for receiving
and routing a CDM message to the proper CDM routine that will convert
the message into a SHACB.

1-152 Version 2.1d (September, 1995)

CDM_Get_Attribute

Purpose: The CDM entry point from which applications may retrieve attribute
information for a specific attribute.

Version 2.1d (September, 1995) 1-153

Thread Context: Non-Blocking

1-154 Version 2.1d (September, 1995)

Syntax: LONG CDM_Get_Attribute(LONG cdmBindHandle,
void *infoBuffer,
LONG infoBufferLength,
LONG attributeID);

Version 2.1d (September, 1995) 1-155

Parameters:
Inputs:

cdmBindHandle

infoBuffer

infoBufferLength

attributeID

Outputs:

The NWPA passes the value of this parameter, which is a handle to the
device being targeted by the CDM Message request
(CDMMessageStruct). The CDM generated the value of cdmBindHandle
during the context of CDM_Inquiry() when it bound to the device. The
CDM bound to the device by calling CDI_Bind_CDM_To_Object(). From
this handle, the CDM locates the target device's information including
the HAM-generated DeviceHandle and the NWPA-generated NPABusID.

This points to where the information associated with the attribute being
retrieved will be stored by CDM_Get_Attribute().

Size of the infoBuffer in bytes.

The ID of the attribute selected. This is the ID that was registed by the
CDM for this attribute during CDI_Register_Object_Attribute().

None

1-156 Version 2.1d (September, 1995)

Return Value: 0 to succeed.

Version 2.1d (September, 1995) 1-157

Description: CDM_Get_Attribute() is the entry point from which the NWPA can
retrieve registered device attribute information for an application. This
entry point gets registered with the NWPA when the CDM registers the
attribute by calling CDI_Register_Object_Attribute().

1-158 Version 2.1d (September, 1995)

Note: The CDM registers a get-attribute routine with each call to
CDI_Register_Object_Attribute(). Therefore, the CDM can implement either one routine to
handle all get-attribute calls, or distribute the calls through multiple routines. This developer’s
guide uses CDM_Get_Attribute() to generically refer to either case.

Version 2.1d (September, 1995) 1-159

CDM_Inquiry

Purpose: The CDM's entry point for inquiring online devices and determining
whether or not it will bind to the device.

1-160 Version 2.1d (September, 1995)

Thread Context: Blocking

Version 2.1d (September, 1995) 1-161

Syntax: LONG CDM_Inquiry(LONG npaDeviceID,
LONG npaBusID,
struct DeviceInfoStruct *deviceInfo,
LONG flag,
LONG cdmHandle);

1-162 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaDeviceID

npaBusID

deviceInfo

Version 2.1d (September, 1995) 1-163

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

flag

cdmHandle

Outputs:

1-164 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines

The NWPA passes the
value of this parameter,
which is the object ID
that the NWPA assigned
to the target device in
its device database.

The NWPA passes the
value of this parameter,
which is the object ID
that the NWPA assigned
to the target bus in its
object database. If Flag
is set to 0x00000003 or
0x00000004, this is the
only valid parameter for
this API. All other
parameters will be set to
0.

The NWPA passes the
value of this parameter,
which is a pointer to a
DeviceInfoStruct. The
HAM supporting the
target device fills in this
structure with all the
pertinent device
information that the
CDM may need to send
I/O to the device and
determine if it should
bind to the device.
Additionally, this
structure has an
InquiryInfoStruct as a
data member that
contains bus-specific
inquiry information. For
a detailed description of
this structure, refer to
Chapter 6. The
following is the
structure's ANSI C
definition:
typedef struct

DeviceInfoStruct
{
LONG deviceHandle;
BYTE deviceType;
BYTE unitNumber;
BYTE busID;
BYTE cardNo;
LONG attributeFlags;
LONG haxDataPerTransfer;
LONG haxLengthSGElement;
BYTE haxSGElements;
BYTE reserved1[2];
BYTE elevatorThreshold;
LONG maxUnitsPerTransfer;
WORD haType;
union /* Device Specific Information */
{

struct /* SCSI Synchronous Information */
{

BYTE transferPeriodFactor;
BYTE offset;

} SCSI;
struct /* Other Device Information */
{

BYTE reserved2[2];
} OTHER;

} INFO;
struct InquiryInfoStruct InquiryInfo;

}deviceInfoDef;

The NWPA passes the value of this parameter, which indicates the type
of inquiry to perform. This parameter can have one of the following
values:

0x00000000 Indicates a new device and the CDM should check it and
bind to it if the device meets the CDM's bind conditions.

0x00000001 (Applies only to filter CDMs) Indicates that the CDM is
already bound to the specified device, but device information has
changed. Therefore, the CDM may need to bind again or issue an object
update. To base-translator and enhancer CDMs, this constitutes a no-op.

0x00000002 Indicates to the CDM that the specified device is no
longer valid; therefore, the CDM should remove the device from its list
and free any local structures associated with the device.

0x00000003 Indicates to the CDM that an End of Bus condition has
occurred during a Scan For New Devices. This means that there are no
more public devices on this bus. The CDM may then scan for specific
devices not found during the normal scan. The specific devices can
become public or private devices depending on the Scan function case
used. For more details, refer to Chapter 8 HACB Type Zero Functions
under Function 1- HAM_Scan_For_Devices If this flag is set,

Version 2.1d (September, 1995) 1-165

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
NPABusID is the only
valid parameter for this
API. All other
parameters will be set to
0.

0x00000004
Indicates to the

CDM that an End of
Bus condition occurred
when the bus is being
deactivated (i.e. when
the HAM associated
with the bus is being
unloaded). The CDM
must remove any
private devices on this
bus and all of the local
structures associated
with these devices from
its list. This is done by
using Scan case 3 of
HAM_Scan_For_Devic
es If this flag is set,
NPABusID is the only
valid parameter for this
API. All other
parameters will be set to
0.

The NWPA passes the
value of this parameter,
which is the identifier
the CDM generated for
itself and registered
with the NWPA during
CDI_Register_CDM().

None

Return Value:

1-166 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines
0 to succeed. Description:

Version 2.1d (September, 1995) 1-167

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
CDM_Inquiry() is the
CDM's entry point for
logically binding to a
device. A logical bind
means that the CDM
will field message
requests for the device,
and indicates this to the
NWPA by calling
CDI_Bind_CDM_To_Ob
ject() and returning zero
from this routine. This
entry point gets
registered with the
NWPA during
NPA_Register_CDM_M
odule(). Immediately
after CDM registration,
the NWPA calls
CDM_Inquiry() for
each device matching
the device type that the

CDM registered for with CDI_Register_CDM(). It receives subsequent
calls each time a new device with that device type comes online. The
CDM registers the device types it will support--along with the host
adapter interface it will support--by placing the appropriate values in the
Types input parameter of CDI_Register_CDM().

CDM_Inquiry() is responsible for building and maintaining a CDM's
device list. It does this by binding to devices matching the device type
the CDM is designed to support. To bind to a device, a CDM must
generate a CDMBindHandle from which the CDM can identify the
device and access essential device information, such as the device's
handle and the handle of the HAM supporting the device. Next, it must
create an instance of an UpdateInfoStruct for the device, fill in its fields
with the appropriate information, and pass both the CDMBindHandle
and a pointer to the UpdateInfoStruct to CDI_Bind_CDM_To_Object().
This is all done within the context of CDM_Inquiry(). CDM_Inquiry() is
a blocking process, and part of its purpose is to allow a CDM the
opportunity to issue non-intrusive commands (such as a mode sense) to
determine if it should bind to the device. These commands should be
issued using CDI_Blocking_Execute_HACB(). The CDM should not issue
any command that may change the state of the device during the context
of CDM_Inquiry().

1-168 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines

Note: If the CDM decides not to logically bind to a device, CDM_Inquiry() must return a non-
zero return code.

Version 2.1d (September, 1995) 1-169

CDM_Set_Attribute

Purpose: This is the local CDM entry point responsible for setting attribute
information for a specific attribute.

1-170 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-171

Syntax: LONG CDM_Set_Attribute(LONG cdmBindHandle,
void *infoBuffer,
LONG infoBufferLength,
LONG attributeID);

1-172 Version 2.1d (September, 1995)

Parameters:
Inputs:

cdmBindHandle

infoBuffer

infoBufferLength

attributeID

Outputs:

The NWPA passes the value of this parameter, which is a handle to the
device being targeted by the CDM Message request
(CDMMessageStruct). The CDM generated the value of cdmBindHandle
during the context of CDM_Inquiry() when it bound to the device. The
CDM bound to the device by calling CDI_Bind_CDM_To_Object(). From
this handle, the CDM locates the target device's information including
the HAM-generated DeviceHandle and the NWPA-generated NPABusID.

This points to where CDM_Set_Attribute will find the information
regarding the desired setting of the selected attribute.

Size of the infoBuffer in bytes.

The ID of the attribute to be set. This is the ID that was registed by the
CDM for this attribute during CDI_Register_Object_Attribute().

None

Version 2.1d (September, 1995) 1-173

Return Value: Description:

1-174 Version 2.1d (September, 1995)

CDM_Set_Attribute() is
the entry point from
which the NWPA can

set a registered device attribute for an application. This entry point gets
registered with the NWPA when the CDM registers the attribute by
calling CDI_Register_Object_Attribute().

Note: The CDM registers a set-attribute routine with each call to
CDI_Register_Object_Attribute(). Therefore, the CDM can implement either one routine to
handle all set-attribute calls, or distribute the calls through multiple routines. This developer’s
guide uses CDM_Set_Attribute() to generically refer to either case.

Version 2.1d (September, 1995) 1-175

CDM_Load

Purpose: The CDM's load-time entry point for initializing and registering the
CDM.

1-176 Version 2.1d (September, 1995)

Thread Context: Blocking

Version 2.1d (September, 1995) 1-177

Syntax: LONG CDM_Load(LONG loadHandle,
LONG screenID,
BYTE *commandLine);

1-178 Version 2.1d (September, 1995)

Parameters:
Inputs:

loadHandle

screenID

commandLine

Outputs:

The OS assigns the value of this parameter when it receives a command
line request to load the CDM. Its value is the CDM's load handle, and the
OS uses this handle to keep track of the CDM.

The OS passes the value of this parameter, which is a handle to the
console. The NPA_ routines that output messages to the console require
this handle as an argument, and it is provided in case the CDM needs to
output any screen messages during its initialization.

This parameter is a pointer to the command line. The OS passes this
pointer so that the CDM can receive command line configuration options
if any are required.

None

Version 2.1d (September, 1995) 1-179

Return Value: 0 if successful.
Non-zero if unsuccessful (fails the load).

1-180 Version 2.1d (September, 1995)

Description: CDM_Load() is the initial entry point for a CDM, and it performs CDM
initialization and registration. This routine becomes visible to the OS
when the definition (.DEF) file is processed by the NLMLINK utility.
When the CDM is loaded, the OS calls CDM_Load() passing it three
parameters, loadHandle, screenID, and commandLine. loadHandle and
screenID are generated by the OS to be used in allocating resources and
for outputting console error messages that may occur during the load
process. commandLine is a pointer to the command line arguments
specified by the system operator at load time. These arguments may
specify any configuration required by the CDM, provided that the CDM
supports command line options.

Version 2.1d (September, 1995) 1-181

CDM_Unload

Purpose: The CDM's last unload-time entry point that prepares the CDM for
unloading and returns resources back to the system.

1-182 Version 2.1d (September, 1995)

Thread Context: Blocking

Version 2.1d (September, 1995) 1-183

Syntax: LONG CDM_Unload (void);

1-184 Version 2.1d (September, 1995)

Parameters: None

Version 2.1d (September, 1995) 1-185

Return Value: 0 to succeed

1-186 Version 2.1d (September, 1995)

Description: CDM_Unload() is the CDM's entry point from the OS when it receives
an UNLOAD command for this CDM. CDM_Unload() is then
responsible for releasing all appropriate resources, cleaning up any
Hacbs it generated and issued, and unregistering the CDM. Upon entry
into this routine the CDM needs to stay operational until all its pending
I/O is flushed and the NWPA quiesces any incoming I/O. To do this, the
first call the CDM should make within CDM_Unload() is to
CDI_Unregister_CDM(). It is during the context of
CDI_Unregister_CDM() that the NWPA flushes pending I/O and quiesces
new I/O for this CDM. Upon return from CDI_Unregister_CDM(), the
CDM is guaranteed not to have any pending I/O. It is at this point that
the CDM starts cleaning up its resources.

Version 2.1d (September, 1995) 1-187

Note: The CDM absolutely must abort any outstanding Hacbs it generates and issues, such as
Asynchronous Event Notification Hacbs. Otherwise, the CDM will cause the server to Abend.

1-188 Version 2.1d (September, 1995)

CDM_Unload_Check

Purpose: The CDM's first unload-time entry point that checks to see which devices
are currently bound to the CDM. This entry point is called by the OS
prior to calling CDM_Unload().

Version 2.1d (September, 1995) 1-189

Thread Context: Non-Blocking

1-190 Version 2.1d (September, 1995)

Syntax: LONG CDM_Unload_Check (LONG screenID);

Version 2.1d (September, 1995) 1-191

Parameters:
Inputs:

screenID

Outputs:

The OS passes the value of this parameter, which is a handle to the
console. The NPA_ routines that output messages to the console require
this handle as an argument.

None

1-192 Version 2.1d (September, 1995)

Return Value: 0 if no devices are locked, meaning that the CDM can be cleanly
unloaded.
Non-zero if the CDM is bound to one or more devices.

Version 2.1d (September, 1995) 1-193

Description: CDM_Unload_Check() is called when the OS receives a request from the
console to unload the CDM . This routine is responsible for checking to
see if any of the CDM's devices are currently being used (locked) by an
application. CDM_Unload_Check() checks the lock status for a
particular adapter by calling NPA_Unload_Module_Check(). The OS
looks at the return value to determine if the CDM can be cleanly
unloaded, meaning that there are no current I/O processes on the devices
controlled by this CDM. If any devices are locked, the OS displays a
message at the console listing the devices that will be deactivated and the
corresponding NetWare volumes that will be dismounted if the action is
continued. The user then has the option to either continue or abort the
unload.

1-194 Version 2.1d (September, 1995)

HAI_Activate_Bus

Purpose: Activates a bus instance managed by the HAM.

Version 2.1d (September, 1995) 1-195

Architecture Type: All

1-196 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-197

Syntax: LONG HAI_Activate_Bus(LONG *npaBusHandle,
LONG hamBusHandle,
LONG npaHandle);

1-198 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaBusHandle

hamBusHandle

npaHandle

Outputs:
npaBusHandle

Address of a local variable of type LONG.

HAM-generated handle to a bus instance the HAM is managing. From
this handle, the HAM must be able to locate its list of devices attached to
the bus.

The HAM's handle for using the NPA_ APIs. Its value was assigned
during NPA_Register_HAM_Module().

Receives an NWPA generated handle for the target bus the HAM is
managing. This handle is the NWPA's counterpart to the HAM's
hamBusHandle. This handle is used in conjunction with the HAM-
generated hamBusHandle to uniquely identify a HAM when it interfaces
with the NWPA through the HAI_ API set.

Version 2.1d (September, 1995) 1-199

Return Value: 0 if successful.
Non-zero if unsuccessful.

1-200 Version 2.1d (September, 1995)

Description: HAI_Activate_Bus() is used to activate a bus instance managed by the
HAM. This is the last API called within HAM_Load() prior to
HAM_Load() returning its thread to the OS.

Version 2.1d (September, 1995) 1-201

HAI_Complete_HACB

Purpose: Used by the HAM to complete a HACB I/O request.

1-202 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-203

Thread Context: Non-Blocking

1-204 Version 2.1d (September, 1995)

Syntax: LONG HAI_Complete_HACB (LONG hacbPutHandle);

Version 2.1d (September, 1995) 1-205

Parameters:
Inputs:

hacbPutHandle

Outputs:

Value of the hacbPutHandle field of the HACB being completed. This
handle is assigned by the NWPA when a CDM issues the HACB to the
HAM.

None

1-206 Version 2.1d (September, 1995)

Return Value: 0 if successful.
Non-zero if unsuccessful.

Version 2.1d (September, 1995) 1-207

Description: HAI_Complete_HACB() is used to post completion of a HACB I/O
request to the NWPA, whether the request completed successfully, with
an error, or aborted.

1-208 Version 2.1d (September, 1995)

HAI_Deactivate_Bus

Purpose: Deactivates a bus instance of the HAM.

Version 2.1d (September, 1995) 1-209

Architecture Type: All

1-210 Version 2.1d (September, 1995)

Thread Context: Blocking or Non-Blocking

Version 2.1d (September, 1995) 1-211

Syntax: LONG HAI_Deactivate_Bus(LONG npaBusHandle,
LONG hamBusHandle,
LONG npaHandle);

1-212 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaBusHandle

hamBusHandle

npaHandle

Outputs:

NWPA-generated handle to the target bus. This parameter was output to
the HAM from HAI_Activate_Bus() when the bus was activated.

HAM-generated handle to the target bus instance the HAM is managing.
From this handle, the HAM must be able to locate its list of devices
attached to the bus. The HAM passed this parameter to
HAI_Activate_Bus() when the bus was activated.

The HAM's handle for using the NPA_ APIs. Its value was assigned
during NPA_Register_HAM_Module().

None.

Version 2.1d (September, 1995) 1-213

Return Value: 0 if successful.
Non-zero if unsuccessful.

1-214 Version 2.1d (September, 1995)

Description: HAI_Deactivate_Bus() is used to deactivate a bus in preparation for the
HAM to be unloaded. It is called within the context of HAM_Unload() to
flush pending I/O before being the HAM is unloaded. This API must be
called for each bus instance that the HAM supports.

Version 2.1d (September, 1995) 1-215

HAI_PreProcess_HACB_Completion

Purpose: Used to allow a diagnostic NLM to interject HACB errors.

1-216 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-217

Thread Context: Non-Blocking

1-218 Version 2.1d (September, 1995)

Syntax: void HAI_PreProcess_HACB_Completion (LONG hacbPutHandle);

Version 2.1d (September, 1995) 1-219

Parameters:
Inputs:

hacbPutHandle

Outputs:

Handle to the HACB request being preprocessed. The value of this
parameter is obtained from the hacbPutHandle field of the current
HACB.

None

1-220 Version 2.1d (September, 1995)

Return Value: None

Version 2.1d (September, 1995) 1-221

Description: A HAM only uses HAI_PreProcess_HACB_Completion() if the NWDIAG
option was specified on the command line. The HAM calls
HAI_PreProcess_HACB_Completion() after the HACB request has been
processed by a device, but before the HAM determines proper queue
state and completes the HACB using HAI_Complete_HACB(). For more
information, refer to section 4.3.5.

1-222 Version 2.1d (September, 1995)

HAM_Abort_HACB

Purpose: Aborts HACB requests received by a HAM.

Version 2.1d (September, 1995) 1-223

Thread Context: Non-Blocking

1-224 Version 2.1d (September, 1995)

Syntax: LONG HAM_Abort_HACB(LONG hamBusHandle,
struct HACBStruct *HACB,
LONG flag);

Version 2.1d (September, 1995) 1-225

Parameters:
Inputs:

hamBusHandle

HACB

flag

Outputs:

The NWPA passes the value of this parameter, which is the HAM-
generated handle to the target bus instance the HAM is managing. From
this handle, the HAM must be able to locate its list of devices attached to
the bus. The HAM passed this parameter to HAI_Activate_Bus() when the
bus was activated.

The NWPA passes a pointer to the HACB request that is to be aborted.
Refer to Chapter 3 for a definition and description of this structure.

The NWPA passes the value of this parameter. The value of this
parameter indicates the type of abort to perform. Its possible values are:

0x00000000 This value tells the HAM to unconditionally abort the
HACB even if it has already been sent to the device.
0x00000001 This value tells the HAM to conditionally abort the
HACB if aborting only entails the unlinking of the HACB from the
device queue. This is a clean abort.
0x00000002 This value tells the HAM to check and see if the HACB
can be cleanly aborted, but not to perform an abort.

None

1-226 Version 2.1d (September, 1995)

Return Value: The following table indicates the proper return value associated with
each input flag value:

Version 2.1d (September, 1995) 1-227

Input Flag↔

Return Value
↕

Unconditional Abort
0x00000000

Conditional Abort
0x00000001

Check Abort Status
0x00000002

0 Indicates the HACB was cleanly
aborted. The HACB was
completed with the Abort
completion code within the
context of this routine.

Same as Unconditional
Abort.

Indicates clean abort if
an abort was to be
issued on the HACB

-1 Indicates that the HACB could
not be aborted cleanly within the
current thread context. The HAM
will flag the HACB and abort it
later during its ISR. This means
the HAM will complete the
HACB with the Abort completion
code in the ISR.

Indicates that the HACB
could not be aborted
cleanly during the context
of this routine. Therefore,
the HAM took no action on
the HACB.

Indicates dirty abort if
an abort was to be
issued on theHACB.

-2 The HAM could not find the target HACB. Essentially, the HAM lost the HACB
request. The result of losing the HACB will be an Abend.

1-228 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines

Description: HAM_Abort_HACB() is the HAM's entry point for aborting I/O requests,
and it is a non-blocking routine. This routine is registered with the
NWPA during NPA_Register_HAM_Module(). The NWPA passes three
arguments to HAM_Abort_HACB(). The first two arguments are exactly
the same as those passed to HAM_Execute_HACB(). The third argument
is the Flags parameter, and its value indicates the conditions that
determine the abort type. When an unconditional abort is indicated,
HAM_Abort_HACB() is required to cancel the indicated HACB request
no matter what. If the HACB is currently in the device queue, the abort
merely entails unlinking the HACB from the queue, placing the abort
code (0x0004) in its hacbCompletion field, calling
HAI_Complete_HACB(), and returning a zero. This abort case is referred
to as a clean abort. If the HACB has already been sent to the device, then
the value in Flags must be visible to HAM_ISR() so that it can abort the
HACB request even after it was processed by the device. The NWPA
guarantees that aborts are done during a single thread with interrupts
disabled; therefore, no new requests are pulled from the device queue
and issued to the device during an abort sequence. This ensures that a
calling process can issue a clean abort check, and if the abort can be done
cleanly, issue the abort without entering a critical-race window where the
request gets sent to the device somewhere between the check request and
the abort request.

Version 2.1d (September, 1995) 1-229

HAM_Check_Option

Purpose: The HAM's entry point for accepting and verifying the command line
options parsed by NPA_Parse_Options() are valid for the HAM. These
command line options indicate hardware resources such as interrupts,
ports, DMA channels, shared memory decoding, etc.

1-230 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-231

Syntax: LONG HAM_Check_Option(struct NPAOptionStruct *option,
LONG instance,
LONG flag);

1-232 Version 2.1d (September, 1995)

Parameters:
Inputs:
option

instance

flag

Outputs:

The NWPA passes the value of this parameter, which is a pointer to the
NPAOptionStruct associated with this instance of the HAM module. The
following is the structure's ANSI C definition:

struct NPAOptionStruct
{

BYTE name[32];
LONG parameter0;
LONG parameter1;
LONG parameter2;
WORD type;
WORD flags;
BYTE string[n];

} ;

The NWPA passes the value of this parameter, which is a HAM-
generated number corresponding to an adapter card instance being
managed by the HAM. The NWPA will use this number to group a set of
hardware options with a particular adapter instance.

The NWPA passes the value of this parameter, which indicates the
process that called HAM_Check_Option(). This parameter is defined as
follows;

0x00000000 Called by NPA_Parse_Options()
0x00000001 Called by NPA_Register_Options().

None

Version 2.1d (September, 1995) 1-233

Return Value: 0 to accept option.
Non-zero to reject option.

1-234 Version 2.1d (September, 1995)

Description: HAM_Check_Option() is registered with the NWPA during
NPA_Register_HAM_Module(), and it is called by the NWPA during two
different phases of HAM initialization. HAM_Check_Option() is called
by NPA_Parse_Options() during the command-line parsing phase and
again by NPA_Register_Options() during the options registration phase.
NPA_Parse_Options() iteratively calls HAM_Check_Option() for each
option found in the HAM's select list. HAM_Check_Option() is
responsible for accepting or rejecting the selected option. This routine
can logically check the compatibility of the option combination for each
iteration. If the option is accepted, then the NWPA places the option into
a use list. The HAM should not try to ping any resources under this
context because it does not physically own them at this time.
NPA_Register_Options() iteratively calls HAM_Check_Option() for each
option found in the HAM's use list. HAM_Check_Option() again is
responsible for accepting or rejecting the selected option. This time,
however, the HAM can ping resources to validate them because the
NWPA physically registers them for the HAM. If the HAM determines
that an error occurred in registering its options, it will need the to
unregister these options using NPA_Unregister_Options() passing
Instance as an input parameter. Also, if a HAM is to support hot
replacement, this routine should be designed to accept configuration data
from the module being replaced. The NWPA quiesces requests on the
elevator of the active HAM while the two modules swap data. To
properly support data swapping, the HAMs should pass data indexes
rather than data pointers.

Version 2.1d (September, 1995) 1-235

HAM_Execute_HACB

Purpose: The HAM's entry point for receiving a HACB request and routing it to
the appropriate device queue.

1-236 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-237

Syntax: LONG HAM_Execute_HACB(LONG hamBusHandle,
struct HACBStruct *HACB);

1-238 Version 2.1d (September, 1995)

Parameters:
Inputs:

hamBusHandle

HACB

Outputs:

The NWPA passes the value of this parameter, which is the HAM-
generated handle to a bus instance the HAM is managing. From this
handle, the HAM must be able to locate its list of devices attached to the
bus.

The NWPA passes a pointer to the HACB request that is to be processed.

None

Version 2.1d (September, 1995) 1-239

Return Value: 0 to succeed.

1-240 Version 2.1d (September, 1995)

Description: HAM_Execute_HACB() is the HAM's entry point for receiving and
executing I/O requests, and it must be a non-blocking routine. This
routine is registered with the NWPA by the use of
NPA_Register_HAM_Module().

Version 2.1d (September, 1995) 1-241

Note: HAM_Execute_HACB() is responsible for controlling the device queue state. For more
information about how this entry point controls queue state, refer to section 4.3.1.3. For more
information about indicating queue state to the CDM, refer to the description of the HACB's
hacbCompletion field in Chapter 3 and Appendix B.

1-242 Version 2.1d (September, 1995)

HAM_ISR

Purpose: The HAM's interrupt-time entry point. This entry point determines the
request causing an interrupt, completes I/O transfers, posts HACB
completion status, and completes HACB requests.

Version 2.1d (September, 1995) 1-243

Thread Context: Interrupt Level, Non-Blocking

1-244 Version 2.1d (September, 1995)

Reqirements: This routine cannot make calls to blocking routines.

Version 2.1d (September, 1995) 1-245

Syntax: LONG HAM_ISR (LONG irqLevel);

1-246 Version 2.1d (September, 1995)

Parameters:
Inputs:

irqLevel

Outputs:

The OS passes the value of this parameter, which is a value indicating
the interrupt level on which to take action. The HAM specified the
interrupt level in the Option parameter0 field of the NPAOptionStruct
registered for the HAM during NPA_Register_Options().

None

Version 2.1d (September, 1995) 1-247

Return Value: 0 if interrupt was serviced successfully.
Non-zero if interrupt was not serviced.

1-248 Version 2.1d (September, 1995)

Description: HAM_ISR() is registered with the NWPA during
NPA_Register_HAM_Module(), and it is the HAM's entry point for being
notified of hardware interrupts. The term "notified" is used here because
actual hardware interrupts are vectored to a system ISR within the OS.
The NWPA automatically channels the interrupt from the OS to the
HAM through this entry point, and the state upon entering HAM_ISR() is
with interrupts disabled. HAM_ISR() must determine the adapter that
caused the interrupt, determine if an error occurred for the request,
complete the HACB, and send a new HACB to the device from the
device's process queue. If no error occurred, then HAM_ISR() transfers
I/O data to/from the buffer indicated in the HACB (in the case of
programmed I/O), places the appropriate completion code in the
hacbCompletion field, calls HAI_Complete_HACB(), and sends a new
HACB request in the process queue to the device. If an error occurred,
then HAM_ISR() freezes that device's process queue, places the
appropriate error completion code in the hacbCompletion field, and calls
HAI_Complete_HACB() on the HACB.

Version 2.1d (September, 1995) 1-249

Note: HAM_ISR() is responsible for controlling the device queue state, and for calling a
diagnostic hook if a HAM-local diagnostic flag is set. For more information about how this
entry point controls queue state, refer to section 4.3.1.3.

For more information about indicating queue state to the CDM, refer to the description of the
HACB's hacbCompletion field in Chapter 3 and Appendix B.

1-250 Version 2.1d (September, 1995)

HAM_Load

Purpose: The load-time entry point for initializing and registering a HAM.

Version 2.1d (September, 1995) 1-251

Thread Context: Blocking

1-252 Version 2.1d (September, 1995)

Syntax: LONG HAM_Load(LONG loadHandle,
LONG screenID,
BYTE *commandLine);

Version 2.1d (September, 1995) 1-253

Parameters:
Inputs:

loadHandle

screenID

commandLine

Outputs:

The OS assigns the value of this parameter when it receives a command
line request to load the HAM. This handle is used to identify the HAM.

The OS passes this parameter’s value, which is a handle to the console.
The NPA_ routines that output messages to the console require this
handle as an argument, and it is provided in case the HAM needs to
output any screen messages during its initialization.

This parameter is a pointer to the command line. The OS passes this
pointer so the HAM can receive command line configuration options.
None

1-254 Version 2.1d (September, 1995)

Return Value: 0 if successful.
Non-zero if unsuccessful (fails the load).

Version 2.1d (September, 1995) 1-255

Description: HAM_Load() is the initial entry point for a HAM, and it performs HAM
initialization and registration. This routine becomes visible to the OS
when the definition (.DEF) file is processed by the NLMLINK utility.
When the HAM is loaded, the OS calls HAM_Load() passing it the
parameters listed above. loadHandle and screenID are generated by the
OS to be used in allocating resources and for outputting console error
messages that may occur during the load process. commandLine is a
pointer to the command line arguments specified by the system operator
at load time. These arguments specify I/O port addresses and ranges,
memory decode addresses and lengths, interrupts, and DMA addresses.

1-256 Version 2.1d (September, 1995)

Note: Since the HAM may need to do some I/O with an adapter during its initialization,
HAM_Load() is a blocking process. It is called within the context of the NetWare LOAD utility.
Additionally, the HAM may disable interrupts (see NPA_Interrupt_Control()) within the context
of this routine if the adapters being checked are under heavy I/O traffic. Disabling interrupts
may not be necessary, however, if the HAM does disable interrupts within HAM_Load(), the
HAM must enable them before returning from HAM_Load().

Version 2.1d (September, 1995) 1-257

HAM_Software_Hot_Replace

Purpose: The HAM's entry point for exchanging configuration information with a
newer version HAM.

1-258 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-259

Syntax: LONG HAM_Software_Hot_Replace(LONG messageLength,
void *message);

1-260 Version 2.1d (September, 1995)

Parameters:
Inputs:

messageLength

message

Outputs:

The NWPA passes the value of this parameter, which is the length in
bytes of the data being passed between the modules.

The NWPA passes the value of this parameter, which is a pointer to the
buffer containing the data to be passed.

None

Version 2.1d (September, 1995) 1-261

Return Value: 0 to succeed.

1-262 Version 2.1d (September, 1995)

Description: HAM_Software_Hot_Replace() is the entry point that
NPA_Exchange_Message() uses to pass data between a HAM already in
server memory and the HAM being newly loaded to replace it. This
routine is registered with the NWPA during
NPA_Register_HAM_Module(). NPA_Exchange_Message() is the channel
that links the respective hot replace entry points for each HAM. Through
this entry point, the replacement HAM can request configuration
information from the HAM being replaced so that the new HAM can
simply take the old HAM's place and be immediately operational.

Version 2.1d (September, 1995) 1-263

Warning: Since the older version of the HAM will be removed from memory, data-
passing between the two modules must be done by handles or indexes to avoid the passing of
bad memory pointers.

1-264 Version 2.1d (September, 1995)

HAM_Timeout

Purpose: Provides a recovery mechanism from forever-in-error conditions.

Version 2.1d (September, 1995) 1-265

Thread Context: Blocking or Non-Blocking (based on NPA_Spawn_Thread() setting).

1-266 Version 2.1d (September, 1995)

Syntax: void HAM_Timeout (LONG parameter);

Version 2.1d (September, 1995) 1-267

Parameters:
Inputs:

parameter

Outputs:

Parameter specified in NPA_Spawn_Thread() when this routine was
scheduled. This parameter is used to assist in the timeout process.

None.

1-268 Version 2.1d (September, 1995)

Return Value: None

Version 2.1d (September, 1995) 1-269

Description: This routine is used as a background error-recovery routine. It gets
scheduled for periodic entry as an asynchronous event by calling
NPA_Spawn_Thread(), and it executes after the elapse of the time interval
specified in the clockTicks argument passed to NPA_Spawn_Thread().
The time interval between iterations is left up to the HAM developer. A
routine scheduled with NPA_Spawn_Thread() executes its thread only
once. Therefore, for periodic execution, this routine must, within its own
context, reschedule itself by calling NPA_Spawn_Thread(). This routine
should be initially scheduled within the context of HAM_Load(). If an
I/O request or other host adapter action hangs while being processed, the
HAM should not indefinitely wait to service it. Doing so could cause a
forever-in-error condition from which the HAM cannot recover. The
routine provides a rescue mechanism for such a condition by allowing
the HAM to regain process control if the I/O is not completed in the
allotted time specified in the TimeoutAmount field of the HACB. The
routine must be able to access a list of all HACB requests that are
currently being processed by devices supported by the HAM. This list
must be updated each time a device completes a HACB request and
accepts a new one. Each time it is executed, This routine should scan the
HACB list and decrement the time in each HACB's TimeoutAmount field
by the value specified in clockTicks. If a HACB's TimeoutAmount value
reaches zero, this routine should:

1. Unlink the HACB from the list.
2. Place the timeout error code (0x0002) in its hacbCompletion field.
3. Call HAI_Complete_HACB() on the HACB.

Warning: HAM_Timeout() needs to check the timeout granularity set in the HACB's
ControlFlags field (bit 3). From this check HAM_Timeout() can determine the HACB's timeout
unit of measure before blindly decrementing the value in TimeoutAmount. A unit conversion
may be necessary to make the units of ClockTicks compatible with the units of TimeoutAmount.

1-270 Version 2.1d (September, 1995)

HAM_Unload

Purpose: The HAM's last unload-time entry point that prepares the HAM for
unloading and returns resources back to the system.

Version 2.1d (September, 1995) 1-271

Thread Context: Blocking

1-272 Version 2.1d (September, 1995)

Syntax: LONG HAM_Unload (void);

Version 2.1d (September, 1995) 1-273

Parameters: None.

1-274 Version 2.1d (September, 1995)

Return Value: 0 to succeed.

Version 2.1d (September, 1995) 1-275

Description: HAM_Unload() is the HAM's entry point from the OS when it receives
an UNLOAD command for this HAM. HAM_Unload() is then
responsible for releasing all appropriate resources and unregistering the
HAM. Upon entry into this routine the HAM needs to stay operational
until all its pending I/O is flushed and the NWPA quiesces any incoming
I/O. To do this, the first call the HAM should make within
HAM_Unload() is to HAI_Deactivate_Bus(). It is during the context of
HAI_Deactivate_Bus() that the NPA actually flushes pending I/O and
quiesces new I/O for this HAM. Upon return from HAI_Deactivate_Bus(),
the HAM is guaranteed not to have any pending I/O.

1-276 Version 2.1d (September, 1995)

HAM_Unload_Check

Purpose: The HAM's first unload-time entry point that checks to see which
devices are currently bound to the HAM. This entry point is called by the
OS prior to calling HAM_Unload().

Version 2.1d (September, 1995) 1-277

Thread Context: Non-Blocking

1-278 Version 2.1d (September, 1995)

Syntax: LONG HAM_Unload_Check (LONG screenID);

Version 2.1d (September, 1995) 1-279

Parameters:
Inputs:

screenID

Outputs:

The OS passes the value of this parameter, which is a handle to the
console. The NPA_ routines that output messages to the console require
this handle as an argument.

None

1-280 Version 2.1d (September, 1995)

Return Value: 0 if no devices are locked, meaning that the HAM can be cleanly
unloaded.

Non-zero if one or more devices are currently being used by an
application.

Version 2.1d (September, 1995) 1-281

Description: HAM_Unload_Check() is called when the OS receives a request from the
console to unload the HAM . This routine is responsible for checking to
see if any of the HAM's devices are currently being used (locked) by an
application. HAM_Unload_Check() checks the lock status for a particular
adapter by calling NPA_Unload_Module_Check().

The OS looks at the return value to determine if the HAM can be cleanly
unloaded, meaning that there are no current I/O processes on the devices
controlled by this HAM. If any devices are locked, the OS displays a
message at the console listing the devices that will be deactivated and the
corresponding NetWare volumes that will be dismounted if the action is
continued. The user then has the option to either continue or abort the
unload.

1-282 Version 2.1d (September, 1995)

Inx

Purpose: Takes a bus identifier and an I/O address in that bus’s I/O address space
and performs whatever operations are necessary to acquire and return the
requested data.

Version 2.1d (September, 1995) 1-283

Thread Context: Non-Blocking

1-284 Version 2.1d (September, 1995)

Syntax: BYTE In8 (LONG busTag,
void *ioAddr);

WORD In16 (
LONG busTag,
void *ioAddr);

LONG In32 (
LONG busTag,
void *ioAddr);

Version 2.1d (September, 1995) 1-285

Parameters:
Inputs:
busTag

ioAddr

Outputs:

An architecture dependent value returned by NPAB_Get_Bus_Tag(). This
value specifies the bus on which the operation is to be performed.

The I/O address in the bus architecture of the adapter from where the
input is to occur.

None

1-286 Version 2.1d (September, 1995)

Return Value: An unsigned value of the size and data type defined by each respective
routine.

Version 2.1d (September, 1995) 1-287

Description: These routines are only used by HAMs written for adapters intended for
bus architectures that have an I/O address space. The HAM is expected
to use the routine appropriate to the data width of the port from where the
input is to occur.

The value of ioAddr should be the port address the HAM would normally
expect for the given bus architecture. For example, if an ISA card with a
base port address of 300h is placed on an EISA bus, the HAM will set
ioAddr to 300h when it wants to input from that base port.

1-288 Version 2.1d (September, 1995)

InBuffx

Purpose: Takes a bus identifier, an I/O address in that bus’s I/O address space, a
destination buffer in the CPU’s logical address space, and a count of
transfer data units to perform whatever operations are necessary to
acquire and return the requested number of data units into the destination
buffer.

Version 2.1d (September, 1995) 1-289

Thread Context: Non-Blocking

1-290 Version 2.1d (September, 1995)

Syntax: LONG InBuff8 (BYTE *buffer,
LONG busTag,
void *ioAddr,
LONG count);

LONG InBuff16 (
BYTE *buffer,
LONG busTag,
void *ioAddr,
LONG count);

LONG InBuff32 (
BYTE *buffer,
LONG busTag,
void *ioAddr,
LONG count);

Version 2.1d (September, 1995) 1-291

Parameters:
Inputs:
buffer

busTag

ioAddr

count

Outputs:

The logical memory address of the destination buffer. This address is in
the CPU’s logical address space.

An architecture dependent value returned by NPAB_Get_Bus_Tag(). This
value specifies the bus on which the operation is to be performed.

The I/O address in the bus architecture of the adapter from where the
input is to occur.

The number of transfer units in the specified data size.

None

1-292 Version 2.1d (September, 1995)

Return Value: 0 - The requested operation was completed successfully.
1 - Memory protection prevented by the completion of the requested
operation.
3 - Memory error occurred while attempting to perform the
requested operation.
4 - One of the parameters was invalid.
5 - The requested operation could not be completed.

Version 2.1d (September, 1995) 1-293

Description: These routines are only used by HAMs written for adapters intended for
bus architectures that have an I/O address space. The HAM is expected
to use the routine appropriate to the data width of the port from where the
input is to occur. A buffer is filled with data from the specified I/O
address with the number of data units specified (count). The buffer
address will fill forward.

The value of ioAddr should be the port address the HAM would normally
expect for the given bus architecture. For example, if an ISA card with a
base port address of 300h is placed on an EISA bus, the HAM will set
ioAddr to 300h when it wants to input from that base port.

1-294 Version 2.1d (September, 1995)

NPA_Add_Option

Purpose: Specifies command line options and configuration information that can
be parsed out and registered for this instance of the application.

Version 2.1d (September, 1995) 1-295

Architecture Type: All

1-296 Version 2.1d (September, 1995)

Requirements: The NPAOptionStruct must be initialized before calling this routine.

Version 2.1d (September, 1995) 1-297

Thread Context: Non-Blocking

1-298 Version 2.1d (September, 1995)

Syntax: LONG NPA_Add_Option(LONG npaHandle,
struct NPAOptionStruct *option);

Version 2.1d (September, 1995) 1-299

Parameters:
Inputs:

npaHandle

option

Outputs:

The CDM's or HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_CDM_Module() or NPA_Register_HAM_Module(),
respectively.

Pointer to the NPAOptionStruct associated with this CDM / HAM. The
NPAOptionStruct contains information about hardware options
associated with this CDM / HAM. The following is the ANSI C
definition of the structure:
struct NPAOptionStruct{

BYTE name[32];
LONG parameter0;
LONG parameter1;
LONG parameter2;
WORD type;
WORD flags;
BYTE string[n];

} ;

None

1-300 Version 2.1d (September, 1995)

Return Value: 0 if successful, Non-zero if unsuccessful.

Version 2.1d (September, 1995) 1-301

Description: NPA_Add_Option() is used to query the systems operator for command
line parameters that will be used by the CDM/HAM. The command line
parameters identify configuration information and reserve hardware
resources needed by a CDM / HAM. *Option is an optional parameter
for CDMs since they do not generally require the reservation of hardware
resources or command line configuration information. Therefore, in the
case of a CDM, the value of *Option can be set to zero. However, for
HAMs this is the mechanism for setting port, interrupt, DMA channel,
and memory decode options. A description of the NPAOptionStruct can
be found in Chapter 6.

1-302 Version 2.1d (September, 1995)

NPA_Allocate_Memory

Purpose: Allocates a block of system memory for local use of the module. The
memory block is returnable to the system.

Version 2.1d (September, 1995) 1-303

Architecture Type: All

1-304 Version 2.1d (September, 1995)

Thread Context: Non-Blocking/Blocking (See flag below for details)

Version 2.1d (September, 1995) 1-305

Requirements: This routine cannot be called at interrupt level. If flag is set to Blocking,
this routine must be called in a blocking context.

1-306 Version 2.1d (September, 1995)

Syntax: LONG NPA_Allocate_Memory(LONG npaHandle,
void **virtualPointer,
void **physicalPointer,
LONG bufferSize,
LONG flag,
LONG *sleptFlag);

Version 2.1d (September, 1995) 1-307

Parameters:
Inputs:

npaHandle

virtualPointer

physicalPointer

bufferSize

flag

1-308 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines

sleptFlag

Outputs:
virtualPointer

physicalPointer

sleptFlag

The CDM's or HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_CDM_Module() or NPA_Register_HAM_Module(),
respectively.

Address of pointer to memory storage location of the desired data type.

Address of pointer to memory storage location of the desired data type.

Size, in bytes, of the memory block being requested.

Indicator telling the NWPA the type of allocation being requested.
Knowing the allocation type allows the NWPA to track the memory
resource. This parameter can have one of the following values:

0x00000000 Indicates a normal memory request.
0x00000001 Indicates a request for I/O contiguous memory.
0x00000002 Indicates a request for memory below 16 MB

(supporting adapters using DMA).
0x00000004 Selects the Blocking version of this routine. If

this flag is set, this routine may sleep (block) to allow a single additional
attempt to allocate the requested memory. If it was required to sleep to
allocate the memory, the sleptFlag parameter will be non-zero. Use of
this flag requires the call to be made in a blocking context. If this flag is
set on a 3.12 NetWare Server, it will default to a normal memory request
(0x00000000) and sleptFlag will be ignored.

A pointer to where the Sleep indicator is to be placed. If flag is not set to
Blocking, this parameter is not used and should be set to zero.

Receives the starting virtual address of the allocated memory block from
the OS.

Receives the starting physical (absolute) address of the allocated memory
block from the OS.

This parameter is only used if Flag is set to Blocking. A non-zero value
indicates that the routine went to sleep to complete the allocation request.

Version 2.1d (September, 1995) 1-309

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Return Value: 0 if successful.

Non-zero if unsuccessful.

1-310 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines
Description: NPA_Allocate_Memory() is used to allocate system memory required by a

CDM / HAM, such as special data structures or buffers. This allocation
will be on paragraph (16-byte) boundaries. The CDM / HAM must
provide the storage locations (virtualPointer and physicalPointer) for the
outputs it receives during this call. NPA_Allocate_Memory() is passed the
two pointer-to-pointer variables and a buffer size.
NPA_Allocate_Memory() allocates a memory block of the requested size
and assigns its starting virtual address to one of the pointer-to-pointer
variables and assigns its starting physical address to the other variable.
The virtual address is the logical NetWare address of the allocated
memory block. The physical address is the absolute hardware address of
the allocated memory block, and it is provided to support adapters using
DMA. The memory allocated by this routine is not initialized to any
value, it is raw memory. The CDM / HAM is responsible for initializing
allocated memory. Additionally, this routine may be called during the
context of any process, except a process within an interrupt level.
Memory should not be allocated at the interrupt level. Memory is
returned to the system pool using NPA_Return_Memory().

Version 2.1d (September, 1995) 1-311

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

Note: If the CDM allocates a memory buffer that will be accessed by a HAM, it must allocate
the memory as an I/O buffer.

1-312 Version 2.1d (September, 1995)

NPA_Cancel_Thread

Purpose: Cancels asynchronous blocking or non-blocking threads of execution
scheduled for an NWPA application.

Version 2.1d (September, 1995) 1-313

Architecture Type: All

1-314 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-315

Requirements: Interrupts must be disabled.

1-316 Version 2.1d (September, 1995)

Syntax: LONG NPA_Cancel_Thread(LONG npaHandle,
LONG (*ExecuteRoutine)(),
LONG parameter);

Version 2.1d (September, 1995) 1-317

Parameters:
Inputs:

npaHandle

ExecuteRoutine

parameter

Outputs:

The CDM's or HAM's handle for using the NPA_ APIs. Its value was
assigned during NPA_Register_CDM_Module() or
NPA_Register_HAM_Module(), respectively.

Pointer to the CDM / HAM routine that was originally passed into
NPA_Spawn_Thread() when the thread was originally spawned.

Parameter value that was originally passed into NPA_Spawn_Thread()
when the thread was originally spawned.

None

1-318 Version 2.1d (September, 1995)

Return Value: 0 if successful.
Non-zero if unsuccessful, meaning that the spawned thread has already
begun execution.

Version 2.1d (September, 1995) 1-319

Description: NPA_Cancel_Spawn_Thread() is used to cancel an instance of an
asynchronous thread that was spawned using NPA_Spawn_Thread(). The
NWPA uses the input parameters, ExecuteRoutine and Parameter, to
identify the thread to cancel; therefore, these two parameters must match
exactly with the parameters passed to NPA_Spawn_Thread(). A return
value of zero indicates that the spawned thread was successfully
cancelled. A non-zero return value indicates that the spawned thread
could not be cancelled because it is currently running. A CDM/HAM
must make a separate call for each spawned thread it wishes to cancel.
Additionally, a CDM/HAM must call this routine for all pending threads
that it spawned before it can unload.

1-320 Version 2.1d (September, 1995)

NPA_CDM_Passthru

Purpose: Sends a CDM Message to a device in order to receive status or
diagnostic information about the device. It is used for vendor specific
commands.

Version 2.1d (September, 1995) 1-321

Architecture Type: All

1-322 Version 2.1d (September, 1995)

Thread Context: Blocking

Version 2.1d (September, 1995) 1-323

Requirements: None.

1-324 Version 2.1d (September, 1995)

Syntax: LONG NPA_CDM_Passthru(LONG *appReturnCode,
LONG mmDeviceID,
LONG function,
LONG vendorID,
LONG parameter1,
LONG parameter2,
LONG parameter3,
LONG BufferLength,
void *Buffer);

Version 2.1d (September, 1995) 1-325

Parameters:
Inputs:

mmDeviceID

function

vendorID

parameter1

parameter2

parameter3

bufferLength

buffer

Outputs:
appReturnCode

Media Manager object ID for the device. See the Media Manager
Functional Specification and Developer’s Guide for details on how to
obtain this ID.

Must be either 0x1E or 0x3E for the PassThru function.

Novell assigned vendor ID. This is used to confirm compatibility
between vendor-specific applications and vendor-specific CDMs. Must
be 0x100 or greater.

Vendor specific.

Vendor specific.

Vendor specific.

Length of the buffer in bytes.

Address of buffer passed to the CDM to send or receive data.

Value returned by the managing CDM during CDI_Complete_Message().
It can be any LONG value understood by both the application and the
custom CDM

1-326 Version 2.1d (September, 1995)

Return Value: 0 if successful.
Non-zero if unsuccessful.

Version 2.1d (September, 1995) 1-327

Description: NPA_CDM_Passthru() is used to send vendor specific requests to the
managing CDM of a device. This command sends a request, then returns
when the request is complete. The CDM must check the VendorID to
verify that the request came from an appropriate application. The CDM
must also register the acceptance of these passthru requests by setting bit
0x40000000 in the function mask for 0x3E support and/or control mask
for 0x1E support (reference CDI_Object_Update()). The CDM must
understand the parameters being sent, and take the necessary action
including HACBs to the device if needed.

1-328 Version 2.1d (September, 1995)

NPA_Delay_Thread

Purpose: Delays the current process for a specified number of clock ticks.

Version 2.1d (September, 1995) 1-329

Architecture Type: All

1-330 Version 2.1d (September, 1995)

Thread Context: Blocking

Version 2.1d (September, 1995) 1-331

Requirements: This routine must be called only from a blocking process level.

1-332 Version 2.1d (September, 1995)

Syntax: LONG NPA_Delay_Thread(LONG npaHandle,
LONG clockTicks);

Version 2.1d (September, 1995) 1-333

Parameters:
Inputs:

npaHandle

clockTicks

Outputs:

The CDM's or HAM's handle for using the NPA_ APIs. Its value was
assigned during NPA_Register_CDM_Module() or
NPA_Register_HAM_Module(), respectively.

Value specifying the time in clock ticks to let this process sleep. A clock
tick translates to 1/18th of a second (55ms).

None

1-334 Version 2.1d (September, 1995)

Return Value: 0 if successful.
Non-zero if unsuccessful.

Version 2.1d (September, 1995) 1-335

Description: NPA_Delay_Thread() is used to cause the current process to sleep for the
number of clock ticks specified in the clockTicks parameter. During its
sleep period, the process temporarily yields its thread. The purpose of
this routine is to prevent a blocking process--that will not complete for at
least a specified time period--from dominating vital resources and
blocking other vital NWPA processes. After the specified time elapses,
the thread is returned, and the process continues from the point after it
called NPA_Delay_Thread().

1-336 Version 2.1d (September, 1995)

NPA_Exchange_Message

Purpose: Provides a communication link between two different versions of a HAM
in order to facilitate software hot replacement.

Version 2.1d (September, 1995) 1-337

Architecture Type: All

1-338 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-339

Requirements: None.

1-340 Version 2.1d (September, 1995)

Syntax: LONG NPA_Exchange_Message(LONG npaHandle,
LONG messageLength,
void *message);

Version 2.1d (September, 1995) 1-341

Parameters:
Inputs:

npaHandle

messageLength

message

Outputs:

The HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_HAM_Module().

Size, in bytes, of the message (data buffer) being passed or received.

Pointer to the message (data buffer) being passed or received.

None

1-342 Version 2.1d (September, 1995)

Return Value: 0 if successful.
Non-zero if unsuccessful.

Version 2.1d (September, 1995) 1-343

Description: NPA_Exchange_Message() is used to exchange I/O configuration
information between an older version of a module and the updated
version that will replace it by calling the new
HAM_Software_Hot_Replace() routine. Calling
NPA_Exchange_Message() is dependent on the return value of
NPA_Register_HAM_Module(). If the return value is zero, it indicates that
the load event is either an initial load of the module or a new instance of
the module. If the return value is one, it indicates that the module
currently being loaded should hot replace the already loaded module
having the same NovellAssignedModuleID value. In the case where the
return value equals zero, normal initialization and registration should
take place excluding a call to NPA_Exchange_Message(). In the case
where the return value equals one, NPA_Exchange_Message() needs to be
called in order for the two modules to communicate with each other.
NPA_Exchange_Message() should be called within the context of
HAM_Load().

1-344 Version 2.1d (September, 1995)

NPA_Get_Version_Number

Purpose: Provides the revision level of the current NWPA version.

Version 2.1d (September, 1995) 1-345

Architecture Type: All

1-346 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-347

Requirements: None.

1-348 Version 2.1d (September, 1995)

Syntax: LONG NPA_Get_Version_Number(LONG *revisionNumber);

Version 2.1d (September, 1995) 1-349

Parameters:
Inputs:

Outputs:
revisionNumber

None

The NWPA version number currently running. The return value is in the
format 00XXYYZZ, where XX is the major revision level, YY is the
minor revision level, and ZZ is the sub-minor revision level (interpreted
as a letter with 01=A and 26=Z). Example: a value of 00022002 would
mean NWPA Version 2.20B.

1-350 Version 2.1d (September, 1995)

Return Value: 0 if successful.
Non-zero if unsuccessful.

Version 2.1d (September, 1995) 1-351

Description: NPA_Get_Version_Number() allows developers to have access to the
current version number of the NWPA that is running. This number may
be used to maintain version and feature compatibility on a server
between HAMs, CDMs and the NWPA.

1-352 Version 2.1d (September, 1995)

NPA_HACB_Passthru

Purpose: Sends a HACB message to a device in order to receive status or
diagnostic information about the device. It is used for vendor-specific
commands.

Version 2.1d (September, 1995) 1-353

Architecture Type: All

1-354 Version 2.1d (September, 1995)

Thread Context: Blocking

Version 2.1d (September, 1995) 1-355

Requirements: None.

1-356 Version 2.1d (September, 1995)

Syntax: LONG NPA_HACB_Passthru(LONG mmAdapterID,
struct HACBDef *HACB);

Version 2.1d (September, 1995) 1-357

Parameters:
Inputs:

mmAdapterID

HACB

Outputs:

The Media Manager object ID for the adapter.This can be obtained by
using MM_Find_Object_Type(0, &id) to get the ID, then
MM_Return_Generic_Info() to get the name of the HAM, and
verify it is the correct one. See the Media Manager Functional
Specification and Developer’s Guide for details.

Address of a HACB to be sent.

None

1-358 Version 2.1d (September, 1995)

Return Value: 0 if successful, Non-zero if unsuccessful.

Version 2.1d (September, 1995) 1-359

Description: NPA_HACB_Passthru() is used to send vendor specific requests directly
to a HAM. The request is sent, and the call returns after the request is
complete. The application must have an understanding of the device and
handle any errors that occur as a result of the requests. The application
must make sure that the HAM is returned to its original condition (i.e.
queue frozen or unfrozen) when finished with the requests. The requests
can be HACBType=0 Functions 0-3, or HACBType=0x100 or greater.
When non-HACBType 0 requests are sent, the HACBType must be the
Novell assigned vendor ID. The HAM must check this field and report
an Unsupported Interface Type (0x00030044) error if the vendor id is not
supported. The HAM must otherwise service the request and send the
appropriate command to the device as needed. The Command Block
Overlay Area can be used as needed for the request. It is important to
remember that the data in this overlay area goes to the HAM only. This
data, if changed by the HAM may not be seen by the application upon
return. All data passed from the HAM to the application must go through
the buffer addressed by vDataBufferPtr.

1-360 Version 2.1d (September, 1995)

NPA_Interrupt_Control

Purpose: Performs interrupt masking capabilities on the default (primary) system
I/O bus.

Version 2.1d (September, 1995) 1-361

Architecture Type: All

1-362 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-363

Syntax: LONG NPA_Interrupt_Control(LONG npaHandle,
LONG irqLevel,
LONG flag);

1-364 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaHandle

irqLevel

flag

Outputs:

The CDM's or HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_CDM_Module() or NPA_Register_CDM_Module(),
respectively.

Value indicating the interrupt level on which to take action.

Value indicating the type of action to perform. This parameter can have
one of the following values:

0x00000000 Enable interrupts (This will unmask the IRQ level)
0x00000001 Disable interrupts (This will mask the IRQ level)
0x00000002 Check the hardware interrupt.

None

Version 2.1d (September, 1995) 1-365

Return Value:
Input Flag Value Return Value

0x00000000 0 if enabling interrupts was successful.
Non-zero if enabling interrupts was unsuccessful.

0x00000001 0 if disabling interrupts was successful.
Non-zero if disabling interrupts was unsuccessful.

0x00000002 0 if the interrupts at the specified level are disabled. Non-
zero if the interrupts at the specified level are enabled.

Description:

1-366 Version 2.1d (September, 1995)

NPA_Interrupt_Control(
) is used to either
unmask an interrupt,
mask an interrupt, or
check the current

masking of an interrupt at the specified level on the default system I/O
bus. The action to be performed is determined by the value of the flag
parameter passed into NPA_Interrupt_Control() as discussed above.
Implementation of this routine involves the setting or testing of bits in
the hardware's interrupt mask register.

Version 2.1d (September, 1995) 1-367

NPA_Micro_Delay

Purpose: Delays a set number of microseconds for use in allowing for interface
delays etc.

1-368 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-369

Thread Context: Non-Blocking

1-370 Version 2.1d (September, 1995)

Requirements: Maximum count of 10,000 microseconds (10 milliseconds)

Version 2.1d (September, 1995) 1-371

Syntax: LONG NPA_Micro_Delay(LONG count);

1-372 Version 2.1d (September, 1995)

Parameters:
Inputs:

count

Outputs:

The number (between 0 and 10,000) of microseconds to delay.

None

Version 2.1d (September, 1995) 1-373

Return Value: 0 if successful.
Non-zero if count was not a valid number

1-374 Version 2.1d (September, 1995)

Description: NPA_Micro_Delay() is used to delay for a short amount of time while
allowing an interface state to change, etc. The thread will not be
switched, and the interrupt state will not change. This call can be made
during interrupt service routines (ISRs); however, it is recommended it
be used sparingly within ISRs so that interrupts are not disabled for
extensive periods of time.

Note: The resolution of this timer is approximately 10 microseconds.

Version 2.1d (September, 1995) 1-375

NPA_Parse_Options

Purpose: Parses the command line at LOAD time for configuration options.

1-376 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-377

Thread Context: Non-Blocking

1-378 Version 2.1d (September, 1995)

Requirements: This routine must be called from a blocking process level. When used
correctly, this routine is called within the context of the module's
initialization routine (CDM/HAM_Load()), which is a blocking process.

Version 2.1d (September, 1995) 1-379

Syntax: LONG NPA_Parse_Options(LONG npaHandle,
LONG screenID,
BYTE *commandLine);

1-380 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaHandle

screenID

commandLine

Outputs:

The CDM's or HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_CDM_Module() or NPA_Register_CDM_Module(),
respectively.

Handle to the server console that was passed into the CDM/
HAM_Load() routine.

Pointer to the characters entered on the command line at load time. Its
value was passed into the CDM/HAM_Load() routine.

None

Version 2.1d (September, 1995) 1-381

Return Value: 0 if successful.
Non-zero if unsuccessful.

1-382 Version 2.1d (September, 1995)

Description: NPA_Parse_Options() is used to parse the command line parameters
specified by the systems operator. Once the command line is parsed,
NPA_Parse_Options() calls CDM/HAM_Check_Option() so that the CDM
/ HAM can validate the command line options and set its I/O
configuration.

Version 2.1d (September, 1995) 1-383

NPA_Register_CDM_Module

Purpose: Registers a CDM with the NWPA.

1-384 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-385

Thread Context: Non-Blocking

1-386 Version 2.1d (September, 1995)

Requirements: This routine is the first API called during CDM_Load(). Additionally, the
module must provide the storage locations for the outputs it receives
during this call.

Version 2.1d (September, 1995) 1-387

Syntax: LONG NPA_Register_CDM_Module(LONG *npaHandle,
LONG NovellAssignedModuleID,
LONG loadHandle,
LONG (*CDM_Check_Option)(),
LONG (*CDM_Execute_CDMMessage)(),
LONG (*CDM_Inquiry)(),
LONG instance);

1-388 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaHandle

NovellAssignedModuleID

loadHandle

CDM_Check_Option

CDM_Execute_CDMMessage

CDM_Inquiry

Version 2.1d (September, 1995) 1-389

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
instance

Outputs:
npaHandle

Address of a local variable of type LONG.

The CDM vendor ID assigned by Novell Labs. This parameter is a
unique ID associating a CDM with its manufacturer. Every CDM must
have its own unique ID.

Handle that the OS assigned to the CDM at load time. The value for this
parameter was passed into the CDM's load-time entry point,
CDM_Load().

Pointer to the CDM_Check_Option() entry point called during the
parsing of load-time command line options and again at option
registration.

Note: For a CDM, command line options should only indicate
operational modes for the software module. They must not indicate
hardware options such as interrupts, ports, DMA channels, etc. If the
CDM does not support command line options, this parameter should be
set to zero.

Pointer to the CDM_Execute_CDMMessage() routine, which is the
CDM's main entry point for receiving and routing CDM Messages.

Pointer to the CDM_Inquiry() entry point, which is the CDM's routine
for checking device information and determining whether or not to bind
to a device.

A CDM-generated number identifying a device instance. The NWPA will
use this number to associate different groups of options with a particular
device being managed by the CDM.

Note: If the CDM does not support command line options, this
parameter should be set to zero.

Receives a unique NWPA handle for the CDM module. This handle is a
tag the NWPA uses to track the CDM module, and it is a required
argument for using the NPA_ APIs.

1-390 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines
Return Value: 0 if successful.

Non-zero if unsuccessful.

Version 2.1d (September, 1995) 1-391

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Description: NPA_Register_CDM_Module() is used to register the CDM module with

the NPA, along with the application's entry points. This routine should be
the first API called during the module's load-time entry point,
CDM_Load(). It is during the context of this API that the CDM receives
its unique NWPA handle. This handle is a necessary argument for using
the other NPA_ APIs that provide system resources to the module.

1-392 Version 2.1d (September, 1995)

NPA_Register_For_Event_Notification

Purpose: Registers a procedure to be called prior to specific system events.

Version 2.1d (September, 1995) 1-393

Architecture Type:All

1-394 Version 2.1d (September, 1995)

Thread Context: Blocking

Version 2.1d (September, 1995) 1-395

Requirements: Must be called only from a blocking process level.

1-396 Version 2.1d (September, 1995)

Syntax: LONG NPA_Register_For_Event_Notification(LONG npaHandle,
LONG *eventHandle,
LONG eventType,
LONG priority,
LONG (*WarnRoutine)(

void (*OutputRoutine)(void *ControlString, ...),
LONG parameter),

void (*ReportRoutine)(
LONG parameter));

Version 2.1d (September, 1995) 1-397

Parameters:
Inputs:

npaHandle

eventType

1-398 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines

priority

WarnRoutine

ReportRoutine

Outputs:
eventHandle

Version 2.1d (September, 1995) 1-399

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

The CDM's or HAM's
handle for using the
NPA_ APIs, assigned
during
NPA_Register_CDM_
Module() or
NPA_Register_CDM_
Module(),
respectively.

Indicates the type of
event for which the
caller wishes
notification. The
following describes
events for which
notification may be
received, the type of
notification that can
be made (Warn,
Report, or both), the
thread context of the
notification call
(blocking or non-
blocking), and the
defined use of the
input parameter
(parameter) passed to
the notification call
(WarnRoutine() or
ReportRoutine()).

Type Number
Type Definition (In
Decimal)
EVENT_VOL_SYS_M
OUNT 0
The input parameter is
undefined.
The Report Routine is
called immediately after
vol SYS is mounted.
The Report Routine may
block the thread.

EVENT_VOL_SYS_DI
SMOUNT 1
The input parameter is

undefined.
Both the Warn and Report routines are called before vol SYS is dismounted.
The Report Routine may block the thread.

EVENT_ANY_VOL_MOUNT 2
The input parameter is the volume number.
The Report routine is called immediately after any volume is mounted.
The Report Routine may block the thread.

EVENT_ANY_VOL_DISMOUNT 3
The input parameter is the volume number.
Both the Warn and Report routines are called before any volume is dismounted.
The Report Routine may block the thread.

EVENT_DOWN_SERVER 4
The input parameter is undefined.
Both the Warn and Report routines are called before the server is shut down.
The Report Routine may block the thread.

EVENT_CHANGE_TO_REAL_MODE 5
The input parameter is undefined.
The Report routine is called before the server changes to real mode.
The Report Routine may not block the thread.

EVENT_RETURN_FROM_REAL_MODE 6
The input parameter is undefined.
The Report routine is called after the server has returned from real mode.
The Report Routine may not block the thread.

EVENT_EXIT_TO_DOS 7
The input parameter is undefined.
The Report routine is called before the server exits to DOS.
The Report Routine may block the thread.

EVENT_MODULE_UNLOAD 8
The input parameter is the module handle.
Both the Warn and Report routines are called before a module is unloaded from
the console command line. Only the Report Routine is called when a module
unloads itself. The Report Routine may block the thread.

EVENT_ACTIVATE_SCREEN 14
The input parameter is the Screen ID.
The Report routine is called after the screen becomes the active screen.
The Report Routine may block the thread.

EVENT_UPDATE_SCREEN 15
The input parameter is the Screen ID.
The Report routine is called after a change is made to the screen image.
The Report Routine may block the thread.

1-400 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines
EVENT_UPDATE_CU
RSOR 16
The input parameter is
the Screen ID.
The Report routine is
called after a change to
the cursor position or
state occurs.
The Report Routine may
not block the thread.

EVENT_KEY_WAS_P
RESSED 17
The input parameter is
undefined.
The Report routine is
called after any key on
the keyboard is pressed
(including
shift/alt/control).
The Report Routine is
called at interrupt time,
it may not block the
thread.

EVENT_DEACTIVATE
_SCREEN 18
The input parameter is
the Screen ID.
The Report routine is
called after the screen
becomes inactive.
The Report Routine may
not block the thread.

EVENT_OPEN_SCRE
EN 20
The input parameter is
the Screen ID for the
newly created screen.
The Report routine is
called after the screen is
created.
The Report Routine may
block the thread.

EVENT_CLOSE_SCRE
EN 21

The input parameter is the Screen ID for the screen being closed.
The Report routine is called before the screen is closed.
The Report Routine may block the thread.

EVENT_MODULE_LOAD 27
The input parameter is the module handle.
The Report routine is called after the module has been loaded.
The Report Routine may block the thread.

EVENT_GENERIC 32

The priority used to call this notification routine. Priorities are defined as
follows:

Priority Number
Priority Definition
 (in Decimal)
EVENT_PRIORITY_OS 0
EVENT_PRIORITY_APPLICATION 20
EVENT_PRIORITY_DEVICE 40

A pointer to a routine that is called when the OS makes an EventCheck
call. If the warn routine does not want the event to occur, it must output a
message and then return a non-zero value. Most event notification routines
are called at process level, but some are made at interrupt level (meaning
the thread may not be blocked). The above table of event types specifies
which events must be checked to determine if the event allows its thread to
be blocked.

A pointer to a routine that is called when the OS makes an EventReport
call. Most event notification routines are called at process level, but some
are made at interrupt level (meaning the thread may not be blocked). The
above table of event types specifies which events must be checked to
determine if the event allows its thread to be blocked.

Receives a 32-bit handle to the registered event. This event handle is
passed as an input parameter to NPA_Unregister_Event_Notification().

Version 2.1d (September, 1995) 1-401

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Return Value: 0 if successful.

Non-zero if unsuccessful.

1-402 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines
Description: On some occasions a driver is required to perform some action prior to the

OS terminating, switching to real mode, exiting to DOS, etc. The driver
should call NPA_Register_For_Event_Notification() providing notification
procedure pointers as indicated above. Even though the calls to register
and unregister the event notification are blocking, the actual call to the
event notification procedure provided by the driver is not always made
from blocking process level (the environment varies with the particular
event being reported). The Warn Routine will be provided with two
parameters when called. The first is the Output Routine which must be
used to output messages (the Output Routine must be called with a control
string and as many parameters as the control string indicates), and the
second is the parameter described in each of the event types above. When
the Report routine is called it is passed a single parameter. This is the same
parameter described in each of the event types described above.

Version 2.1d (September, 1995) 1-403

NPA_Register_HAM_Module

Purpose: Registers a HAM with the NWPA.

1-404 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-405

Thread Context: Non-Blocking

1-406 Version 2.1d (September, 1995)

Requirements: This routine is the first API called during HAM_Load(). Additionally, the
module must provide the storage locations for the outputs it receives
during this call.

Version 2.1d (September, 1995) 1-407

Syntax: LONG NPA_Register_HAM_Module(LONG *npaHandle,
LONG NovellAssignedModuleID,
LONG loadHandle,
LONG (*HAM_Check_Option)(),
LONG (*HAM_Software_Hot_Replace)(),
LONG (*HAM_ISR)(),
LONG (*HAM_Execute_HACB)(),
LONG (*HAM_Abort_HACB)()
LONG instance);

1-408 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaHandle

NovellAssignedModuleID

loadHandle

HAM_Check_Option

HAM_Software_Hot_Replace

HAM_ISR

Version 2.1d (September, 1995) 1-409

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
HAM_Execute_HACB

HAM_Abort_HACB

instance

Outputs:
npaHandle

Address of a local variable of type LONG.

The HAM vendor ID assigned by Novell Labs. This parameter is a
unique ID associating a HAM with its manufacturer. Every HAM must
have its own unique ID.

Handle that the OS assigned to the HAM at load time. The value for this
parameter was passed into the HAM's load-time entry point,
HAM_Load().

Pointer to the HAM_Check_Option() entry point called during the
parsing of load-time command line options and again at option
registration.

Pointer to the HAM_Software_Hot_Replace() entry point used in
dynamically updating versions of a HAM.

Note: Hot replacement is an optional feature for a HAM. If the HAM
does not support hot replacement, it should set this parameter to zero.
Doing so will force the NWPA to never allow hot replacement of this
HAM.

Pointer to the HAM_ISR() routine, which is the HAM's Interrupt Service
Routine (ISR).

Pointer to the HAM_Execute_HACB() routine, which is the HAM's main
entry point for receiving HACB I/O requests.

Pointer to the HAM_Abort_HACB() routine, which is the HAM's main
entry point for receiving aborts on HACB I/O requests.

A HAM-generated number identifying an adapter card instance. The
NWPA will use this number to associate different groups of registered
hardware options with a particular adapter card being managed by the
HAM.

Receives a unique NWPA handle for the HAM module. This handle is a
tag the NWPA uses to track the HAM module, and it is a required
argument for using the NPA_ APIs.

Note: The NWPA recognizes reentrant modules, meaning that a single
code image of the HAM will manage multiple adapters. Therefore, if a
reentrant HAM calls NPA_Register_HAM_Module() again to assign a
new instance number to the new adapter card instance, the NWPA will
ensure that the value output to this variable is the same for each call.

1-410 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines
Return Value: 0 if successful and not a hot replace case. 1 if successful and hot replace

case. Other non-zero value if unsuccessful.

Version 2.1d (September, 1995) 1-411

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Description: NPA_Register_HAM_Module() is used to register the HAM module with

the NWPA, along with the application's entry points. This routine should
be the first API called during the module's load-time entry point,
HAM_Load(). It is during the context of this API that the HAM receives
its unique NWPA handle. This handle is a necessary argument for using
the other NPA_ APIs that provide system resources to the module.
NPA_Register_HAM_Module() also determines if a version of a HAM
currently loaded in server memory is to be hot replaced with a newer
HAM version. NPA_Register_HAM_Module() makes this determination
by comparing the NovellAssignedModuleID and the loadHandle of a
newly loaded HAM with other HAMs that are already loaded. If there is
a match in NovellAssignedModuleID values between the newly loaded
HAM and an already loaded HAM, but their respective loadHandle
values differ, then the NWPA determines that the newly loaded HAM is
hot replacing the already loaded HAM.

1-412 Version 2.1d (September, 1995)

NPA_Register_Options

Purpose: Registers options that have been parsed out from the command line, and,
for those modules that support it, initiates hot replacement.

Version 2.1d (September, 1995) 1-413

Architecture Type: All

1-414 Version 2.1d (September, 1995)

Thread Context: Blocking

Version 2.1d (September, 1995) 1-415

Requirements: This routine must be called only from a blocking process level. When
used correctly, this routine is called within the context of the module's
initialization routine (CDM/HAM_Load()), which is a blocking process.

1-416 Version 2.1d (September, 1995)

Syntax: LONG NPA_Register_Options(LONG npaHandle,
LONG instance);

Version 2.1d (September, 1995) 1-417

Parameters:
Inputs:

npaHandle

instance

Outputs:

The CDM's or HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_CDM_Module() or NPA_Register_CDM_Module(),
respectively.

The instance number the CDM or HAM intends to associate with the
current group of options being registered. This instance corresponds to
either a CDM's device instance or a HAM's adapter instance. This
instance number was what the CDM or HAM passed to
NPA_Register_CDM_Module() or NPA_Register_HAM_Module(),
respectively.

None

1-418 Version 2.1d (September, 1995)

Return Value: 0 if successful.
Non-zero if unsuccessful.

Version 2.1d (September, 1995) 1-419

Description: NPA_Register_Options() is used to register the command line options
allowed by a CDM/HAM. These options can be custom parameters, or as
in the case of the HAM, they may specify the interrupt, port, and DMA
range values allowed by the HAM. Command line options may be
anything needed by the CDM/HAM in from custom initialization
parameters. NPA_Register_Options() must be called during CDM/HAM
initialization within the context of CDM/HAM_Load(). Any data
structures required by the module should be allocated prior to making
this call, because once this routine returns, the module must be ready to
accept I/O requests.

1-420 Version 2.1d (September, 1995)

NPA_Return_Bus_Type

Purpose: Returns a bitmap indicating the I/O bus type.

Version 2.1d (September, 1995) 1-421

Architecture Type: All

1-422 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-423

Requirements: None

1-424 Version 2.1d (September, 1995)

Syntax: LONG NPA_Return_Bus_Type (LONG npaHandle);

Version 2.1d (September, 1995) 1-425

Parameters:
Inputs:

npaHandle

Outputs:

The HAM's handle for using the NPA_ APIs. Its value was assigned
during NPA_Register_HAM_Module().

None

1-426 Version 2.1d (September, 1995)

Return Value: Bitmap defined as follows:

0x00000001 MCA
0x00000002 EISA
0x00000004 PCI
0x00000008 PCMCIA
0x00000010 ISA

Version 2.1d (September, 1995) 1-427

Description: NPA_Return_Bus_Type() is used to determine the processor bus type, for
use by the HAM during its initialization/registration routine
(HAM_Load()). This routine is only valid when used with machines
having an Intel based architecture.

1-428 Version 2.1d (September, 1995)

NPA_Return_Memory

Purpose: Returns previously allocated memory to the system.

Version 2.1d (September, 1995) 1-429

Architecture Type: All

1-430 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-431

Requirements: None.

1-432 Version 2.1d (September, 1995)

Syntax: LONG NPA_Return_Memory(LONG npaHandle,
void *virtualPointer);

Version 2.1d (September, 1995) 1-433

Parameters:
Inputs:

npaHandle

virtualPointer

Outputs:

The CDM's or HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_CDM_Module() or NPA_Register_CDM_Module(),
respectively.

Pointer to the logical NetWare address of the memory block being
returned to the system. The memory block must have been originally
allocated using NPA_Allocate_Memory().

None

1-434 Version 2.1d (September, 1995)

Return Value: 0 if successful.
Non-zero if unsuccessful.

Version 2.1d (September, 1995) 1-435

Description: NPA_Return_Memory() is used to return allocated system memory, such
as special data structures or buffers required by a CDM / HAM, back to
the system's memory pool. To minimize impacts on overall server
performance, CDMs and HAMs are expected to periodically clean up
local memory. It is essential that local memory be returned before
unloading. NPA_Return_Memory() may be called during the context of
any process, except a process within an interrupt level. Memory should
not have been allocated at the interrupt level. This routine is intended to
return memory blocks that were allocated using NPA_Allocate_Memory().

1-436 Version 2.1d (September, 1995)

NPA_Spawn_Thread

Purpose: Schedules execution of a blocking or non-blocking asynchronous event,
or a timer-interrupt-level callback.

Version 2.1d (September, 1995) 1-437

Architecture Type: All

1-438 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-439

Requirements: None.

1-440 Version 2.1d (September, 1995)

Syntax: LONG NPA_Spawn_Thread(LONG npaHandle,
void (*ExecuteRoutine)(),
LONG parameter,
LONG clockTicks,
LONG flag);

Version 2.1d (September, 1995) 1-441

Parameters:
Inputs:

npaHandle

ExecuteRoutine

parameter

clockTicks

flag

Outputs:

The CDM's or HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_CDM_Module() or NPA_Register_CDM_Module(),
respectively.

Pointer to the CDM / HAM routine that is called to execute the spawned
thread.

Input parameter required by ExecuteRoutine. If ExecuteRoutine does not
require an input parameter value, set Parameter equal to zero.

Value specifying the time in clock ticks to elapse before this thread is
initiated. A clock tick translates to 1/18th of a second (55ms).

Value specifying whether the spawned thread is blocking or non-
blocking:

0x00000000 Indicates a non-blocking thread. (Default)
0x00000001 Indicates a blocking thread.
0x00000002 Indicates the thread is scheduled to execute

during the timer chip interrupt following the specified tick count.

None

1-442 Version 2.1d (September, 1995)

Return Value: 0 if successful.
Non-zero if unsuccessful.

Version 2.1d (September, 1995) 1-443

Description: NPA_Spawn_Thread() is used to schedule an asynchronous background
thread for a CDM / HAM that becomes active after the time specified in
the clockTicks parameter. If the value in clockTicks is zero, the thread is
immediately scheduled. Whether scheduling is immediate or delayed the
thread is initiated by NetWare calling the entry point whose address was
passed into NPA_Spawn_Thread() as an argument. NPA_Spawn_Thread()
can be used to set up an entry point for a background timer or to create a
designated gremlin process that can run throughout the time that the
CDM / HAM is loaded in file server memory. An example of a gremlin
process is the HAM's timeout handler that monitors the allowable
execution time of an I/O request specified in the TimeoutAmount field of
a HACB. If the value of the flag parameter is zero, NPA_Spawn_Thread()
schedules a non-blocking thread. If the spawned thread is non-blocking,
no blocking calls can be issued during its context. On the other hand, if
the value of the flag parameter is one, NPA_Spawn_Thread() schedules a
blocking thread from which other blocking calls can be made. However,
as much as possible, blocking calls should be kept to a minimum to avoid
impact on server performance.

In the case where flag equals 2 (timer interrupt time callback), the
execute routine must adhere to interrupt level constraints. In addition, if
NetWare is running in a non-dedicated environment (such as NetWare for
OS/2 or NetWare for Windows) the execute routine must be concerned
about the watchdog timer, which could result in a system NMI causing ill
effects. It is suggested that an interrupt time callback keep its execution
time under 20 milliseconds.

1-444 Version 2.1d (September, 1995)

Note: NPA_Spawn_Thread() is a one-shot thread. In order to reschedule an asynchronous
thread for execution, NPA_Spawn_Thread() must be called again.

Version 2.1d (September, 1995) 1-445

NPA_System_Alert

Purpose: Allows a CDM or HAM to queue alert messages to the console screen
and notify the system of hardware or software problems during threads
where the driver does not have access to the console's screen handle.

1-446 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-447

Thread Context: Non-Blocking

1-448 Version 2.1d (September, 1995)

Syntax: LONG NPA_System_Alert(LONG npaHandle,
BYTE *controlString,
LONG alertMask,
LONG targetNotifyMask,
LONG alertID,
LONG alertClass,
LONG alertSeverity,
LONG paramCount,

 args...);

Version 2.1d (September, 1995) 1-449

Parameters:
Inputs:

npaHandle

controlString

alertMask

targetNotifyMask

1-450 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines
alertID

alertClass

alertSeverity

paramCount

args

Outputs:

The CDM's or HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_CDM_Module() or NPA_Register_CDM_Module(),
respectively.

Pointer to a null-terminated control string similar to that used in the C
sprintf() function, including embedded returns, line-feeds, tabs, bells, and
% specifiers (except floating-point specifiers).
A bit-mask indicating how the alert gets posted. Valid values are:
QUEUE_THIS_ALERT_MASK 0x00000001

ALERTID_VALID_MASK 0x00000002

ALERT_LOCUS_VALID_MASK 0x00000004

ALERT_EVENT_NOTIFY_ONLY_MASK 0x00000008

ALERT_NO_EVENT_NOTIFY_MASK 0x00000010
This field is usually set to QUEUE_THIS_ALERT_MASK .

A bit-mask identifying the destination of the notification:
NOTIFY_CONNECTION_BIT 0x00000001

NOTIFY_EVERYONE_BIT 0x00000002

NOTIFY_ERROR_LOG_BIT 0x00000004

NOTIFY_CONSOLE_BIT 0x00000008
This field is usually set to NOTIFY_CONSOLE_BIT.

Provides error code for system log:
OK
ERR_HARD_FAILURE

0x00000000
0x000000FF

Indicates the class of the error:
CLASS_UNKNOWN 0x00000000

CLASS_TEMP_SITUATION 0x00000002

CLASS_HARDWARE_ERROR 0x00000005

CLASS_BAD_FORMAT 0x00000009

CLASS_MEDIA_FAILURE 0x00000011

CLASS_CONFIGURATION_ERROR 0x00000015

CLASS_DISK_INFORMATION 0x00000018

Indicates the severity of the error:
SEVERITY_INFORMATIONAL 0x00000000

Version 2.1d (September, 1995) 1-451

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

SEVERITY_WARNING

SEVERITY_RECOVERABLE

SEVERITY_CRITICAL

SEVERITY_FATAL

SEVERITY_OPERATION_ABORTED

The number of
additional arguments
being passed in the args
input parameter. If no
arguments are to be
passed, set this
parameter to zero.
Note: This routine accepts up to four additional arguments.

Additional arguments
corresponding to the %
specifiers contained in
the
ControlString input
parameter. If no %
specifiers are contained
in ControlString, then
this parameter does not
need to be used.

None

Return Value:

1-452 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines
0 if successful.
-1 if the NWPA object
for the calling
CDM/HAM cannot be
found.
-2 if paramCount is out
of range (exceeds 4).

Description:

Version 2.1d (September, 1995) 1-453

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
The main purpose of
NPA_System_Alert() is
to give CDMs and
HAMs a method of
issuing alert messages
to the console screen
without having to

provide the console's screen handle. The only time that a CDM or HAM
has access to a valid console screen handle is during its load-time
initialization and unload routines. The handles passed to these two
routines should not be saved. They are only valid during the context of
the respective routines. By using NPA_System_Alert(), CDMs and HAMs
alleviate cursor and negotiation conflicts with other NLMs that may try
to access the console screen.

1-454 Version 2.1d (September, 1995)

NPA_Unload_Module_Check

Purpose: Determines if a module can be cleanly unloaded meaning that no
applications are currently using devices it controls.

Version 2.1d (September, 1995) 1-455

Architecture Type: All

1-456 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-457

Requirements: None.

1-458 Version 2.1d (September, 1995)

Syntax: LONG NPA_Unload_Module_Check(LONG npaHandle,
LONG NovellAssignedModuleID,
LONG screenID);

Version 2.1d (September, 1995) 1-459

Parameters:
Inputs:

npaHandle

NovellAssignedModuleID

screenID

Outputs:

The CDM's or HAM's module handle for using the NPA_ APIs, assigned
during NPA_Register_CDM_Module() or NPA_Register_HAM_Module(),
respectively.

The vendor ID assigned by Novell Labs. This parameter is the unique ID
associating a module with its manufacturer.

ID to the server console. Its value was passed to the HAM through
HAM_Unload_Check().

None

1-460 Version 2.1d (September, 1995)

Return Value: 0 if no devices are locked.
Non-zero if one or more devices are locked by an application.

Version 2.1d (September, 1995) 1-461

Description: NPA_Unload_Module_Check() is used to determine if an application is
currently using any devices controlled by the module. A CDM or HAM
should call this API within the context of their respective unload-time
entry points, CDM_Unload_Check() and HAM_Unload_Check()
respectively. The OS will call these entry points when the UNLOAD
command is issued on the CDM / HAM from the command line. The
purpose of NPA_Unload_Module_Check() is to determine if the module
can be cleanly unloaded without losing any current I/O processes.

1-462 Version 2.1d (September, 1995)

NPA_Unregister_Event_Notification

Purpose: Unregisters a notification procedure previously registered with
NPA_Register_For_Event_Notification().

Version 2.1d (September, 1995) 1-463

Architecture Type: All

1-464 Version 2.1d (September, 1995)

Thread Context: Blocking

Version 2.1d (September, 1995) 1-465

Requirements: Must be called only from a blocking process level.

1-466 Version 2.1d (September, 1995)

Syntax: LONG NPA_Unregister_Event_Notification(LONG eventHandle);

Version 2.1d (September, 1995) 1-467

Parameters:
Inputs:

eventHandle

Outputs:

32-bit value identifying the notification procedure to be unregistered.
This value was output by NPA_Register_For_Event_Notification() when
the notification procedure was registered.

None

1-468 Version 2.1d (September, 1995)

Return Value: 0 if unregistering the notification procedure was successful.
-1 eventHandle was an invalid parameter.

Version 2.1d (September, 1995) 1-469

Description: NPA_Unregister_Event_Notification() removes the notification procedure
specified in eventHandle from a list of procedures scheduled to be called
by the Media Manager prior to (or following) specific system events. The
notification-procedure identifier, eventHandle, is an output parameter of
NPA_Register_For_Event_Notification(), which is the routine used to
register the procedure. If a notification procedure was registered, then it
must be unregistered prior to the driver being unloaded.

1-470 Version 2.1d (September, 1995)

NPA_Unregister_Module

Purpose: Unregisters an NWPA application with the NWPA.

Version 2.1d (September, 1995) 1-471

Architecture Type: All

1-472 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-473

Requirements: This routine should only be called with intent to remove the module's
code image from server memory.

1-474 Version 2.1d (September, 1995)

Syntax: LONG NPA_Unregister_Module(LONG npaHandle,
LONG NovellAssignedModuleID);

Version 2.1d (September, 1995) 1-475

Parameters:
Inputs:

npaHandle

NovellAssignedModuleID

Outputs:

The CDM's or HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_CDM_Module() or NPA_Register_CDM_Module(),
respectively.

The CDM/HAM vendor ID assigned by Novell, Inc.

None

1-476 Version 2.1d (September, 1995)

Return Value: 0 if successful.
Non-zero if unsuccessful.

Version 2.1d (September, 1995) 1-477

Description: NPA_Unregister_Module() is used to unregister the CDM / HAM, along
with its respective entry points, from the NWPA. The intent of this
routine is prepare the module for having its code image removed from
server memory. NPA_Unregister_Module() should be called within the
context of the module's exit routine (CDM/HAM_Unload()).

1-478 Version 2.1d (September, 1995)

Warning: NPA_Unregister_Module() should not be used to exit a single instance of a
reentrant module. Doing so will crash the other instances that are still running.

Version 2.1d (September, 1995) 1-479

NPA_Unregister_Options

Purpose: Unregisters the configuration options associated with an NWPA
application.

1-480 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-481

Thread Context: Non-Blocking

1-482 Version 2.1d (September, 1995)

Requirements: To unregister options on an instance basis, the module must provide the
appropriate handle to the load-instance.

Version 2.1d (September, 1995) 1-483

Syntax: LONG NPA_Unregister_Options(LONG npaHandle,
LONG instance);

1-484 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaHandle

instance

Outputs:

The CDM's or HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_CDM_Module() or NPA_Register_CDM_Module(),
respectively.

The instance number the CDM or HAM associated with the current
group of options being unregistered. This instance corresponds to either a
CDM's device instance or a HAM's adapter instance. This is the instance
number that the CDM or HAM passed to NPA_Register_CDM_Module()
or NPA_Register_HAM_Module(), respectively.

Note: By setting this parameter to -1, the NWPA unregisters all option
instances associated with the CDM or HAM.

None

Version 2.1d (September, 1995) 1-485

Return Value: 0 if successful.
Non-zero if unsuccessful.

1-486 Version 2.1d (September, 1995)

Description: NPA_Unregister_Options() is used to unregister the command line options
associated with a module (or an instance of itself) prior to being
unloaded. This API is called within the context of CDM/HAM_Unload().

Version 2.1d (September, 1995) 1-487

NPAB_Get_Alignment

Purpose: Called to obtain alignment requirements of the underlying platform.

1-488 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-489

Thread Context: Non-Blocking

1-490 Version 2.1d (September, 1995)

Requirements: None.

Version 2.1d (September, 1995) 1-491

Syntax: LONG NPAB_Get_Alignment(LONG npaHandle,
LONG type);

1-492 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaHandle

type

Outputs:

The HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_HAM_Module().

0 - Alignment requirement
1 - Best case alignment
Other - Undefined

None

Version 2.1d (September, 1995) 1-493

Return Value: Power of 2, byte-boundary data alignment requirement.

1-494 Version 2.1d (September, 1995)

Description: If type is equal to 0, the function returns the data alignment requriement
of a data object of an arbitrary type for the platform to function without
execeptions or corrupted data. All operations and “real world” use of
these operations should be considered in determining this value. That is,
if DMAing into an arbitrary memory location can cause data corruption
due to noncoherent caching, then the function should return a value equal
to at least the cache line size. Without this function, you cannot write
platform independent DMA code, since the code cannot determine what
characteristics it must meet. If type is equal to 1, the function returns the
data alignment requirement for the platform to function at its best
performance. The value returned for type equal to 0 should always be
less than or equal to the value returned for type equal to 1. For most Intel
processor based platforms, type equal to 0 should return a 0 and type
equal to 1 should return the bus width of the processor (4 for a 386 or
486). An HP-PA-RISC machine should return 32 for both type equal to 0
and type equal to 1, due to the requirements of the memory cache.

Version 2.1d (September, 1995) 1-495

NPAB_Get_Bus_Info

Purpose: Returns the size of the bus addresses associated with busTag.

1-496 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-497

Thread Context: Non-Blocking

1-498 Version 2.1d (September, 1995)

Requirements: None.

Version 2.1d (September, 1995) 1-499

Syntax: LONG NPAB_Get_Bus_Info(LONG npaHandle,
LONG busTag,
LONG *physicalMemAddrSize,
LONG *ioAddrSize);

1-500 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaHandle

busTag

Outputs:
physicalMemAddrSize

ioAddrSize

The HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_HAM_Module().

An architecture dependent value returned by NPAB_Get_Bus_Tag(). It
specifies the bus on which the operation is to be performed.

The size in bits of a physical address on the bus specified by busTag.

The size in bits of an I/O address on the bus specified by busTag.

Version 2.1d (September, 1995) 1-501

Return Value: 0 - The requested operation was completed successfully.
6 - The specified bus does not exist.

1-502 Version 2.1d (September, 1995)

Description: See Purpose: above.

Version 2.1d (September, 1995) 1-503

NPAB_Get_Bus_Name

Purpose: Gets the busTag name.

1-504 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-505

Thread Context: Non-Blocking

1-506 Version 2.1d (September, 1995)

Requirements: None.

Version 2.1d (September, 1995) 1-507

Syntax: LONG NPAB_Get_Bus_Name(LONG npaHandle,
LONG busTag,
BYTE **busName);

1-508 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaHandle

busTag

Outputs:
busName

The HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_HAM_Module().

An architecture dependent value returned by NPAB_Get_Bus_Tag(). It
specifies the bus on which the operation is to be performed.

This parameter gets a pointer to a NULL-terminated string, which is the
architecture and platform dependent name of the specified bus.

Version 2.1d (September, 1995) 1-509

Return Value: 0 - The requested operation was completed successfully.
4 - One of the parameters was invalid.

1-510 Version 2.1d (September, 1995)

Description: The returned string belongs to the NetWare Bus Interface (NBI) and must
not be modified by the HAM. If the HAM needs to reference this string
at some later time, it should make a local copy of it.

Version 2.1d (September, 1995) 1-511

NPAB_Get_Bus_Tag

Purpose: Takes the optional, user supplied busName parameter and returns a
busTag.

1-512 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-513

Thread Context: Non-Blocking

1-514 Version 2.1d (September, 1995)

Requirements: None.

Version 2.1d (September, 1995) 1-515

Syntax: LONG NPAB_Get_Bus_Tag(LONG npaHandle,
BYTE *busName,
LONG *busTag);

1-516 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaHandle

busName

Outputs:
busTag

The HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_HAM_Module().

Pointer to an architecture dependent string that is determined by the
platform developer. It specifies the bus on which the HAM’s hardware is
to be found.

Receives a system architecture dependent value identifying a specific bus
in the system. The HAM should save this value as it is needed as an
input parameter to subsequent HAI/NBI routines and for registering
hardware resources.

Version 2.1d (September, 1995) 1-517

Return Value: 0 - The requested operation was completed successfully.
6 - No bus format that corresponds with busName was found.

1-518 Version 2.1d (September, 1995)

Description: The HAM should not interpret busName or busTag, but simply use them
as described in this specification.

A busTag value of 0 always refers to the default expansion system bus.
A busTag value of -1 always refers to the processor (CPU) bus.

Version 2.1d (September, 1995) 1-519

NPAB_Get_Bus_Type

Purpose: Returns a value indicating the bus type of the bus specified by busTag.

1-520 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-521

Thread Context: Non-Blocking

1-522 Version 2.1d (September, 1995)

Requirements: None.

Version 2.1d (September, 1995) 1-523

Syntax: LONG NPAB_Get_Bus_Type(LONG npaHandle,
LONG busTag,
LONG *busType);

1-524 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaHandle

busTag

Outputs:
busTag

The HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_HAM_Module().

This parameter is an architecture dependent value returned by
NPAB_Get_Bus_Tag(). It specifies on which bus the operation is to be
performed.

A value indicating one of the following bus types as follows
0=ISA
1=MCA
2=EISA
3=PCMCIA
4=PCI
5=VESA
6=NuBus
7=Open Firmware Motherboard

Version 2.1d (September, 1995) 1-525

Return Value: 0 - The requested operation was completed successfully.
4 - Parameter error, busTag was invalid.

1-526 Version 2.1d (September, 1995)

Description: This routine returns a value indicating the bus type of the specified bus.
All instances of a particular bus type return the same value. For
example, all EISA buses return 2.

Version 2.1d (September, 1995) 1-527

NPAB_Get_Card_Config_Info

Purpose: Retrieves and returns configuration information for bus architectures that
keep this information on a per slot basis.

1-528 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-529

Thread Context: Blocking

1-530 Version 2.1d (September, 1995)

Requirements: None.

Version 2.1d (September, 1995) 1-531

Syntax: LONG NPAB_Get_Card_Config_Info(LONG npaHandle,
LONG busTag,
LONG uniqueID,
LONG size,
LONG param1,
LONG param2,
void *configInfo);

1-532 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaHandle

busTag

uniqueID

size

param1
param2
Outputs:

configInfo

The HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_HAM_Module().

An architecture dependent value returned by NPAB_Get_Bus_Tag(). It
specifies the bus on which the operation is to be performed.

Architecture dependent value returned by NPAB_Get_Unique_Identifier()
or NPAB_Search_Adapter() that specifies the location on the bus where
the adapter card is found.

Specifies the number of bytes to be returned into the configuration
buffer.

Bus architecture dependent values that further specify what information
is to be returned.

A pointer to a bus architecture dependent structure used to receive the
returned information. The caller needs to be sure that the buffer is at
least size bytes long.

Version 2.1d (September, 1995) 1-533

Return Value: 0 - The requested operation was completed successfully.
4 - One of the parameters was invalid.
5 - busTag denotes a bus type for which the slot has not configuration
information.
6 - The uniqueID input parameter has no card present.

1-534 Version 2.1d (September, 1995)

Description: Call NPAB_Get_Card_Config_Info() only if the busTag that identifies a
bus has configuration information for the bus on a per slot basis. It is the
caller’s responsibility to know how much and what sort of information is
returned, so that configInfo is set pointing to a sufficiently large space
and the resulting information can be interpreted. Param1 and param2
are defined on a per bus architecture basis. In other words, their
meanings must be the same on all implementations of a particular bus but
will vary from one bus to another. One or both of these parameters can
be unused, and if unused, should be set to 0.
The following are the parameter values for the specified bus type.
EISA Bus
size 320
param1 EISA configuration block number
param2 n/a
configInfo filled in with EISA configuration information for the
specified uniqueID. For a definition of the information returned, see
EISA Specification.

MCA Bus
size 8
param1 n/a
param2 n/a
configInfo filled in with I/O port values from POS0 - POS7 (100h -
107h) for the specified uniqueID. For a definition of the information
returned, see Personal System/2 Hardware Interface Technical
Reference.

PCI Bus
size 256
param1 PCI function number
param2 n/a
configInfo filled in with PCI configuration information for the
specified uniqueID. For a definition of the information returned, see PCI
Local Bus Specification.

PC Card Bus (PCMCIA)
size large enough to contain the 37 bytes of information
returned by GetConfigurationInfo (PCMCIA call) plus room for the
tuples.
param1 n/a
param2 n/a
configInfo filled in with PCMCIA configuration information for the
specified uniqueID. The information is the data returned by
GetConfigurationInfo (a PCMCIA call) and as many of the tuples as there
is buffer space. For a definition of the information returned, see
PCMCIA Standards.

Version 2.1d (September, 1995) 1-535

NPAB_Get_Unique_Identifier

Purpose: Returns a bus-specific value that uniquely identifies a specific device
(such as an OEM chip set) on an adapter.

1-536 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-537

Thread Context: Non-Blocking

1-538 Version 2.1d (September, 1995)

Requirements: None.

Version 2.1d (September, 1995) 1-539

Syntax: LONG NPAB_Get_Unique_Identifier(LONG npaHandle,
LONG busTag,
LONG *parameters,
LONG parameterCount,
LONG *uniqueID);

1-540 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaHandle

busTag

parameters

Version 2.1d (September, 1995) 1-541

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

parameterCount

Outputs:
uniqueID

The HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_HAM_Module().

A system architecture dependent value returned by
NPAB_Get_Bus_Tag(). It specifies on which bus the operation is to be
performed.

A bus-architecture-dependent array of parameters needed by the system
to generate the unique identifier. These parameters specify values like
slot and function. The following are the parameter values for each bus
type:

EISA Bus
parameterCount 1
parameters[0] physical slot number

MCA Bus
parameterCount 1
parameters[0] physical slot number

PCI Bus
parameterCount 2
parameters[0] 0 (PCI version 2.0)

physical slot number (PCI version 2.1)
parameters[1] bus/device/function number combination
equivalent to the value returned from the PCIBIOSFindDevice function.

PC Card (PCMCIA) Bus
parameterCount TBD
parameters[0] TBD

PnP ISA Bus
parameterCount 2
parameters[0] CSN
parameters[1] logical device number

Note: Novell provides a registry of the meanings of these parameters
for each bus.

The number of elements in the input parameter array, parameters.

Receives the architecture-dependent value that uniquely identifies a
specific device on an adapter.

1-542 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines
Return Value: 0 - The requested operation was completed successfully.

4 - The busTag parameter was invalid.
6 - The function is not available.

Version 2.1d (September, 1995) 1-543

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Description: This routine allows for ergonomic parameters used in identifying

adapters placed in physical slots and the functions on the adapter to be
converted to system architecture-dependent values required in the
operation of the adapter. Unique identifiers are interpreted only by other
HAI/NBI routines. To the caller they are a “magic cookie” with no
predefined format.

1-544 Version 2.1d (September, 1995)

NPAB_Read_Config_Space

Purpose: Retrieves and returns configuration information for the bus architecture
that keeps this information on a per slot basis.

Version 2.1d (September, 1995) 1-545

Architecture Type: All

1-546 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-547

Requirements: None.

1-548 Version 2.1d (September, 1995)

Syntax: LONG NPAB_Read_Config_Space(LONG npaHandle,
LONG dataType,
LONG busTag,
LONG uniqueID,
LONG offset,
void *readData);

Version 2.1d (September, 1995) 1-549

Parameters:
Inputs:

npaHandle

dataType

busTag

uniqueID

offset

Outputs:
readData

The HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_HAM_Module().

Indicates the data type (and size) of the output data:
0 - BYTE 8 bits
1 - WORD 16 bits
2 - LONG 32 bits

A system architecture dependent value returned by
NPAB_Get_Bus_Tag(). It specifies on which bus the operation is to be
performed.

The unique identifier for the specified adapter or function as returned by
NPAB_Get_Unique_Identifier(), NPAB_Search_Adapter(), or
NPAB_Scan_Card_Info().

The byte offset into the specified adapter or function’s configuration
space of the item to be read.

Receives an unsigned value of type dataType.

1-550 Version 2.1d (September, 1995)

Return Value: 0 - The requested operation was completed successfully.
4 - The busTag parameter was invalid.
6 - The function is not available.

Version 2.1d (September, 1995) 1-551

Description: This routine takes a bus identifier and an offset in that bus’s
configuration space and performs whatever operations are necessary to
acquire and return the requested data.

1-552 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines

This routine is provided
only for drivers that
need to interact with
configuration space.
On most buses,

NPAB_Get_Card_Config_Info() will satisfy a driver’s needs.

Note: For most buses, this routine will do nothing. It has meaning
only on buses that have a configuration address space that is separate
from memory or I/O space (for example, a PCI bus).

Version 2.1d (September, 1995) 1-553

NPAB_Scan_Bus_Info

Purpose: Specifies the buses that are available on the system.

1-554 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-555

Thread Context: Blocking

1-556 Version 2.1d (September, 1995)

Requirements: None.

Version 2.1d (September, 1995) 1-557

Syntax: LONG NPAB_Scan_Bus_Info(LONG npaHandle,
LONG *scanSequence,
LONG *busTag,
LONG *busType,
BYTE **busName);

1-558 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaHandle

scanSequence
Outputs:

scanSequence

busTag

busType

busName

The HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_HAM_Module().

Initialized to -1 to start the first search iteration.

Receives a system-generated sequence value to be passed into
subsequent calls to this routine.

Receives an architecture-dependent value used by the system to identify
the bus found in the current search iteration.

Receives a value indicating the bus type of the target bus found in the
current search iteration:

0 = PC ISA bus
1 = PC MCA bus
2 = PC EISA bus
3 = PC Card (PCMCIA) bus
4 = PCI bus
5 = VESA local bus
6 = NuBus
7=Open Firmware Motherboard

Receives a pointer to a static, NULL-terminated, architecture-dependent
string for the target bus found in the current search iteration. This string
is determined by the system platform developer. The caller should not
modify this string. To reference this string, make a copy of it.

Version 2.1d (September, 1995) 1-559

Return Value: 0 - The requested operation was completed successfully.
4 - One or more of the parameters was invalid.
6 - There are no more buses

1-560 Version 2.1d (September, 1995)

Description: This routine scans the system for available buses on a find-first-find-next
basis. The routine returns busTag, busType, and busName information
about the target bus for each iteration.

Version 2.1d (September, 1995) 1-561

NPAB_Search_Adapter

Purpose: Takes a bus type and a pointer to a product ID and returns a bus tag and
unique identifier indicating where the specified product (adapter board)
was found.

1-562 Version 2.1d (September, 1995)

Architecture Type: All

Version 2.1d (September, 1995) 1-563

Thread Context: Blocking

1-564 Version 2.1d (September, 1995)

Requirements: None.

Version 2.1d (September, 1995) 1-565

Syntax: LONG NPAB_Search_Adapter(LONG npaHandle,
LONG *scanSequence,
LONG busType,
LONG productIDLength,
BYTE *productID,
LONG *busTag,
LONG *uniqueID);

1-566 Version 2.1d (September, 1995)

Parameters:
Inputs:

npaHandle

scanSequence

busType

productIDLength

productID

Outputs:
scanSequence

Version 2.1d (September, 1995) 1-567

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
busTag

uniqueID
The HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_HAM_Module().

Initialized to -1 to start the first search iteration.

Indicates the bus type on which to perform the search:
0 = PC ISA bus
1 = PC MCA bus
2 = PC EISA bus
3 = PC Card (PCMCIA) bus
4 = PCI bus
5 = VESA local bus
6 = NuBus
7= Open Firmware Motherboard

Byte-length of the product ID string.

Pointer to a bus-architecture-dependent parameter that uniquely
identifies an adapter board/peripheral/system option. For example, for
an EISA bus, the EISA product ID is defined in the EISA Specification
document.

Receives a system-generated sequence value to be passed into
subsequent calls to this routine.

Receives an architecture-dependent value used by the system to identify
the bus on which the adapter was found in the current search iteration.

Receives an architecture-dependent value identifying the specific device
or function. Iterative calls to this routine will return information for each
instance of the productID and compatible products, including multiple
instances on a single card (each have a different function number). The
slot number associated with the adapter can be gleaned from uniqueID
using NPAB_Get_Unique_Identifier().

1-568 Version 2.1d (September, 1995)

Technical Reference for NWPA Routines
Return Value: 0 - The requested operation was completed successfully.

4 - One or more of the parameters was invalid.
6 - No more items present

Version 2.1d (September, 1995) 1-569

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Description: The HAM calls this routine reiteratively to find all adapter instances with

the specified product ID. The routine returns the bus tag and the system
unique ID for each adapter instance.

This routine can only be used if the HAM’s adapter has a unique product
ID associated with it that can be read by NetWare’s bus interface (NBI).
Also, the product ID must be retrievable according to some accepted
standard, such as EISA, MCA, or PCI.

1-570 Version 2.1d (September, 1995)

NPAB_Write_Config_Space

Purpose: Writes information to the configuration space for the bus architecture
that keeps this information on a per slot basis.

Version 2.1d (September, 1995) 1-571

Architecture Type: All

1-572 Version 2.1d (September, 1995)

Thread Context: Non-Blocking

Version 2.1d (September, 1995) 1-573

Requirements: None.

1-574 Version 2.1d (September, 1995)

Syntax: LONG NPAB_Write_Config_Space(LONG npaHandle,
LONG dataType,
LONG busTag,
LONG uniqueID,
LONG offset,
void *writeData);

Version 2.1d (September, 1995) 1-575

Parameters:
Inputs:

npaHandle

dataType

busTag

uniqueID

offset

writeData

Outputs:

The HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_HAM_Module().

Indicates the data type (and size) of the output data:

0 - BYTE 8 bits
1 - WORD 16 bits
2 - LONG 32 bits

A system architecture dependent value returned by
NPAB_Get_Bus_Tag(). It specifies on which bus the operation is to be
performed.

The unique identifier for the specified adapter or function as returned by
NPAB_Get_Unique_Identifier(), NPAB_Search_Adapter(), or
NPAB_Scan_Card_Info().

The byte offset into the specified adapter or function’s configuration
space of the item to be read.

Pointer to the data item of type dataType that is to be written in the
specified configuration address on the specified bus.

None

1-576 Version 2.1d (September, 1995)

Return Value: 0 - The requested operation was completed successfully.
4 - The busTag parameter was invalid.
6 - The function is not available.

Version 2.1d (September, 1995) 1-577

Description: This routine takes a value, a bus identifier and an offset in that bus’s
configuration space and performs whatever operations are necessary to
deliver the value to the specified location.

This routine is provided only for drivers that need to interact with
configuration space. Usually, any “writes” to configuration space are
done by the system or a configuration management utility before any
drivers are loaded.

Note: For most buses, this routine will do nothing. It has meaning
only on buses that have a configuration address space that is separate
from memory or I/O space (for example, a PCI bus).

1-578 Version 2.1d (September, 1995)

Outx

Purpose: Takes a bus identifier, a value, and an I/O address in that bus’s I/O
address space and performs whatever operations are necessary to deliver
the value to the specified place.

Version 2.1d (September, 1995) 1-579

Thread Context: Non-Blocking

1-580 Version 2.1d (September, 1995)

Syntax: void Out8 (LONG busTag,
void *ioAddr,
BYTE outputVal);

void Out16 (
LONG busTag,
void *ioAddr,
WORD outputVal);

void Out32 (
LONG busTag,
void *ioAddr,
LONG outputVal);

Version 2.1d (September, 1995) 1-581

Parameters:
Inputs:
busTag

ioAddr

outputVal

Outputs:

An architecture dependent value returned by NPAB_Get_Bus_Tag(). This
value specifies the bus on which the operation is to be performed.

The I/O address in the bus architecture of the adapter to which the output
is to occur.

The value to be sent to the specified I/O address on the specified bus.
The type of this value must correspond with the routine being called.

None

1-582 Version 2.1d (September, 1995)

Return Value: None

Version 2.1d (September, 1995) 1-583

Description: These routines are only used by HAMs written for adapters intended for
bus architectures that have an I/O address space. The HAM is expected
to use the routine appropriate to the data width of the port to which the
output is to occur.

The value of ioAddr should be the port address the HAM would normally
expect for the given bus architecture. For example, if an ISA card with a
base port address of 300h is placed on an EISA bus, the HAM will set
ioAddr to 300h when it wants to output to that base port.

1-584 Version 2.1d (September, 1995)

OutBuffx

Purpose: Takes a bus identifier, an I/O address in that bus’s I/O address space, a
source buffer in the CPU’s logical address space, and a count of transfer
data units to perform whatever operations are necessary to output the
specified number of data units from the source buffer to the I/O address.

Version 2.1d (September, 1995) 1-585

Thread Context: Non-Blocking

1-586 Version 2.1d (September, 1995)

Syntax: LONG OutBuff8 (LONG busTag,
void *ioAddr,
void *buffer,
LONG count);

LONG OutBuff16 (
LONG busTag,
void *ioAddr,
void *buffer,
LONG count);

LONG OutBuff32 (
LONG busTag,
void *ioAddr,
void *buffer,
LONG count);

Version 2.1d (September, 1995) 1-587

Parameters:
Inputs:
busTag

ioAddr

buffer

count

Outputs:

An architecture dependent value returned by NPAB_Get_Bus_Tag(). This
value specifies the bus on which the operation is to be performed.

The I/O address in the bus architecture of the adapter to which the output
is to occur.

The logical memory address of the source buffer. This address is in the
CPU’s logical address space.

The number of transfer units in the specified data size.

None

1-588 Version 2.1d (September, 1995)

Return Value: 0 - The requested operation was completed successfully.
1 - Memory protection prevented by the completion of the requested
operation.
3 - Memory error occurred while attempting to perform the
requested operation.
4 - One of the parameters was invalid.
5 - The requested operation could not be completed.

Version 2.1d (September, 1995) 1-589

Description: These routines are only used by HAMs written for adapters intended for
bus architectures that have an I/O address space. The HAM is expected
to use the routine appropriate to the data width of the port to which the
output is to occur. The specified number of data units from the source
buffer is output to the specified I/O address.

The value of ioAddr should be the port address the HAM would normally
expect for the given bus architecture. For example, if an ISA card with a
base port address of 300h is placed on an EISA bus, the HAM will set
ioAddr to 300h when it wants to output to that base port.

1-590 Version 2.1d (September, 1995)

