
Chapter 4 Host Adapter Module (HAM)

The Host Adapter Module (HAM) is the driver component that provides
the software interface to the host adapter hardware, and it is implemented
as a NetWare Loadable Module (NLM). Additionally, the HAM's access
to the adapter is exclusive. This chapter describes a HAM's function, and
it is organized into the following sections:

∙ Architecture
This section prototypes and describes the entry points, functions, and
routines that make up the HAM's architecture and its interface with
the NWPA.

∙ Operational Overview
This section overviews the HAM's functionality by outlining the
main flow of events of its procedures.

∙ Special Topics
This section discusses special topics relevant to a HAM.

4.1 HAM Architecture: Entry Points, Functions, and Routines

This section provides prototypes for the entry points, functions, and
routines required in a HAM by the NWPA. A developer may use these
prototypes to plumb the shell of a HAM. Detailed descriptions of the
data structures and entry points can be found in the technical reference
chapters of this developer's guide. To fit properly in the architecture, a
HAM is required to provide the following:

∙ NLM Load/Unload-time Entry Points
∙ NWPA I/O Entry-Points
∙ Timeout Routine
∙ HACB Type Zero Functions (also referred to as HAM Functions)
∙ Host Adapter Interface Routines

Host adapter interface routines are mentioned here because they are
crucial to the HAM architecture. However, this developer's guide does
not attempt any specifications on these routines, since they are
manufacturer specific. Prototypes and definitions of these routines are
the responsibility of HAM developers. Complete functional
specifications of the entry points can be found in Chapter 7, and
descriptions of the HAM Type Zero functions can be found in Chapter 8.
The main flow of each entry point is discussed in the operational
overview of this chapter. The names of these entry points are left to the
discretion of the HAM developer; however, each entry point must

Version 2.1d (September, 1995) 4-1

provide the respective functionality described in this guide. For
consistency in referring to these entry points and HAM functions within
the text and in code examples, this guide gives each a generic name
having a HAM_ prefix. Whenever an entry point or function with this
prefix is encountered, it indicates that the routine is HAM specific. The
italic typeface indicates that the name is arbitrary.

4.1.1 NLM Load/Unload-Time Entry Points

A HAM must provide three standard NLM entry points for the OS. These
entry points are made visible to the OS through a definition (.DEF) file
that is processed by the NLMLINK utility. A sample definition file is
provided in Appendix A. The prototypes of these entry points, along with
their generic names, are as follows:

LONG HAM_Load (
LONG loadHandle,
LONG screenID,
BYTE *commandLine
);

HAM_Load() is the HAM's load-time entry point called when the
systems operator issues a LOAD command on the HAM from the
console. HAM_Load() is called on a blocking thread. Through this entry
point, a HAM receives its OS-generated resource handle (LoadHandle),
an ID to the LOAD console screen, and a pointer to the LOAD command
line string which contains the hardware resource options specified by the
systems operator. These hardware options include resources such as
interrupts, DMA channels, memory decoding for memory-mapped I/O,
ports, and even custom command-line options. HAM_Load() is
responsible for allocating any resources needed to make the HAM
operational, for configuring the HAM based on the hardware options
specified on the LOAD command line, and for registering the HAM and
its I/O entry points with the NWPA.

LONG HAM_Unload_Check (LONG screenID);

HAM_Unload_Check() is the HAM's initial unload-time entry point. The
entry point gets called when the systems operator issues an UNLOAD
command on the HAM from the console. HAM_Unload_Check() is
called on a blocking thread. HAM_Unload_Check() is responsible for
checking to see if any of the HAM's devices are currently being used by
an application and return use-status. To do this, HAM_Unload_Check()
returns the use-status returned by NPA_Unload_Module_Check(). For
example:
LONG HAM_Unload_Check (LONG screenID)

{
 return (NPA_Unload_Module_Check(...));
}

4-2 Version 2.1d (September, 1995)

Host Adapter Module (HAM)
From this return value, the OS can determine if any of the devices
managed by the HAM are locked. If any devices are locked, the OS
displays a message at the console listing the devices that will be
deactivated and the corresponding NetWare volumes that will be
dismounted if the action is continued. The user then has the option to
either continue or abort the unload.

void HAM_Unload (void);

HAM_Unload() is the HAM's final unload-time entry point, meaning that
the unload thread already called HAM_Unload_Check() and the systems
operator chose to continue. Thus, the unload thread was allowed to
continue and make a call to HAM_Unload(). HAM_Unload() unregisters
the HAM from the NWPA and returns allocated resources back to the
system. Once the HAM is unloaded, all devices attached to the bus(es) it
was managing are inaccessible.

4.1.2 NWPA I/O Entry Points

A HAM must provide additional entry points that allow the NWPA to
route I/O requests to the module and to retrieve the resultant data. These
entry points are made visible to the system when the HAM registers itself
with the NWPA using NPA_Register_HAM_Module() . Additionally, all
of these entry points have non-blocking context, meaning that they must
perform their respective functions quickly and return control back to
their respective calling processes. The prototypes of these entry points,
along with their generic names, are as follows:

LONG HAM_Execute_HACB(
LONG hamBusHandle,
struct HACBStruct *HACB);

HAM_Execute_HACB() is the HAM's entry point for receiving HACB
I/O requests and routing them to their respective devices through the host
adapter. As long as the host can accept a request, HAM_Execute_HACB()
should issue it to the adapter and then return to the calling process. If the
host is temporarily unable to accept a request, HAM_Execute_HACB()
should place the request on an internal queue for the target device and
return to the calling process. The fundamental rule for this entry point
regarding a HACB I/O request is to "do it or queue it."

LONG HAM_Abort_HACB(
LONG hamBusHandle,
struct HACBStruct *HACB,
LONG flag);

HAM_Abort_HACB() is the HAM's entry point for receiving aborts on
HACB requests. HAM_Abort_HACB() locates the target HACB, posts an
abort code, and returns the HACB to the CDM layer by calling

Version 2.1d (September, 1995) 4-3

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
HAI_Complete_HACB().

LONG HAM_Check_Option
(
struct NPAOptionStruct *Option,
LONG instance
LONG flag
);

HAM_Check_Option() is the HAM's entry point for receiving and
verifying command line options. The entry point is called during two
separate NWPA processes: once during the command line parsing phase
of HAM initialization and again during the actual registration of
hardware options. The HAM invokes these two NWPA processes at
different points in its load-time entry point, HAM_Load().

LONG HAM_Software_Hot_Replace(
LONG messageLength,
void *message
);

Note: This entry point is optional. The HAM only needs to
implement HAM_Software_Hot_Replace() if it plans to support hot
replacement.

HAM_Software_Hot_Replace() is the HAM's entry point for dynamically
performing version updates. This entry point allows a later-version HAM
driver to exchange configuration information with an earlier-version that
is currently loaded and operating on the server. The information
exchange is in preparation for a dynamic swap of the modules without
dismounting any volumes or disrupting the I/O channel for a lengthy
period of time. At Novell, this process is called software hot replacement.
For more details on how to implement this feature, see section 4.3.4.

LONG HAM_ISR (LONG irqLevel);

HAM_ISR() is the HAM's interrupt-time entry point, or interrupt service
routine (ISR). The NetWare OS fields the actual hardware interrupt
generated by the adapter board and routes its handling to the routine that
registered for the interrupt. The HAM registers its ISR during its
initialization entry point, HAM_Load(), using
NPA_Register_HAM_Module(). The HAM registers the IRQ level it will
service using NPA_Register_Options() during the hardware options
registration phase of HAM_Load(). HAM_ISR() must provide logic to
service completion of all I/O requests, provide the strategy for
determining what device completed the request, post appropriate HACB
completion codes, and initiate the next request on the device's process
queue.

4-4 Version 2.1d (September, 1995)

Host Adapter Module (HAM)

Note: If the HAM intends to support software-hot-replacement, it
may only have a single ISR.

4.1.3 Timeout Routine

The HAM must provide a routine that times out HACB requests grossly
exceeding expected device-process time. The purpose is to provide a
mechanism to return process control back to the OS from a hung-device
condition. The HAM's timeout routine runs as a periodic, background
process, and it gets initially scheduled for triggering at load-time during
HAM_Load(). The prototype of this routine, along with its generic name,
is as follows:

void HAM_Timeout (LONG parameter);

HAM_Timeout() is an asynchronous countdown-timer routine set up by
calling NPA_Spawn_Thread(). HAM_Timeout() is triggered after the time
interval specified as an input parameter to NPA_Spawn_Thread() elapses.

NPA_Spawn_Thread() is a one-shot API, meaning that it will only
schedule the triggering of HAM_Timeout() once per call made to it.
Therefore, after HAM_Timeout() triggers and performs its task, it should
reschedule itself by calling NPA_Spawn_Thread() again in order to
continue its periodic triggering.

HAM_Timeout() allows the HAM to time out an I/O request when the
time interval specified in the timeoutAmount field of the HACB has
expired. The timeout countdown begins when the HAM issues the
request to the host. For more details about the countdown, refer to the
description of the HACB's timeoutAmount field in Chapter 3.

4.1.4 HACB Type Zero Functions

HAMs must allow different types of HACB requests to be processed.
The HACB's type is the value in its HACBType field which is set either
by the CDM I/O routine building the HACB or by the NWPA. The
CDM, or NWPA, then fills the HACB's command area overlay with a
command structure appropriate to the HACB's type. HACBType=0
requests contain adapter-specific Host command structures. The NWPA
requires a HAM to implement functions that handle as many HACBType=0
requests as are applicable to the adapter the HAM will manage. Some of
the HACBType=0 requests ask for information about the HAM, the host
adapter, or attached devices. The HAM receives requests of this type
through the union to Host command block of the HACB. The following

Version 2.1d (September, 1995) 4-5

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
is a list of the HACB type zero functions and their generic names.
Prototypes are not given because requests to perform these functions are
received by the HAM in the form of HACB messages received through
the HAM's HAM_Execute_HACB() entry point. The HAM determines
which function to perform based on the parameters contained in the
union to Host command block of the HACB. Refer to Chapter 8, HACB
Type Zero Functions for more detailed descriptions.

Note: HACB Type Zero functions are also known as HAM functions,
and they are static functions that can generally be completed
immediately within the context of HAM_Execute_HACB().

HAM_Return_HAM_Info (mandatory)
HAM_Return_HAM_Info is responsible for supplying the NWPA with
information about the HAM. The NWPA initiates this request soon after
the HAM is loaded, and the information is in a form defined by the
HAMInfoStruct.

HAM_Scan_For_Devices (mandatory)
HAM_Scan_For_Devices is responsible for scheduling a blocking
process to scan for all devices attached to the selected adapter. This
function may schedule the scan and return to the calling process since the
calling process has non-blocking context. The HAM schedules the scan
process using NPA_Spawn_Thread(). The HAM should schedule the
process to trigger immediately. It is during the context of the scan
process that the HAM builds a device list and generates a unique handle
for each device. The NWPA makes these HAM-generated device handles
available to the CDM layer. CDMs will use these handles to route
HACBs to a particular device by placing the handle value in the HACB's
DeviceHandle field. A request for this function is initiated by the systems
operator at the console and can be called at any time. Additionally, for
each time the HAM receives this request, the HAM must respond with a
physical scan of the host bus, not just with a scan of an existing device
list. If during the physical scan, the HAM discovers new devices or it
discovers that some devices have gone away, it should refresh its device
list.

HAM_Return_Device_Info (mandatory)
HAM_Return_Device_Info is responsible for supplying the NWPA with
information about a device attached to the HAM's adapter. Following the
completion of a HAM_Scan_For_Devices request, the NWPA initiates a
find-first-find-next sequence of these requests until information about
each device is returned. The return information for each request is in a
form defined by the DeviceInfoStruct.

HAM_Unfreeze_Queue (mandatory)
HAM_Unfreeze_Queue is responsible for unfreezing the HAM's HACB

4-6 Version 2.1d (September, 1995)

Host Adapter Module (HAM)
request queue for the selected device. The HAM needs to maintain a
process queue for each device it services.

HAM_Queue_AEN_HACB (mandatory)
HAM_Queue_AEN_HACB is issued by a CDM, and it directs the HAM
to monitor asynchronous hardware events such as a bus reset, a device
reset, or a device attention. If this event occurs, the HAM sets a bit mask
in the HACB indicating the event and completes the HACB with the
AEN status code. Completing the HACB informs the CDM of the event.

HAM_Set_IDE_Device_Config (implement if applicable)
HAM_Set_IDE_Drive_Config is only applicable to IDE\ATA drives, and
even then, implementing it is optional. This routine is responsible for
changing the transfer block size per IDE\ATA interrupt, thus allowing a
CDM to use special commands as they appear in the IDE\ATA
specification.

HAM_Tag_Queue_Synch/Asynch (implement if applicable)
HAM_Tag_Queue_Synch/Asynch is issued by a CDM to tell the HAM if
a device supports either tag queuing or SCSI synchronous/asynchronous
device negotiation.

HAM_Recovery_Reset (mandatory)
HAM_Recovery_Reset is issued by a CDM to tell the HAM to perform a
reset of the adapter, bus, or device. The CDM will issue this HAM
function when trying to recover from a dead device.

HAM_Deactivation_Notification (optional)
HAM_Deactivation_Notification is issued by a CDM to notify the HAM
that it has deactivated a device.

4.1.5 Host Adapter Interface Routines

The HAM is expected to implement routines that use HACB information
to construct appropriate command blocks in the adapter-specific protocol
and issue them to the host. A HAM is only required to support HACB
requests with a type suitable to the adapter it supports. The following is
the current NWPA definitions for HACB request types: HACBType=1
requests have an I/O command structure conforming to SCSI protocol.
The HAM receives requests of this type through the union to SCSI
command block of the HACB. HACBType=2 requests have an I/O
command structure conforming to IDE/ATA protocol. The HAM receives
requests of this type through the union to IDE\ATA command block of
the HACB. HACBType=3 requests have an I/O command structure that
conforms to raw Media Manager messages. The HAM receives requests
of this type through the union to CDMPassThrough command block of
the HACB. For whatever adapter type the HAM supports, it must
provide the adapter-interface-specific routines that implement the

Version 2.1d (September, 1995) 4-7

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
respective commands.

4.2 Operational Overview

The information in this section builds on the declarations and prototypes
given in the previous section by describing a HAM's major functional
procedures and their main flow of events. The information provided here
should help to add functionality to a HAM program shell. Detailed
definitions of data structures and functional descriptions mentioned in
this overview are not included to avoid frequent detours that may detract
from main-flow concepts. However, these details are provided in the
technical reference chapters of this developer's guide. The following list
gives a breakdown of the information in these chapters: Definitions of
data structures can be found in Chapter 6, "Technical Reference for
NWPA Data Structures." Functional descriptions of HAM entry points
and HAI / NWPA support routines can be found in Chapter 7, "Technical
Reference for NWPA Routines." Functional descriptions of HACB type
zero functions can be found in Chapter 8, "HACB Type Zero Functions."
Functional descriptions of NetWare OS support routines can be found in
Chapter 10, "OS Support Routines."

4-8 Version 2.1d (September, 1995)

Host Adapter Module (HAM)

Figure 4-1: HAM Initialization

Version 2.1d (September, 1995) 4-9

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
4.2.1 Load-time Initialization and Registration

Loading of the HAM can be initiated in multiple ways: by the systems
operator at the server console, by a startup file, or by INSTALL. Figure
4-1 and the following steps show the sequence of events for initializing
and registering a HAM at load-time. Note: Figure 4-1 is being updated
to describe the NBI initialization process and to correctly describe HAM
initialization. The next release of this specification will contain this
updated flowchar. The following paragraphs do include the NBI
paradigm, however.

1. When a HAM is loaded, the OS calls the HAM's HAM_Load() entry
point passing it loadHandle, screenID, and commandLine as input
parameters. HAM_Load() is responsible to perform the following:

A. Register the HAM module. The HAM registers its module by calling
NPA_Register_HAM_Module(). This API sets up the general environment
necessary for the HAM to become operational and makes it possible for
the HAM to allocate and register any resources it may need.

It is within the context of NPA_Register_HAM_Module() that the
HAM's NPAHandle is assigned a value, and that the following HAM
entry points get registered with the NWPA:

HAM_Check_Option()
HAM_Software_Hot_Replace()1
HAM_ISR()
HAM_Execute_HACB()
HAM_Abort_HACB()

Note: If the HAM will support multiple adapters, it should call
NPA_Register_HAM_Module() for each instance it will support. This
API accepts a HAM-generated instance number as an input parameter.
This instance number should correspond to the adapter card instance
being supported by the HAM. A separate instance number is necessary
to register different hardware options for each adapter.

B. Verify bus compatibility.
The HAM can check the host bus type by calling
NPA_Return_Bus_Type(). The HAM can then verify that the bus type
is compatible with the type it supports.. If the HAM is NBI aware
and is supporting an adapter designed for a bus architecture that
provides configuration information on a per-slot basis, (e.g. EISA,
MCA, PCI), then do the following:

1. Build the Product_ID option structure. (For details refer to the
1HAM_Software_Hot_Replace() is an optional entry to be used only if the HAM is going to support hot replacement. For more

information about hot replacement, refer to Section 4.3, Special Topics.

4-10 Version 2.1d (September, 1995)

Host Adapter Module (HAM)
NPAOptionStruct definition in Chapter 6.)

Option Name = a length preceded & null terminated name of the
option (PRODUCT ID)
Option Type =Product_ID_Option
Parameter0= BusType
Parameter1=Pointer to an array of bytes that contains the
architecture specific Product ID information
Parameter2=The size of the array pointed to by Parameter1.
OptionFlag= USE_THIS_OPTION
String = Null

2. Add the option using NPA_Add_Option() with Instance = 0

3. Parse the option using NPA_Parse_Option().
During the context of NPA_Parse_Option(), the HAM’s
HAM_Check_Option() routine is repeatedly called passing it the
option struction with output parameters as follows:

Parameter0=BusTag
Parameter1=Slot
Parameter2=Unique ID

For each adapter instance found, the HAM_Check_Option()
routine should store the return information in a configuration
table for use later.

4. If the HAM supports the “SLOT=” option, do the following:
a. Build a Slot Option structure.
b. Add the Slot Option using NPA_Add_Option()
c. Parse the option using NPA_Parse_Option().
If a “SLOT=” option matching one of the elements in the
HAM’s configuration table is present on the command line,
the HAM calls NPA_Get_Card_Config_Info() passing it the
bus tag and unique ID given during the parse of the Product
ID option. This routine returns the bus specific
configuration information associated with the target adapter.

C. Create a select-list of desired options.
Options are command line keywords that set operational states such
as NWDIAG2, or specify hardware resources such as interrupts,
DMA channels, ports, memory decoding, and custom parameters.

For each of these applicable resources, the HAM creates an options
list by filling out an instance of an NPAOptionStruct with Flags set to
USE_THIS_OPTION and Parameter2 = BusTag (if NBI aware) and
calling NPA_Add_Option(). During the context of
NPA_Add_Option(), the NPA copies the option information and
constructs a "select-list" of valid options for the HAM and adapter.

2For more information about NWDIAG, see Section 4.3.5.

Version 2.1d (September, 1995) 4-11

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
To completely build the option list, the HAM should iteratively fill
out the NPAOptionStruct instance and call NPA_Add_Option() for
each option type it desires. Since the NWPA maintains its own copy
of option information in constructing the select-list, the HAM can
reuse the same NPAOptionStruct instance for each call to
NPA_Add_Option().

Note: For hardware resource options, if NPA_Add_Option() returns a
non-zero value, it indicates that the option is already reserved. Also, the
NWPA will not add the option to the HAM's select-list.

D. Parse the load command line for specified options.
The HAM calls NPA_Parse_Options() to cause the NWPA to match
options specified on the command line with those in the HAM's
select-list. In turn, NPA_Parse_Options() iteratively calls the HAM's
HAM_Check_Option() entry point for each match it finds.
HAM_Check_Option() either accepts or rejects the selected option.
Each time HAM_Check_Option() accepts an option, the NWPA
places it on a "use-list."

If there is an option on the command line that does not match
anything in the HAM's select-list, it is ignored. However, if after
parsing the command line the NWPA finds residual options in the
HAM's select-list, it either prompts the user for the options or
discards them depending on the bits set in the Flags field of each
option's NPAOptionStruct.

Warning: Hardware options are not physically registered during the
context of NPA_Parse_Options(). Therefore, the HAM should not try to
physically access a resource when its HAM_Check_Option() entry point
is called during this context.

E. Register the options in the HAM's use-list.
The HAM registers the parsed options (options specified in its use-
list) by calling NPA_Register_Options(). This API accepts the
instance number introduced in the note of step 1.A.
NPA_Register_Options() uses this number to associate the group of
options being registered with a particular instance of an adapter
managed by the HAM.

NPA_Register_Options() physically registers the hardware resources
in the use-list making them available to the HAM. Also, similar to
the parse phase in step 1.D, NPA_Register_Options() iteratively calls
the HAM's HAM_Check_Option() entry point for each registered
option, this time allowing the HAM to physically verify the resource
or set internal flags to set an operational mode. An example of setting
an internal flag to determine an operational mode is the NWDIAG

4-12 Version 2.1d (September, 1995)

Host Adapter Module (HAM)
option introduced in section 4.3.5.

Another reason why HAM_Check_Option() gets called during option
registration is to provide the HAM with return information pertinent
to the option. For example, the memory decode option that pages in
memory-mapped I/O space to the system returns a logical address to
the HAM. This type of return information is given to the HAM
through HAM_Check_Option() when it is called under the context of
NPA_Register_Options(). The actual information is found in the
Parameter2 field of the NPAOptionStruct pointed at by the entry
point's Option input parameter.

Note: Steps 1.C - 1.E describe the general paradigm for registering
hardware and configuration options. For more detailed information and
actual registration examples, refer to the NPAOptionStruct in Chapter 6.

F. Allocate memory resources.
The HAM allocates any memory buffers it may need by calling
NPA_Allocate_Memory().

G. Schedule the HAM's timeout routine.
The HAM schedules its timeout routine, HAM_Timeout(), by calling
NPA_Spawn_Thread(). The HAM will use this routine to recover
from a hung-device condition. HAM_Timeout() monitors the elapsed
time of a HACB request as specified in the HACB's TimeoutAmount
field.

Note: NPA_Spawn_Thread() is a one-shot API.

H. Reset and make the adapter ready.
The HAM must ensure that is operational and ready to accept HACB
requests before going to step I.

I. Activate the host bus.

The HAM calls HAI_Activate_Bus() to activate an instance of a host
bus. This API requires an exchange of handles that identify the bus
instance. The HAM passes a unique handle (HAMBusHandle) it
generates to identify the bus instance as an input parameter. Then,
the NWPA returns its own unique handle (NPABusHandle) it will use
to identify the bus instance as an output parameter. The HAM must
call HAI_Activate_Bus() for each bus instance it will manage.

J. Return load status.
If the HAM loaded successfully, HAM_Load() should return zero. If
the load was unsuccessful, it should do the following:

Version 2.1d (September, 1995) 4-13

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
1. Cancel HAM_Timeout() by calling NPA_Cancel_Thread() passing

it the exact same arguments used in setting up the timeout routine.

2. Return all allocated memory by calling NPA_Return_Memory().

3. Unregister all hardware options by calling
NPA_Unregister_Options().

4. Unregister the module if the HAM is to be unloaded by calling
NPA_Unregister_Module().

Warning: NPA_Unregister_Module() should not be called if the HAM
is only erroring out of the registration of a single instance of itself, but it
intends to continue supporting other instances. If it is called, all pending
I/O for this HAM will be aborted.

5. Return -1.

If at any time during initialization and registration an uncorrectable error
occurs, the HAM must return its resources and back out from the point it
reached. For example, if the bus type returned in 1.B is not compatible
with what the HAM supports, the HAM only needs to call
NPA_Unregister_Module() to error out. If the HAM progressed as far as
1.F in the sequence, then the HAM would need to return memory,
unregister options, and then unregister the module.
After the HAM is loaded and registered with the OS, it must be ready to
receive the following sequence of HACBType=0 requests:

1. HAM_Return_HAM_Info()
2. HAM_Scan_For_Devices()
3. HAM_Return_Device_Info()

The first request, HAM_Return_HAM_Info(), is initiated by the NWPA
so that it can get HAM-specific information and add the HAM to its
object database. The second request, HAM_Scan_For_Devices(), is
either initiated from a command-line directive in a startup file or by the
systems operator at the console. This HAM function spawns a blocking
thread, using NPA_Spawn_Thread(), that performs a host bus scan for
attached devices. The spawned thread builds the HAM's device list,
creates a unique DeviceHandle for each device, and fills out an instance
of a DeviceInfoStruct for each device. The third request,
HAM_Return_Device_Info(), is initiated by the NWPA so that it can get
device-specific information and add an object for each device to its
database. The NWPA initiates a find-first-find-next sequence of these
requests until information about each device is returned. The return
information for each request is in a form defined by the DeviceInfoStruct.

4-14 Version 2.1d (September, 1995)

Host Adapter Module (HAM)

Note: The HAM will receive the above sequence of requests for each
bus instance it registered at load-time using HAI_Activate_Bus().

4.2.2 Processing HACB I/O Requests

HAM_Execute_HACB() is the HAM's entry point for receiving and
executing HACB I/O requests, and it has non-blocking context. This
entry point is registered with the NWPA during
NPA_Register_HAM_Module(). The following steps show the sequence
of events for processing a HACB I/O request:

1. The NWPA calls HAM_Execute_HACB() passing it
HAMBusHandle and a pointer to a HACB as input parameters.
HAM_Execute_HACB() does the following:

A. Identify the host bus instance.

The HAM identifies the target bus instance based on the
value contained in the HAMBusHandle input parameter. The
HAM originally generated this HAMBusHandle value and
registered it for the bus instance using HAI_Activate_Bus() at
load-time. If the HAM is managing only one host bus, the
value in the HAMBusHandle input parameter will be the
same for all requests. If the HAM is managing multiple
buses (when the adapter supports more than one bus or the
HAM is managing multiple buses spanned over multiple
adapters), the HAMBusHandle value is unique to each bus
instance.

B. Identify the target device.

The HAM identifies the target device based on the value
contained in the DeviceHandle field of the HACBStruct
instance pointed at by the HACB input parameter. The HAM
originally generated this DeviceHandle value during the scan
thread scheduled by HAM_Scan_For_Devices() and reported
it to the NWPA during HAM_Return_Device_Info().

C. Execute or queue the request.
If the adapter can immediately accept the request, the HAM
should translate the HACB request information into a
protocol-specific command block, issue the request to the
adapter, and then return to the calling process. If the adapter
cannot immediately accept the request, the HAM should
place it in an internally managed queue for the target device
and return to the calling process.

Version 2.1d (September, 1995) 4-15

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

Note: The NWPA expects the HAM to provide a queue for each
device it manages. If a request cannot be immediately issued to the
adapter during the context of HAM_Execute_HACB(), the HAM must
place the request in the target device's queue and return to the calling
process. The HAM must pull requests from the queue and execute them
at another time during another thread. For a detailed specification on
device queue behavior and how it affects HAM_Execute_HACB(), see
section 4.3.1.3.

2. The target device services the request and at completion, the
adapter generates a hardware interrupt. The NetWare OS fields the
interrupt and routes servicing to the HAM's ISR entry point, HAM_ISR(),
passing it IRQLevel as an input parameter. HAM_ISR() has non-blocking
context and does the following:

A. Determines which device to service.
The HAM must provide the logic to determine which adapter
its managing caused the interrupt.

B. Ensures that data is transferred correctly.
If the HAM's adapter does DMA or bus-mastering, the ISR is
not concerned with physical data transfer because the
transfer buffer was specified when the request was issued to
the adapter. However, for host buses that rely on
programmed I/O, the ISR needs to perform the transfer. The
HACB provides both the virtual (logical) and physical
(absolute) addresses of the request's I/O buffer. These
addresses are found in the HACB's virtualAddress and
physicalAddress fields, respectively.

C. Posts completion status to the HACB.
Once the request is complete, HAM_ISR() must post the
HACB's completion status to its hacbCompletion field. Valid
completion status values are listed in Chapter 3 under the
description of the hacbCompletion field. These status codes
can reflect successful completion of the request, or they can
reflect HACB and/or device errors. For processor-
independence reasons, this field must be processed as a
LONG and manipulation of its contents should be done
arithmetically using macros. The HAM should post HACB
completion using the following macro:

#define SET_STATUS (UpperWord, LowerWord)((UpperWord)<< 16)
| ((LowerWord)& 0xFFFF))

D. Completes the HACB.
A HACB request has two possible completion paths
depending on whether or not the NWDIAG option was

4-16 Version 2.1d (September, 1995)

Host Adapter Module (HAM)
specified on the command line at load-time.

1. If NWDIAG was not specified, HAM_ISR() performs
one of the tasks outlined in steps a through c below.

2. If NWDIAG was specified, then HAM_ISR() calls the
diagnostic API, HAI_PreProcess_HACB_Completion(). This API has non-
blocking context, and it gives a diagnostic NLM a hook for snooping on
post-device-processed HACB information prior to it being completed
and passed to the CDM layer. The diagnostic NLM can alter a HACB's
completion status (hacbCompletion); thereby, introducing false errors to
test system behavior. After HAI_PreProcess_HACB_Completion() returns,
HAM_ISR() performs one of the tasks outlined in steps a through c
below.

a. If the request completes successfully and the
Freeze_Queue_Flag in the HACB's Control_Info field is cleared (zero),
HAM_ISR() completes the HACB by calling HAI_Complete_HACB(),
initiates the execution of the next HACB in the device's queue, and
returns to the calling process.

b. If the request completes successfully and the
Freeze_Queue_Flag in the HACB's Control_Info field is set (one),
HAM_ISR() completes the HACB by calling HAI_Complete_HACB() ,
freezes the device queue, sets the most-significant-bit in the HACB's
hacbCompletion field so that the callback CDM can know the device's
post-completion queue state, and returns to the calling process. The
device's queue must remain frozen until either the HAM receives a
HAM_Unfreeze_Queue for that device, or it receives a priority HACB
request for that device.

c. If there is an error, HAM_ISR() completes the HACB
by calling HAI_Complete_HACB(), freezes the device queue, sets the
most-significant-bit in the HACB's hacbCompletion field so that the
callback CDM can know the device's post-completion queue state, and
returns to the calling process.

The device's queue must remain frozen until either the HAM
receives a HAM_Unfreeze_Queue for that device, or it
receives a priority HACB request for that device.
Additionally, the low-order 31 bits of the hacbCompletion
field must remain intact to the value set in step 2.C above.
This value indicates the type of error that occurred.

Note: HAM_ISR() has other responsibilities regarding the device
queue. For a detailed specification on device queue behavior and how it
affects HAM_ISR(), see section 4.3.1.3.

Version 2.1d (September, 1995) 4-17

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

4.2.3 Aborting a HACB Request

HAM_Abort_HACB() is the HAM's entry point for aborting I/O requests,
and it has non-blocking context. This entry point is registered with the
NWPA during NPA_Register_HAM_Module(). The following shows the
sequence of events for aborting a HACB request:

The NWPA calls HAM_Abort_HACB() passing it HAMBusHandle, a
pointer to a HACB, and Flag as input parameters. HAM_Abort_HACB()
does the following:

A. Identify the host bus instance.
The HAM identifies the target bus instance based on the value
contained in the HAMBusHandle input parameter. The HAM
originally generated this HAMBusHandle value and registered it
for the bus instance using HAI_Activate_Bus() at load-time. From
this HAMBusHandle, the HAM should be able to access its
device list for the target bus instance.

B. Locate the HACB to be aborted. The NWPA passes a pointer to
the HACB that is to be aborted, which the HAM uses to locate the
associated request.

C. Determine the appropriate abort action.
HAM_Abort_HACB() has three possible actions depending
on the value of the Flag input parameter passed by the
NWPA.

1. If Flag = 0 (unconditional abort case), then
HAM_Abort_HACB() does ONE of the following:

a. If the HACB is still in the device queue (clean abort
case):

1. Unlinks the HACB from the device queue.
2. Places the ABORT code (0x0004) in the upper

WORD of the HACB's hacbCompletion field and 0x0000 in the lower
WORD using the following macro:
#define SET_STATUS (UpperWord,LowerWord) ((UpperWord)<<
16) | ((LowerWord) & 0xFFFF))

3. Completes the HACB by calling
HAI_Complete_HACB() passing it the HACB's HACBPutHandle as an
input parameter.

4. Returns 0 to notify the NWPA that this was a clean
abort, meaning that the HACB was aborted prior to being physically
processed by the device.

b. If the HACB is currently being processed by the device

4-18 Version 2.1d (September, 1995)

Host Adapter Module (HAM)
(dirty abort case):

1. Tags the HACB for abortion at a later time by
placing the ABORT code (0x0004) in the upper WORD of the HACB's
hacbCompletion field and 0x0000 in the lower WORD using the
following macro:

#define SET_STATUS (UpperWord, LowerWord) ((UpperWord)<<
16) | ((LowerWord) & 0xFFFF))

Under the dirty abort case, HAM_Abort_HACB()
must not complete the HACB. The HAM will
complete the HACB at a later time during its ISR.

2. Returns -1 to notify the NWPA that the HACB could
not be cleanly aborted.

3. HAM_ISR() must intercept the aborting HACB and
do the following:

a. Place the ABORT code (0x0004) in the upper
WORD of the HACB's hacbCompletion field and 0x0000 in the lower
WORD using the following macro:

#define SET_STATUS (UpperWord, LowerWord) ((UpperWord)<<
16) | ((LowerWord) & 0xFFFF))

b. Complete the HACB by calling
HAI_Complete_HACB() passing it the HACB's HACBPutHandle as an
input parameter.

2. If Flag = 1 (conditional abort case), then
HAM_Abort_HACB() does one of the following:

a. If the HACB is still in the device queue (clean abort):
1. Unlinks the HACB from the device queue.
2. Places the ABORT code (0x0004) in the upper

WORD of the HACB's hacbCompletion field and 0x0000 in the lower
WORD using the following macro:

#define SET_STATUS (UpperWord, LowerWord) ((UpperWord)<<
16) | ((LowerWord) & 0xFFFF))

3. Completes the HACB by calling
HAI_Complete_HACB() passing it the HACB's HACBPutHandle as an
input parameter.

4. Returns 0 to notify the NWPA that this was a clean
abort, meaning that the HACB was aborted prior to being physically

Version 2.1d (September, 1995) 4-19

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
processed by the device.

b. If the HACB has already been sent to the device, returns
-1 to notify the NWPA that the HACB could not be cleanly aborted. The
device queue continues to operate normally.

3. If Flag = 2 (check for clean abort case), then
HAM_Abort_HACB() does one of the following:

a. If the HACB is still in the device queue (clean abort),
returns 0 to notify the NWPA that the indicated HACB can be cleanly
aborted. The device queue continues to operate normally.

b. If the HACB has already been sent to the device, returns
-1 to notify the NWPA that the indicated HACB cannot be cleanly
aborted. The device queue continues to operate normally.

D. If the HAM cannot find the HACB that is to be aborted in any of
its lists, it has lost the HACB, which is a BAD condition. The HAM
should then return -2 to notify the NWPA of this condition.

Note: The results of step D will Abend the server. The HAM must
keep track of HACB requests it receives.

4.2.4 Unload-time Deregistration

Unloading of the HAM is initiated by the systems operator at the server
console. The following steps show the sequence of events at unload-time.

1. When a HAM is unloaded, the OS first calls the HAM's
HAM_Unload_Check() entry point passing it ScreenID as an input
parameter. HAM_Unload_Check() has blocking context, and it does the
following:

A. Determines if any applications are using any of the devices
managed by the HAM.

HAM_Unload_Check() calls NPA_Unload_Module_Check(),
which checks the NWPA's database and returns the status of each
device attached to the adapter. HAM_Unload_Check() returns the
use-status from NPA_Unload_Module_Check().
NPA_Unload_Module_Check() issues a warning message to the
console for each device that is locked. Current I/O to these
devices will halt if the HAM is unloaded, and the devices will be
deactivated.

B. Returns the composite device status to the calling process.
A return value of zero indicates that none of the HAM's devices

4-20 Version 2.1d (September, 1995)

Host Adapter Module (HAM)
are in use. A return value greater than zero indicates that one or
more of the HAM's devices are in use.

2. If HAM_Unload_Check() returns zero, the OS calls the HAMs
HAM_Unload() entry point. If HAM_Unload_Check() returns non-zero,
the OS issues a message to the console giving the operator a chance to
either cancel or continue the unload. Only if the operator chooses to
continue the unload will the OS call the HAM's HAM_Unload() entry
point.

The OS calls the HAM's HAM_Unload() entry point with blocking
context, and it does the following:

A. Causes the NWPA to terminate I/O to the HAM.

HAM_Unload() terminates I/O to the HAM by calling
HAI_Deactivate_Bus() immediately upon entry. It is during the
context of this API that the application is notified that its link to
the device is about to be severed. Therefore, the HAM must
remain operational and process requests until
HAI_Deactivate_Bus() returns control. Once this happens, the
HAM is guaranteed not to receive any more HACB requests for
that bus instance. HAM_Unload() must call
HAI_Deactivate_Bus() for each bus instance being managed by
the HAM.

B. Returns resources back to the system.

1. Ensure that all outstanding HACB's, if any exist, are
cancelled with the appropriate HAM UNLOAD completion code
described in Appendix B. This action is really a preventative measure.
Theoretically, all of these outstanding HACBs should have been aborted
during the context of HAI_Deactivate_Bus().

2. Cancel all asynchronous events, such as timeout handlers,
timers, etc., by calling NPA_Cancel_Thread() on each event.

3. Return memory to the system pool by calling
NPA_Return_Memory().

4. Unregister all hardware options using
NPA_Unregister_Options().

5. Unregister the module using NPA_Unregister_Module().

C. Return 0 if successful, or return -1 if unsuccessful.

Version 2.1d (September, 1995) 4-21

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

4.3 Special Topics

This section discusses special topics relevant to the HAM.

4.3.1 HAM Device Queues

A HAM is required to implement and manage a HACB request queue for
each device attached to the adapter it supports. Queue management
routines are to be provided by the HAM, and they must implement the
behavior outlined in this subsection.

Note: If a HAM supports an adapter that does hardware queuing, it
needs to implement whatever measures are necessary to ensure that the
queue state protocol discussed in this section is followed.

4.3.1.1 Request Hierarchy

HACBType=0 requests have highest priority and should be executed
immediately in the order they are received. HACBType=0 requests really
do not have to be queued since they map to HAM-specific functions that
do not require processing by a device. An example would be the request
corresponding to HAM_Return_HAM_Info(). This function merely
returns information about the HAM and can be completed immediately.
HACBType=0 requests can happen at any time, and if they need to
queued, they should probably be placed in a separate queue explicitly for
HAM functions rather than in a device queue. Other HACBType requests
do map to specific devices, so they do need to be queued if they cannot
be executed immediately . These types of requests can be processed as
priority HACBs or has normal HACBs depending on whether the
Priority_Flag is set in the HACB's Control_Info field. The following list
shows the execution order of HACB requests in a device queue:

1. Priority HACB requests (Priority_Flag is set) have the highest
priority in the device queue. Immediately upon receipt of a priority
HACB, the HAM should place the HACB at the head of the device
queue and issue it to the device.

Priority HACB requests are generally used by the CDM and
Media Manager for diagnostics and error recovery. By setting
both the Priority_Flag and the Freeze_Queue_Flag, the CDM or
Media Manager can execute HACB requests in lock-step
fashion.

If multiple priority requests are placed in the queue due to a
device busy condition, they are executed on a LIFO basis.

2. Normal HACB requests (Priority_Flag is cleared) have the

4-22 Version 2.1d (September, 1995)

Host Adapter Module (HAM)
lowest priority. These requests are the most frequent and should be
placed at the end of the queue.

Note: Unless the queue contains a HACB request with the
Preserve_Order_Flag set (this condition is described in the next
subsection), the HAM can reorder normal requests in a device queue to
optimize performance. However, the routines that handle the reordering
must implement fairness so that any one, normal HACB request gets
executed in a timely fashion instead of always being pushed to the back
of the queue.

4.3.1.2 Preserve-Execution-Order Requests

To support sequential devices where preserving the execution-order of
requests is critical, the NWPA defines a Preserve_Order_Flag for the
HACB. This flag also resides in the HACB's Control_Info field. HACB's
with this flag set are a special-case of normal HACB requests. When the
HAM receives a HACB with the Preserve_Order_Flag set, it must always
place the request at the back of the device queue.

The Preserve_Order_Flag indicates that all requests currently positioned
in front must be executed before the preserve-order request, and any new
requests that get placed in the queue must be executed after the preserve-
order request. If multiple preserve-order requests are in the queue, this
paradigm must be extended to maintain the prescribed behavior.

Priority HACB requests, as explained in the previous subsection, are the
one exception to the preserve-order rule. Priority HACB requests always
get placed at the front of the queue even if preserve-order requests are
present.

4.3.1.3 Queue State

This subsection defines the state conditions of a device queue. A device
queue has two states: frozen or unfrozen. A frozen state means that the
issuing of requests in the queue to the adapter/device is halted; however,
queue management does not stop. If the HAM receives any new requests
for a frozen queue, it still must accept them and place them in their
proper sequence in the queue. An unfrozen state means that requests
continue to be issued to the adapter/device.

In the event of an error, the HAM is expected to freeze the queue of the
device that caused the error, post the appropriate completion status as
prescribed in the description of the HACB's hacbCompletion field in
Chapter 3, and complete the HACB using HAI_Complete_HACB().

If the HAM is managing multiple devices, freezing one device queue

Version 2.1d (September, 1995) 4-23

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
does no affect the state of any of the others. Also, the HAM must keep
the queue frozen until that device either receives a
HAM_Unfreeze_Queue() request or a priority request. After receiving
one of these requests, the queue starts up again.

During normal I/O operations, the HAM controls the queue state from
two different time points: the HACB receive-time point and the HACB
completion-time point. The receive-time point is the HAM's entry point
that receives HACB requests prior to sending them to the adapter/device
(HAM_Execute_HACB()). The completion-time point is the HAM's entry
point that completes the HACB after it has been processed by the device
(HAM_ISR()). Table 4-1 summarizes queue state management.

4-24 Version 2.1d (September, 1995)

Host Adapter Module (HAM)
Table 4-1: Device Queue States

At HACB Receive Time
HAM_Execute_HACB()

At HACB Completion Time
HAM_ISR()

if (Priority_Flag set)
{
Place at head of queue;
Issue to adapter/device;
if (Freeze_Queue_Flag set)
Freeze device queue;
return;
}
/* For any other HACB at head of queue */
else
{
if ((queue is empty) && (adapter/device notBUSY))
{
Issue to adapter/device;

if (Freeze_Queue_Flag set)
Freeze device queue;
return;
}
else
Place at back of queue;
return;
}

if (error occurred)
{
Determine device queue state (frozen/unfrozen) and
error code according to Appendix B;

Set hacbCompletion code from current device queue
status and current error code;

Complete HACB back to the NWPA;

if (device queue is unfrozen)
Issue next request in queue to adapter/device;

return;

}
Set the current error code to Successful_Completion;
/* No error occurred, check for the implicit
UNFREEZE_QUEUE within HACB */

if ((Priority_Flag == set) && (Freeze_Queue_Flag
== clear))
UNFREEZE the queue for the current device;

else

Do NOT modify current queue state status for this
device;

Set hacbCompletion code from current device queue
status and current error code;

Complete HACB back to the NWPA;

if (device queue is unfrozen)
Issue next request in queue to adapter/device;

return;

if (HAM's HAM_Unfreeze_Queue() function is called)
{
Unfreeze target device queue;
Issue next request in queue to adapter/device;
return;
}

Note: The HAM should never freeze a device queue on a request that
was dirty aborted. If during its ISR, the HAM detects a HACB request

Version 2.1d (September, 1995) 4-25

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

that was dirty aborted, the HAM should complete the HACB with the
abort completion code, even if the request generated an error.

4.3.2 Asynchronous Event Notification

The NWPA provides a mechanism for CDMs to request that HAMs
notify them of asynchronous events. These include hardware events such
as a bus reset, device reset, or a device attention. The CDM requests for
asynchronous event notification (AEN) by issuing a HACBType=0
request to the HAM. HACBType=0 means that the HACB's union
command area is defined by the host adapter command structure.

Note: A HACB request for asynchronous event notification is also
referred to as an AEN HACB.

To register for asynchronous event notification, the CDM must issue an
AEN HACB with the following information in the HACB's host adapter
command block:

Function = 5
Parameter0 = Bitmap indicating the type of events for which the

CDM wants to be notified. Currently, the NWPA recognizes the
following:

0x00000001 Bus reset
0x00000002 Device reset
0x00000004 Device attention3
0x00000008 Adapter reset
0x00000010 Reserved

to
0x80000000

Parameter1 = 0
Parameter2 = 0

These requests must be issued on a per device basis, meaning that the
CDM will provide the correct device handle for the device it wants
monitored. The device handle is placed in the AEN HACB's
DeviceHandle field.
The CDM builds the bitmap indicating the events it wants to be informed
of, places the bitmap value in the Parameter0 field of the AEN HACB,
and executes the request by calling the NWPA routine
CDI_Non_Blocking_Execute_HACB(). This API requires the CDM to
provide a pointer to a callback routine as an input parameter.

The HAM receives the AEN HACB through its
HAM_Queue_AEN_HACB() HAM function and maintains it in a local

3 In order for a HAM to detect a device attention, the CDM must first issue commands that will program the device to issue the alert.

4-26 Version 2.1d (September, 1995)

Host Adapter Module (HAM)
holding area associated with the target device until an event occurs.
These AEN HACBs should not be placed in the device queue since they
do not represent I/O requests that need device processing.

After an AEN event occurs, the HAM will check to see if the value in
Parameter0 represents an event that a CDM wants to be notified of. If
so, the HAM will freeze the device queue, set a bitmap value in the
HACB's Control_Info field to indicate which event(s) occurred, place the
AEN code (0x80080000) in the HACB's hacbCompletion field, and
complete the AEN HACB by calling HAI_Complete_HACB(). The bit
definitions for the return bitmap value are the same as those defined for
the Parameter0 field.

Note: If no CDM has registered for a specific AEN event that occurs,
the queue state will not change.

The HAM must be ready to accept multiples of these requests per device.
When an event occurs, the HAM should complete all AEN HACBs
registered for that event for the target device.

4.3.3 Reentrance

To support multiple adapter cards compatible with a HAM's type, a
HAM may be declared reentrant in the definition (.DEF) file. Doing so
allows the HAM to maintain multiple instances of itself; however, only
one code image is maintained in the file server's memory. Each
subsequent LOAD command for this same HAM calls HAM_Load()
creating a new instance of itself. For each instance, the HAM receives a
pointer to the command line so that it can establish a unique I/O
configuration for that instance. The HAM must maintain an internal
counter to track its instance number; and, when the time comes for the
HAM to be unloaded, it must deactivate each bus instance managed by
the HAM by calling HAI_Deactivate_Bus() and free all allocated
resources.

4.3.4 Hot Software Replacement

Hot software replacement is an NWPA feature that provides for dynamic
replacement of one version of a HAM driver with an updated version.
Replacement is dynamic because the swap can be done without having to
dismount any volumes or disrupt the I/O channel for a lengthy period of
time.

Hot software replacement only applies to HAMs from the same
manufacturer, which means that the HAM being replaced (old HAM) and
the new HAM must have the same vendor ID

Version 2.1d (September, 1995) 4-27

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
(NovellAssignedModuleID). The vendor ID is assigned to a
manufacturer by Novell Labs.

Presently, NWPA does not require HAMs to implement hot software
replacement. However, due to market reaction when the feature was
demonstrated, this requirement may change. Therefore, it is highly
recommended that HAMs implement this feature, as it will be a
tremendous value-add to customers.

4.3.4.1 Overview

The objective in hot software replacement is to establish an I/O channel
in the new HAM that looks logically identical to the one in the old HAM,
from the perspective of NWPA. Logically identical means that the new
HAM must show all the same devices, adapters, hardware resources, and
handles that were used in the old HAM. Details on the I/O channel are
discussed later in this section.

The method used to get configuration information is for the new HAM to
pass a series of vendor-specific-messages to the old HAM and the old
HAM responding to each message by returning the appropriate
configuration information in a buffer provided in each message. The
structure of these messages is not defined in NWPA. Their structure and
meaning are defined by the manufacturer of the HAMs.

The new HAM sends a vendor-specific message by calling
NPA_Exchange_Message(). This routine routes the message to the old
HAM by calling its HAM_Software_Hot_Replace() routine. The old
HAM must provide this entry point for hot replace to work. The old
HAM keys off of some field (or fields) in the message to determine what
information is being asked for, and then copies it into the message buffer.
All of this message exchanging is done during the context of the new
HAM's HAM_Load() (initialization) routine. After the new HAM
successfully gets all the channel information it needs to be operational, it
succeeds its HAM_Load() routine by giving a return value of zero. At
that point, NWPA routes I/O through the new HAM.

To understand the general details of hot software replacement, it is
necessary to review the elements that constitute an I/O channel in the
perspective of NWPA.

NWPA routes I/O by identifying the target device and the bus to which
the target device is attached. The identification is done through a series
of handles, some generated by the NWPA module and some generated by
the HAM. The following is a list of these handles as discussed in this
specification:

NWPA Generated HAM Generated

4-28 Version 2.1d (September, 1995)

Host Adapter Module (HAM)
NPABusHandle HamBusHandle

DeviceHandle

The NPABusHandle and the HamBusHandle are the handles used to
identify a target bus. There are two handles given to guarantee
uniqueness, and they are exchanged during HAI_Activate_Bus(). As
indicated above, the HAM generates one of the handles and the NWPA
generates the other. When the NWPA passes HACBs to any of the
HAM's entry points, it will pass the HAM-generated handle to identify
the target bus. In the reverse direction, when the HAM indicates a target
bus to any of the NWPA routines, it passes the NWPA-generated handle.

The third handle in the I/O channel is the HAM-generated DeviceHandle.
This is the HAM's unique identifier for a particular device on a given
bus. The DeviceHandle only needs to be unique within the devices
attached to its bus. All HACBs targeted for specific devices will supply
the corresponding HAM-generated DeviceHandle.

For hot software replacement to work, the new HAM must use all the
same handle values that the old HAM used so that NWPA's perspective
of the channel does not change. Otherwise, the channel will be disrupted
to the point where NetWare volumes associated with the channel will
dismount. This is an extremely important point. Since all handle values
must be maintained between the swapping modules, and since the two
modules are exchanging configuration information across separate,
protected memory domains, these handles cannot be implemented as
memory pointers.

In addition to these handles, hardware resources such as ports, IRQs, and
DMA channels are components to the NWPA-HAM I/O channel. When
a HAM registers for a hardware resource using NPA_Register_Options(),
NWPA registers the resources in behalf of the HAM. As far as NetWare
is concerned, NWPA owns the resources and merely lends them to the
HAM. This facilitates hot software replacement, because neither HAM
has to worry about unregistering or registering hardware resources
during the swap. Doing so would dissolve the I/O channel from the OS's
perspective, and dismount any volumes associated with the channel. The
new HAM only needs to find out what resources the old HAM was
operating with and configure itself the same way. Once the hot swap is
finished, NWPA redirects the use of those hardware resources to the new
HAM. As far as the OS is concerned, nothing has changed.

4.3.4.2 Flow of Events

This section steps through the flow of events in the hot software replace
paradigm, describing fundamental concepts on how to implement it. For
an example of one specific implementation method, refer to the sample
source code for SCSIPS2.HAM in the driver development kit. This kit is

Version 2.1d (September, 1995) 4-29

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
on compact disc distributed by Novell Labs.

To see how SCSIPS2.HAM initializes itself for hot replace, look at the
DriverStart procedure in the file HAMSCSI.386. To see how
SCSIPS2.HAM, acting as a new HAM, requests configuration
information, look at the DoHotReplace procedure in the file
HAMHOT.386. To see how SCSIPS2.HAM, acting as an old HAM,
gives configuration information, look at the ExchgPipe procedure in the
file HAMHOT.386.

1. The HAM is loaded invoking its HAM_Load() routine. At the
beginning of this routine, the HAM calls NPA_Register_HAM_Module().
All of the remaining steps occur during the context of the new HAM's
HAM_Load() routine.

2. NWPA checks its list of existing modules to determine if this is a
new load of a module or a reentrant load. A new load means that the
module's LoadHandle does not match the LoadHandle of any other
module in the list.

3. If this is a new load, then NWPA checks for a possible hot replace
candidate. A hot replace candidate is an existing module that has the
same NovellAssignedModuleID as the module being loaded:

(newModule->LoadHandle!=candidateModule->LoadHandle)&&
(newModule->NovellAssignedModuleID==candidateModule->NovellAssignedModuleID)

Important: The NetWare NLM loader assigns the HAM's LoadHandle, and it uses the
name of the module to calculate it. In order for hot replace to work, the new HAM
cannot have the same name as the old HAM. Otherwise, the LoadHandles will not be
unique, and the load of the new HAM will be mistakenly taken as a reentrant load of the
existing HAM. As a suggestion for LoadHandle uniqueness, include a revision number
in the module name.

4. If a candidate is found, NPA_Register_HAM_Module() returns a value
of 1.

5. The new HAM then determines if it will do hot replace or fail its
load leaving the existing HAM in the I/O channel. If the HAM decides
to do hot replace, it should check the command line for any possible
options, such as NWDIAG, and then start requesting configuration
information using its vendor-specific messaging scheme. The new HAM
sends these messages to the existing HAM by calling
NPA_Exchange_Message(). Each message should include a buffer space
sufficient to receive the requested information.

6. The existing (or old) HAM receives these messages through its
HAM_Sofware_Hot_Replace() entry point. The old HAM determines

4-30 Version 2.1d (September, 1995)

Host Adapter Module (HAM)
what information is being asked for and copies it into the message buffer.

In the SCSIPS2.HAM example, there are fields at the beginning of
the message indicating operations to perform. SCSIPS2.HAM, when
it acts as a new HAM initiating hot replace, first asks for all the
adapters being supported on a find-first-find-next basis. Refer to
HAMHOT.386, procedures DoHotReplace and ExchgPipe, for more
details.

7. The new HAM continues passing messages until it gets all the
information it needs to be operational. The new HAM needs to make
sure that it is using all the handle values that the old HAM used and the
same hardware resources. The new HAM does not need to register for
these resources, NWPA automatically redirects them to the new HAM.
When the new HAM is ready to take over function of the old HAM, the
new HAM must make a call to NPA_Register_Options() to actually
perform the module switch.

8. After the new HAM is in place, it succeeds its HAM_Load() routine
by returning zero. At that point, the new HAM is in the I/O channel
handling HACB requests. The old HAM is dormant and can be unloaded
by a user. It is important that the old HAM does not try to unregister its
hardware resources (NPA_Unregister_Options()) during its
HAM_Unload() routine. NWPA will manage and direct them
appropriately.

Version 2.1d (September, 1995) 4-31

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
4.3.5 Diagnostics

For certification purposes through Novell Labs, a HAM is expected to
support a diagnostics command line option. The command line keyword
that turns this option on is NWDIAG. The HAM must do the following
to setup this option:

1. Build an NPAOptionStruct with the following information in its
fields (refer to Chapter 7):

Name ="0x6NWDIAG0x0" /* Length preceded string that is
also zero terminated */
Parameter0 = 0
Parameter1 = 0
Parameter2 = 0
Type = 0
Flags = 0
String = "NWDIAG" /* ASCII string */

2. Call NPA_Add_Option() with a pointer to the NPAOptionStruct
above as an input parameter.

3. Call NPA_Parse_Options() which in turn calls
HAM_Check_Option() if NWDIAG was found on the command line.

4. Within the context of HAM_Check_Option(), check the Name
and String fields of the NPAOptionStruct input parameter to verify the
found option.

5. Sets an internal flag to turn on the HAM's diagnostic mode.

When the diagnostic flag is set, it directs the HAM to detour its normal
HACB completion path. Typically, the HAM, within the context of
HAM_ISR(), performs the following:

1. Transfers device information from a custom control block (CCB)
to the appropriate fields in a HACB including HACB completion (status)
information.

2. Determines if the device queue needs to be frozen (freeze queue
if an error occurred during request processing).

3. Completes the HACB by calling HAI_Complete_HACB().
However, if diagnostics is turned on, the HAM is required to shim a call
to HAI_PreProcess_HACB_Completion() between steps 1 and 2 above.
This API allows a diagnostics NLM the opportunity to snoop or alter
HACB information after being processed by a device.

4-32 Version 2.1d (September, 1995)

Host Adapter Module (HAM)
4.3.6 Error Handling and Auto Error Sense

Auto Error Sense is a generic phrase describing the way in which error
sense information is automatically returned with an I/O request for a
given bus protocol. As an example, for SCSI this phrase refers to auto
REQUEST SENSE. Some adapter boards support this feature and others
do not. The HAM, during its load-time initialization, is responsible for
determining whether or not the feature is to be used. There are three
fields in the HACB structure (HACBStruct) and one in the
DeviceInfoStruct that provide NWPA support for auto error sense. The
following is a list of these fields:

Fields in the HACBStruct:
LONG ErrorSenseBufferLength;
void *VErrorSenseBufferPtr;
void *PErrorSenseBufferPtr;

Field in the DeviceInfoStruct:
LONG AttributeFlags;

If auto error sense is going to be used, then the HAM needs to indicate
this by setting the Auto_Error_Sense_Flag (0x00000040) in the
AttributeFlags field of the DeviceInfoStruct associated with each device
attached to the adapter. The HAM reports the DeviceInfoStruct
information to the NWPA during HAM_Return_Device_Info(). For a
device error under the auto error sense case, the HAM must ensure that
the sense information gets placed properly into the HACB's error sense
buffer. The error sense buffer is defined by the NWPA's
ErrorSenseInfoStruct, and its length is run-time variable according to the
CDM that allocated it. The following is the structure's ANSI C definition:
struct ErrorSenseInfoStruct
{

LONG NumberBytesRequested;
LONG NumberBytesReturned;
LONG Reserved[2];
BYTE ErrorSenseData[1];

} ;

For a description of its fields and its run-time length variability, refer to
the structure's reference information in Chapter 7. Also, the NWPA
provides the HAM with both virtual and physical (absolute) addresses of
the auto error sense buffer, and the buffer is guaranteed to be physically
contiguous in memory. These factors should accommodate any transport
protocol. The HAM needs to make some special considerations in
addition to the method of error handling this specification already
prescribes4. These considerations must be dealt with prior to completing
the HACB that caused a device error. They are as follows:

4These methods refer to queue state behavior, posting of the appropriate HACB completion code, etc.

Version 2.1d (September, 1995) 4-33

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
∙ The HAM determines how many bytes of sense data the issuing

CDM desires by reading the value in the NumberBytesRequested
field of the auto error sense buffer. The HAM then builds its adapter-
specific command block accordingly, and issues it to the device.

∙ If less than what the CDM requested, the HAM places the number of
error sense bytes that the device actually returned in the
NumberBytesReturned field. The following formula shows this
concept:

NumberBytesReturned = min(NumberBytesRequested,
BytesReturnedByDevice);

The following assumptions apply to the above formula:

∙ The CDM must be informed when the length of the sense
information returned by the device is less than what the CDM
requests.

∙ The CDM is not concerned with any additional sense information
beyond the amount it requested.

4.3.7 Scanning Specific Target IDs and LUNs (Public and Private Devices)

The HAM is responsible for detecting devices attached to the adapters it
manages and reporting these devices to the NWPA. The NWPA invokes
these tasks through the following HAM functions:

∙ HAM_Scan_For_Devices()
∙ HAM_Return_Device_Info()

In order for devices to be initially detected and recognized by the
NetWare OS, an initial "scan for new devices" command must be issued
either at the command line or in a .NCF file. When the OS receives this
command, it causes the NWPA to issue a scan message to all HAMs
loaded on the server. For SCSI, the initial scan message tells each HAM
to scan LUN 0, and only LUN 0, of all its target IDs (SCSI IDs)5.

To make it possible for devices at LUNs other than zero to be detected
and recognized, the NWPA provides its own set of scan messages that the
CDM can issue to the HAM. CDMs are given the responsibility of
initiating these additional scan messages since they have specific
knowledge about the devices. Therefore, they know the conditions when

5There are three reasons why the OS limits its initial scan to LUN 0: 1. Most SCSI devices come hard-addressed for LUN 0. 2. Some
LUN 0 devices reflect themseves on the other LUNs of the target ID. To the HAM, these reflections appear as valid devices even though
they are just phantoms. 3. Some devices, such as hard disks, will typically hang if any LUN beyond LUN 0 is probed on the target ID.

Note: Under the NWPA, the HAM is not expected to differentiate between “real” and “phantom” devices. This responsibility belongs
to the CDM.

4-34 Version 2.1d (September, 1995)

Host Adapter Module (HAM)
to suspect a companion device on another LUN.

The CDM issues these scan messages as HACBType=0 requests.
HACBType=0 indicates to the HAM that the HACB's union command
area is defined by the host adapter command structure. The CDM then
sets values in the HACB according to the scan case (or action) it wants
the HAM to perform. The NWPA defines four scan cases. These cases
are referred to numerically as either Case 0, Case 1, Case 2, or Case 3
corresponding to the value the CDM sets in the Parameter2 field of the
HACB's host command block. Case 0 scans are issued by the the OS, and
Cases 1 - 3 scans are issued by a CDM.

Through these scan cases, a CDM can also tell the HAM whether to
declare a detected device public or private. A public device is one that
has its Private_Public_Flag (0x80) cleared in the AttributeFlags field of
its corresponding DeviceInfoStruct object. A public device is visible to
any CDM that is interested in that device's device type. The NWPA gives
all of these CDMs a chance to look at the device and an opportunity to
bind to it. When one of these CDMs decides to bind to the device, it
receives the HAM-generated DeviceHandle, which is the token
necessary for the CDM to issue I/O to the HAM's device.

A private device is one that has its Private_Public_Flag set in the
AttributeFlags field of its corresponding DeviceInfoStruct object. A
private device is visible only to the CDM that detected it through a
specific scan. During the specific scan, the HAM passes the device's
DeviceHandle directly to the CDM. By privately owning this token, the
CDM has exclusive access to the HAM's device.

Note: For specifics on how to implement these scan cases and for
respective paradigm descriptions, refer to HAM_Scan_For_Devices() in
Chapter 8. This chapter also gives more details regarding private and
public devices.

4.3.8 Automatic Hardware Detection and Driver Configuration

Note: This section introduces a feature that HAMs may be required to
implement in the future. The ramifications of this feature are still under
investigation; therefore, the real purpose of this section is to introduce
the concept so that HAM developers will be aware of this feature and
perhaps be able to lay important groundwork in their current code that
will make future incorporation of the feature smoother.

Automatic hardware detection and driver configuration, also known as
auto-detect/auto-config, is a feature where the HAM automatically
"detects" its host adapter hardware, if it exists on the server. If the HAM
does not detect its adapter, it fails to load. If the HAM detects its adapter

Version 2.1d (September, 1995) 4-35

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
(or adapters), it tries to "configure" the adapter and register the correct
options such as ports/slots, interrupts, DMA channels, etc. Once the
adapter is configured properly, the HAM will be told to scan its buses for
attached devices and return information on those devices. The OS will
then build a list of these devices and try to match them with appropriate
CDMs via information given in their respective information (.DDI) files.
A future version of this specification will layout the guidelines associated
with auto-detect/auto-config and define a paradigm for implementing the
feature.

4.3.9 Elevator Queuing

The purpose of the elevator queues in the NWPA is to order the requests
for each device in such a way that the total request throughput is
increased while assuring that all requests are executed within a
reasonable time frame. This is accomplished by a filter internal to
NWPA which can bind to all hard disks, CDROM devices, magneto-
optical disks, and WORM devices, but not to tape devices. This filter
also combines requests into scatter-gather requests.

The elevator filter can be enabled or disabled on a per-device basis using
the attribute flags within the DeviceInfoStruct. When the
Elevator_Off_Flag is set, the elevator is disabled. When cleared (default
setting except for tape devices) the elevator filter is enabled.

The filter can be adjusted for each HAM by using the ElevatorThreshold
byte in the DeviceInfoStruct. At this point, the requests may be single
requests, or scatter-gather requests. The elevator threshold is the number
of requests the HAM would like to process at any given time. The
default value of this threshold is 2 requests, which allows a request at the
device and a request waiting in the queue. The filter will not “elevator”
any requests until the HAM has at least its threshold number of requests.
Once the HAM has the threshold number of requests, the elevator filter
will then accept, organize, and check requests for scatter-gather
possibilities. Whenever the number of requests at the HAM falls below
the elevator threshold, the filter will send a set of requests to the HAM.
This set may contain as many as 15 requests. The filter will then
continue to “elevator” the requests until the number of requests at the
HAM again falls below the elevator threshold.

The threshold can be increased to allow more requests at the HAM. This
may be necessary in some HAMs to prevent “starving” the device or
adapter. It is important, however, to not set the threshold too high or the
filter will not have the opportunity to optimize the request order or look
for scatter-gather opportunities. If the HAM or adapter already performs
its own elevator queuing, the elevator filter should be turned off. This
will allow the HAM to receive all requests in the order they are sent.

4-36 Version 2.1d (September, 1995)

Host Adapter Module (HAM)
4.3.10 Vendor-Pass Through API for HAMs

This API (NPA_HACB_Passthru()) provides applications the ability to
communicate directly with an adapter. This provides a vendor with a
communications channel to allow for vendor-specific commands/data to
be sent to/from the adapter. HAMs must be able to handle all messages
sent to it using this API, although the HAM may return an “unsupported
function” error if necessary. It is important to understand that if a request
is sent down which causes an error and/or queue freeze, the application
must clear up the problem and unfreeze the queue if necessary so that the
HAM can process commands normally. See the NPA_HACB_Passthru()
API in Chapter 7 for more details.

Version 2.1d (September, 1995) 4-37

