
Chapter 5 Custom Device Module
(CDM)

The Custom Device Module (CDM) is the driver component that
understands a specific device (or family of devices) and the commands
that control it. The CDM is implemented as a NetWare Loadable Module
(NLM). This chapter describes a CDM's function, and it is organized into
the following sections:
∙ Architecture

This section prototypes and describes the entry points and
routines that make up the CDM's architecture and its interface
with the NWPA.

∙ Operational Overview
This section overviews the CDM's functionality by outlining the
main flow of events of its procedures.

∙ Special Topics
This section discusses special topics relevant to a CDM.

5.1 CDM Architecture: Entry Points and Routines

This section provides prototypes for the entry points and routines
required in a CDM by the NetWare Peripheral Architecture (NWPA). A
developer may use these prototypes to plumb the shell of a CDM.
Detailed descriptions of the data structures and entry points can be found
in the technical reference chapters of this developer's guide.

To fit properly in the architecture, a CDM is required to provide the
following:
∙ NLM Load/Unload-time Entry Points
∙ CDM Entry-Points
∙ Device Control and I/O Routines

Device control and I/O routines are mentioned here because they are
crucial to the CDM architecture. However, this developer's guide does
not attempt any specifications on these routines, since they are
manufacturer specific. Prototypes and definitions of these routines are
the responsibility of CDM developers.

Complete functional specifications of the entry points can be found in
Chapter 7, and descriptions of the CDM Messages can be found in

Version 2.1d (September, 1995) 5-1

Chapter 9. The main flow of each entry point is discussed in the
operational overview of this chapter. The names of these entry points are
left to the discretion of the CDM developer; however, each entry point
must provide the respective functionality described in this guide.

For consistency in referring to these entry points and routines within the
text and in code examples, this guide gives each a generic name having a
CDM_ prefix. Whenever an entry point or function with this prefix is
encountered, it indicates that the routine is CDM specific. The italic
typeface indicates that the name is arbitrary.

5.1.1 NLM Load/Unload-Time Entry Points

A CDM must provide three standard NLM entry points for the OS. These
entry points are made visible to the OS through a definition (.DEF) file
that is processed by a NetWare compatible linker utility. The prototypes
of these entry points, along with their generic names, are as follows:
LONG CDM_Load (

LONG loadHandle,
LONG screenID,
BYTE *commandLine
);

CDM_Load() is the CDM's load-time entry point. CDM_Load() is called
on a blocking thread. Through this entry point, a CDM receives its OS-
generated resource handle (LoadHandle), an ID to the LOAD console
screen, and a pointer to the LOAD command line string which contains
load options associated with the module. For a CDM, these options set
the operational states of the program module. They do not apply to
hardware resources.

CDM_Load() is responsible for allocating any resources needed to make
the CDM operational, for configuring the CDM based on the load
options specified on the LOAD command line, and for registering the
CDM and its I/O entry points with the NWPA.

LONG CDM_Unload_Check (LONG ScreenID);

CDM_Unload_Check() is the CDM's initial unload-time entry point. The
entry point gets called when an UNLOAD command is issued on the
CDM. CDM_Unload_Check() is called on a blocking thread.
CDM_Unload_Check() is responsible for checking to see if any of the
CDM's devices are currently being used by an application and return use-
status. To do this, CDM_Unload_Check() returns the use-status returned
by NPA_Unload_Module_Check(). From this return value, the OS can
determine if any of the devices managed by the CDM are in use. If any
devices are in use, the OS displays a message at the console listing the
devices that will be deactivated and the corresponding NetWare volumes
that will be dismounted if the action is continued. The user then has the
option to either continue or abort the unload.

5-2 Version 2.1d (September, 1995)

void CDM_Unload (void);

CDM_Unload() is the CDM's final unload-time entry point, meaning that
the unload thread already called CDM_Unload_Check() and the systems
operator chose to continue. Thus, the unload thread was allowed to
continue and make a call to CDM_Unload(). CDM_Unload() unregisters
the CDM from the NWPA and returns allocated resources back to the
system. Once the CDM is unloaded, all devices it was managing are
inaccessible.

5.1.2 CDM Entry Points

A CDM must provide additional entry points for the NWPA. The
prototypes of these entry points, along with their generic names, are as
follows:
LONG CDM_Abort_CDMMessage (LONG parameter);

CDM_Abort_CDMMessage() is an entry point that the CDM must
provide if it internally queues CDM Messages. Each time a CDM queues
a message as opposed to immediately building a HACB and initiating its
execution, the CDM must call CDI_Queue_Message(). For each message
it queues, the CDM must pass the address of an abort routine as an input
argument to CDI_Queue_Message(). This is the routine that the NWPA
calls if an abort is issued on its corresponding message.

As in the case of CDM_Callback(), the CDM can define multiple abort
routines. The term CDM_Abort_CDMMessage() is used to generically
refer to one or multiple CDM abort routines.

LONG CDM_Callback (
struct SHACBStruct *SHACB,
LONG npaCompletionCode
);

CDM_Callback() is a callback entry point so the NWPA can inform the
CDM of the completion of a non-blocking execution cycle. A non-
blocking execution cycle of a HACB is initiated when the CDM calls
CDI_Execute_HACB(). The address of the callback routine is an input
parameter to CDI_Execute_HACB(); thus, a callback is registered with
the NWPA for each call of CDI_Execute_HACB(). Since the callback link
is on a per execution basis, the CDM can either have one global callback,
or it can define multiple callback routines, and link the one appropriate to
the HACB request being executed. In this manual, the term
CDM_Callback() generically refers to either of these cases.

Version 2.1d (September, 1995) 5-3

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

LONG CDM_Check_Option (
struct NPAOptionStruct *Option,
LONG instance
LONG flag);

Note: This entry point is optional. The only reason a CDM would
need to provide this routine is if it supports load options and intends to
parse the LOAD command line for these options.

CDM_Check_Option() is the CDM's entry point for receiving and
verifying command line options. The entry point is called during two
separate NWPA processes: once during the command line parsing phase
of CDM initialization and again during the actual registration of options.
The CDM invokes these two NWPA processes at different points in its
load-time entry point, CDM_Load(). This entry point is made visible to
the system when the CDM registers itself with the NWPA using
NPA_Register_CDM_Module().

LONG CDM_Execute_CDMMessage (
LONG CDMBindHandle,
struct CDMMessageStruct *Msg
);

CDM_Execute_CDMMessage() is the CDM's entry point for fielding
CDM message requests. This routine uses a jump table (or some other
form of routing) so that the CDM can route the message to the local
control or I/O routine designed to field the current message type. The
local routine is required to build the appropriate SHACB to accomplish
the request. This entry point is made visible to the system when the CDM
registers with the NWPA using NPA_Register_CDM_Module().

LONG CDM_Get_Attribute (
LONG cdmBindHandle,
void *infoBuffer,
LONG infoBufferLength,
LONG attributeID);

CDM_Get_Attribute() is the entry point from which the NWPA can
retrieve registered device attribute information for an application. This
entry point gets registered with the NWPA when the CDM registers the
attribute by calling CDI_Register_Object_Attribute().

Note: The CDM registers a get-attribute routine with each call to
CDI_Register_Object_Attribute(). Therefore, the CDM can implement
either one routine to handle all get-attribute calls, or distribute the calls
through multiple routines. This developer's guide uses
CDM_Get_Attribute() to generically refer to either case.

5-4 Version 2.1d (September, 1995)

Custom Device Module (CDM)

LONG CDM_Inquiry (
LONG npaDeviceID,
LONG npaBusID,
struct DeviceInfoStruct *DeviceInfo,
LONG flags,
LONG cdmHandle
);

CDM_Inquiry() is the entry point where the NWPA passes the CDM
information about either an existing device or a device that just came
online with a type that matches the device type for which the CDM
registered. This entry point is registered with the system when the CDM
registers itself with the NWPA using NPA_Register_CDM_Module(). It is
during the context of this entry point that the CDM can issue passive
requests (see note below) to the device to determine if it wants to field
I/O requests for the device. If the CDM decides to field requests for the
device, it informs the NWPA by binding to the device. Note: During the
context of this entry point the CDM must not issue any commands that
will change the state or mode of the device. Passive requests are those
such as the SCSI MODE SENSE command.

LONG CDM_Set_Attribute (
LONG cdmBindHandle,
void *infoBuffer,
LONG infoBufferLength,
LONG attributeID
);

CDM_Set_Attribute() is the entry point by which the NWPA can set a
registered device attribute for an application. This entry point gets
registered with the NWPA when the CDM registers the attribute by
calling CDI_Register_Object_Attribute().

Note: The CDM registers a set-attribute routine with each call to
CDI_Register_Object_Attribute(). Therefore, the CDM can implement
either one routine to handle all set-attribute calls, or distribute the calls
through multiple routines. This developer's guide uses
CDM_Set_Attribute() to generically refer to either case.

Version 2.1d (September, 1995) 5-5

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
5.1.3 Device Control and I/O Routines

A CDM must provide routines that translate CDM Messages containing
NWPA functions into HACB requests. Some of these NWPA functions
deal with device control, and some deal with I/O. Control functions
typically modify the state of devices or media objects such as activating a
device or formatting media. I/O functions typically handle the movement
of data to and from media such as reads and writes. The appropriate
CDM routine to field an incoming CDM Message gets called through the
routing mechanism the CDM implements in
CDM_Execute_CDMMessage().

5-6 Version 2.1d (September, 1995)

Custom Device Module (CDM)

5.2 Operational Overview

The information in this section builds on the declarations and prototypes
given in the previous section by describing a CDM's major functional
procedures and their main flow of events. The information provided here
should help to add functionality to a CDM program shell. Detailed
definitions of data structures and functional descriptions mentioned in
this overview are not included to avoid frequent detours that may detract
from main-flow concepts. However, these details are provided in the
technical reference chapters of this developer's guide. The following list
gives a breakdown of the information in these chapters:

∙ Definitions of data structures can be found in Chapter 6, “Technical
Reference for NWPA Data Structures.”

∙ Functional descriptions of CDM entry points and CDI / NWPA
support routines can be found in Chapter 7, “Technical Reference for
NWPA Routines.”

∙ Functional descriptions of NetWare OS support routines can be
found in Chapter 10, “OS Support Routines.”

5.2.1 Load-time Initialization and Registration

Loading of the CDM can be initiated in multiple ways: by the systems
operator at the server console, by a startup file, or by INSTALL. The
following steps show the sequence of events for initializing and
registering a CDM at load-time.

1. When a CDM is loaded, the OS calls the CDM's CDM_Load() entry
point passing it LoadHandle, ScreenID, and CommandLine as input
parameters. CDM_Load() is responsible to perform the following:

A. Register the CDM module.
The CDM registers its module by calling
NPA_Register_CDM_Module(). This API sets up the general
environment necessary for the CDM to become operational and
makes it possible for the CDM to allocate and register any
resources it may need. It is within the context of
NPA_Register_CDM_Module() that the CDM's NPAHandle is
assigned a value, and that the following CDM entry points get
registered with the NWPA:

CDM_Check_Option() (Optional)
CDM_Execute_CDMMessage()
CDM_Inquiry()

Note: If a reentrant CDM will support a device under different
operational states according to options specified on the command line,
it should call NPA_Register_CDM_Module() for each load-instance of
itself.

Version 2.1d (September, 1995) 5-7

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

NPA_Register_CDM_Module() accepts a CDM-generated instance
number as an input parameter. The CDM should use this instance
number to associate a group of command-line options with its
corresponding load-instance. This way the CDM can distinguish which
operational states go with which load-instance.

B. (Optional: Implement if applicable) Create a select-list of
desired command line options to be used with the NWPA's command line
parser.

Note: If the CDM does not support command line options or it plans
to do its own command line parsing, it should ignore this step.

Options are command line keywords that set operational states for
the CDM.

The CDM creates an options list by filling out an instance of an
NPAOptionStruct and calling NPA_Add_Option(). During the context
of NPA_Add_Option(), the NWPA copies the option information and
constructs a "select-list" of valid options for the CDM. To completely
build the option list, the CDM should iteratively fill out the
NPAOptionStruct instance and call NPA_Add_Option() for each
option type it desires. Since the NWPA maintains its own copy of
option information in constructing the select-list, the CDM can reuse
the same NPAOptionStruct instance for each call to
NPA_Add_Option().

Note: Since the CDM does not interface directly with the hardware, it
should not try to reserve hardware options such as interrupts, ports,
DMA channels, etc. CDM command line options should only set
operational states for the program module.

C. (Optional: Implement if applicable) Parse the load command
line for specified options.

The CDM can either do its own parsing or use the NWPA's
parser. The NWPA's parser is invoked by calling
NPA_Parse_Options(). This support routine causes the NWPA to
match options specified on the command line with those in the
CDM's select-list. In turn, NPA_Parse_Options() iteratively calls
the CDM's CDM_Check_Option() entry point for each match it
finds. CDM_Check_Option() either accepts or rejects the
selected option. Each time CDM_Check_Option() accepts an
option, the NWPA places it in a "use-list." If there is an option on
the command line that does not match anything in the CDM's

5-8 Version 2.1d (September, 1995)

Custom Device Module (CDM)
select-list, it is ignored. However, if after parsing the command
line the NWPA finds residual options in the CDM's select-list, it
either prompts the user for the options or discards them
depending on the bits set in the Flags field of each option's
NPAOptionStruct.

Note: Steps 1.B - 1.C describe the general paradigm for registering
configuration options. For more detailed information and actual
registration examples, refer to the NPAOptionStruct in Chapter 6.

D. Allocate memory resources.
The CDM allocates any memory buffers it may need by calling
NPA_Allocate_Memory().

E. Prepare the CDM to accept I/O.
The CDM must ensure that is operational and ready to accept
CDM Messages before going to step F.

F. Activate the CDM.
The CDM calls CDI_Register_CDM() to activate itself. This API
requires an exchange of handles that identify the CDM. The
CDM passes a unique handle (CDMHandle) it generates to
identify itself as an input parameter. Then, the NWPA returns its
own unique handle (CDMOSHandle) it will use to identify the
CDM as an output parameter.

G. Return load status.
If the CDM loaded successfully, CDM_Load() should return
zero. If the load was unsuccessful, it should do the following:

1. Return all allocated memory by calling
NPA_Return_Memory().

2. Unregister all command line options by calling
NPA_Unregister_Options().

3. Unregister the module by calling NPA_Unregister_Module()
if the CDM failed its initial load instance.

Warning: NPA_Unregister_Module() should not be called if the CDM
is only erroring out of the registration of a single instance of itself, but it
intends to continue supporting other instances. If it is called, all pending
I/O for this CDM will be aborted.

4. Return -1.

If at any time during initialization and registration an uncorrectable error

Version 2.1d (September, 1995) 5-9

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
occurs, the CDM must return its resources and back out from the point it
reached. For example, if the CDM progressed as far as 1.D in the
sequence, then the CDM would need to return memory, unregister
options if implemented, and then unregister the module.

5.2.2 Inquiring and Binding to a Device

Once the CDM is initialized and registered, the NWPA calls
CDM_Inquiry(). This routine is blocking, and it is registered with the
NWPA during NPA_Register_CDM_Module(). The NWPA passes four
arguments to CDM_Inquiry(): NPADeviceID, NPABusID, a pointer to a
DeviceInfoStruct instance, and Flag.

NPADeviceID and NPABusID are the object IDs of the device and bus as
entered in the NWPA's object database. DeviceInfoStruct is a pointer to
an interface-specific structure that describes the device in enough detail
so that the CDM can determine the device type. The HAM is responsible
for supplying this information to the NWPA.

Flag is an indicator telling the CDM the type of operation to perform
during CDM_Inquiry(). It is within the context of this routine that a
CDM "binds" to a device. Binding is where the CDM tells the NWPA to
route I/O for a particular device through it, and the CDM also registers
the control and I/O functions that it will support for the device.

CDM_Inquiry() is responsible to perform the following:

1. Build and maintain a linked list of device objects to which the
CDM is bound.

2. Generate a unique handle (CDMBindHandle) of type LONG for
each object to which the CDM is bound.

3. Check the DeviceInfoStruct for the device information and/or
perform any necessary device tests for more information necessary to
determine if the CDM should bind to the device.

a. If the CDM decides to bind to the device, create an instance
of an UpdateInfoStruct structure, fill in its fields with the appropriate
information found from DeviceInfoStruct, and call
CDI_Bind_CDM_To_Object() passing the appropriate arguments. Add the
device along with its UpdateInfoStruct structure to the CDM's object list,
and return zero. CDMBindHandle is used by the CDM to identify device
objects in the list and to map to the object's device information.
CDMBindHandle is a necessary argument in
CDI_Bind_CDM_To_Object().

At the minimum, the following fields of a device object's

5-10 Version 2.1d (September, 1995)

Custom Device Module (CDM)
UpdateInfoStruct structure must be filled in so that the
NWPA has enough information to be able to use the device:

• functionmask
• controlmask
• unitsize
• blocksize
• capacity
• preferredunitsize
• activateflag

A description of each of these fields can be found in Chapter 6 under
UpdateInfoStruct.

b. If the CDM decides not to bind to the device, it does not call
CDI_Bind_CDM_To_Object(), does not add the device to the linked list,
and returns -1.

CDI_Bind_CDM_To_Object() updates device object information and
registers the functions the CDM will support for the device with the
NWPA. Besides being called at CDM load time, CDM_Inquiry() can
be called again if any of the following events occur: (For details, see
the description of CDM_Inquiry() in Chapter 7)

∙ A HAM registers a new device with the NWPA that matches the
Host Adapter Type and Device Type reported by the CDM in the
Types parameter of CDI_Register_CDM().

∙ (For Filter CDMs) A base CDM updates information about a
device to which a filter CDM is also bound.

∙ A device is no longer valid, and the CDM must remove the
device and all of the local structures associated with this device
from its list.

∙ An End of Bus condition occurred during a scan for new devices.
This means there are no more public devices on this bus. The
CDM may then scan for specific devices not found during the
normal scan. The specific devices can become public or private
devices depending on the Scan function case used. For details,
refer to Chapter 8 HACB Type Zero Functions under Function
1- HAM_Scan_For_Devices

∙ An End of Bus condition occurred when the bus is being
deactivated (i.e. when the HAM associated with the bus is being
unloaded). The CDM must remove any private devices on this
bus and all of the local structures associated with these devices
from its list.

Version 2.1d (September, 1995) 5-11

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

5.2.2.1 Updating Device Object Information

A CDM can update device information, such as the functions it will
support for a device, by doing the following:

1. Instantiate a new UpdateInfoStruct structure initialized with -1 in
each field.

2. Change the appropriate UpdateInfoStruct fields to the new
values.

3. Call CDI_Object_Update() including the structure address and
CDIBindHandle as arguments.

Note: A -1 indicates that the field does not get updated, thereby
maintaining its previous state from either the last update event or when
the CDM originally bound to the device.

5-12 Version 2.1d (September, 1995)

Custom Device Module (CDM)
5.2.2.2 Function Masking

As previously mentioned, a CDM must register the functions it will
support for a given device with the NWPA. This section describes how
this is done.

Applications assume a certain functionality set, and the NWPA
encompasses these by providing a general set of I/O and control
messages that it can issue for devices. The CDM is expected to
implement routines that translate these messages into actual commands
recognized by a device. The way in which the NWPA recognizes the I/O
and control routines that a CDM will support for a device are through the
respective values set in the functionmask and controlmask fields of the
device object's UpdateInfoStruct. Each field is 32 bits wide, and each bit
position within a field corresponds to an NWPA function. When bits
within a field are set, it indicates to the NWPA that the CDM supports
that function. Inversely, a CDM can remove supported I/O or control
functions by clearing the appropriate bits within these fields and updating
the device object information. Refer to Chapter 6 for more information
about the UpdateInfoStruct and its fields.

5.2.3 Processing CDM Messages

When the NWPA receives an application I/O request, it converts the
request into a CDMMessageStruct (CDM message) data structure. The
fields in this structure contain all the necessary information that a CDM
needs to build a device command. The NWPA routes a CDM message to
the CDM that has

1. Bound to the device the NWPA wants to access.
2. Registered the desired support function that the NWPA wants to

call.

Once a CDM receives a CDM message, it generally performs one of the
following actions:

• Creates a SuperHACB request and executes it.
• Places the CDM message in a process queue.
• Chains the CDM message down to another CDM. This action

only applies to filter CDMs.

The following subsections address each of these actions.

Version 2.1d (September, 1995) 5-13

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
5.2.3.1 Creating and Executing a SuperHACB Request

Since most application requests to the NWPA are either control or I/O
requests, creating and executing SuperHACB requests is the most
frequent action. The following is a list of the phases involved:

• Receiving the request and mapping to a CDM function
• Building and Executing a SuperHACB request

5.2.3.1.1 Receiving a Request and Function Mapping As described in
Chapter 7, "CDM Message", a NWPA control or I/O request is first
packaged into a CDMMessageStruct and then passed to a CDM.
CDM_Execute_CDMMessage() is the CDM's entry point for receiving a
CDMMessageStruct. The main purpose of
CDM_Execute_CDMMessage() is to map a general NWPA control or I/O
request (in the form of a CDMMessage) into a specific CDM function
call. The NWPA calls this function passing it CDMBindHandle and a
pointer to a CDMMessage structure. CDMBindHandle identifies the
desired device and its specific information. The CDMMessage structure
contains the information describing the request.

NWPA control and I/O requests are equated to unique hexadecimal
function codes (0x0000 - 0x0047). When the NWPA makes a request, it
places the appropriate function code in the Function field of the
CDMMessageStruct. The CDM uses this code to determine what function
it is to perform. A list of NWPA request codes can be found in Chapter 9,
"CDM Message Types".

5.2.3.1.2 Building and Executing a SuperHACB Request Once a
NWPA request is mapped to a CDM function, the CDM function has the
responsibility to build a SuperHACB and execute it. The control and I/O
routines discussed in section 5.1.2.3 are the functions that do the building
and executing. Each function accepts a CDMBindHandle and a pointer to
a CDMMessageStruct as arguments.

The Control and I/O routines are responsible to perform the following:
1. Allocate a SHACBStruct using CDI_Allocate_HACB(). For

optimal performance, a CDM should maintain a re-usable pool of these
structures. The control and I/O routines can then recycle the
SuperHACBs from this pool in executing and completing requests.
Doing this saves the overhead of memory allocation/deallocation.
Conditionalize the control and I/O routines to call CDI_Allocate_HACB()
only if the SuperHACB pool is depleted during the context of that
particular control or I/O routine.

2. Fill in the SuperHACB fields with the appropriate information
relative to the request. Refer to Chapter 3, "Host Adapter Control Block"
for details on what is expected to be placed in the SuperHACB structure.

5-14 Version 2.1d (September, 1995)

Custom Device Module (CDM)

3. Call CDI_Execute_HACB() passing the appropriate arguments. One
argument that is necessary is a pointer to CDM_Callback(). By passing
this address, the NWPA ensures that the CDM is notified of the request
completion by calling CDM_Callback().

5.2.4 Error Handling

This section describes the CDM's general error handling paradigm and
how this paradigm is affected by Auto Error Sense.

Auto Error Sense is a generic phrase describing the way in which error
sense information is automatically returned with an I/O request for a
given bus protocol. As an example, for SCSI this phrase refers to auto
REQUEST SENSE.

Some adapter boards support this feature and others do not. The HAM,
during its load-time initialization, is responsible for determining whether
or not the adapter supports the feature and whether or not it is to be used.
The CDM, on the other hand, must be ready to support either case. There
are three fields in the HACB structure (HACBStruct) and one in the
DeviceInfoStruct that provide NWPA support for auto error sense. The
following is a list of these fields:

Fields in the HACBStruct:
LONG ErrorSenseBufferLength;
void *VErrorSenseBufferPtr;
void *PErrorSenseBufferPtr;

Field in the DeviceInfoStruct:
LONG AttributeFlags;

The CDM finds out if a device is set up for auto error sense by checking
the Auto_Error_Sense_Flag (0x00000040) in the AttributeFlags field of
the device's DeviceInfoStruct. If the flag is set, the device does auto error
sense. If the flag is not set, the device does not do auto error sense. The
CDM receives a pointer to this structure as an input parameter to its
CDM_Inquiry() routine. Thus, at bind-time the CDM knows the error
sense mode of the device.

The following subsections describe the CDM's error handling paradigm,
first without auto error sense, and then with auto error sense,
respectively.

Version 2.1d (September, 1995) 5-15

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
5.2.4.1 Without Auto Error Sense

Error handling without auto error sense is probably the simplest case for
CDMs. The paradigm is as follows:

∙ When a device error occurs, the HAM freezes that device's queue,
posts the appropriate completion code1 to the HACB and then
completes the HACB.

∙ The CDM receives the HACB through its callback routine, checks
the completion code and realizes that the I/O request generated a
device error.

∙ The CDM then spawns a blocking, error-recovery thread that issues
another HACB request for error sense information. The CDM can
request as much error sense information as the device and transport
protocol can provide. The error sense data is retrieved under the
normal HACB I/O channel, meaning that the CDM and HAM use
the HACB's data buffer.

∙ The CDM keys off the error sense information to determine what it
will attempt to do to recover from the error condition.

∙ When the error condition is remedied, the CDM completes the I/O
request's corresponding CDM message with a successful completion
code and allows normal I/O to the device to continue. If the CDM
determines that the error condition cannot be remedied, it completes
the corresponding CDM message with an appropriate error code.

Important: For the no-auto-error-sense case, the CDM should zero out
the errorSenseBufferLength and vErrorSenseBufferPtr fields of the
HACB.

5.2.4.2 With Auto Error Sense

Note: The information presented in this subsection is tightly coupled
to the reference information for the ErrorSenseInfoStruct found in
Chapter 6.

For the auto error sense case, the CDM is expected to do these additional
steps in building the HACB I/O request:

∙ Allocate an I/O contiguous, auto error sense buffer and assign its
address to the HACB's vErrorSenseBufferPtr field.

1 For SCSI, a device error generates a check condition, and the appropriate completion code is 0x80010002. For IDE\ATA, a device error
sets the error bit of the IDE/ATA Status register, and the appropriate completion code is 0x80010001. Refer to Appendix B for more
information.

5-16 Version 2.1d (September, 1995)

Custom Device Module (CDM)
This buffer is where the return sense information is to be placed, and
its structure is defined by the NWPA's ErrorSenseInfoStruct. The
size of this buffer is the size of the NWPA's ErrorSenseInfoStruct
plus however many BYTES of auto error sense data the CDM wants
returned. For more details refer to the ErrorSenseInfoStruct reference
information in Chapter 6.

Note: Since the CDM may need a number of these error sense buffers,
a suggestion would be to allocate a pool and reuse them as needed.
Also, the CDM should not be concerned with assigning anything to the
HACB's pErrorSenseBufferPtr field. The NWPA will calculate the
sense buffer's physical address and place it in this field at execute-time.

∙ Place a value in the auto error sense buffer's numberBytesRequested
field to indicate the desired number of sense BYTES it would like
the device to return.

∙ Place a value in the HACB's errorSenseBufferLength field indicating
the byte-size of the HACB's auto error sense buffer.

At callback time (CDM_Callback()), if the CDM detects a device error
on the HACB request, the CDM attempts error recovery as prescribed in
the previous subsection. However, instead of issuing another HACB to
request error sense, it looks in the HACB's sense buffer to get the error
information. However, prior to reading the error information, the CDM
should check the value in the numberBytesReturned field of the buffer.
This field indicates the actual number of sense BYTES the device
provided.

5.2.5 Registering Device Attributes

Attributes are parameters associated with a device such as unitsize,
blocksize, capacity, preferred unitsize, tape read/write formats, etc.
Device attributes should be registered during the context of
CDM_Inquiry() after the CDM has had a chance to query the device and
bind to it. The CDM informs an application of a device's attributes by
registering them with the NWPA. Also, if the device supports it, a CDM
can allow an application to set attributes. The following steps outline the
procedure for registering device attributes.

1. The CDM fills out an instance of an AttributeInfoStruct for each
attribute it intends to register.

2. The CDM then calls CDI_Register_Object_Attribute() for each
attribute in step 1. CDI_Register_Object_Attribute() accepts a pointer to
the AttributeInfoStruct instance associated with the attribute and pointers
to the attribute's CDM_Get_Attribute() and CDM_Set_Attribute()
routines as input parameters.

Version 2.1d (September, 1995) 5-17

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

Note: If the attribute is not settable, then the input parameter
corresponding to CDM_Set_Attribute() should be set to zero.

The NWPA informs an application of the data type associated
with the infoBuffer parameter of these routines by the value the
CDM specified in the attributeType field of the attribute's
AttributeInfoStruct.

3. Through a set of NWPA APIs, the application can then get and
set attributes. The following code example shows how to register a
minimum blocksize attribute:

/*- Prototypes of get and set routines for this attribute -*/
LONG CDM_Get_Attribute(
LONG cdmBindHandle,
LONG *infoBuffer,
LONG infoBufferLength,
LONG attributeID);

LONG CDM_Set_Attribute(
LONG cdmBindHandle,
LONG *infoBuffer,
LONG infoBufferLength
LONG attributeID);

/*- Data type, AttributeID, Buffer Length definitions -*/
#define MM_BYTE 0x02
#define MM_LONG 0x04
#define MIN_BLOCKSIZE 0x4E494D12
#define MM_BUFFERLEN 0x04

/*- Attribute Information -*/
struct AttributeInfoStruct MinimumBlocksize = {
MIN_BLOCKSIZE,
MM_LONG,
MM_BUFFERLEN,
"\x17MINIMUM_BLOCKSIZE"};

/*- Register Attribute -*/
cCode = CDI_Register_Object_Attribute(
NWPAHandle,
CDMBindHandle,
&MinimumBlocksize,
CDM_Get_Attribute,
CDM_Set_Attribute);

5.2.6 Unload-time Deregistration

Unloading of the CDM is initiated by the systems operator at the server

5-18 Version 2.1d (September, 1995)

Custom Device Module (CDM)
console. The following steps show the sequence of events at unload-time.

1. When a CDM is unloaded, the OS first calls the CDM's
CDM_Unload_Check() entry point passing it ScreenID as an input
parameter. CDM_Unload_Check() has blocking context, and it does the
following:

A. Determines if any applications are using any of the devices
managed by the CDM.

CDM_Unload_Check() calls NPA_Unload_Module_Check(),
which checks the NWPA's database and returns the status of each
device attached to the adapter. CDM_Unload_Check() returns
the use-status returned by NPA_Unload_Module_Check().

NPA_Unload_Module_Check() issues a warning message to the
console for each device that is locked. Current I/O to these
devices will halt if the CDM is unloaded, and the devices will be
deactivated.

B. Returns the composite device status to the calling process. A
return value of zero indicates that none of the CDM's devices are in use.
A return value greater than zero indicates that one or more of the CDM's
devices are in use.

2. If CDM_Unload_Check() returns zero, the OS calls the CDMs
CDM_Unload() entry point. If CDM_Unload_Check() returns non-zero,
the OS issues a message to the console giving the operator a chance to
either cancel or continue the unload. Only if the operator chooses to
continue the unload will the OS call the CDM's CDM_Unload() entry
point. The OS calls the CDM's CDM_Unload() entry point with blocking
context, and it does the following:

A. Causes the NWPA to terminate I/O to the CDM.
CDM_Unload() terminates I/O to the CDM by calling
CDI_Unregister_CDM() immediately upon entry. It is during the
context of this API that the application is notified that its link to
the device is about to be severed. Therefore, the CDM must
remain operational and process requests until
CDI_Unregister_CDM() returns control. Once
CDI_Unregister_CDM() returns control to CDM_Unload(), the
CDM is guaranteed not to receive any more I/O requests for that
device.

B. Returns resources back to the system.

1. Abort all outstanding AEN HACBs using
CDI_Abort_HACB().

Version 2.1d (September, 1995) 5-19

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
2. If the CDM is controlling any private devices, they must

either be made public using Case 2 of the Scan function, or be removed
using Case 3 of the Scan function. For more details, refer to Chapter 8
HACB Type 0 Functions - HAM_Scan_For_Devices. (Function 1)

3. Cancel all asynchronous events, such as timeout handlers,
timers, etc., by calling NPA_Cancel_Thread().

4. Return memory to the system pool by calling
NPA_Return_Memory().

5. Unregister the module using NPA_Unregister_Module().

C. Return 0

5-20 Version 2.1d (September, 1995)

Custom Device Module (CDM)

5.3 Special Topics

This section discusses special topics related to the CDM.

5.3.1 Device Queue Behavior

Refer to Section 4.3.1.3 for details on the queue behavior a CDM can
expect for a device.

5.3.2 Scanning Specific Target IDs and LUNs

Note: The procedure discussed in this subsection only applies to
SCSI.

In order for devices to be initially detected and recognized by the
NetWare OS, an initial "scan for new devices" command must be issued
either at the command line or in a .NCF file. When the OS receives this
command, it causes the NWPA to issue a scan message to all HAMs
loaded on the server. For SCSI, the initial scan message tells each HAM
to scan LUN 0, and only LUN 0, of all its target IDs2.

During the "scan for new devices" thread, the NWPA iteratively calls the
CDM's CDM_Inquiry() routine for each device found on the SCSI bus
that matches the device type the CDM registered for. As mentioned in
section 5.2.2, CDM_Inquiry() is the entry point where the CDM gets a
chance to look at a device and determine if it will field I/O requests for
the device by binding to it. However, given the OS's initial scan
paradigm, the CDM will only see devices attached to LUN 0 of any
given target ID.

To make it possible for devices at LUNs other than zero to be detected
and recognized, the NWPA provides its own set of scan messages that the
CDM can issue to the HAM.

These scan messages are in the form of HACBType=0 requests.
HACBType=0 indicates to the HAM that the HACB's union command
area is defined by the host adapter command structure. The CDM then
sets values in the HACB (particularly the fields of the host adapter
command block) according to the scan case (or action) it wants the HAM
to perform.

The NWPA defines three scan cases. These cases are referred to
numerically as either Case 1, Case 2, or Case 3 corresponding to the
value the CDM sets in the parameter2 field of the host command block.

2 See footnote 5 in Chapter 4 for the explanation of this limitation.

Version 2.1d (September, 1995) 5-21

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
The remaining subsections provide more details, and they are presented
as follows:

5.3.2.1 Public vs. Private Devices

5.3.2.2 Scan Case Parameters and Descriptions

5.3.2.3 Scan Completion Codes

5.3.2.1 Public vs. Private Devices

A public device is one that is visible to any CDM that registers with a
matching device type. The NWPA makes a public device visible to these
CDMs by calling their respective CDM_Inquiry() entry points, thus
giving any one of them the opportunity to bind to the device. A public
device has a corresponding object in the NWPA's device database, and
the Private_Public_Flag in the attributeFlags field of the device's
DeviceInfoStruct is cleared. Because a corresponding object exists in the
NWPA's device database, a public device is also visible to applications.
Any application can reserve a public device and issue control and I/O
messages to it.

Note: All LUN 0 devices detected in the initial "scan for new
devices" command are public.

A private device is one that is visible only to the CDM that detected it
through a specific target ID and LUN scan. This CDM has exclusive
ownership of the device.

A private device does not have a corresponding object in the NWPA's
device database, and the Private_Public_Flag in the attributeFlags field of
the device's DeviceInfoStruct is set. Because a corresponding object does
not exist in the NWPA's device database, a private device is invisible to
applications.

The purpose of the private-device-feature is to allow a CDM to present a
group of devices that enhance each other's functionality as a single
device to the NWPA. This prevents a competing CDM from stealing one
of the devices from the group. A scenario where this feature might be
useful is a magazine device, addressed at LUN 1, attached to a public
tape drive at LUN 0. The CDM can present these devices as one device
with both tape and magazine functionality.

5.3.2.2 Scan Case Parameters and Descriptions

This subsection describes the three different scan cases (Case 1, Case 2,
and Case 3) that a CDM can issue to the HAM. Included are

5-22 Version 2.1d (September, 1995)

Custom Device Module (CDM)
specifications of the HACB input parameters associated with each scan
case and also their respective outputs. The CDM provides the input
values prior to issuing the scan request. After the request completes, the
CDM reads the applicable outputs to interpret results. The value in the
HACB's hacbCompletion field is the key for determining if any
additional outputs are valid.

A table listing possible scan completion codes is provided in the next
subsection.
Case 1: Probe Specified Target ID and LUN, Return Info and Make
Detected Device Private
INPUTS to HACB:

Field Values in Host Command Block:
Function = 1
Parameter0 = LUN
Parameter1 = Target ID3

Parameter2 = 1

Field Values in Main HACB:
DeviceHandle = -1 indicating a request to probe a specific

target ID and LUN to detect a device that is new to the CDM.
OR

= DeviceHandle of a device already owned by
the CDM. The CDM received this handle either from a previous Case 1
scan request (if the device is private) or at bind-time (if the device is
public).

VirtualAddress = Address of I/O contiguous memory location
where the device's DeviceInfoStruct information is to be returned. This
buffer should be allocated using NPA_Allocate_Memory()

OUTPUTS from HACB:

hacbCompletion = Appropriate scan completion code.
If hacbCompletion == Successful_Completion:

Control_Info = Sizeof(struct DeviceInfoStruct)
VirtualAddress = Pointer to the buffer where the HAM will

copy the device's DeviceInfoStruct information. This structure contains
the DeviceHandle that gives the CDM access to the device.

A Case 1 scan allows the CDM to do the following:
If (DeviceHandle = -1):
• Detect a new device at the specified target ID and LUN, and if

3 The Target ID is equivalent to the value in the BusID field of the DeviceInfoStruct associated with the current device. The current device is
the one on which the current iteration of CDM_Inquiry() is being called, and the DeviceInfo parameter points to the device’s corresponding
DeviceInfoStruct.

Version 2.1d (September, 1995) 5-23

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
one exists, make it private.

If (DeviceHandle = Existing handle to a device owned by the CDM):
• Verify that the device still exists at the specified target ID and

LUN and, if the device's current status is public, change it to private.

DeviceHandle == -1
The CDM issues this instance of a Case 1 scan during its CDM_Inquiry()
routine when it knows that the LUN 0 device on which the inquiry is
being called supports additional devices at other LUNs. In addition, a
Case 1 scan indicates that the CDM wants to control these additional
devices privately and present the group as a single device with extended
functionality to the NWPA. Since CDM_Inquiry() is called on a blocking
thread, the CDM can issue the request using
CDI_Blocking_Execute_HACB().

If a device responds at the specified target ID and LUN, it is declared
private and information about the device is returned in the HACB's data
buffer. The structure of the return information is defined by the NWPA's
DeviceInfoStruct. This structure includes a DeviceHandle that allows
access to the device, and the bus-specific inquiry information about the
device4.

The CDM uses this return information to determine if the device is real
or a phantom, and, if the device is real, to decide whether or not it wants
to field I/O requests for the device. As a part to making this decision, the
CDM can use the DeviceHandle to issue non-destructive HACB requests
to get additional information about the device. A non-destructive request
is one that does not alter the current state of the device, such as a SCSI
MODE SENSE command.

If the device is real and the CDM wants to field requests for the device, it
remembers the device's DeviceHandle. This is a private DeviceHandle
giving the CDM exclusive access to the device. No other CDM can have
access to this device until the owner CDM relinquishes control by either
issuing a Case 3 scan or by declaring the device public.

Note: In order for a CDM to really have access to a private device, it
must first be bound to a public, companion device on that same target
ID. Otherwise, the NWPA will not route I/O to the private device.

The CDM should bind to the public device on which its
CDM_Inquiry() routine was called, which is also the thread in which
the CDM scanned and detected the private device.

If the CDM determines it does not want to field requests for the device or

4 The inquiry information in specific to the bus interface. For SCSI, this information is identical to that returned by the standard INQUIRY
command. For IDE\ATA, this information is identical to that returned by the IDENTIFY command.

5-24 Version 2.1d (September, 1995)

Custom Device Module (CDM)
that the device is a phantom, it should issue a Case 3 scan to remove the
device object from the HAM's device list.

DeviceHandle == Existing Handle
The CDM can issue this instance of a Case 1 scan whenever it deems
appropriate, as long as the CDM owns the target device through either a
previous Case 1 scan (private case) or through a previous bind to the
device (public case). A valid DeviceHandle to the target device is what
constitutes ownership. If the target device responds at the specified target
ID and LUN, the same information generated from the scan request that
first detected the device is returned in the HACB's data buffer.
Additionally, if the device's status was originally public, it is changed to
private.

Since the scan invokes an actual probe of the bus, the CDM should
spawn a blocking thread (NPA_Spawn_Thread()) to execute this instance
of a Case 1 scan.

Note: Whenever, the CDM issues a scan request that changes a
device's status (public to private or private to public), it must follow up
the scan with a call to CDI_Rescan_Bus(). This call updates the NWPA's
device database.

Version 2.1d (September, 1995) 5-25

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Case 2: Probe Specified Target ID and LUN, Return Info, and Make
Detected Device Public

INPUTS to HACB:
Field Values in Host Command Block:

Function = 1
Parameter0 = LUN
Parameter1 = Target ID
Parameter2 = 2

Field Values in Main HACB:
DeviceHandle = -1 indicating a request to probe a specific

target ID and LUN to detect a device that is new to the CDM.
OR

= DeviceHandle of a device already owned by
the CDM. The CDM received this handle either from a previous Case 1
scan request (if the device is private) or at bind-time (if the device is
public).

VirtualAddress = Address of I/O contiguous memory location
where the device's DeviceInfoStruct information is to be returned. This
buffer should be allocated using NPA_Allocate_Memory().

OUTPUTS from HACB:
hacbCompletion = Appropriate scan completion code.

If Successful_Completion:
Control_Info = Sizeof(struct DeviceInfoStruct)
VirtualAddress = Pointer to the buffer where the HAM will

copy the device's DeviceInfoStruct information. This structure contains
the DeviceHandle that gives the CDM access to the device.

A Case 2 scan allows the CDM to do the following:
If (DeviceHandle == -1):
• Detect a new device at the specified target ID and LUN, and if

one exists, make it public.
If (DeviceHandle == Existing handle to a device owned by the CDM):
• Verify that the device still exists at the specified target ID and

LUN and, if the device's current status is private, change it to public.

DeviceHandle == -1
The CDM issues this instance of a Case 2 scan during its CDM_Inquiry()
routine when it knows that the LUN 0 device on which the inquiry is
being called supports additional devices at other LUNs. In addition, a
Case 2 scan indicates that the CDM wants to present these additional
devices, singly, as public objects so that they can be controlled by an
application. Since CDM_Inquiry() is called on a blocking thread, the
CDM can issue the request using CDI_Blocking_Execute_HACB().

If a device responds at the specified target ID and LUN, it is declared

5-26 Version 2.1d (September, 1995)

Custom Device Module (CDM)
private and information about the device is returned in the HACB's data
buffer. The structure of the return information is defined by the NWPA's
DeviceInfoStruct. This structure includes a DeviceHandle that allows
access to the device, and the bus-specific inquiry information about the
device5.

The CDM uses this return information to determine if the device is real
or a phantom, and, if the device is real, to decide whether or not it wants
to field I/O requests for the device. As a part to making this decision, the
CDM can use the DeviceHandle to issue non-destructive HACB requests
to get additional information about the device. A non-destructive request
is one that does not alter the current state of the device, such as a SCSI
MODE SENSE command.

If the device is real and the CDM wants to field requests for the device, it
will conclude the current iteration of its CDM_Inquiry() routine with a
call to CDI_Rescan_Bus(). This call causes the NWPA to create an object
for the device and place the object in its device database, which is critical
to making the device public.

Unlike the private device paradigm (Case 1 scan), the CDM must not
take control of a public device during the same CDM_Inquiry() thread in
which it detected (via a Case 2 scan) the device. Instead, the CDM must
wait until its CDM_Inquiry() routine gets called again, for that device,
and officially bind to it using CDI_Bind_CDM_To_Object(). At that time,
the CDM sets up the I/O channel by remembering the device's
DeviceHandle. Adherence to this public-device-paradigm is essential, and
it is a requirement for CDM certification.

Note: For the CDM's CDM_Inquiry() routine to be called on the new
public device, the CDM must have registered for that device's device
type.

If the CDM determines it does not want to field requests for the device or
that the device is a phantom, it should issue a Case 3 scan to remove the
device object from the HAM's device list.

DeviceHandle == Existing Handle
The CDM can issue this instance of a Case 2 scan whenever it deems
appropriate, as long as the CDM owns the target device through either a
previous Case 1 scan (private case) or through a previous bind to the
device (public case). A valid DeviceHandle to the target device is what
constitutes ownership. If the target device responds at the specified target
ID and LUN, the same information generated from the scan request that
first detected the device is returned in the HACB's data buffer.
Additionally, if the device's status was originally private, it is changed to

5 See previous footnote.

Version 2.1d (September, 1995) 5-27

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
public. Since the scan invokes an actual probe of the bus, the CDM
should spawn a blocking thread (NPA_Spawn_Thread()) to execute this
instance of a Case 2 scan.

Note: Whenever, the CDM issues a scan request that changes a
device's status (public to private or private to public), it must follow up
the scan with a call to CDI_Rescan_Bus(). This call updates the NWPA's
device database.

Case 3: Remove Device Object from Device List

INPUTS from HACB:
Field Values in Host Command Block:

Function = 1
Parameter0 = LUN
Parameter1 = Target ID
Parameter2 = 3

Field Values in Main HACB:
DeviceHandle = Valid DeviceHandle of the target device. This

DeviceHandle proves that the invoking CDM has ownership of the
device; therefore, the CDM has the right to discard the device's object.
OUTPUTS to HACB:

hacbCompletion = Appropriate scan completion code.

A Case 3 scan request allows the CDM to remove the target device from
the HAM's device list, and it causes the HAM to free any objects
associated with the device. The purpose of a Case 3 scan is twofold: It
allows the CDM to delete phantom devices from the HAM's device list;
and, at unload-time, it allows a CDM to relinquish private devices under
the CDM's control.

5.3.2.3 Scan Completion Codes

Table 5-1 summarizes the scan completion codes described in the
specific cases above. The table also includes additional error-completion
codes common to all scan cases. These completion codes get posted to
the HACB's hacbCompletion field:

Table 5-1 Scan Completion Codes
Upper WORD

(16 bits)
Lower

WORD
(16 bits)

Description

0x0000 0x0000 Successful Completion: The current scan operation completed successfully.This
completion code applies to all scan cases.For Case 1 and Case 2 scans, this
completion code indicates that a device responded at the specified Target ID and
LUN, and the information returned in the HACB's data buffer is valid.

5-28 Version 2.1d (September, 1995)

Custom Device Module (CDM)

Upper WORD
(16 bits)

Lower
WORD
(16 bits)

Description

0x000A 0x0000 General Failure: Default scan-error category. The cause of the error is unknown,
and any information contained in the HACB's data buffer is invalid.This
completion code applies to all scan cases.

0x0001. Device Not Found: No device responded at the specified Target ID and LUN.
Anyinformation contained in the HACB's data buffer is invalid.This completion
code applies to Case 1 and Case 2 scans

0x0002 Bad Target ID/LUN: The Target ID and/or LUN specified in the HACB's host
adaptercommand block was/were invalid. Any information contained in the
HACB's data bufferis invalid.This completion code applies to all scan cases.

0x0003 Target In Use: The target object is owned by another CDM. Therefore, the current
scanrequest could not be executed.This completion code applies to Case 1, Case 2,
and Case 3 scans.

0x0004 Object Not Found: A CDM issued a Case 3 scan to remove a device object from
theHAM's device list that does not exist. The object does not exist because no
previous Case1 or Case 2 scan was issued on the specified Target ID and LUN to
create it. Anyinformation contained in the HACB's data buffer is invalid.This
completion code applies to Case 3 scans.

Novell reserves the right to add additional completion codes.

Version 2.1d (September, 1995) 5-29

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
5.3.3 Removable Media Support

The NWPA provides a specific set of control functions to support
removable-media devices. The NWPA packages these control functions
in CDM Messages. Table 5-2 contains a list of these functions including
their respective NWPA function numbers, ControlMask
(UpdateInfoStruct) enabling bits, and support requirements.

Table 5-2: NWPA's Removable Media Control Functions

Description Function Number ControlMask Bit Support

Activate / Deactivate 0x00000003 0x00000008 Mandatory

Mount / Dismount 0x00000004 0x00000010 Mandatory

Lock / Unlock 0x00000007 0x00000080 Optional

Insert / Remove 0x0000001B 0x08000000 Optional

Detailed descriptions of these message functions can be found in Chapter
9, and the NWPA expects all CDMs managing removable-media devices
to support the functions marked Mandatory. The remaining subsections
describe the use of these control functions.

5.3.3.1 Mount, Lock, and Activate Messages

The key difference between CDMs supporting fixed-media devices and
CDMs supporting removable-media devices is that the CDM_Inquiry()
routine of a removable-media CDM may get called at a time when there
is no media in the device. As mentioned in section 5.2.2 "Inquiring and
Binding to a Device," CDM_Inquiry() is the entry point where the CDM
queries the device and decides whether or not it will "bind"
(CDI_Bind_CDM_To_Object()) to the device. Part of the bind process
requires the CDM to fill out an instance of an UpdateInfoStruct for the
device and its media. Since a piece of media may not be loaded at bind-
time, it is impossible for the CDM to know all of the information
necessary to fill out the UpdateInfoStruct and make the device active.

The purpose of the Mount function is to give a CDM a second
opportunity (other than at bind-time) to get the additional information it
needs to complete the UpdateInfoStruct after a piece of media gets
loaded into the device. The Activate function follows the Mount, and its
purpose is to allow the CDM to handshake with the NWPA to indicate
that the device is active and ready to receive I/O. The following is an
outline of the binding and activating paradigm for removable-media
devices

1. The CDM's CDM_Inquiry() routine (the bind-time entry point) is

5-30 Version 2.1d (September, 1995)

Custom Device Module (CDM)
called and no media is loaded in the device.

2. The CDM decides it wants to bind to the removable-media device.
A. The CDM fills out an instance of an UpdateInfoStruct for the

device providing as much information as it can determine at the time.
The removableFlag field should be set to 0x0001, the activateFlag field
should be set to 0x0000, and the controlMask field should have the
appropriate bits set indicating that the CDM supports the removable-
media functions introduced in Table 5-1. At the very least, the bits
corresponding to the mandatory functions should be set, and the CDM
must provide a routine (or routines) that implement these control
functions.

B. The CDM completes the bind by calling
CDI_Bind_CDM_To_Object() passing it a pointer to the device's
UpdateInfoStruct as an input parameter. Without media in the device, the
device remains inactive until a user physically loads media into it and
indicates the load to the system by issuing a console command.

3. At some later time when a piece of media is inserted into the device,
the NWPA informs the CDM by issuing a Mount message. During the
context of the Mount, the CDM issues HACB requests to confirm the
existence of the media, get the additional device/media information it
needs to complete the device's UpdateInfoStruct, and prepare the media
for I/O. The CDM concludes the Mount by reporting the updated
information to the NWPA by calling CDI_Object_Update().

4. If the appropriate bit is set in the controlMask field of the device's
UpdateInfoStruct, the CDM may (see the following note) receive a Lock
message following the Mount. If the CDM receives this message, it
should lock the media in the device.

Note: The Lock function only applies to stand-alone, removable-
media devices, not to changer or magazine type devices. The Lock
function is issued at the discretion of the controlling application.

5. To confirm that the device is ready to receive I/O, the NWPA issues
an Activate message. During the context of the Activate function, the
CDM should make sure that the media is capable of being activated, set
the activateFlag field of the device's UpdateInfoStruct to 0x0001, and
report the object update to the NWPA by calling CDI_Object_Update().
Upon completion of the Activate, the CDM must be ready to accept I/O
requests for the device.

5.3.3.2 Dismount and Deactivate Messages

The CDM may receive a media Dismount or device Deactivate message

Version 2.1d (September, 1995) 5-31

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
at any time. When the CDM receives either one of these messages, it
should set the activateFlag of the device's UpdateInfoStruct to 0x0000
and update the object by calling CDI_Object_Update(). In the case of a
Dismount, the CDM should reset (set to -1) the other fields of the
device's UpdateInfoStruct prior to updating the object

5.3.3.3 Insert and Remove Messages

If the CDM indicates that it supports Insert and Remove functions for a
device, the CDM should issue an insert media command, if an Insert
message is received, or an eject media command, if a Remove message
is received, to the device.

5.3.4 Magazine Support

The NWPA also supports magazine devices, and it allows upper layers to
control the magazine and the media associated with the device. Before
listing the NWPA specific control functions that provide magazine
support, it is essential to discuss the NWPA's concept of a magazine
device:

∙ A magazine is considered to be a static set of media and slots that
can be associated with a single device. That is, only one magazine
can be associated with one device at one time . A device that goes
beyond this concept fits the autochanger paradigm discussed in the
next section.

∙ Magazine devices also fall into the removable-media device
category; therefore, CDMs managing magazines must support the
removable-media control functions listed in Table 5-1 as well as the
control functions discussed in this section (listed in Table 5-3).

Table 5-3 lists the additional NWPA functions required for magazine
support. Since these control functions only apply to magazines, the
NWPA groups them into one CDM Message category called Magazine
Functions. This is the reason why a CDM can indicate support of these
functions by setting a single bit in the device's ControlMask. The NWPA
assigns 0x0000001D as the NWPA group-function number for the
message category, and an individual member in the group is referenced
by an NWPA sub-function number. Refer to Chapter 9 for more details
on NWPA numbering of this group and for detailed descriptions of each
function in the group.

Table 5-3: Additional NWPA Control Functions for Magazine Support
ControlMask: 0x20000000

NWPA Group Function Number: 0x0000001D

5-32 Version 2.1d (September, 1995)

Custom Device Module (CDM)

Description Sub-Function Number Support

Return Magazine Info 0x00000000 Mandatory

Return Magazine Media Mapping 0x00000002 Mandatory

Magazine Select Media 0x00000003 Mandatory

Magazine Deselect Media 0x00000004 Mandatory

Magazine Load 0x00000005 Mandatory

Magazine Unload 0x00000006 Mandatory

Magazine Eject 0x00000007 Mandatory

A CDM supporting a magazine binds to a device using the removable
device paradigm described in the previous section. However, before the
CDM calls CDI_Bind_CDM_To_Object(), it should set the
acceptsMagazinesFlag field of the device's UpdateInfoStruct to 0x0001,
and also the magazineLoadedFlag field if a magazine is currently loaded.
Again, all this is done at bind-time during the context of the CDM's
CDM_Inquiry() routine.

If at bind-time the CDM indicated that a magazine was not loaded in the
device, the magazine device will remain inactive until one gets loaded.
Then, at some later time when a magazine is placed in the device, the
NWPA informs the CDM by issuing a Magazine Load message. This
message function directs the CDM to verify the existence of a magazine
and prepare it for use.

After the CDM confirms that the magazine is loaded, or if at bind-time
the CDM indicated that a magazine was already loaded in the device, the
NWPA issues a Return Magazine Info message to the CDM. This
message function directs the CDM to return the number of storage slots
in the currently loaded magazine.

After the CDM completes the Return Magazine Info message, the
NWPA issues a Return Magazine Media Mapping message. This
message function directs the CDM to inventory the magazine and the
device to which the magazine is attached. The CDM then returns a byte-
map indicating whether or not media is loaded in the device and
which slots in the magazine have media. As an example, suppose the
following:

∙ The magazine is attached to a tape drive.

∙ The number of storage slots returned by the Return Magazine Info
function equaled 4.

∙ Media is not currently loaded in the tape drive.

Version 2.1d (September, 1995) 5-33

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
∙ Magazine storage slots “1” and “2” contain media.

∙ Magazine storage slots “3” and “4” are empty.

The return byte-map would contain the following information:

Slot / Byte Index Byte-Map Value Comment

[0] 0x00 Indicates that the tape drive, slot[0],
is empty.

[1] 0x01 Indicates that magazine storage
slot[1] has media.

[2] 0x01 Indicates that magazine storage
slot[2] has media.

[3] 0x00 Indicates that magazine storage
slot[3] is empty.

[4] 0x00 Indicates that magazine storage
slot[4] is empty.

The slot indexes shown above have particular significance. The NWPA
will use these indexes as slot indicators in subsequent magazine control
functions. Index 0 will always indicate the device, and indexes 1 to n
indicate the respective storage slots of the magazine, where n is the total
number of storage slots.

Successful completion of the Return Magazine Media Mapping
message concludes magazine initialization. At this point, an application
can select a piece of media and prepare it to receive I/O. The application
selects a piece of media by issuing a Magazine Select Media message.
When the CDM receives this message, it should move the piece of media
indicated by the storage slot index number (specified in one of the
message's input parameters) into the device. After the media is in the
device, the Mount and Activate sequence described in the removable-
media section begins. After the device is activated, the CDM will receive
I/O requests for the device.

After an application is done with the media, it can remove the media
from the device by issuing a Magazine Deselect Media message. When
the CDM receives this message, it should remove the media currently in
the device and return it to the storage slot indicated by the slot index
number given in the message.

When the CDM receives a Magazine Unload message, it should unload
the magazine, clear the magazineLoadedFlag field of the device's
UpdateInfoStruct, and update the device object by calling
CDI_Object_Update().

5-34 Version 2.1d (September, 1995)

Custom Device Module (CDM)
A CDM supporting devices with magazines must support the Magazine
Eject function. However, for some magazine devices, ejects happen as
part of the deselect process. In this case, when the CDM receives this
message, it should just successfully complete the message without
performing any action. For those magazine devices that require an
explicit eject, the CDM should issue a magazine eject to the device.

5.3.5 Changer Support

AutoChanger support has also been added to NetWare 4.X platforms.
The NWPA creates an object for the autochanger and has device, media,
and slot objects associated with the autochanger. The concept of a
autochanger to the NWPA is a non-static set of media or magazines
(media can be changed via the mailbox) associated with one or more
devices and also a mailslot where new media can be added or taken out
of the changer.

The NWPA support of an autochanger is very similar to the earlier
NetWare 4.0 support provided through the DDFS. The CDM messages
that are specific to an autochanger are:

1. ReturnChangerMediaMapping
2. ChangerCommand

Along with the above CDM messages, magazine CDM messages may
also be supported. Novell has found it useful to treat changers as
changers full of magazines since most changers contain double sided
media. This paradigm requires the changer to emulate magazine
behavior. This can be done by registering an Enhancer CDM as part of
the changer CDM. This Enhancer CDM binds to the devices associated
with the changer. It is the responsibility of the CDM to figure out which
devices belong to the changer. SCSI provides for the changer to give
Target ID's of the devices associated with it. The Enhancer part of the
changer CDM can then intercept magazine control functions bound for
the device and have them executed by the changer.

Step by Step

In the CDM inquiry, the CDM will need to bind to the changer and most
of the information that needs to be filled out in the UpdateInfoStruct will
be available. The fields that should be filled in at binding time are:

1. controlmask - The changer functions above.

2. numberofslots - slots in changer.

3. numberofmailboxes - number of exchange slots.(mailboxes)

Version 2.1d (September, 1995) 5-35

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
4. numberofdevices - number of devices in the changer

5. deviceobjects[1] - This field is variable length.

The NWPA object ids for each device in the order they will be addressed
in the future i.e. deviceobjects[3] is device #4 in a changer command.

The NWPA object ID's for the devices may not be available at the time of
the CDM inquiry, in which case that field should not be changed and the
device should not be activated. The device ID's for the changer's devices
can be found in a number of ways. The above mentioned registering an
enhancer for devices of the right type and checking the SCSI target ID's
of the devices against those in the changer is one way. Another might be
to use the NWPA APIs to walk the object tree and compare those SCSI
target IDs. However it is done, once the object id's for the device are
found they should be filled in and updated using CDI_Object_Update().

The ReturnChangerMediaMapping CDM message passes a buffer that is
a byte map to be filled in by the CDM for the devices, slots and
mailboxes of the changer, in that order. This buffer should be filled in
with the locations of the media in the devices, slots, and mailboxes.
After this, the changer objects will be built in the NWPA and an Activate
CDM message will be sent. The changer should be activated by the CDM
using CDI_Object_Update(). Once the changer has been activated,
applications can send changer commands to the CDM.

The CDM will receive Changer Commands from an application for
moves of media from a destination to a source. The numbers of the
destination and source are the order given in the byte map of the
ReturnChangerMediaMapping buffer. The preload command will be sent
to the CDM just before a move from a mailbox is done to allow the
CDM to do any needed preparation for the insert of the media.

After the preload the user will be prompted at the console to insert media
into the mailbox after the user has acknowledged the insert of media the
CDM will receive the move command with the mailbox as the source.
The changer eject command will be received by the CDM after a move
where the mailbox is the destination this allows for the CDM to do a
rotate out on the changer if it is needed

5.3.6 Asynchronous Hardware Event Notification

CDMs can request that HAMs notify them of any hardware events, such
as a bus reset, device reset, or a device attention, that may occur. To do
this, the CDM must issue a HACBType=0 HACB request placing the
following information in the HACB's union to Host command block:

Function = 5

5-36 Version 2.1d (September, 1995)

Custom Device Module (CDM)
Parameter0 = Bitmap indicating the type of events for which the CDM
wants to be notified. Currently, the NWPA recognizes the following:

0x00000001 Bus reset
0x00000002 Device reset
0x00000004 Device attention6
0x00000008 Adapter reset
0x00000010 Reserved

to
0x80000000

Parameter1 = 0
Parameter2 = 0

These requests must be issued on a per device basis, meaning that the
CDM must provide the correct device handle for the device it wants
monitored. The device handle is placed in the HACB's DeviceHandle
field.

The CDM builds the bitmap indicating the events it wants to be informed
of, places the bitmap value in the Parameter0 field of the HACB, and
executes the request by calling CDI_Non_Blocking_Execute_HACB().

The HAM receives the HACB and maintains it in a local holding area
associated with the target device until an event occurs. These HACBs
should not be placed in the device queue since they do not represent I/O
requests that need device processing.

After an AEN event occurs, the HAM will check to see if the value in
parameter0 represents an event that a CDM wants to be notified of. If so,
the HAM will freeze the device queue, set a bitmap value in the HACB's
control_Info field to indicate which event(s) occurred, place the AEN
code (0x80080000) in the HACB's hacbCompletion field, and complete
the AEN HACB by calling HAI_Complete_HACB(). The bit definitions
for the return bitmap value are the same as those defined for the
parameter0 field.

Note: If no CDM has registered for a specific AEN event that occurs,
the queue state will not change.

The CDM receives notification of the event when it gets the HACB
through CDM_Callback(). CDM_Callback() is required to check the
hacbCompletion field on every HACB it receives. At callback time when
the CDM receives a HACB having an AEN completion code, it decodes
the bitmap value in the control_Info field to determine which event
occurred, and takes appropriate action. If desired, the CDM can re-issue
the AEN HACB. To minimize a possible "notification-not-available"
window, the CDM should re-issue the AEN HACB.

6 In order for a HAM to detect a device attention, the CDM must first issue commands that will program the device to issue the alert.

Version 2.1d (September, 1995) 5-37

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

5.3.7 Avoiding Buffer Mismatches

The CDM must have a check similar to the pseudo-code below to
accommodate applications that allocate oversized buffers when using
tape devices running in fixed-block mode.

If (!Variable_Block_Mode)
{

if ((unitsize * unitcount) <= CDMMsg->BufferLength)
hacb->DataBufferLength = unitsize*unitcount;

else
hacb->DataBufferLength = CDMMsg->BufferLength;

}

5-38 Version 2.1d (September, 1995)

Custom Device Module (CDM)
5.3.8 Vendor-Pass Through API for CDMs

This API (NPA_CDM_Passthru()) provides applications the ability to
communicate directly with a device. This provides a vendor with a
communications channel to allow for vendor-specific commands/data to
be sent to/from the device. For example, vendor-specific device
diagnostic information could be sent to an application using this API.
CDMs must register for the specific functions that it will process. See the
NPA_CDM_Passthru() API in Chapter 7 for more details.

Version 2.1d (September, 1995) 5-39

