
Chapter 6 Technical Reference for
NWPA Data Structures

This chapter is a technical reference for data structures used by CDMs
and HAMs. The following is a list of the structures described in this
chapter:

AttributeInfoStruct 6-2
CDMMessageStruct6-4
DeviceInfoStruct 6-7
ErrorSenseInfoStruct 6-13
HACBStruct 6-15
HAMInfoStruct 6-17
InquiryInfoStruct 6-19
NPAOptionStruct 6-20
SuperHACBStruct 6-25
UpdateInfoStruct 6-26

Version 2.1d (September, 1995) 6-1

Technical Reference for NWPA Data Structures

AttributeInfoStruct

Used by: CDM

6-2 Version 2.1d (September, 1995)

Technical Reference for NWPA Data Structures
Description: The AttributeInfoStruct is a structure that the CDM uses to store device-

attribute information for a device (or devices) the CDM manages. A copy
of this information is passed to the Media Manager when the CDM
registers an attribute by calling CDI_Register_Object_Attribute().

A CDM can register multiple attributes, one attribute for each call to
CDI_Register_Object_Attribute(). The CDM is expected to maintain an
instance of this structure for each attribute it registers.

By registering device attributes with the Media Manager, the CDM can
present specific information about a device's operational modes to the
application layer. For example, a tape CDM can inform an application
that its tape device supports multiple blocksizes.

For more information about attributes, refer to the technical reference
information on the CDI_Register_Object_Attribute() API found in
Chapter 7.

Version 2.1d (September, 1995) 6-3

Technical Reference for NWPA Data Structures
Syntax: struct AttributeInfoStruct{

LONG attributeID;
LONG attributeType;
LONG attributeLength;
BYTE attributeName[64];

};

6-4 Version 2.1d (September, 1995)

Technical Reference for NWPA Data Structures
Parameters: attributeID This is a 4 byte field containing a unique ID for the attribute

being registered. Currently, the NWPA defines the following attribute
IDs:

0x44454D0A Media Type
0x5241430E Cartridge Type
0x494E5509 Unitsize
0x4F4C420A Blocksize
0x50414308 Capacity
0x4552500E Preferred Unitsize
0x4D455209 Removable Device
0x41455209 Read Only Device
0x50415412 Tape Position Size
0x5041540F Tape Media Size
0x50415411 Tape Write Format
0x50415410 Tape Read Format
0x4E494D12 Minimum Blocksize
0x58414D12 Maximum Blocksize
0x54414415 Data Compression Information

Version 2.1d (September, 1995) 6-5

Technical Reference for NWPA Data Structures
attributeType This is
a 4 byte field indicating
the data-type of the
InfoBuffer parameter for
the get/set entry points
associated with the
attribute being
registered through
CDI_Register_Object_A
ttribute(). The data
types are defined as
follows:

0x00000001 String

0x00000002 BYTE
0x00000003 WORD
0x00000004 LONG
0x00000005 Other: Indicates that the calling application
knows what data type to expect from the target CDM.

attributeLength This is a 4 byte field containing a value that indicates the
byte-length of the infoBuffer input parameter to the get/set entry points
associated with the attribute. These entry points are registered during
CDI_Register_Object_Attribute() along with the attribute.

attributeName This is a 64 byte field containing a byte-length-preceded
string. The string contains the ASCII codes that make up the name of the
attribute being registered, and it is also NULL terminated.

6-6 Version 2.1d (September, 1995)

Technical Reference for NWPA Data Structures

CDMMessageStruct

Used by: CDM

Version 2.1d (September, 1995) 6-7

Technical Reference for NWPA Data Structures
Description: The CDMMessageStruct is a data packet containing a control or I/O

request from the Media Manager (CDM Message). The
CDMMessageStruct is identical to the Media Manager internal message
structure. The fields in CDMMessageStruct contain the pertinent
information required to build a control or I/O request. A pointer to this
structure is then passed to the CDM which processes the
CDMMessageStruct and converts it into a HACB request that is
compatible with the adapter supporting the desired device.

6-8 Version 2.1d (September, 1995)

Technical Reference for NWPA Data Structures
Syntax: struct CDMMessageStruct{ LONG msgPutHandle;

LONG function;
LONG parameter0;
LONG parameter1;
LONG parameter2;
LONG bufferLength;
void* buffer;
LONG cdmReserved[2];

} ;

Version 2.1d (September, 1995) 6-9

Technical Reference for NWPA Data Structures
Parameters: msgPutHandle This is a 4 byte field containing a handle to the current

I/O request issued by the Media Manager. The Media Manger generates
this value and uses it to track a request through different execution
stages. This field value is needed as an argument for many of the APIs
described in this manual, and it should never be altered.

function This is a 1 LONG field. The upper WORD contains control
attributes set by the Media Manager for the I/O request, and the lower
WORD contains a Media Manager function code set by an application.

For processor independence reasons, the CDM should use the following
macros to extract information from this field:

#define GET_MSW (function) ((function >> 16) & 0xFFFF)
#define GET_LSW (function) (function & 0xFFFF)

Media Manager control and I/O requests are equated to unique
hexadecimal function codes (0x0000 - 0x0047). A Media Manager
application makes an I/O request by calling a Media Manager API. The
application selects a desired I/O action by passing one of the Media
Manager function codes as an input parameter. In turn, the Media
Manager packages the request into a CDM Message
(CDMMessageStruct) placing the function code in the lower WORD of
this field, and then issues the CDM Message to the target CDM.
The CDM maps this code into a call to one of its locally-implemented
control or I/O routines designed to build the corresponding SHACB
request. A list of CDM Message types, their corresponding Media
Manager function codes, and their corresponding request descriptions
can be found in Chapter 9. As previously mentioned, in building the
CDM Message the Media Manager places control attributes associated
with the request in the upper WORD of this field. Most of these
attributes only have meaning to the Media Manager and OS. The
attributes that do have meaning to a CDM are defined as follows:

#define SCATTER_ON_BIT 0x0080 Indicates that the request is
in the NWPA's scatter/gather format. To inform the HAM, the
CDM must set the Scatter/Gather_Flag in the corresponding
HACB.

#define HARDWARE_VERIFY_BIT 0x0100 Tells CDMs that they
must set the verify bit for all write commands.

#define CACHE_OKAY 0x8000 Indicates that controller
and/or device level caching is okay. If this bit is not set,
all write commands must write-through any controller/device
caches.

bufferLength This is a 1-LONG field. Typically, its value indicates the
size of the buffer field. However, its content depends on whether or not
the request is in scatter/gather format. If it is in scatter/gather format, this

6-10 Version 2.1d (September, 1995)

Technical Reference for NWPA Data Structures
field contains the
number of entries in the
scatter/gather request
list. If it is not in
scatter/gather format,
this field contains the
length, in bytes, of the
data buffer. This field is
set to zero for requests
that do not require the
movement of data.

buffer This is a 4 byte
field of type pointer to

void. Typically, the pointer points to the CDM Message's data buffer.
However, the structure of the buffer it points at depends on whether or
not the request is in scatter/gather format. If it is in scatter/gather format,
this field contains the virtual starting address of the scatter/gather request
list. The scatter/gather list is generated by the NWPA or a Media
Manager application. If the request is not in scatter/gather request, this
field contains the virtual address to the data buffer, in which case if the
operation is a read, this buffer is where the data is read to. If the
operation is a write, this buffer is where the data is read from. This field
is set to zero for requests that do not require the movement of data.

Note: For information about the format of a scatter/gather list, refer to
section 3.4 of Chapter 3.

Version 2.1d (September, 1995) 6-11

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
cdmReserved This is a
2-LONG field for the
private use of the CDM
that queues the current
CDM Message using

CDI_Queue_Message(). The intended use of this field is to allow the
CDM to create links between the queued, current message and other
CDM messages or HACBs. If the CDM did not explicitly queue the
message, it cannot expect the value it placed in this field to persist.

6-12 Version 2.1d (September, 1995)

DeviceInfoStruct

Used by: CDM and HAM

Version 2.1d (September, 1995) 6-13

Description: This structure contains specific information about a device attached to a
host adapter bus. The HAM maintains an instance of this structure for
each device it supports and is responsible for filling in field information
when it receives a "Scan for New Devices" command issued from the
command line. The HAM determines information for some of the fields
by probing the hardware (such as unitNumber, busID, etc.). The
information for the remaining fields (such as deviceHandle) is generated
by the HAM. The HAM uses the information in this structure to report a
device and set its attributes. The CDM uses this structure to obtain device
information to determine if it will bind to the device. When a device
comes online that is of the type for which a CDM has registered, the
Media Manager calls that CDM's CDM_Inquiry() passing it a pointer to
this structure. It is from this structure that a CDM can determine a
device's type and obtain its handle for routing I/O.

6-14 Version 2.1d (September, 1995)

Syntax: typedef struct DeviceInfoStruct{
LONG deviceHandle;
BYTE deviceType;
BYTE initNumber;
BYTE busID;
BYTE cardNo;
LONG attributeFlags;
LONG maxDataPerTransfer;
LONG maxLengthSGElement;
BYTE maxSGElements;
BYTE reserved1[2];
BYTE elevatorThreshold;
LONG maxUnitsPerTransfer;
WORD haType;
union /* Device specific information */
{

struct /*SCSI Synchronous Information */
{

BYTE transferPeriodFactor;
BYTE offset;

} SCSI;
struct /* Other Device Information */
{

BYTE reserved2[2];
} OTHER;

} INFO;
struct InquiryInfoStruct InquiryInfo;

}deviceInfoDef;

Version 2.1d (September, 1995) 6-15

Parameters: DeviceHandle This is a 1-LONG field containing a handle to a device.
The HAM generates this handle during HAM_Scan_For_Devices(). This
device handle is the token that HAM uses to identify and route I/O to a
device. The CDM must provide this handle in the HACB in order to
issue I/O to a target device. Without this handle, the HAM rejects the
HACB because it cannot identify the target device.

6-16 Version 2.1d (September, 1995)

Technical Reference for NWPA Data Structures
deviceType This is a 1-
BYTE field containing
a value representing the
type of device that the
inquiry data will
describe. The NWPA
uses the same codes for
device types as SCSI.
The following is the
NWPA list of device
types:

00 - Direct access
device (hard disk)

01 - Sequential
access device (tape)

02 - Printer device
03 - Processor

device
04 - Write once

device (worm)
05 - CD-ROM

device
06 - Scanner device
07 - Optical

memory device (MO)
08 - Media changer

device
09 -

Communication device
-1 - Undefined type

of device

unitNumber This is a 1-
BYTE field. For SCSI,
this field contains the
logical unit number
(LUN) of the device.
For IDE\ATA, this field
indicates the number
(0x00 = Master or 0x01
= Slave) of the device.

Note: The NWPA treats the value in this field as a BYTE value.

busID This is a 1-BYTE
field. For SCSI, this

field contains the device's SCSI ID. For IDE\ATA, this field contains a
HAM-generated index that associates the IDE\ATA-controller channel
(primary, secondary, tertiary, or quaternary) to the device.

cardNo This is a 1-BYTE field containing the host adapter card number
generated by the HAM.

attributeFlags This is a 1-LONG field indicating the attributes associated
with a device and the adapter to which it is attached. The following table
describes each attribute and shows the bit that enables it:

Flag Bit
(MSB) b31... (LSB) b0

Description

0x00000001 Bit 0 is the Max_Data_Per_Transfer_Flag.
When set, it indicates that the adapter has a
maximum number of bytes it can transfer per I/O
request. The value for this maximum is found in
the MaxDataPerTransfer field.
When cleared, it indicates that the adapter can
handle any transfer size the bus protocol can
support.

0x00000002 Bit 1 is the Elevator_Off_Flag. When set, it
disables automatic sorting of requests in the
NWPA's elevator filter. This task is then left
either for the HAM/adapter, or it does not happen
at all.

Note: If the HAM chooses to turn off the elevator
by setting this flag, chances for scatter/gather will
be almost nil. The NWPA's scatter/gather filter
groups requests while they are in the elevator.
Disabling the NWPA's elevator will drastically
decrease performance.

0x0000004 Bit 2 is the Scatter_Gather_Flag. When set, it
indicates that the HAM/adapter supports
scatter/gather requests. Then, if the
Elevator_Off_Flag is cleared, the NWPA
scatter/gather filter will seek opportunities to
build scatter/gather requests.
When cleared it indicates that the HAM/adapter
does not support scatter/gather, and the NWPA
will guarantee that the associated device's CDM-
HAM I/O channel will not receive any
scatter/gather requests.

0x00000008 Bit 3 is the Boot_Device_Flag. When set, it
indicates that this device is the boot device. If the
HAM can determine the boot device, it has the
option to set this bit. If the HAM cannot make the

Version 2.1d (September, 1995) 6-17

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

Flag Bit
(MSB) b31... (LSB) b0

0x00000010

0x00000020

0x00000040

0x00000080

Flag Bit
(MSB) b31... (LSB) b0

Description

device is public.

0x00000100 Bit 8 is the Hardware_Verify_Flag. When set, it
indicates that the corresponding device can do
hardware verifies on write commands.
When cleared, it indicates that the corresponding
device does not support hardware verifies on
write commands.

Note: The setting of this bit is the responsibility
of the CDM.

0x00000200 Bit 9 is the Max_Units_Per_Transfer_Flag.
When set, it indicates that the adapter has a
maximum number of units it can transfer per I/O
request. The value for this maximum is found in
the MaxUnitsPerTransfer field.
When cleared, it indicates that the adapter can
handle any unit transfer amount the bus protocol
can support.

0x00000400 Bit 10 is the Elevator_Threshold_Flag. When
set, it indicates that the ElevatorThreshold field
is valid. When cleared, it indicates that the
ElevatorThreshold field is not valid.

b11 ... b31 Bits 11 through 31 (MSB) are reserved.

DEFAULT=0x00000000 Zero is the default value for this field.

6-18 Version 2.1d (September, 1995)

Technical Reference for NWPA Data Structures

maxDataPerTransfer
This is a 1-LONG field
indicating the maximum
number of bytes that the
adapter can transfer per
I/O request. If a transfer
size limit exists for the
adapter, the HAM must
place the byte limit in
this field and set the
Max_Data_Per_Transfer
_Flag. If the adapter can
handle any transfer size
the bus protocol
supports, the HAM
should set this field to
zero and clear the
Max_Data_Per_Transfer
_Flag.

maxLengthSGElement
This is a 1-LONG field
where the HAM
indicates the maximum
size, in bytes, of a
single scatter gather
element supported by
the adapter for the target
device.

maxSGElements This is a 1-BYTE field containing a value
corresponding to the maximum number of scatter/gather elements the
adapter can handle per request for the target device.

reserved1 This is a 2-BYTE field reserved by the NWPA.

elevatorThreshold This is a 1-BYTE field that indicates the minimum
number of requests the HAM prefers to be processing at a given time.
The Elevator_Threshold_Flag must be set to indicate the validity of this
field. If the Elevator_Threshold_Flag is cleared, any value in this field
should be ignored.

maxUnitsPerTransfer This is a 1-LONG field indicating the maximum
number of units (i.e. sectors) that the adapter can transfer per I/O request.
If a unit transfer limit exists for the adapter, the HAM must place the unit
limit in this field and set the Max_Units_Per_Transfer_Flag. If the adapter
can handle any unit transfer amount the bus protocol supports, the HAM
should set this field to zero and clear the Max_Units_Per_Transfer_Flag.

haType A 1-WORD field to contain a value representing the adapter type
this HAM supports. The following is a list of possible values:

Field Value Description
1 HAM supports SCSI adapters.

2 HAM supports IDE\ATA adapters

3 HAM supports custom adapters.

Version 2.1d (September, 1995) 6-19

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
INFO.SCSI.transferPeri
odFactor This is a 1
BYTE field that reports
the synchronous
transfer period, which is
the minimum time
allowed between
leading edges of
successive REQ pulses
and of successive ACK
pulses. (This field
applies to SCSI devices
only and is not used for
other device types.)

INFO.SCSI.offset This
is a 1 BYTE field that is
the maximum number
of REQ pulses allowed
to be outstanding before
the leading edge or its

corresponding ACK pulse is received at the target. Defined values for
this field are:

00h = Asynchronous transfer
FFh= Infinite (No limit to the number of outstanding pulses,

which means that memory is fast enough to keep up with synchronous
transfer).
(This field applies to SCSI devices only and is not used for other device
types.)

INFO.OTHER.reserved2 This is a 2 BYTE field that is reserved by the
NWPA. (This field applies to all non SCSI devices.)

inquiryInfo This is a 36 byte (SCSI) / 512 byte (IDE\ATA) field
containing an InquiryInfoStruct with identifying information about the
device. For SCSI, the information in the InquiryInfoStruct is identical to
the information returned by the standard INQUIRY command. For IDE\
ATA, the information in the InquiryInfoStruct is identical to the
information returned by the IDENTIFY command. For other interface
types, the InquiryInfoStruct must be defined to contain information
identical to the data returned by interface's equivalent INQUIRY
command.

6-20 Version 2.1d (September, 1995)

Technical Reference for NWPA Data Structures

ErrorSenseInfoStruct

Used by: CDM and HAM

Version 2.1d (September, 1995) 6-21

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Description: This structure defines the data format of the HACB's auto error sense

buffer.

The CDM allocates and fills in one of these buffers for each HACB
request targeted to a device attached to an adapter using auto error sense.
The CDM links one of these buffers to a HACB by assigning the buffer's
NetWare logical (virtual) address to the HACB's vErrorSenseBufferPtr
field. The CDM may want to create a reusable pool of these buffers for
the sake of performance. Additionally, the buffer must be allocated as I/O
contiguous memory, and as explained under the structure's
ErrorSenseData field presented below, the CDM can vary the size of this
buffer according to the number of sense bytes it wants returned. The
CDM specifies this number in the numberBytesRequested field.

The HAM copies the auto error sense data into the ErrorSenseData field
of this buffer. Also, the HAM returns to the numberBytesReturned field,
the lesser of the value in the numberBytesRequested field or the actual
number of sense bytes the device will provide.

If the number of sense bytes returned by the device is less than what the
CDM requested (numberBytesReturned < numberBytesRequested), the
CDM should use the value in the numberBytesReturned field as the index
for the ErrorSenseData array.

6-22 Version 2.1d (September, 1995)

Technical Reference for NWPA Data Structures
Syntax: struct ErrorSenseInfoStruct{

LONG numberBytesRequested;
LONG numberBytesReturned;
LONG reserved[2];
BYTE errorSenseData[1];

};

Version 2.1d (September, 1995) 6-23

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Parameters: numberBytesRequested This is a 1-LONG field to contain the number of

error sense bytes the CDM issuing the HACB would like to receive when
an error with a check condition occurs. When auto error sense is active
for a target device, the CDM assigns the desired value in this field prior
to executing the HACB request.

Note: For SCSI, the minimum value a CDM can place in this field is
8. Otherwise, no error sense information will be returned.

numberBytesReturned This is a 1-LONG field to contain the number of
error sense bytes that the device actually returned, if the number is less
than the number the CDM requested. The HAM sets this value when a
HACB request results in an error with a check condition and the target
host adapter has auto error sense turned on. The HAM should set this
field according to the following formula:

numberBytesReturned = min(numberBytesRequested, bytesReturnedByDevice);

The following assumptions apply to the above formula:
∙ The CDM must be informed when the length of the sense

information returned by the device is less than what the CDM
requests.

∙ The CDM is not concerned with any additional sense information
beyond the amount it requested.

reserved This is a field of 2-LONGs reserved by the NWPA.

errorSenseData This field is declared as a BYTE array with one element.
The NWPA, however, takes advantage of the fact that the C
programming language does not bounds check the array. Therefore, the
array's base address (&ErrorSenseData[0]) is used as the starting
address where the HAM is to place the target device's auto error sense
data.

The CDM decides the actual size of this BYTE array, at run-time, when
it allocates the auto error sense buffer during the building of the HACB.
To get an auto error sense buffer of suitable size, the CDM allocates a
buffer the size of the ErrorSenseInfoStruct plus however many BYTES
of auto error sense data it wants returned. This amount is the value that
the CDM assigns to the numberBytesRequested field; thus, this field
specifies the array's total number of elements.

Note: In building a HACB for a target device with auto error sense
active, the CDM assigns the total byte length (sizeof(struct
ErrorSenseInfoStruct) + numberBytesRequested) of the auto error sense buffer
to the HACB's errorSenseBufferLength field.

6-24 Version 2.1d (September, 1995)

Technical Reference for NWPA Data Structures

The CDM and HAM
should go through a
pointer to an
ErrorSenseInfoStruct to
access information in

the auto error sense buffer. This pointer implies an ErrorSenseInfoStruct
format on the buffer's data, allowing the CDM or HAM to correctly
dereference its fields. The HAM knows the full size of the buffer from
the value the CDM places in the numberBytesRequested field and adding
the 17 header BYTES. The CDM knows exactly how much return data to
read by the value the HAM places in the numberBytesReturned field.

Version 2.1d (September, 1995) 6-25

HACBStruct

Used by: CDM, HAM and NWPA

6-26 Version 2.1d (September, 1995)

Description: The Host Adapter Control Block (HACB or HACBStruct) is a data
structure, or message packet, packing I/O requests into a protocol-
specific command block (such as SCSI or IDE\ATA). This structure is
passed between a Custom Device Module (CDM) and a Host Adapter
Module (HAM) via the NWPA. These modules interface with the NWPA
through the CDI and HAI interfaces, respectively.

The HACB is encapsulated in the Super Host Adapter Control Block
(SuperHACB or SuperHACBStruct), which is a data structure providing
additional space for CDM developers to attach additional CDM state
information. The CDM uses a SuperHACB to build a device-specific I/O
request from a CDM message (CDMMessageStruct) it receives from the
NWPA. As a data member of the SuperHACB, the CDM places device
specific commands in the HACB and initiates its execution by sending it
to the HAM via the NWPA. The HAM passes the information in the
HACB to the target device for processing.

Version 2.1d (September, 1995) 6-27

Syntax: typedef struct HACBStruct{ LONG hacbPutHandle;
LONG hacbCompletion;
LONG control_Info;
WORD hacbType;
WORD timeoutAmount;
LONG deviceHandle;
LONG dataBufferLength;
void *vDataBufferPtr;
void *pDataBufferPtr;
LONG errorSenseBufferLength;
void *vErrorSenseBufferPtr;
void *pErrorSenseBufferPtr;
LONG reserved1[6];
BYTE hamReserved[64];
union /* - - - Command Block Overlay Area - - - */
{
struct /* HACB Type 0:Host Adapter Command Structure*/
 {

LONG function;
LONG parameter0;
LONG parameter1;
LONG parameter2;
BYTE reserved2[12];

} Host;
struct /* HACB Type 1: SCSI Adapter Command Structure*/
 {

BYTE haCommandArea[16];
BYTE reserved3[11];
BYTE haCommandLength;

} SCSI;
struct /* HACB Type 2: IDE\ATA Adapter Command

Structure*/
{

BYTE numberSectorsRegister;
BYTE sectorRegister;
BYTE lowCylinderRegister;
BYTE highCylinderRegister;
BYTE driveHeadRegister;
BYTE commandRegister;
BYTE reserved4[22];

} IDE\ATA;
struct /*HACB Type 3:CDM Pass-through Cmd Structure*/

 {
LONG function;
LONG parameter0;
LONG parameter1;
LONG parameter2;
BYTE reserved5[12];

} CDMPassThrough;
} Command;

} HACB;

6-28 Version 2.1d (September, 1995)

Parameters: A full description of the HACBStruct parameters is not given here due to
its length and detail. Refer to Chapter 3 for a full description.

Version 2.1d (September, 1995) 6-29

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

HAMInfoStruct

Used by: HAM

6-30 Version 2.1d (September, 1995)

Technical Reference for NWPA Data Structures
Description: This structure is used by a HAM to supply information about the HAM

itself to the Media Manager upon request. The HAM needs to maintain
an instance of this structure for each bus it supports.

Version 2.1d (September, 1995) 6-31

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Syntax: struct HAMInfoStruct{

LONG deviceInfoStructureLength;
WORD haType;
BYTE busNo;
BYTE cardNo;
LONG vendorID;
BYTE name[64];
LONG supportedTargetIDs;
LONG supportedUnitNumbers;
LONG cardTargetID;
LONG reserved[10];

};

6-32 Version 2.1d (September, 1995)

Technical Reference for NWPA Data Structures
Parameters: deviceInfoStructureLength A 1-LONG field to contain the length of the

device information data. For SCSI devices, this value is the length of the
header (32 bytes) plus the SCSI Inquiry Data (36 bytes). For IDE\ATA
devices, this value is the length of the header (32 bytes) plus the IDE\
ATA Information (512 bytes). For custom CDMs and HAMs, this value
is the length of the header (8 bytes) plus the length of the custom
information.

haType A 1 WORD field to contain a value representing the adapter type
this HAM supports. The following is a list of possible values:

Field Value Description
1 HAM supports SCSI adapters.

2 HAM supports IDE\ATA adapters

3 HAM can translate raw Media Manager messages into
custom command blocks for the adapter it supports.

busNo A 1 byte field to contain the numerical identifier used by the
HAM to indicate the appropriate bus on which to process a HACB. This
identifier accommodates those adapters that have more than one bus on
which to attach devices. This number is set by the HAM.

cardNo A 1 byte field to contain the number that will be displayed for
this adapter and used to identify the adapter in other commands. This
number is decided by the HAM.

Version 2.1d (September, 1995) 6-33

vendorID A 4 byte field
to contain a number
used to keep track of all
modules. This number
is given to a driver
vendor from Novell
Labs and should be
hard-coded in the
module. This number is
used in registering a
module and in hot
replacement.

name[64] A 64 byte
field to contain the
name of the adapter or

the HAM. The name is a string where byte 0 contains the string length
and bytes 1 through 63 contain the characters that constitute the actual
name.

supportedTargetIDs A 1 LONG field to contain the number of Target IDs
supported by this HAM. This corresponds to ID numbers in the case of
SCSI, and Channel numbers in the case of IDE/ATA.

supportedUnitNumbers A 1 LONG field to contain the number of Unit
Numbers supported by this HAM. This corresponds to LUNs in the case
of SCSI.

cardTargetID A 1 LONG field to contain the specific card ID that this
HAM will support, if known by the HAM. If this parameter is not used,
it must be set to -1.

reserved These 10 LONGs are reserved by NWPA.

6-34 Version 2.1d (September, 1995)

Technical Reference for NWPA Data Structures

InquiryInfoStruct

Used by: CDM and HAM

Version 2.1d (September, 1995) 6-35

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Description: This structure contains identifying information that the CDM and HAM

can use to know what type of device is being described. For SCSI,
InquiryInfoStruct is identical to the SCSI Inquiry structure returned by
the SCSI Inquiry Command. For IDE\ATA, InquiryInfoStruct is identical
to the IDE\ATA Identify structure returned by the IDE\ATA Identify
Command. For other interface types, InquiryInfoStruct must be identical
to the data structure specific to that interface type.

6-36 Version 2.1d (September, 1995)

NPAOptionStruct

Used by: HAM (CDM usage is optional)

Version 2.1d (September, 1995) 6-37

Description: The NPAOptionStruct contains the HAM's command line option data on
a per option basis. Using this structure, the HAM can select the
command line options that it wants the Media Manager to prompt the
system operator for. The HAM must fill out one of these structures and
call NPA_Add_Option() for each option it supports. With each successive
call to NPA_Add_Option(), the Media Manager adds the current option to
a select list. After the HAM has added all of its command line options, it
calls NPA_Parse_Options(), which parses the command line to determine
which options in the select list were actually chosen. Within the context
of NPA_Parse_Options(), the Media Manager iteratively calls the HAM's
HAM_Check_Option() routine for each option that was actually selected
from the command line. HAM_Check_Option() can direct the Media
Manager to either accept the option by returning zero or reject the option
by returning non-zero. If the option is accepted, the Media Manager
places it in a use list. The HAM then calls NPA_Register_Options() to
direct the Media Manager to physcially register the options in its use list
for the HAM.

The Media Manager will not place multiple options of the same type,
such as multiple interrupts, in its use list for a single parse of the
command line. Therefore, if the host adapter supports multiple options of
the same type and the HAM wants to exploit them, then the HAM must
do the following:

1. Call NPA_Add_Option() to add the first option.
2. Call NPA_Parse_Options() and have HAM_Check_Option() accept
the option so that it is placed in the use list.
3. Call NPA_Add_Option() to add the next option of the same type.
4. Call NPA_Parse_Options() and have HAM_Check_Option() accept
this option so that it is also placed in the use list.
5. Repeat steps 3 and 4 until all of the options of the same type are in
the use list.
6. Call NPA_Register_Options() to have the Media Manager physically
register the options.

6-38 Version 2.1d (September, 1995)

Syntax: struct NPAOptionStruct{BYTE name[32];
LONG parameter0;
LONG parameter1;
LONG parameter2;
WORD type;
WORD flags;
BYTE string[n];

} ;

Version 2.1d (September, 1995) 6-39

Parameters: name This is a 32 byte field to contain a length-preceded and null-
terminated string. The HAM places the name of the desired option, as it
will appear on the command line, in this field.

Note: NWPA will add an equals sign after Name when it is displayed
on the command line.

parameter0 This is a 4 byte field to contain the value associated with an
option.
For the interrupt option, this field would contain the IRQ level.

For the memory decode option where an adapter card has onboard
memory that must be mapped into NetWare's logical address table, this
field would contain the shared memory absolute address used by the
adapter.

parameter1 This is a 4 byte field to contain the length or range associated
with this option. Typically, this field is used in specifying memory
decode ranges and port lengths.

If the Interrupt Option is set under Type, this field represents the
following flags:

0x01 - Put at end of ISR chain (Default is front of ISR chain.)
0x02- Adjust RealModeInterrupt mask. This enables real mode

(DOS) Interrupts.
0x04- Level triggered Interrupt (Default setting is edge-triggered.)

For the Product ID option, this parameter contains a pointer to an array
of bytes that contain a bus architecture-dependant parameter that
uniquely identifies an adapter board/peripheral/system option. As an
example, in the case of an EISA bus, the EISA product ID is defined in
the EISA Specification document. The following illustration shows the
various formats for product ID values (as applicable).

6-40 Version 2.1d (September, 1995)

Technical Reference for NWPA Data Structures

Note: LOHI byte order refers to a little-endian byte order.

parameter2 This is a 4
byte field that can be

either an input or an output parameter. In the shared memory case
mentioned previously, this field receives the logical address of the
mapped memory. For Interrupt, Port, Memory, Slot, and DMA options,
this parameter is the busTag as defined for NBI that is returned by
NPAB_Get_Bus_Tag(). For the Product ID option, this field is the size of
the array pointed to by Parameter1.

Note: Return values to this parameter are only valid after
NPA_Register_Options() has been called.

type This is a 2 byte field to contain a code indicating the option type.

The following is a list of possible values for this field:

0x0000 HAM-defined option (such as debug)
0x0001 Interrupt option
0x0002 Port option
0x0003 DMA option
0x0004 Memory decode option
0x0005 Slot option
0x0006 Card option
0x0007 Reserved by NetWare
0x0008 Product ID option
0x0009

to Reserved by NetWare
0x00FF
0x0100
 to For Vendor use as needed.
0xFFFF

flags This is a 2 byte field to contain a bitmap indicating the status of
the option. The following is a list of the flags defined for this field.

0x0001 Option required -- If not specified on command line, then
prompt the user.

0x0002 Use this option -- Use this option whether or not it is
specified on the command line.

0x0004 Value required -- Places name = on the command line where
name is the string contained in the Name field and the user is expected to
enter a value.

0x0008 Specific value required -- Places name = and a set of specific
values on the command line from which the user is expected to choose
one. Each value in the set is contained in parameter0 of the option's
corresponding NPAOptionStruct.

0x0010 Default value -- Contained in parameter0
0x0020 Shareable option -- Such as shared interrupts
All other bits in this field are reserved by NetWare.

Version 2.1d (September, 1995) 6-41

Technical Reference for NWPA Data Structures

string This is a n-byte
field that can be used to
pass and\or receive
information to/from the
command line. If the
Specific Value Required
flag is set, this field will
contain a length-
preceded and NULL
terminated string where
n is an arbitrary integer
(determined by the

HAM developer) that is a multiple of 4 (LONG aligned). This field
contains the ASCII code for the value specified in parameter0. In this
case where a matching option was not specified on the command line,
this value appears at the console as a choice for the user. After a user
makes a selection, the selected value is placed back into this field.

If the developer desires to use this field to return information back from
the command line, (Value Required flag is set) this field must contain n-
2, where n is the maximum length of String plus the length count byte
and the NULL terminator byte. In this case, when the information is
returned back, the length byte will be updated to indicate the actual size
of the string being returned.

6-42 Version 2.1d (September, 1995)

Technical Reference for NWPA Data Structures

SuperHACBStruct

Used by: CDM

Version 2.1d (September, 1995) 6-43

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Description: The Super Host Adapter Control Block (SuperHACB or

SuperHACBStruct) is a data structure, or message packet, packing I/O
requests into a protocol-specific command block (such as SCSI or IDE\
ATA). It provides additional space for CDM developers to attach
additional CDM state information, and it encapsulates a Host Adapter
Control Block (HACB or HACBStruct) which is the structure passed
between a Custom Device Module (CDM) and a Host Adapter Module
(HAM) via the Media Manager. The CDM uses a SuperHACB to build a
device-specific I/O request from a CDM message (CDMMessageStruct) it
receives from the Media Manager. As a data member of the SuperHACB,
the CDM places device specific commands in the HACB and initiates its
execution by sending it to the HAM via the Media Manager. The HAM
passes the information in the HACB to the target device for processing.

6-44 Version 2.1d (September, 1995)

Technical Reference for NWPA Data Structures
Syntax: typedef struct SHACBStruct{

LONG cdmSpace[8];
struct HACBStruct HACB;

} SHACB;

Version 2.1d (September, 1995) 6-45

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Parameters: cdmSpace This is a 32 -byte field to be used at the CDM's discretion.

This field may be used to store state information specific to a CDM, but
the use of this field is optional. However, if this field is used, the CDM is
responsible for setting its values.

HACBStruct HACB This is a field containing a HACB structure defined
in section 3.3. A SuperHACB structure pointer is what the Media
Manager APIs pass to and from a CDM. The HAM only receives and
acts on the information contained in the HACB structure.

6-46 Version 2.1d (September, 1995)

UpdateInfoStruct

Used by: CDM

Version 2.1d (September, 1995) 6-47

Description: This structure is used by a CDM when binding to a device or when
updating device information. Most importantly, the CDM uses this
structure to register the control and I/O functions it will support for a
device with the Media Manager.

6-48 Version 2.1d (September, 1995)

Syntax: struct UpdateInfoStruct{
BYTE name[64];
LONG mediaType;
LONG cartridgeType;
LONG unitSize;
LONG blockSize;
LONG capacity;
LONG preferredUnitsize;
LONG functionMask;
LONG controlMask;
LONG unfunctionMask;
LONG uncontrolMask;
LONG mediaSlot;
BYTE activateFlag;
BYTE removableFlag;
BYTE readOnlyFlag;
BYTE magazineLoadedFlag;
BYTE acceptsMagazinesFlag;
BYTE objectInChangerFlag;
BYTE objectIsLoadableFlag;
BYTE lockFlag;
LONG diskGeometry;
LONG reserved[7];
union
{

struct ChangerInfo
{

LONG numberOfSlots;
LONG numberOfExchangeSlots;
LONG numberOfDevices;
LONG deviceObjects[n];

} ci;
} u1;

} ;

Version 2.1d (September, 1995) 6-49

Parameters: name This field is a length-preceded string to contain the
manufacturer's name and model number of the device.

mediaType This is the type of media being used.

disk 0x00000000
tape 0x00000001
printer 0x00000002
WORM 0x00000004
CDROM 0x00000005
magneto optical 0x00000007

6-50 Version 2.1d (September, 1995)

Technical Reference for NWPA Data Structures
cartridgeType The type
of any cartridge if the
device supports one

fixed media
0x00000000
5.25 floppy
0x00000001
3.5 floppy
0x00000002
5.25 optical
0x00000003
3.5 optical
0x00000004
.5 tape
0x00000005
.25 tape
0x00000006
8 mm tape
0x00000007
4 mm tape
0x00000008
Bernoulli disk
0x00000009

unitSize The current
transfer unitsize (bytes
per sector) setting of the
device. This is the
transfer unitsize in
which the base-

translator CDM will receive requests.

For Disk, CD-ROM, and MO devices, this field should contain the
unitsize native to the media in the device. This is the unitsize that either
optimizes device performance or is physically imposed on the device by
the media, as in the case of CD-ROM. If the value in this field is
anything other than 512 (NetWare's native unitsize), the NWPA's sector
translation filter gets turned on to ensure that the CDM will receive
requests in the unitsize specified by this field.

For Tape devices, the CDM should never change the value in this field
unless an application tells it to physically change the device's unitsize
through its CDM_Set_Attribute() routine. Then, and only then, will the
CDM place the new unitsize value in this field and update the object
using CDI_Object_Update(). It is the responsibility of the application
using the tape device to issue requests in the unitsize specified by this
field.

blockSize Indicates the maximum number of transfer units that can be
specified in a single command (i.e. sectors per request). The NWPA uses
this value to make sure that the CDM does not receive blocks that are too
big for it to handle. The CDM should set the blocksize to the smaller of
either the maximum number of transfer units the CDM can handle per
request or the maximum blocksize imposed by the adapter. The CDM is
informed that an adapter blocksize limitation exists if either the
Max_Data_Per_Transfer_Flag (0x00000001) or the
Max_Units_Per_Transfer_Flag (0x00000200) is set in the attributeFlags
field of the device's DeviceInfoStruct. The CDM receives a pointer to the
device's DeviceInfoStruct as an input parameter to its CDM_Inquiry()
routine.

Version 2.1d (September, 1995) 6-51

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
The adapter imposed
blocksize is determined
by the following
criteria: 1. If the
Max_Data_Per_Transfer
_Flag is set and the
Max_Units_Per_Transfe
r_Flag is cleared, then
the CDM calculates the
adapter imposed
blocksize by dividing
the value in the
MaxDataPerTransfer
field of the device's
DeviceInfoStruct by the
value in the Unitsize
field of this structure
(the device's
UpdateInfoStruct).

2. If the
Max_Units_Per_Transfe
r_Flag is set and the
Max_Data_Per_Transfer
_Flag is cleared, then
the CDM uses the value
in the
MaxUnitsPerTransfer
field of the device's
DeviceInfoStruct as the
adapter imposed
blocksize.

3. If both flags are
set, then the CDM uses
the smaller of 1 or 2
above as the adapter
imposed blocksize.

capacity The capacity
of the media in the
device in terms of
transfer units (i.e. total
number of sectors). For
those types of media,
such as tape, where
capacity of the media is
not readily available, it
is preferrable that the
CDM approximate the

capacity. However, if approximating the capacity is too difficult, the
CDM should set this field to -2, which indicates capacity unknown.

preferredUnitsize The transfer unitsize (bytes per sector) in which the
base-translator CDM would prefer to receive requests. For Disk, CD-
ROM, and MO devices, the value in this field should be equal to the
value specified in the Unitsize field. This way, the NWPA's sector
translation filter ensures that the base-translator CDM receives requests
in the unitsize it specified in the Unitsize field. For Tape devices, the
value in this field is a hint to tape applications of the preferred transfer
unitsize. Applications can choose to use this hint or ignore it.

functionMask A 32-bit mask indicating the I/O functions the CDM will
support for this device. The CDM may update this field as needed.

#define RANDOM_READ 0x00000001
#define RANDOM_WRITE 0x00000002
#define RANDOM_WRITE_ONCE 0x00000004
#define SEQUENTIAL_READ 0x00000008
#define SEQUENTIAL_WRITE 0x00000010
#define RESET_END_OF_MEDIA 0x00000020
#define SINGLE_FILE_MARKS 0x00000040
#define MULTIPLE_FILE_MARKS 0x00000080
#define SINGLE_SET_MARKS 0x00000100
#define MULTIPLE_SET_MARKS 0x00000200
#define SPACE_DATA_BLOCKS 0x00000400
#define LOCATE_DATA_BLOCKS 0x00000800
#define PARTITION_SUPPORT 0x00001000
#define SEQUENTIAL_SUPPORT 0x00002000
#define MO_ERASE 0x00004000
#define VENDOR_UNIQUE_IO 0x40000000

controlMask A 32-bit mask indicating the control functions the CDM
will support for this device. The CDM may update this field as needed.

#define FORMAT_MEDIA 0x00000001
#define TAPE_CONTROL 0x00000002
#define ACTIVATE_DEACTIVATE_MASK 0x00000008
#define MOUNT_DISMOUNT_MASK 0x00000010
#define SELECT_DESELECT_MASK 0x00000020
#define LOAD_UNLOAD_MASK 0x00000040
#define LOCK_UNLOCK_MASK 0x00000080
#define MOVE_MEDIA_MASK 0x00000100
#define LOAD_MAGAZINE_MASK 0x00002000
#define CHANGER_INVENTORY_MASK 0x00004000
#define RAW_INSERT_MASK 0x08000000
#define RAW_CHANGER_MASK 0x10000000
#define RAW_MAGAZINE_MASK 0x20000000
#define VENDOR_UNIQUE_CONTROL 0x40000000

unfunctionMask This field is used by filter CDMs. Its value is a 32-bit
mask that has bits set for each function that is to be removed from the
current function mask.

6-52 Version 2.1d (September, 1995)

Technical Reference for NWPA Data Structures

uncontrolMask This
field is used by filter
CDMs. Its value is a 32-
bit mask that has bits set
for each control
function that is to be
removed from the
current control mask

mediaSlot This field is
reserved by the NWPA.

activateFlag Set to 1 if
the device is active or 0
if the device is inactive.

removableFlag Set to 1
if the device holds
removable media. Set to
0 if the device holds
non-removable media
(i.e. fixed disks).

readOnlyFlag Set to 1 if
the media in the device
is read-only or write-
protected media. Set to
0 if the media in the
device is readable and
writable.

magazineLoadedFlag
Set to 1 if the device
has a magazine
currently loaded. Set to

0 if the device does not have a magazine currently loaded. Set to -1 if the
device does not support magazines.

acceptsMagazinesFlag Set to 1 if the device supports magazines. Set to -
1 if the device does not support magazines.

objectInChangerFlag Set to 1 if this device is located inside a changer.
Set to 0 if the device is not inside a changer.

objectIsLoadableFlag Should be set if the object can be loaded.

lockFlag Set to 1 if the device has locked the removable media in its
drive slot. Set to 0 if the removable media is not locked. Set to -1 if the
device does not support Prevent/Allow Medium Removal commands.

diskGeometry Indicates the disk geometry if the device is a hard disk that
does not support logical block addressing (LBA). If the device does
support LBA, then set this field to -1. The value in this field is treated as
a LONG (32-bits). The value in bits (LSB) 0 - 7 indicates the sectors per
track. The value in bits 8 - 15 indicates the number of heads. The value in
bits 16 - 31 (MSB) indicates the number of cylinders.

reserved Reserved by NetWare.

changerInfo

numberOfSlots Used to set the number of slots in an autochanger.

numberOfExchangeSlots Used to set the number of mailboxes in an
autochanger.

numberOfDevices Used to set the number of devices in an
autochanger.

deviceObjects A list of the device. n is an arbitrary integer chosen by
the CDM developer.

Version 2.1d (September, 1995) 6-53

