
Appendix C LDI/DDI Specification
Supplements

This Appendix contains excerpts from the specification supplements for the development of installation
files for both LAN drivers (LDI) and Device Drivers (DDI).

Version 2.1d (September, 1995) C-1

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

What is the Installation Information File?
In order for a software utility to install MLIDs and disk drivers, it
must know the parameters associated with each driver, the input
required from the user, and how to set up the configuration file(s).
The installation information file for an MLID or a disk driver
describes the configurable driver parameters, the input required
from the user, and the format of the required output.
The information file contains one or more driver descriptions. Each
driver description refers to a primary driver file and can also refer
to other auxiliary driver files. Multiple descriptions in multiple files
can also refer to a single driver. During installation, the installation
information and the referenced driver file(s) are copied to a
permanent directory on the machine's hard drive.

The NetWare Server Installation Information File
The driver installation information is contained in ASCII text files
that are shipped with the driver. The installation information
filename must have one of the following extensions, depending on the
type of driver it references:

Installation Information
Filename Extensions

Environment Extension

Server LAN Driver .LDI

Server Disk Driver .DDI

Reserved Keywords
The keywords listed in the following table have special meaning in
the installation information file. This supplement describes, in the
appropriate section, each of the keywords listed in the table.

Note: This supplement uses the full form of the keywords for clarity; however,
you should use the abbreviated form when you create the final installation
information file. You should also use whitespace and comments sparingly.

Installation Information File Keywords and Abbreviations

Keyword Abbreviation

AND AND

C-2 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements

CDESCRIPTION CD

CHOICE CH

CPROG CP

DECIMAL DEC

DEFAULT DEF

DESCRIPTION DES

DLANGUAGE DLANG

DRIVER DR

ELSE ELS

FILE FILE

FRAME FR

HELP HELP

HEX HEX

HIDDEN HID

IF IF

LANGUAGE LANG

LIST LI

NOT NOT

OCTETBITORDER OCT

OFILES OF

OPTIONAL OPT

OR OR

OUTPUTFORMAT OUT

PARAMETERVERSION PAR

PATH PATH

PRODUCTID PROD

PROMPT PR

REQUIRED REQ

RESERVEDLENGTH RES

STRING STR

SYNTAXVERSION SYN

TIMEOUT TIME

Version 2.1d (September, 1995) C-3

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

TYPE TYP

UNDEFINED UND

VALUES VAL

VERSION VER

Information File Format and Syntax
Format of the Installation File
A driver information file contains one or more driver descriptions, as
well as language definitions for the strings within the descriptions.
The general format of the description file is shown below:

;DrIvEr DeScRiPtIoN

Version: <driver description file number>
SyntaxVersion: 1.00

Driver <driver description #1 name> <dependency expression>
{

<driver #1 description, may include $<string> variables>
}

Driver <driver description #2 name> <dependency expression>
{

<driver #2 description, may include $<string> variables>
}
.
.
.

DLanguage: <default language ID>
$<string #1 variable name> = "<string #1 text in default language>"
$<string #2 variable name> = "<string #2 text in default language>"
.
.
.

Language: <language #1 ID>
$<string #1 variable name> = "<string #1 text in language #1>"
$<string #2 variable name> = "<string #2 text in language #1>"
.
.
.

Language: <language #2 ID>
$<string #1 variable name> = "<string #1 text in language #2>"
$<string #2 variable name> = "<string #2 text in language #2>"
.
.
.

;DrIvEr DeScRiPtIoN EnD
The following section describes each portion of the above example.
The Initial and Final Lines
Note the initial and final lines:
;DrIvEr DeScRiPtIoN
.
.

C-4 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements
.
;DrIvEr DeScRiPtIoN EnD
These signature lines bracket the driver installation information.
The installation/configuration utility searches for these signatures
whenever an information file is appended to the driver module.
These lines are required and must appear exactly as shown. They
must not be translated to another language.
Version
The Version label is optional, and the installation/configuration
utility ignores it. The Version label allows you to manually control
the version number.
SyntaxVersion
The SyntaxVersion label is mandatory. SyntaxVersion informs the
installation/configuration parser of the syntax to expect in the driver
information file. Novell controls the syntax version number; the
version is currently 1.00.
Driver Section
The driver section includes one or more driver information blocks.
Each driver block contains a short description of the driver, help
information, and the driver's configurable parameters. For an
explanation of the syntax within the driver block see the ``Driver
Section."
Language Section
The language section allows you to translate text strings (help
messages, prompts, etc.) to different languages. Language translation
is optional and is not necessary for drivers that will operate only in a
single language.
If you implement the language section, the driver references any
translatable text strings with string names. Each language block then
contains the string names and the corresponding text in the
respective language.
An example driver information file is shown below.

Example
;DrIvEr DeScRiPtIoN
Version: 1.00
SyntaxVersion: 1.00

;File SAMPLE1.INF
Driver SAMPLE1

{
Description: $DESCRIPTION
Help: $HELP

Version 2.1d (September, 1995) C-5

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
PROMPT INT

{
Values: 3, 5, 7, 9
Default: 3

}

PROMPT PORT
{

Values: 300, 310, 320
Default: 300

}

FRAME FrameSelect
{

Help: "The driver defaults to using
the 802.3 frame type. You can

remove this frame type and/or add
the 802.2, 802.2 SNAP, or

Ethernet II frame types."

CDescription: "802.3"
Choice: "Ethernet_802.3"

CDescription: "802.2"
Choice: "Ethernet_802.2"

CDescription: "802.2 SNAP"
Choice: "Ethernet_SNAP'

CDescription: "Ethernet II"
Choice: "Ethernet_II"

Default: 1
}

}
DLanguage: 4
; Default English

$DESCRIPTION = "Sample driver description"
$HELP = "Sample help text information"

Language: 247
; Greek

$DESCRIPTION = "Sample driver description"
$HELP = "Sample help text information"

;DrIvEr DeScRiPtIoN EnD
General Syntax

This section describes the general syntax of a driver installation
information file.
1. You can add comment lines by starting the line with a semicolon

(;). The parser ignores everything on the rest of that line. A
semicolon can be preceded by white space (tabs or space

C-6 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements
characters). A comment cannot exist on the same line as a
declaration. For example:
; installation file for driver: NE2000.LAN

2. Items in angle brackets indicate something that you must supply.
The supplied item describes that aspect of the driver. For
example:
File: <filename>
File: NE2000.LAN

3. Items in square brackets ([]) are optional.
4. Items separated by (or) indicate alternates. For example:

THIS or THAT
5. Labels are words that are followed by a colon. Labels are not

case-sensitive. For example, the label File: is the same as FILE:.
6. Double quotes (" ") , single quotes (` ') , or whitespace can

surround text strings.
a. Strings without quotes must not contain white space, single

or double quote characters, double-byte characters, or the
following reserved characters: = { } () , : - ; < > !

b. Strings surrounded by single quotes can contain white space,
single or double quote characters, double-byte characters, or
the following reserved characters: = { } () , : - ; < > !

c. Strings surrounded by double quotes are treated as single-
quoted strings. However, these strings are text strings that
can be translated to other languages. For example:
"The driver defaults to using ..."
`Novell NE2000'
ISA

A single quote character can appear in a double- or single- quoted
string if it is preceded by a backslash (\'). However, a double
quote character cannot appear in a double-quoted string even if
it is preceded by a backslash.

A backslash is represented within a single- or double-quoted string
as (\\).

The newline and tab characters, \n and \t, can exist within single- or
double-quoted strings. The parser changes the \n and \t to the
appropriate characters.

7. Keywords and labels must not be enclosed in quotes. Therefore,
labels cannot contain white space, single or double quote
characters, double-byte characters, or reserved characters.

8. Help text within double quotes can be longer than one line. When
a quoted string spans more than one line, all characters from the
last non-white space on one line to the first non-white space on
the next line will be replaced with a single space character.

Version 2.1d (September, 1995) C-7

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
You can include a new line character in a quoted string by using \n.

The parser will replace the \n by a CR-LF combination. \t
indicates a tab.

Newline characters and tabs may only appear in help text and
output format strings. For example:
"The ISADISK driver can be loaded twice. When
loaded more than once, the driver loads
reentrantly.\n\n

The default settings are the standard values
for an internal controller."

Language Translation
The installation information file's language section allows the
translation of text strings to different languages. These text strings
can include help messages and prompts. Language translation is
optional and is not necessary for drivers that only operate in a single
language.
If you implement the language section, any translatable text strings
required in the driver descriptions use $<string_name> variables
instead of the actual text. Each language block then contains the
string name and the corresponding text in the respective language.
The Language and DLanguage labels identify a block of text string
translations for either a particular language or the default language.
If the Language label exists, the DLanguage label must also exist and
must be the first language label. If only one language label exists in
the file, it must be the DLanguage label.
When the installation utility encounters a $<string_name> variable,
it searches for a definition of that string in the language block that
corresponds to the installation/configuration utility's current
language. If the string is not defined in the utility's current language,
the utility searches string definitions in the default language block.
If a quoted string follows a $<string_name> with no intervening
white space, and if the string definition is not found, the installation
utility uses the quoted string as the string definition. This feature
allows you to specify a default string (typically in English) if the
string definition is not found in the language sections. If the
installation/configuration utility has already found a definition for
the string, it will ignore the adjacent quoted string. For example:
$DESCRIPTION "Novell NE2000 Driver"
Finally, if the utility cannot find a string definition in any of the
above mentioned forms, it will use the string name itself as the string
text.

C-8 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements

Language ID
A number, or language ID, identifies each language block. The
language IDs that are currently assigned are listed below:
Canadian French 0
Chinese 1
Danish 2
Dutch 3
English 4
Finnish 5
French 6
German 7
Italian 8
Japanese 9
Korean 10
Norwegian 11
Portuguese 12
Russian 13
Spanish 14
Swedish 15

The NetWare operating system and utilities will be translated into
German, Japanese, French, Spanish, and Italian. You can choose to
provide text string translations for all, some, or none of the
languages available. A sample installation information file with a
Spanish language block is illustrated below:
Example
;DrIvEr DeScRiPtIoN

Version: 1.00
SyntaxVersion: 1.00

Driver SAMPLE
{

Description: $DRIVER_DESCRIPTION
Help: $DRIVER_HELP

}

DLanguage: 4
; Default English

$DRIVER_DESCRIPTION = "Place the driver description here"
$DRIVER_HELP = "Place the help information here"

Language: 14
; Spanish

$DRIVER_DESCRIPTION = "Poner la descripcion del driver aqui"

Version 2.1d (September, 1995) C-9

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
$DRIVER_HELP = "Poner la informacion de ayuda aqui"

;DrIvEr DeScRiPtIoN EnD

Driver Section
The format of an information file's Driver description is shown
below. The driver description contains two sections. The first section
contains information the installation program uses to decide (with
input from the user) if and how to install this driver. This section
includes everything from the beginning of the section through the
Timeout line. The second section contains the parameters that the
user can change or select in order to configure the installed driver.

Driver <driver description name> <dependency expression>
{

Description: "<text description>"
Help: "<multi-line help text>"
ParameterVersion: <x.xx>
ProductID: <list of product ID strings>
CProg: <(server-specific) NLM name>
Path: <path on media>
File: <file name on media>
OFiles: <other associated files>
Timeout: <decimal timeout value in

seconds>

PROMPT or LIST or FRAME
{

<see parameter section>
}

}
All labels in the driver description are optional. You need only
include the labels required for the particular driver being described.
However we highly recommend that you define the Description and
Help labels, to make installation and configuration easier for
inexperienced users.
All labels and keywords can occur only once in a description. The
exceptions to this are the PROMPT, LIST, or FRAME keywords and
the Parameter definitions, which can occur as many times as you
desire. The parameters are described later in this supplement. The
following code fragment illustrates a sample driver description.
The following section describes the various parts of the above
example.
Driver Description Name
Syntax:

Driver <driver description name>
Example:

C-10 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements
Driver SAMPLE1

Each driver description has a case-sensitive string (<driver
description name>) associated with it. This string is a logical name
that uniquely identifies the driver description. (Remember that an
information file can contain multiple driver descriptions.) This name
must not be more than 32 characters, and cannot include white
space, quotes (single or double), double-byte characters, or reserved
characters (see ``General Syntax'').
After the user has installed and configured a driver, the <installation
filename>, <driver description name> pair associates a description
with the driver file. Therefore, each description name must be
unique from all others within the same file.
Dependency Expression
Example:
if (BUS == MCA) OPTIONAL
else HIDDEN
A Dependency expression describes the state of a driver description.
The dependency is either unconditionally or conditionally based on
global parameters such as bus type (see ``Global Predefined
Parameters"). A driver description has two states: optional and
hidden. These states are defined as follows:
OPTIONAL The driver description is displayed to the user, who

can optionally select it.
HIDDEN The driver description is not displayed, and it is

unavailable to the user.
A dependency expression allows you to make descriptions invisible to
the user if they are not applicable. (For example, a Micro Channel
driver description would be hidden if the driver is being installed on
an ISA machine). If no Dependency is declared, the driver
description state defaults to optional.
For a more detailed description of the grammar and evaluation
order in the dependency expressions see the ``Dependency
Expressions" section later in this supplement.
Description
Example:
Description: "Novell ISADISK (ISA or EISA) Driver"
The description label is followed by a case-sensitive string (or symbol
reference), which is typically enclosed in double quotes. This string is
displayed to the user during installation and configuration. The
quoted string, if present, can be a maximum of 60 characters long,
and must not contain newline characters (either symbolic \n or
explicit).

Version 2.1d (September, 1995) C-11

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Note: You can have multiple Description labels in a driver description section.

Each description must also have a corresponding Help label following it.
The installation utility displays each description and help, but loads the
same driver.
Help
Example:
Help: "This driver supports up to four NE1000

network boards installed in ISA servers. Their
settings must not conflict.\n\n You can load

the driver for each board and for each
additional frame type assigned to the board

(maximum 16 times). The driver loads
reentrantly, thus conserving memory.\n"
The Help label is followed by a case-sensitive string, usually enclosed
in double quotes, that the user could optionally have decided to
display during installation and configuration. This string contains
additional information or cautions that a user might need to know
about the driver. The help can be a maximum of 1,500 characters
long and can contain newline characters (either symbolic \n or
explicit). All explicit newline characters and adjacent whitespace are
replaced with a single space. All symbolic new line characters are
replaced with a CR-LF combination. \t represents a tab.
See also the note under the Description label in the previous section.
ParameterVersion
Example:
ParameterVersion: 1.00
The ParameterVersion refers to the version number of the driver
parameters, (for example, the allowable command-line parameters
in the case of a server driver). The ParameterVersion number should
change only when the parameter interface changes, not when the
installation file is modified. The installation file Version number is
used to track file modifications.
ProductID
Examples:
; ProductID for Novell NE3200

ProductID: NVL0701
; ProductIDs for IBM Token Ring and Token Ring 16/4

ProductID: E000, E001
The ProductID label specifies unique identification string(s) assigned
to the product. One or more comma-separated strings allow one
driver to support several boards with different product IDs. For the
Micro Channel Architecture, the string is the file name for the
product's .ADF file, and its value is stored in the Micro Channel slot
product ID POS registers. For the EISA architecture, the string is
used as the name of the product's .CFG file, and is stored (in

C-12 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements
encoded form) in the EISA slot manufacturer ID and product ID
registers.
Path
Example:
Path: \DRIVERS\LAN
If the Path label is present, the installation utility searches for the
driver file in the directory path that the label indicates. This
directory path resides on the distribution medium (in other words,
on a floppy disk or a CD-ROM disk). If the Path is not present, the
installation/configuration utility searches the root directory of the
medium. See also the File label description.
File
Example:
File: NE2000.LAN
If the File label is present, the installation utility on the distribution
medium looks for a driver file with the indicated name. The driver
Path and File name are concatenated (using a `\' between them) to
form the full directory specification on the installation medium. If
the File label is not present, the installation utility uses the
description file root name with a default extension. Server MLID
files use a .LAN extension; server disk driver files use a .DSK
extension.
OFiles (Other Associated Files)
Example:
OFiles: FIRMLOAD.COM, MONT400.BIN
If the OFiles label is present, a comma-separated list of filenames
must also appear on the same line. When the primary
installation/configuration utility copies the driver file, it will also
copy these associated files. The Path string is concatenated to each of
the listed files (using a `\' between them) to form the full directory
specification for each file.
CProg (Configuration Program)
Example:
CProg: CSL.NLM
The CProg label specifies a configuration executable and contains
the name of an NLM that performs the configuration.
Timeout
Example:
Timeout: 20
If the Timeout label is present, it must be followed by a decimal
number. This decimal number indicates the maximum time in
seconds that the installation utility waits before it determines that a

Version 2.1d (September, 1995) C-13

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
driver failed to load and reports an error to the user. If this label is
not specified, the maximum wait time defaults to 5 seconds.

Driver Parameters
Each of the driver's configurable parameters must be defined in the
driver description by using one of the parameter types detailed in
this section.
Parameter specifications define the configurable parameters that the
driver needs. A parameter specification includes several components:
the parameter values, the presentation to the user, and the output
format. The output format controls how the server driver
information will be written to the command line.
Three types of parameters are allowed; two are general parameters,
and one is a special purpose parameter.
The two general parameter types are PROMPT and LIST. They can
occur more than once in a driver description. They occur once for
every user-configurable driver parameter. Both parameters contain
fields for a parameter description and help text, dependency
expressions, and output format specification. You can also specify a
default value for the parameter, as well as permissible values from
which the user can choose.
FRAME, the special purpose parameter type, can be declared only
once within a single driver description. This parameter defines the
frame types that are supported by the NetWare server MLID. As
with the general parameters, the FRAME parameter allows a
description, help, and a dependency expression. This parameter uses
a default method for input and output.
The general definitions that apply to all three parameters are
described below. The following pages then provide the specific
syntax for each parameter.
General Parameter Definitions
The parameter name is a case-sensitive string of from 1 to 16
characters. The parameter name is not displayed on the monitor. It
is used only to reference another parameter's value in a dependency
expression and to allow the installation/configuration utility to
distinguish between driver descriptions. A parameter name can
occur only once within a single description.
All configurable parameters can have a default value of
UNDEFINED. This value indicates that no initial value is specified.
If the parameter value remains UNDEFINED, the driver can
determine the appropriate values automatically.
A parameter can exist in one of three states: HIDDEN, REQUIRED,

C-14 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements
or OPTIONAL. The parameter state affects user input and output as
follows:
HIDDEN Indicates that the parameter is invisible to the user.
REQUIRED Allows the installation program to determine which

parameters are required by the driver at load time.
The parameter is displayed, and a valid value must
be specified for the parameter (either a default value
or a value entered by the user). Output is always
generated.

For example, if a driver has a REQUIRED port parameter, the user
may not exit the parameter form until a valid value is
selected for the parameter. The string,
``PORT=xxxx" will always be generated on the
command line after the ``LOAD <driver>..." string.

PROMPT, LIST, or FRAME parameters that are specified as
REQUIRED, but have only one valid choice (the
default value), have the following unique features: (1)
the parameter is not displayed to the user, because
the user has no choice to make, and (2) the parameter
will generate output. This feature creates an
``invisible" parameter that generates output.

OPTIONAL Signifies the parameters that are allowed but are not
required by the driver. The parameter is displayed to
the user, but no input is required from the user.

If the parameter has no default value specified, the user may leave it
unspecified. If the value of a parameter is not
specified, or if a valid default is deleted by the user,
no output is generated (in other words, no output for
the parameter is displayed on the command line).

If the parameter has a default value specified, and the user accepts
the default, no output will be generated for the
parameter. Otherwise, if the user changes a
parameter to a defined value different from the
default, output will be generated. A default value
should be specified for an optional parameter if, and
only if, the driver will default the parameter to that
value.

A dependency expression decides the state of a parameter under
various conditions. A parameter state can be specified as
unconditionally OPTIONAL or REQUIRED. It can also be specified
as conditionally OPTIONAL, REQUIRED, or HIDDEN and

Version 2.1d (September, 1995) C-15

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
depending on the value of other parameters. If a parameter has no
dependency, its state defaults to unconditionally OPTIONAL. Refer
to the section ``Dependency Expressions" for a more detailed
description of parameter states with dependency expressions.
The PROMPT Parameter. The format of the PROMPT parameter is
shown below. PROMPT obtains user input for a configurable
parameter. The parameter can be a custom parameter or a local
predefined parameter (see ``Local Predefined Parameters").
The installation/configuration utility uses the specified Description
string and Default value (if any) to prompt the user to enter a value
for the parameter. The user can then accept the default value or
choose another value from a specified set. The following code
fragment illustrates the use of a PROMPT parameter. The
Description and Type fields shown below are required; all other fields
shown are optional.
Example
Syntax:
PROMPT <parameter_name> <dependency expression>
{

Description: "<description text>"
Help: "<multi-line help text>"
Type: STRING (max_chars) or

HEX (max_digits) or
DECIMAL (max_digits)

Values: <minimum value> - <maximum value> or
<value 1>, <value 2>, ... <value n>

Default: <default value> or UNDEFINED

ReservedLength: <hexadecimal length of values
reserved or <name>>

OutputFormat: `<any string with a %s>'
}
The following section describes the different portions of the above
example.
Dependency Expression. PROMPT parameters can be assigned a
state of REQUIRED, OPTIONAL, or HIDDEN. You can use a
conditional dependency expression to determine the parameter state.
You can also use PROMPT parameters in the dependency
expressions for other parameters. When used in dependency
expressions, the PROMPT parameter value is the value selected by
the user (or UNDEFINED if no value was specified). Refer to
``Dependency Expressions" for a more detailed description of the
dependency usage.

C-16 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements
Description. The <description text> is the prompt for the user
configurable parameter. The description string can be a maximum of
40 bytes.
Help. The Help text can be longer than one line and can be a
maximum of 1,500 bytes.
Type. Type specifies whether a value is interpreted as string,
hexadecimal, or decimal. You can optionally specify the maximum
number of characters or digits for that value. (Parameter values can
have a maximum of 35 characters or digits.) If the maximum length,
<max_chars> or <max_digits>, is not specified, it defaults to the
maximum element size in the list of Values (described below). If no
values are specified, 8 characters are used for parameters having
predefined names (see ``Local Predefined Parameters"), and 35
characters are used for parameters without predefined names.
Example 1 below would allow the user to enter up to 35 characters
and generate the output as indicated. Example 2 would allow only 10
characters.
Example 1:

PROMPT param2
{

Description: "A string parameter"
Type: STRING
Default: `my_string'
OutputFormat: `String=%s'

}

Example 2:

PROMPT param2
{

Description: "A string parameter"
Type: STRING (10)
Default: `my_string'
OutputFormat: `String=%s'

}
Values. This field indicates the allowable values for the parameter.
The values are displayed on the console as the user highlights the
parameter field. The values can be specified by using a range of
values or by using a comma-separated list of values. The range or list
of values to be displayed must be less than 70 characters long.
Default. The default value is optional and, if used, is displayed along
with the description string as part of the parameter prompt. The
default value must be of the specified Type and must be an element
indicated in the Values range or list. The default value can also be
UNDEFINED. An absent Default label is identical in function to a

Version 2.1d (September, 1995) C-17

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
default value of UNDEFINED.
ReservedLength. The ReservedLength label is generally ignored,
even if it is present. The exception to this is the cases of the PORTx
and MEMx reserved parameters. In these cases, the server
environment requires these labels (see ``Local Predefined
Parameters"). If this label is present, it must contain either a single
hexadecimal constant or the name of another parameter whose value
(when set) will be used as the reserved length of this parameter. The
ReservedLength value has the type specified by the Type label.
OutputFormat. The OutputFormat string describes the way the
output is to be generated from the final parameter value. The output
is displayed on the server monitor's commandline. The format string
can contain a maximum of one %s. The output string is created by
replacing the %s with the parameter value. Output is generated
according to the rules described in the section ``General Parameter
Definitions."
The example below shows a sample PROMPT parameter block using
the local predefined parameter, INT, and the resulting screen
displayed in the installation utility.

Note: The Description, Help, and Type fields shown below are included to
illustrate their use in the PROMPT example. For the local
predefined INT parameter, these fields have default values and are
not usually required. s
Example:
PROMPT INT REQUIRED
{

Description: "Interrupt"
Help: "Select the primary interrupt number."
Type: HEX(1)
Values: 2, 3, 5, 7
Default: 3
OutputFormat: `INT=%s'

}
Resulting Screens:

Driver NE2000 parameters

Supported values: 2,3,5,7 Default value: 3

Select the primary interrupt number.

The LIST Parameter. The format of the LIST parameter is shown
below. LIST obtains user input for a configurable parameter. LIST is

C-18 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements
similar to PROMPT, with the exception that the user selects an
option for the parameter from a menu of valid choices.
The installation utility uses the parameter Description and the
Default choice description (if any) to prompt the user for a selection.
The user can then accept the default choice or select another from
the menu of choices for the parameter. The Description parameter
and the Choice fields shown below are required; all other fields
shown are optional.
Syntax:
LIST <parameter_name> <dependency expression>
{

Description: "<parameter description text>"
Help: "<multi-line help text>"
CDescription: "<choice #1 text>"
Choice: <choice #1 value> or UNDEFINED

.

.

.
CDescription: "<choice #n text>"
Choice: <choice #n value> or UNDEFINED
Default: <1 to n> or UNDEFINED
OutputFormat: `<format string with a %s>'

}
The various parts of this example are described below:
Dependency Expression. LIST parameters can be assigned a state of
REQUIRED, OPTIONAL, or HIDDEN. A conditional dependency
expression can be used to determine the parameter state. LIST
parameters can also be used in the dependency expressions for other
parameters. When used in dependency expressions, the LIST
parameter value is a decimal number indicating the index of the
Choice selected by the user (or UNDEFINED if no choice was
specified). Refer to ``Dependency Expressions" for a more detailed
description of the dependency usage.
Description. The <parameter description text> is the prompt for the
user configurable parameter. The description string can be a
maximum of 40 bytes.
Help. The Help text can be longer than one line and can be a
maximum of 1,500 bytes.
Choice and CDescription. The installation utility uses Choice or
CDescription to create a menu of valid choices for the parameter. The
description text string is typically enclosed in double quotes (if
language translation is supported), because the menu choices can
usually be translated to different languages.
The installation utility uses the Choice field to build the command
line entry (see the ``OutputFormat" description below). Choice

Version 2.1d (September, 1995) C-19

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
values can be any string, including the null string, or can be
UNDEFINED. Ranges are not allowed. (For example, Choice: 1-50 is
illegal.) Typically choice values will not be enclosed in double quotes,
because this results in language specific command line or
configuration file parameters.
If the CDescription is not provided for a particular Choice, the menu
text will be the choice string itself. The number of pairs of choice
descriptions pairs implies the number of choices. The maximum field
width for any given choice description is 35 characters.
Default. The Default value is a decimal number indicating the index
of the default choice. It must be in the range of 1 to the number of
choices. The default value can also be UNDEFINED, which means
that none of the choices are initially selected. An absent Default label
is identical to a default value of UNDEFINED.
The default value is optional and, if used, the corresponding
CDescription is displayed at the parameter prompt to indicate the
default choice. If the default value is specified as UNDEFINED then
``(not specified)" will be displayed.
OutputFormat. The OutputFormat label describes the way the
output is to be generated from the selected parameter choice. The
output is displayed on the server monitor's commandline. The
format string can contain a maximum of one %s. The output string
is created by replacing the %s with the selected Choice string. The
output is generated according to the rules described in the section
``General Parameter Definitions."
The example below shows a sample LIST parameter block and the
resulting screens displayed in the installation utility.
Example
LIST Attach_Mode OPTIONAL
{

Description: "FDDI Station Attach Mode"

Help: "If there is a secondary board in
your machine, you may wish to

override the auto sense attachment.
Select the correct mode from the

list."

CDescription: "Single Attach"
Choice: `1'

CDescription: "Dual Attach"
Choice: `2'

CDescription: "Auto Sense"

C-20 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements
Choice: UNDEFINED

Default: 3

OutputFormat: `ATTACH_MODE=%s'
}
Special Purpose Parameter Definition
FRAME Parameter. The format of the FRAME parameter is shown
below. FRAME allows the user to select the NetWare server MLID's
default frame types.
The installation utility uses the Description parameter and the
Default values to display a list of frame names. The user can add or
delete frames from the list. In the server environment, a default
logical name can also accompany each frame type. Only the Choice
fields shown below are required; all other fields shown are optional.
Example
Syntax:
FRAME <parameter_name> <dependency expression>
{

Description: "<parameter description text>"
Help: "<multi-line help text>"
CDescription: "<frame #1 description text>"
Choice: <frame #1 type string>

.

.

.
CDescription: "<frame #n description text>"
Choice: <frame #n type string>

Default: <1,...,n> or UNDEFINED
OctetBitOrder: <LSB or MSB>

}
The following section describes the various portions of the above
example:
Dependency Expression. If the FRAME parameter state is
OPTIONAL, the user does not need to indicate any values. If the
parameter is REQUIRED, the user must select at least one frame
type.
Only one FRAME parameter with multiple frame types can be
visible (REQUIRED or OPTIONAL) to the user. Multiple FRAME
parameters can be declared, but only one block can be active; all
others must be HIDDEN. (If the parameter is HIDDEN, nothing will
be presented to the user, and no output will be generated for that
parameter.)
A FRAME parameter can also be used in dependency expressions for
other parameters. When used in dependency expressions, the

Version 2.1d (September, 1995) C-21

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
parameter's value is a nonzero decimal number indicating the
number of frame types selected (or UNDEFINED if no frame types
were specified). For a more detailed description of dependency usage
see ``Dependency Expressions" .
Description. The <parameter description text> is the frame type
prompt. The description string can be a maximum of 40 bytes. If the
description is not present, the text will default to ``Frame Types."
Help. The Help text can be more than one line long and can be a
maximum of 1,500 bytes. If the help text is not present, the default
Frame help text is displayed (see the ``Default Help Information"
table in the ``Local Predefined Parameters" section later in this
supplement).
Choice and CDescription. The Choice Description (CDescription)
fields create the list of default frame types. The maximum field width
for any given frame description is 35 characters. If CDescription is
not provided for a particular Choice, the text displayed to the user
will be the frame type string itself.
Choice values can be any string, but should be strings that are
understood by the NetWare server MLID and the protocols that will
be used. Each Choice can appear only once in the list. Typically
frame types are not enclosed in double quotes, because this would
result in language specific commandline or configuration file
parameters.
Default. The Default field contains a list of numbers corresponding
to default frames, where 1 corresponds to the first frame type, 2 to
the second, etc. The value may also be UNDEFINED, indicating that
no default frame names are initially selected. An absent Default label
is identical to a default value of UNDEFINED.
OutputFormat. The output for the FRAME parameter is implied
(the OutputFormat label is not used). In the server environment, the
load driver command will be reiterated at the command line for each
frame type selected.
OctetBitOrder. This label is optional and, if used, should only be
present for Token-Ring and PCNII networks. The OctetBitOrder field
allows the user to specify whether network addresses are in
canonical or noncanonical (LSB or MSB) formats (see the ODI
Specification Supplement: Canonical and Noncanonical Addressing.)
The value associated with this label will be the default value for all
frame types.
The example below shows a sample FRAME parameter block and
the resulting screen displayed in the installation utility.

C-22 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements
Example (for Assembly Language NetWare server MLIDs)
FRAME FrameSelect
{
Help: "The driver defaults to the 802.2

frame type. You can optionally
remove this frame type and/or

add the 802.3, 802.2 SNAP, and/or
Ethernet II frame types."

CDescription: "802.3"
Choice: `Ethernet_802.3'

CDescription: "802.2"
Choice: `Ethernet_802.2'

CDescription: "802.2 SNAP"
Choice: `Ethernet_SNAP'

CDescription: "Ethernet II"
Choice: `Ethernet_II'

Default: 2
}

Local Predefined Parameters
Predefined PROMPT Parameter
Some local parameters are standard. Therefore, these local
parameters can have more specific meanings than the general
parameter definitions mentioned in the previous sections. The
following table lists the predefined PROMPT parameter names:

Predefined PROMPT
Parameters

Name Parameter Type Meaning

INT or INT1
INT2
PORT or PORT1
PORT2
MEM or MEM1
MEM2
DMA or DMA1
DMA2
SLOT
NODE
RETRIES
CHANNEL

PROMPT
PROMPT
PROMPT
PROMPT
PROMPT
PROMPT
PROMPT
PROMPT
PROMPT
PROMPT
PROMPT
PROMPT

Primary interrupt
Second interrupt
Primary I/O port
Second I/O port
Primary memory address
Second memory address
Primary DMA address
Second DMA address
Machine slot number
Node address
Number of retries
Channel number for
adapters that use multiple

Version 2.1d (September, 1995) C-23

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

NIC controllers

If a PROMPT parameter name is one of the predefined names listed
above, all of the labels are optional, and will be defaulted if they are
not specified. If a dependency expression is not declared, the
parameter state will default to OPTIONAL. The range or list of
values that the user can enter excludes ranges or values that other
drivers are already using.
If one or more of the fields are not specified for the local predefined
parameters, the installation/configuration utility generates the
following defaults:

Predefined Parameter
Defaults

Parameter Field Default Information

Description: (INT)``Interrupt number"
(INT2)``Secondary interrupt
number"
(PORT)``Port value"
(PORT2)``Secondary port value"
(MEM)``Memory address"
(MEM2)``Secondary memory address"
(DMA)``DMA value"
(DMA2)``Secondary DMA value"
(SLOT)``Slot Number"
(NODE)``Node Address"
(RETRIES)``Number of Retries"

Help: The default help information is listed following
this table.

Type: DECIMAL(8) for SLOT and RETRIES
HEX(12) for NODE
HEX(1) for INT and INT2
HEX(8) for all others

Values: 0-99999999 for SLOT and RETRIES
0-FFFFFFFFFFFF for NODE
0-F for INT and INT2
0-FFFFFFFF for all others

Default: UNDEFINED

C-24 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements

ReservedLength: Not defaulted. This field must be specified for a
PORTx or MEMx parameter in the server
environment.

OutputFormat: (INT)`INT=%s'
(INT2)`INT1=%s'
(PORT)`PORT=%s'
(PORT2)`PORT1=%s'
(MEM) `MEM=%s'
(MEM2) `MEM1=%s'
(DMA) `DMA=%s'
(DMA2) `DMA1=%s'
(SLOT) `SLOT=%s'
(NODE)`NODE=%s'
(RETRIES)`RETRIES=%s'

Default
Help

Information

Name Text

INT
INT1

``\nSelect the interrupt level that corresponds to the
interrupt setting on the board or other device.\n\n
The interrupt setting must be unique (one not used by
another device in the machine)."

INT2 ``\nSelect the interrupt level that corresponds to the second
interrupt setting on the board or other device.\n\n
The interrupt setting must be unique (one not used by
another device in the machine)."

PORT
PORT1

``\nSelect the port value (base I/O address) that corresponds
to the port address setting on the board or other device.\n\n
Make sure the block of I/O addresses does not overlap the
addresses of another device in the machine."

PORT2 ``\nSelect the port value (base I/O address) that corresponds
to the second port address setting on the board or other
device.\n\n
Make sure the second block of I/O addresses does not
overlap the addresses of another device in the machine."

MEM
MEM1

``\nSelect the memory address that corresponds to the
memory setting on the board or other device.\n\n
Make sure the block of memory addresses does not overlap
the addresses of another device in the machine."

Version 2.1d (September, 1995) C-25

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

MEM2 ``\nSelect the memory address that corresponds to the
second memory setting on the board.\n\n
Make sure the block of memory addresses does not overlap
the addresses of another device in the machine."

DMA
DMA1

``\nSelect the DMA channel that corresponds to the DMA
setting on the board or other device.\n\n
Make sure the DMA (Direct Memory Access) channel does
not conflict with that of another device in the machine."

DMA2 ``\nSelect the DMA channel that corresponds to the second
DMA setting on the board.\n\n
Make sure the DMA (Direct Memory Access) channel does
not conflict with that of another device in the machine."

SLOT ``\nSelect the slot number that corresponds to the expansion
slot where the board or other device is installed."

NODE ``\nDo not change this address unless you are prepared to
administer local addresses according to the IEEE 802.2
specifications.\n\n
The driver defaults to the node address on the board."

RETRIES ``\nThis number specifies the maximum number of times the
driver will be instructed to retry a failed packet
transmission."

FRAME ``\nSelect the frame type used by the protocol your network
requires.\n\n
If you select a frame type other than the default, configure
both client and server to use the same frame type."

C-26 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements
The INT Predefined Parameter
The following examples show how to use the use the predefined
parameter INT.
Example 1:

PROMPT INT
{
}

Example 2:
PROMPT INT
{

Type: DEC (2)
Values: 2, 3, 4, 5, 10
Default: 3

}
In Example 1, the parameter description, output format, type, and
type length default as follows:
Description: "Interrupt number"
OutputFormat: `INT=%s'
Type: HEX (1)
Values: 0-F
Default: UNDEFINED
The help information displayed for this parameter would be:
``Select the interrupt level that corresponds to the interrupt setting on the
board or other device.
The interrupt setting must be unique (one not used by another device in the
machine).''

In Example 1, the installation/configuration utility will not allow the
user to enter an interrupt value that is already taken, even though
the taken values are not specified in the help text.
However, in Example 2, assume that another NetWare server MLID
is already using interrupt 3. The parameter description and output
format default as follows:
Description: "Interrupt number"
OutputFormat: `INT=%s'
The help information displayed for this parameter would be:
Permissible values: 2, 4, 5, 10
Default value: 3 (not-selectable)

Select the interrupt level...
Please note in example 2 that the explicitly declared field Type: DEC
(2) allows 2 digits to be defined for interrupt 10. Also note that if any
parameter field is explicitly declared do not use the default
information as defined in Tables 4 and 5.
The PORTx and MEMx Predefined Parameters
In the case of PORTx and MEMx, the ReservedLength is a required
label and must be present as part of the PROMPT parameter.
ReservedLength determines whether the specified group of port or

Version 2.1d (September, 1995) C-27

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
memory addresses are available, and prevents the user from entering
values that are taken. ReservedLength must contain either a single
hexadecimal constant or the name of another parameter whose value
(when set) will be used as the reserved length of this parameter. If
the parameter is PORTx, the reserved length represents a range of
port values in bytes. If the parameter is MEMx, the reserved length
represents a range of memory addresses in paragraphs (groups of 16
addresses).

Global Predefined Parameters
The following table lists the globally predefined parameters.
These parameters are never displayed to the user (although in
some cases the user will be prompted by the installation utility
for the information needed to create them). They exist only to
allow driver description and parameter dependency expressions
to reference them. This makes descriptions' and parameters'
states conditional upon the value of these global parameters. You
can write dependencies assuming that these values will always
exist and that they will never be UNDEFINED.

Globally
Predefined
Parameters

Name Parameter Type Possible Values

BUS PROMPT, STRING `ISA'
`MCA'
`EISA'
PCMCIA
PCI

GT_16 PROMPT, STRING `TRUE'
`FALSE'

The BUS Parameter
BUS indicates which bus architecture the installation/configuration
utility is working with. (The is the bus architecture of the machine
for which the command line information is being created.)
The GT_16 Parameter
If the GT_16 parameter value is TRUE, the machine has more than
16MB of memory available for the driver to use.

Dependency Expressions

C-28 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements
Dependency Expression Syntax
As mentioned previously, a dependency expression can appear in the
context of a driver description (for example, before the Driver { }),
or in the context of a parameter (for example, before the parameter {
}).
Used in the context of a driver description, the dependency specifies
the conditions under which the entire driver description is HIDDEN
(invisible, inaccessible) or OPTIONAL (visible, selectable) to the
user.
Used in the context of a parameter, the dependency specifies the
conditions under which the parameter is HIDDEN (invisible, no
input, no output), REQUIRED (visible, input required, output
required), or OPTIONAL (visible, input optional, output optional).
A dependency has the following syntax:
<dependency expression> <- <state> or
 if (expression) <state>
 [else if (expression) <state>...]
 else <state>

<state> <- OPTIONAL
 HIDDEN
 REQUIRED (parameter context only)

<expression> <- <log-expr> or
<expression><log-op><log-expr>
<log-op> <- OR or AND

<log-expr> <- <rel-expr> or NOT <rel-expr>

<rel-expr> <- (<expression>) or
 <name><rel-op><name> or
 <name><rel-op><constant>
<rel-op> <- == != < > <= >=
<name>. Name can be either a global predefined parameter or a
local parameter that precedes this parameter in the driver
description. If the parameter named is a PROMPT parameter, that
value depends on the PROMPT's Type label. If the parameter named
is a LIST or FRAME type, its value is a decimal number. String
comparisons are not case-sensitive.
If the dependency expression is in the context of a driver description,
Name refers only to global predefined parameters (see ``Global
Predefined Parameters").
If the dependency expression is in the context of a parameter, Name
refers to either a global predefined parameter or to a local
parameter that precedes this parameter and is in the same driver
description.
<constant>. A constant may be either numeric or string-valued. Its

Version 2.1d (September, 1995) C-29

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
type is assumed to be the type of the parameter to which it is being
compared. All cross-type comparisons between strings and numbers
are flagged as syntax errors. The typeless constant value,
UNDEFINED, is used for comparing against parameters that do not
have a defined value.
The following is an example of a conditional dependency statement:
Example:
PROMPT parameter2
if (parameter1 == 5 AND BUS == MCA)

OPTIONAL
else if (parameter1 != UNDEFINED AND parameter1 != 5)

REQUIRED
else

HIDDEN
{

.

.

.
}

General Dependency Expression Syntax Rules
With the exception of the global predefined parameters, all names
used in dependency expressions must be defined previously in the
driver description. No forward references to a name are allowed.
Any attempt to forward-reference a name will be flagged as an error
and the driver description will be discarded.
No circular references to a name are allowed (in other words, a name
cannot directly or indirectly depend upon itself).
In dependency expressions, any reference to a parameter name
whose state is HIDDEN, or whose value is not specified (this could be
due to an OPTIONAL parameter whose default value is
UNDEFINED, or an OPTIONAL parameter whose default value was
defined, but the user deleted it), will return a value of UNDEFINED
for that parameter.
A REQUIRED parameter must have a valid (defined) value before
the user can exit the form. As a result, you can write dependency
expressions assuming that a REQUIRED parameter will always have
a defined value and will never be UNDEFINED.

Evaluation of Dependency Expressions
Terms with == or != expressions that reference a parameter with an
UNDEFINED value yield a valid result. All other relational
operators result in an error for the term. Explicitly, the following
expressions are valid if name has an UNDEFINED value.
name == value

C-30 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements
name != value
The following expressions will result in a term evaluation error if
name is UNDEFINED.
name >= value
name <= value
name > value
name < value
This also applies to expressions comparing two parameters (for
example, name1 >= name2).
The installation/configuration utility resolves dependency evaluation
errors, if they occur, by forcing the state of the parameter or driver
description to OPTIONAL and reporting the error to the user before
he or she exits the parameter form. (This error is nonfatal, and the
driver could still work if the resultant output is reasonable.)
In order to prevent term evaluation errors from resulting in
evaluation errors for the entire dependency, you should account for
the UNDEFINED value when you write descriptions (either
explicitly or implicitly). A dependency expression that explicitly
handles an UNDEFINED value has a comparison to UNDEFINED
should appear prior to the term that could result in an error. For
example:
if (param1 != UNDEFINED AND param1 > 30) REQUIRED
else HIDDEN
The above expression will not result in an dependency evaluation
error if param1 has an UNDEFINED value.
The following example illustrates an implicit comparison that takes
UNDEFINED into account:
if (param2 == 3) REQUIRED
else HIDDEN
The above expression will result in a HIDDEN state if param2 has an
UNDEFINED value.

Example NetWare Server MLID
;DrIvEr DeScRiPtIoN
SyntaxVersion: 1.00

Driver PCN2
{

Description: "Novell PCN2 (ISA or MCA) Driver"

Help: "You can use this driver in an ISA (AT bus), EISA,
or a Micro Channel file server. You can have a
maximum of two PCNII network boards in your file
server."

File: PCN2.LAN
ParameterVersion: 1.00

Version 2.1d (September, 1995) C-31

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
PROMPT PORT

if (BUS != MCA) REQUIRED
else HIDDEN

{
Values: 620, 628
Default: 620
ReservedLength: 8

}
PROMPT SLOT

if (BUS == MCA) REQUIRED
else HIDDEN

{
Values: 1-8

}

PROMPT NODE
{
}

FRAME FrameSelect
{

Help: "The driver defaults to using the PCNII 802.2 frame
type. You can optionally remove this frame type
and/or add the PCNII 802.2 SNAP frame type."

CDescription: "PCNII 802.2"
Choice: `IBM_PCN2_802.2'

CDescription: "PCNII 802.2 SNAP"
Choice: `IBM_PCN2_SNAP'
Default: 1

OctetBitOrder: LSB
}
}
;DrIvEr DeScRiPtIoN EnD

C-32 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements

Driver Installation Information Template
The following is an installation information file template for
NetWare server MLIDs. This template can also be used for server
disk drivers by deleting LAN-specific parameters such as node,
frame, and protocol.
All translatable strings in the following template are surrounded by
double quotes, as in ``<translatable string>". If you want to add new
strings, follow the convention to surround only strings that should be
translated in double quotes. All other strings should either not have
quotes or should be surrounded by single quotes. Write and test your
information file and check it with (but not concatenated to) the
driver.
Replace all strings shown in the <xxxx> format with the appropriate
string. You can delete any description line that you do not need. You
can also add any additional custom parameters that you need.

;DrIvEr DeScRiPtIoN
VER: 1.00
SYN: 1.00
; Place introductory comments here.
; Keep comments and white space to a minimum.

DR <Driver Description Name> <Dependency Expression>
{

DES: "<text description>"
HELP: "<multi-line help text>"
PAR: X.xx
PROD: <product ID string>
CP: <configuration NLM name>
PATH: <path on media>
FILE: <file name on media>
OF: <other assoc. files>
TIME: <driver load timeout value>

; You will need only some of the following for any given driver description.
; Delete those not needed and edit those which you do need to correctly ; describe your adapter and driver.
You can add custom parameters to describe ; driver parameters not covered here. Most likely, one or more of
the ; parameters (INT, PORT, MEM, etc.) will be indicated as REQUIRED".

PR INT
{

VAL: 3,5,7,9
DEF: 9

}
PR PORT
{

VAL: 300,310,320
DEF: 300
RES: 8

; (continued)

Version 2.1d (September, 1995) C-33

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
; ReservedLength for port specifies a range in single value increments
}

PR MEM
{

VAL: C000,C800,D000,D800
DEF: C000
RES: 800

; ReservedLength for memory specifies a range in paragraphs
}

PR DMA
{

VAL: 1,3,5,7
DEF: 3

}
PR SLOT

{
VAL: 1-8

}
PR NODE

{
}

FR FrameSelect
{

HELP: "The defaults are set to 802.2 and 802.3 frame types.\n\n

We strongly recommend that you select at least 802.2.
For existing networks, select both 802.2 and 802.3"

CD: "802.3"
CH: `Ethernet_802.3'

CD: "802.2"
CH: `Ethernet_802.2'
CD: "802.2 SNAP"
CH: `Ethernet_SNAP'
CD: "Ethernet II"

CH: `Ethernet_II'
DEF: 1,2
; For Ethernet server drivers, set the default to 802.2 and 802.3.
; For all other drivers, set the default to whatever the default
; is in the driver, and change the help text accordingly.
}
}

;DrIvEr DeScRiPtIoN EnD

C-34 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements

The 16-Bit DOS Client Installation Information (INS) File
If your 16-bit DOS ODI LAN driver will be installed with the
installation utility, the utility must know how to set up the
configuration file (NET.CFG). This means the utility must know
each driver's parameter options and which choices the user must
make. The driver installation information (.INS) file and the
DRIVER.LST file provide installation utilities with this required
information.
Each driver has only one .INS file even though the driver usually
supports many boards. If the installation utility does not find an INS
file for a driver, the utility does not create a NET.CFG file entry for
the driver. The installation program uses the .INS file to prompt the
user for the parameter options and values necessary to generate a
NET.CFG file. Sample INS files are included at the end of this
supplement.
Each driver distribution diskette may include one DRIVER.LST file.
This file provides the installation program with a quick directory of
all ODI drivers found on the distribution diskette.

General Rules
Your INS file must conform to the following rules and also to the
conventions used in the examples at the end of this supplement.
• The INS file must not contain blank lines or tabs. Space

characters are not permitted between fields unless otherwise
specified.

• Items shown in angle brackets indicate that the user must
supply information describing that aspect of the driver.
example: <DriverName>

 NE2000.COM
• Items shown in square brackets ([) and (]) are optional.

Version 2.1d (September, 1995) C-35

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

File Syntax
The format of the INS file for 16-bit DOS ODI drivers is shown
below:
InS_StArT
<DriverName>
<Version>[,<AssociatedFileList>]
^<Board1 Description>
^<Board2 Description>
 $
 $
 $
[?<Help Text>]
<Parameter1 Definition>
<Parameter2 Definition>
 $
 $
 $
InS_EnD
Signature Lines
Note the initial and final lines:
InS_StArT
$
$
$
InS_EnD
These lines illustrate the following crucial points:
• The InS_StArt and InS_EnD signature lines shown above

bracket the driver installation information.
• The body of the INS file is preceded by the ``InS_StArT"

keyword and is terminated by the ``InS_EnD" keyword.
Driver Name
The driver filename, including the .COM or .EXE extension, is the
first line of the installation information. Installation uses the driver
filename to generate the NET.CFG Link Driver <DriverName>
command.
Version
The version field indicates the version of the INS specification to
which the INS file is written. The version field enables installation
utilities to properly handle any future changes to the specification.
The version number format is `X.X.' For this specification, the
version is 1.1.
Associated File List
The version number may be optionally followed by a list of
associated files separated by commas. The user must copy these
files, along with the driver, to the area where the user is installing the

C-36 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements
client pieces. Firmware BIN files and special configuration or
diagnostic utilities for the adapter or driver are examples of
associated files.
Board Description
The Board Description(s) provides a list of adapters and related
information that the DRIVER.LST file uses. (DRIVER.LST is
described later in this appendix.) More than one board can be listed
if a single driver will work with a given adapter and its clones. Place
multiple board descriptions on separate lines in the DRIVER.LST
file and only use them when the hardware options are identical for
all the boards. The user generally knows what board he/she has
installed, but not necessarily what driver he/she should use with that
board.
Each Board Description is preceded by a caret (^) and has the
following format:
syntax: ^<BoardName,DriverName,BusCode[,ProductID]>
example: ^Novell NE2000,NE2000.COM,IEO
• BoardName is the full name of the network adapter. This field

can contain spaces and can be a maximum of 48 characters long.
• DriverName is the filename (including the extension) of the

board's driver. This field can be a maximum of 13 characters
long.

• BusCode is a six character code depicting the bus type(s)
supported for the adapter. The code is described below:
1st character I (alpha) = supports ISA adapters

0 (numeric) = does not support ISA adapters
2nd character E (alpha) = supports EISA adapters

0 (numeric) = does not support EISA adapters
3rd character M (alpha) = supports MCA adapters

0 (numeric) = does not support MCA adapters
4th character A (alpha) = supports PCMCIA adapters

0 (numeric) = does not support PCMCIA adapters
5th character P (alpha) = supports PCI adapters

0 (numeric) = does not support PCI adapters
6th character V (alpha) = supports VESA Local Bus adapters

0 (numeric) = does not support VESA Local Bus adapters
Note: Because all ISA boards work in EISA machines, `I' and `E'

should both be used for ISA boards. This enables ISA boards
installed in an EISA bus to appear in the installation utility.
Keep in mind that ISA boards installed in EISA machines
retain ISA functionality and features. s

• The ProductID field is optional and only applies to MCA and
EISA boards. This field contains the ID string that is stored in
the POS registers of MicroChannel and in configuration

Version 2.1d (September, 1995) C-37

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
registers of EISA machines. The installation utility uses this ID
string to select the appropriate driver for the board found in the
machine. This field is left blank for ISA boards.

Help Text
You can supply one line of optional help text after the board
description lines. The help text is preceded with a question mark (?),
can be up to 256 bytes in length (not including the question mark),
and can contain spaces. The installation program automatically
word wraps the help text. The width of the help windows will
probably vary because installation programs on different platforms
display a different number of characters on a line.
Parameter Definitions
The Parameter Definition section of the INS file specifies the
configurable parameters for the driver and defines the valid options
for each parameter. The parameter format is described in the next
section.
If the network board can be configured by software and does not
need to use the NET.CFG file, there should be no parameter
definitions

Parameter Syntax
The NET.CFG file is created with parameter keywords and values.
The INS file can define standard and/or custom parameters. The
standard driver parameter keywords are: BUS ID, IRQ, PORT,
MEM, DMA, SLOT, NODE ADDRESS, and FRAME (see ODI
Specification: DOS Client HSMs, document version 4.0). The INS file
can specify as many parameters as are needed to describe the
available hardware and software options.
A parameter definition has the following format:
<ParameterCode>(<ParameterKeyword>)<ParameterName>
[<Parameter Help Text>]

<Valid Parameter Options>
$
$
$
Parameter Code
The ParameterCode field is eight characters long. The characters are
defined as follows:
First character. The code's first character specifies the prompt
format the installation utility will use to display the parameter on the
screen for the user. This character will also affect how the <valid
parameter options> are indicated. The possible values for the first
character are listed below.

C-38 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements
! = Select only one option from the list.
* = Select more than one option from the list.
$ = User input within a range (slightly different from above).
= Reserved for future use.
Second character. The code's second character indicates whether
the user must select this parameter value or whether it is optional.
This character also indicates whether a NET.CFG entry will be
generated.
R (alpha) = Required. This parameter must be selected. A NET.CFG
entry is always generated.
0 (numeric) = Optional. If nothing is selected, no NET.CFG entry
will be generated.
Last characters. The last six characters indicate the bus type
dependency of the parameter. The installation utility uses this code
to determine whether the parameter is to be displayed (used),
depending on the bus type of the machine. The ParameterCode's 3
bus type characters are defined as follows:

3rd character I (alpha) = supports ISA adapters
0 (numeric) = does not support ISA adapters

4th character E (alpha) = supports EISA adapters
0 (numeric) = does not support EISA adapters

5th character M (alpha) = supports MCA adapters
0 (numeric) = does not support MCA adapters

6th character A (alpha) = supports PCMCIA adapters
0 (numeric) = does not support PCMCIA adapters

7th character P (alpha) = supports PCI adapters
0 (numeric) = does not support PCI adapters

8th character V (alpha) = supports VESA Local Bus adapters
0 (numeric) = does not support VESA Local Bus adapters

For example, a driver running on an ISA or EISA bus may require
the PORT parameter. However, a driver running on an MCA
machine may require only the SLOT parameter.
!RIE0000(PORT)Base I/O Port
$
$
$
!R00M000(SLOT)Slot Number
$
$
$
Parameter Keyword
The parameter's NET.CFG file keyword immediately follows the
parameter code characters. The parameter keyword is enclosed in
parenthesis and can be up to a maximum of 20 characters. The user-
selected value for that parameter is placed in the NET.CFG file if no
keyword (empty parenthesis) exists. These keywords can be custom
keywords or any of the standard keywords listed in Table below.
Parameter Name

Version 2.1d (September, 1995) C-39

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
The parameter name follows the parameter keyword. This name is
the title the installation utility displays to the user. The length of this
field is limited to 30 characters. The parameter names are given in
Table .
Parameter Help Text
A single line of optional help text may follow the parameter line.
This line is preceded with a question mark (?) and can be a
maximum of 256 characters long. You should only use help text with
custom keywords, because the installation utility supplies help text
for each standard keyword. Any help text must follow the keyword
line and precede the parameter value lines described next in the
NET.CFG file. If help is supplied with a standard keyword such as
PORT, it will be appended to the default help text available from the
installation utility.

The following table lists the standard parameter keywords and
the default help text supplied by the installation utility:

Standard
Parameter
Keywords

Parameter
Keywords

Parameter
Names

Default Parameter Help Text

IRQ Hardware
Interrupt

``Select the interrupt level that corresponds
to the interrupt setting on the board or
other device. The interrupt setting must be
unique (one not used by another device in
the machine)."

PORT Base I/O Port ``Select the port value (base I/O address)
that corresponds to the port address setting
on the board or other device. Make sure
the block of I/O addresses does not overlap
the addresses of another device in the
machine."

MEM Memory I/O
Address

``Select the memory address that
corresponds to the memory setting on the
board or other device. Make sure the block
of memory addresses does not overlap the
addresses of another device in the
machine."

DMA DMA ``Select the DMA channel that corresponds
to the DMA setting on the board or other
device. Make sure the DMA (Direct

C-40 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements
Memory Access) channel does not conflict
with that of another device in the machine."

SLOT Slot ``Select the slot number that corresponds to
the expansion slot where the board or other
device is installed."

NODE
ADDRESS

Node Address ``Do not change this address unless you are
prepared to administer local addresses
according to the IEEE 802.2 specifications.
The driver defaults to the node address on
the board."

FRAME Frame Type ``Select the frame type(s) used by the
protocol(s) that your network requires.
Make sure you have both the server and
client configured for the same frame type."

BUS ID Bus ID ``Select the bus type that corresponds to the
bus used by the network interface card."

Valid Parameter Options
Each line that follows the parameter description (up to the next
parameter description and not including any help) is interpreted as a
possible value for that parameter. Note that these are TEXT values
and can be no longer than 20 characters. These values must also be
in the same format as they would in the NET.CFG file.
The valid parameter values are specified in either list or range
notation, depending on the first character of the ParameterCode.
When you specify parameter values in a list form, you must enter
each valid parameter value on a separate line.
Value ranges use only three value lines. The first value line is the
beginning of the range. The second is the end of the range. The
third is optional and is a default value preceded with an @ sign. If a
default value is specified, the installation utility will generate the
NET.CFG entry. If a default value is not specified, the installation
utility will only generate a NET.CFG entry if the user enters a value.
If the parameter is required, you must specify a third default value
line.
The installation utility treats these values as strings. This allows the
user to enter an L or M after the NODE ADDRESS parameter,
designating in the NET.CFG file that the node address specified is in
canonical (LSB) or noncanonical (MSB) format (see the ODI
Specification Supplement: Canonical and Noncanonical Addressing,

Version 2.1d (September, 1995) C-41

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
part number 107-000059-001).
Default Parameter Value
You designate a default parameter value in the INS file by preceding
the value line with an `@' sign. In the example on the following
page, the board setting defaults are INT 3 and PORT 300.
All required parameters must have a default specified. If a
parameter is optional, you need not specify the default. The
installation utility always displays a blank selection to the user for
optional parameters. If no default is specified, then the "no value"
option becomes the default. A NET.CFG entry is generated for any
option other than the ``no value" option. The installation utility does
not generate a NET.CFG entry for a ``no value" option.
The default settings in the driver INS file should match the default
jumper settings of the network board as shipped by the
manufacturer, where possible. If the jumper settings cannot be
guaranteed, the defaults should match the most likely jumper
settings, or the most common user settings.
Example INS File (NE2000)
InS_StArT
NE2000.COM
1.0
^Novell/Eagle NE2000,NE2000.COM,IE0000
?Please select the options that match your board's jumper settings.
!RIE0000(INT)Hardware Interrupt
2
@3
5
7
!RIE0000(PORT)Base I/O Port
@300
320
340
360
$OIE0000(NODE ADDRESS)Optional Node Address
0
FFFFFFFFFFF
*RIE0000(FRAME)Media Frame Type(s)
?

NOTE: Ethernet_802.2 is now the default frame type for ODI drivers. Existing LANs may be using
Ethernet_802.3.

@Ethernet_802.2
Ethernet_802.3
Ethernet_II
Ethernet_SNAP
InS_EnD
Example INS File (using various options)
InS_StArT

C-42 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements
PCN2.COM
1.0,ROUTE.COM
^IBM PC NetWork BroadBand or BaseBand Adapter
II,PCN2.COM,IE0000
^IBM PC NetWork BroadBand or BaseBand
Adapter/2,PCN2.COM,00M000,EFEF
?This board may be used with Source Routing. If your network is using
Source Routing simply load the ROUTE.COM file after the PCN2.COM
file has been loaded.
!RIE0000(PORT)Base I/O Port
@620
628
!O00M000(SLOT)Optional Slot Number
1
2
3
4
5
6
7
8
$OIEM000(NODE ADDRESS)Optional Node Address
0
FFFFFFFFFFF
!OIEM000()Primary or Alternate Adapter
?If your adapter is configured for Alternate, please select this option.
ALTERNATE
*RIEM000(FRAME)Media Frame Type
@IBM_PCN2_802.2 MSB
IBM_PCN2_802.2 LSB
IBM_PCN2_SNAP MSB
IBM_PCN2_SNAP LSB
InS_EnD

DRIVER.LST File
The DRIVER.LST file is an ASCII text file that lists the network
boards the product supports. DRIVER.LST is located at the root of
the distribution diskette that contains the ODI driver files. It is
specific to the drivers located on the distribution diskette. The
installation utility uses DRIVER.LST to avoid the extensive
overhead of scanning every .COM or .EXE file on the diskette for
specific INS files. You do not need the DRIVER.LST file if the
distribution diskette contains less than four .COM or .EXE files.
(Note that this is all .COM or .EXE files and not just driver files.) If
the installation program does not find a DRIVER.LST file, it will
scan all .COM and .EXE files it finds on the distribution diskette to
gather this information.
Each network board is listed on a separate line with four columns.
The columns are delineated by a comma (,):
• The first column is the full name of the network adapter and can

Version 2.1d (September, 1995) C-43

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
contain a maximum of 48 characters.

• The second column is the filename (including the extension) of
the driver used with the board and can contain a maximum of 13
characters.

• The third column is a six character code depicting bus type(s)
supported for the adapter. The code is described below:
1st character I (alpha) = supports ISA adapters

0 (numeric) = does not support ISA adapters
2nd character E (alpha) = supports EISA adapters

0 (numeric) = does not support EISA adapters
3rd character M (alpha) = supports MCA adapters

0 (numeric) = does not support MCA adapters
4th character A (alpha) = supports PCMCIA adapters

0 (numeric) = does not support PCMCIA adapters
5th character P (alpha) = supports PCI adapters

0 (numeric) = does not support PCI adapters
6th character V (alpha) = supports VESA Local Bus adapters

0 (numeric) = does not support VESA Local Bus adapters
Note: Because all ISA boards work in EISA machines, `I' and `E'

should both be used for ISA boards. This enables ISA boards
installed in an EISA bus to appear in the installation utility.
Keep in mind that ISA boards installed in EISA machines
retain ISA functionality and features. s

• The fourth column is the ProductID field and applies only to
MCA and EISA boards. This field contains the ID string stored
in the POS registers in MicroChannel and EISA machines. The
installation utility uses this string to automatically select the
appropriate driver for the board found in the machine. This
field is left blank for ISA boards.

Example DRIVER.LST File
Novell NE1000,NE1000.COM,IE0000
Novell NE2000,NE2000.COM,IE0000
Novell NE/2,NE2.COM,00M000,7154
Novell NE3200,NE3200.COM,IE0000,NVL0701
3Com EtherLink II,3C503.COM,IE0000
3Com EtherLink/MC,3C523.COM,00M000,6042
Novell RX-Net & RX-NET II,TRXNET.COM,IE0000
Novell RX-Net/2,TRXNET.COM,00M000,6014
IBM Token-Ring Network Adapter II & 16/4
Adapter,TOKEN.COM,IE0000
IBM Token-Ring Adapter/A,TOKEN.COM,00M000,E000
IBM Token-Ring 16/4 Adapter/A,TOKEN.COM,00M000,E001
IBM PC Network Baseband or Broadband Adapter
II,PCN2L.COM,IE0000
IBM PC Network Baseband or Broadband Adapter
II/A,PCN2L.COM,00M000,EFEF
Western Digital EtherCard PLUS Elite (all cards),WDPLUS.COM,IE0000

C-44 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements

Automatic
Hardware Detection:

Netware Plug and Play

Version 1.0 Changes for
NetWare Disk and LAN Driver Specification

-- Install Services Group --
(Updated for Rev 2.1d of the NWPA spec.)

Version 2.1d (September, 1995) C-45

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Introduction

The following changes are proposed to the Disk (NWPA) and LAN (CHSM)
driver specifications, specifically for the purpose of automatic hardware
detection. These changes will let drivers continue to work with previous versions
of INSTALL.NLM, but will let future versions of INSTALL.NLM automatically
match drivers to detected hardware. Drivers certified with, and after, the next
major NetWare OS release will need to comply with these changes in order to be
automatically selected.

C-46 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements

DDI and LDI Specification Changes for Autodetection

These changes affect the the description files that accompany the drivers
(DDI/LDI files), rather than affecting the actual drivers. Important: A DDI or
LDI file is required for driver certification by Novell Labs.

__
Card and Bus Identifiers

Currently (under the old specification), ISA, MCA, and EISA are the only bus
types supported in server driver description files, and they are supported only in
dependency expressions. Following is the proposed expanded list of bus
identifiers:

• ISA(standard ISA)
• PNPISA (ISA with a PnP BIOS, or a PnP Configuration Manager)
• EISA
• MCA
• PCI
• PCMCIA

__
Product/Device Indentification (Prod:)

The PROD: label is part of the existing DDI/LDI specification. It enables an
install/configuration utility to match a driver with a particular device. This new
specification introduces new PROD: syntax that is compatible with the previous
syntax and with the new bus types. Examples of old and new syntax are shown
below.

Important: As of this specification release, the PROD: label is required for every bus
type except ISA. However, if an ISA card has an EISA product ID, the PROD: label
is required, and the EISA product ID should be used.

Old Syntax

Prod: <EISA Device ID>|<MCA POS ID>, ...

<EISA Device ID> = VVVPPPR,
<MCA POS ID> = HHHH

VVV = Vendor ID, uppercase letters A-Z

Version 2.1d (September, 1995) C-47

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
PPP = Product ID, hex characters
R = Revision number, hex character
HHHH = POS registers 1, 0

New Syntax

PROD: ‛<card type>.<INCLUDE|EXCLUDE>.<id>’, ‛...’

Enclose each product string in single quotes and separate multiple strings with
commas. <INCLUDE|EXCLUDE> is optional for all types. If INCLUDE is
specified and Install finds a match, the driver will be selected. If EXCLUDE is
specified and Install finds a match, the module will not be selected. (If both
INCLUDE and EXCLUDE are used – which is not generally recommended –
EXCLUDE takes precedence. If neither INCLUDE nor EXCLUDE is used,
INCLUDE is assumed.

• PnP ISA and EISA syntax:

‛ PNPISA.<INCLUDE|EXCLUDE>.VVV.PPP.R ’ -- or --
‛ EISA.<INCLUDE|EXCLUDE>.VVV.PPP.R ’

VVV = Vendor ID, uppercase letters A-Z
PPP = Product ID, hex characters
R = Revision number, hex character

Examples:
PROD: ‛ PNPISA.INCLUDE.CPQ.055.1 ‛
PROD: ’ EISA.CPQ.067.0’

• MCA syntax:

‛ MCA.<INCLUDE|EXCLUDE>.HHHH ‛

HHHH = Adapter ID (POS registers 1, 0), hex characters

Example:
PROD: ‛ MCA.8437 ‛
PROD: ‛ MCA.EXCLUDE.8438 ‛

• PCI syntax:

‛ PCI.<INCLUDE|EXCLUDE>.VVVV.DDDD.NNNN.SSSS.RR ‛

VVVV = Vendor ID, hex characters
DDDD = Device ID, hex characters

C-48 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements
NNNN = Subsystem vendor ID, hex characters (0000 if pre-v2.1 PCI

hardware)
SSSS = Subsystem ID, hex characters (0000 if pre-v2.1 PCI hardware)
RR = Revision number, hex characters

Example:
PROD: ‛ PCI.8086.0202.0000.0000.00 ‛

• PCMCIA syntax is yet to be determined, but will probably be:

‛ PCMCIA.<INCLUDE|EXCLUDE>.VVVV.DDDD ‛

The following data is from the card’s CISTPL_MANFID tuple:

VVVV = Manufacturer ID (TPLMID_MANF field), hex characters

DDDD = Manufacturer Information (TPLMID_CARD field), hex characters

Example:
PROD: ‛ PCMCIA.1234.0032 ‛

Handling Special Characters in a PROD String
The DDI/LDI parser interprets an asterisk (*) or question mark (?) as a wildcard
character, a period (.) as a field delimiter, and \n” and \t” as newline and tab ‟ ‟
characters. If you want to keep any of these interpreted characters as literal
characters in the PROD string, you must precede (escape) each with a pound sign
(#) so the parser will not strip or interpret them. Examples of handling these special
characters are shown below.

Literal Char. Example String
* or ? Escape the character with a pound sign, such as:

PROD: ‛ SCSI.00.venID.devID.V123#* ‛
\ (backslash) Escape (precede) a \n” or \t” with another backslash, such ‟ ‟
as:

PROD: ‛ SCSI.00.venID.devID.rev1\\NEW ‛
. (period) Escape a period with a pound sign, such as:

PROD: ‛ SCSI.00.venID.devID.V1#.23 ‛
(pound sign) Escape the pound sign with another pound sign, such as:

PROD: ‛ SCSI.00.venID.devID.V##123 ‛

An asterisk (*) matches any and all characters from its position in the field to the
end of a field. A question mark (?) matches a single character located at its position
in the field. Epecially for EISA cards, if your driver can control different OEM
revisions, you should use a wildcard to match the different revisions (for example,

Version 2.1d (September, 1995) C-49

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
PROD: ‛ EISA.NVL.070.? ‛). Wildcarding is allowed for all fields except
<INCLUDE/EXCLUDE>

__

Dependency Expressions: Handling Multiple Buses in One Machine

Unlike the previous specification, the new specification accommodates multiple
buses in the machine for which the driver is intended. This means that some
statements for a PCI/ISA machine will be interpreted differently with this new
specification.

Consider the following expression:

PRINT if (BUS == ISA) OPT else HID { }

Under the old spec, the BUS expression evaluates to a single bus type. With the new
spec, BUS may indicate a set of buses. The new specification makes the following
interpretations:

• In the expression (BUS == <bus type>), if <bus type> is any element of a BUS set,
the expression evaluates to TRUE. Otherwise, it is FALSE.
• Similarly, in the expression (BUS != <bus type>), if <bus type> is not an element of
a BUS set, the expression will evaluate to TRUE. Otherwise, it will be FALSE.

Conclusions

1) Because an EISA bus is also ISA-compatible, the expression (BUS==ISA)
evaluates to TRUE on an EISA machine.

2) Because an ISA machine with PnP support is also ISA-compatible, the
expression (BUS==ISA) evaluates to TRUE on an ISA machine with PnP support.

3) On an EISA machine with PnP support, the expressions (BUS==ISA),
(BUS==PNPISA), and (BUS==EISA) will all evaluate to TRUE.

__
Custom Device Driver Module Support

Custom device driver module support refers to an extension to the PROD: label that
will be added to disk driver descriptions (DDI files) for NWPA CDMs. Used in this
manner, the PROD: label indicates which modules to select and load as a result of a
SCSI inquiry or an IDE identify command. The above description of escape

C-50 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements
sequences and wildcards applies to SCSI and IDE PROD: string fields as well.

Important: For NWPA CDMs, the PROD: label is required in the DDI file.

Example
The following assumes an adapter driver (HAM) has been loaded. Install will load
the HAM and get information from NWPA to create a list of device types associated
with the adapter. Next, Install examines all available DDI files for CDMs and tries to
match the device type and module. It then loads the module(s) that best match the
devices found.

For example, assume a tape device was found after doing a SCSI inquiry. Following
is a driver description for TAPEDAI. The inquiry command will find a match in the
TAPEDAI.DDI file and then load TAPEDAI.DSK, as illustrated below.

Driver TAPEDAI
{

...description and other labels...

PROD: ‛ SCSI.INCLUDE.01. *. *. * ‛
...parameters...

}
The PROD: label with the SCSI designation indicates the device types supported by
the TAPEDAI driver.

SCSI Extension Syntax
The complete syntax for the SCSI extension of the PROD: label is shown below. (The
PROD: label may exist multiple times for different combinations of type numbers,
device product IDs, etc.)

PROD: ‛ SCSI.<INCLUDE|EXCLUDE>.
<device type number>.<device vendor ID>.
<device product ID>.<device product revision> ’, ‛ ... ‛

Field Description

INCLUDE If Install finds a match, the driver will be selected.
EXCLUDE If Install finds a match, the module will not be selected. If
neither INCLUDE nor EXCLUDE is specified, INCLUDE is assumed.

(If both INCLUDE and EXCLUDE are used – which is not
generally recommended – EXCLUDE takes precedence.)

<device type number> Device or hardware type listed below; should
correspond to the Peripheral Device Type obtained from a SCSI Inquiry.

Version 2.1d (September, 1995) C-51

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

00 Direct-access device (e.g., magnetic disk)
01 Sequential-access device (e.g., magnetic tape)
02 Printer device
03 Processor device
04 Write-once device (e.g., some optical disks)
05 CD-ROM device
06 Scanner device
07 Optical memory device (e.g., some optical disks)
08 Medium Changer device (e.g., jukeboxes)
09 Communications device
* Wildcard, matches any device type

<vendor ID> Vendor identification string; 1-8 bytes, ASCII. An asterisk (*)
matches any vendor ID. <vendor ID> should correspond to the Vendor
Identification obtained from a SCSI Inquiry.

<product ID> Product identification string; 1-16 bytes, ASCII. An asterisk
(*) matches any product identifier. <product ID> should correspond to the
Product Identification obtained from a SCSI Inquiry.

<product revision> Product revision string; 1-4 bytes, ASCII. An asterisk (*)
matches any product revision. <product revision> should correspond to the
Product Revision Level obtained from a SCSI Inquiry.

IDE Extension Syntax
The complete syntax for the IDE extension of the PROD: label is shown below. (The
PROD: label may exist multiple times for different combinations of type numbers,
model numbers, and firmware revision levels.)

PROD: ‛ IDE.<INCLUDE|EXCLUDE>.
<device type number>.<model number>.<firmware revision>’, ‛ ... ‛

Field Description

INCLUDE If Install finds a match, the driver will be selected.
EXCLUDE If Install finds a match, the module will not be
selected.

(If both INCLUDE and EXCLUDE are used – which is not
generally recommended – EXCLUDE takes precedence. If
neither INCLUDE or EXCLUDE is used, INCLUDE is
assumed.).

C-52 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements
<device type number> Device or hardware type listed below; should
correspond to the Peripheral Device Type obtained from a SCSI Inquiry.

00 Direct-access device (e.g., magnetic disk)
01 Sequential-access device (e.g., magnetic tape)
02 Printer device
03 Processor device
04 Write-once device (e.g., some optical disks)
05 CD-ROM device
06 Scanner device
07 Optical memory device (e.g., some optical disks)
08 Medium Changer device (e.g., jukeboxes)
09 Communications device
* Wildcard, matches any device type

<model number> Model number string; 1-40 bytes, ASCII. An asterisk (*)
matches any model number identifier. <model number> should correspond to the
Model Number obtained from an IDE Identify.

<firmware revision> Firmware revision string; 1-8 bytes, ASCII. An asterisk (*)
matches any firmware revision. <firmware revision> should correspond to the
Firmware Revision obtained from an IDE Identify.

Examining the Driver Description Files
After all adapter drivers have been selected and copied, Install will load the adapter
drivers. For each adapter driver, Install will then do a SCSI inquiry or an IDE
identify.

For each device found during the SCSI inquiry or IDE identify, Install will search
all available driver description files for all the PROD: labels. If the driver matches
an EXCLUDE item, that driver description will be skipped. Alternatively, if the
driver matches an INCLUDE item, it will be given a fit score.

There may be multiple matches of a device in different driver descriptions. These
will be resolved as follows: exact matches get a higher fit score than wildcards, and
exact field matches of the first fields (in the PROD: declaration) get a higher score
than later ones. The driver description with the highest score will be selected and
loaded (if not already loaded).

__

Guidelines for Composing Driver Help Information

Version 2.1d (September, 1995) C-53

NetWare Peripheral Architecture Functional Specification and Developer’s Guide
Because the INSTALL.NLM user interface may change from time to time, adding
INSTALL.NLM screen navigation information in the driver help information of
DDI/LDI files can cause problems. A new guidelines section will be added to the
DDI/LDI specification sections in both the NWPA and CHSM specifications. This
will clarify what is expected in help information, as well as give other suggestions for
writing high-quality DDI/LDI files.

C-54 Version 2.1d (September, 1995)

Appendix C- LDI/DDI Specification Supplements

General Driver Specification/Conventions

The following specifications changes improve usability of automatic detection and
user interaction in general.

__
Monolithic Disk Drivers In The Next Release

Monolithic drivers, such as DDFS drivers, will be supported in the next release
ofNetWare. Automatic hardware detection will work with these drivers if the
appropriate changes are made in the driver and its associated DDI. See the
RDFIRST.WPD file associated with the NWPA Functional Specification and
Developer’s Guide for details on how this is to be done.

As already stated, the user should only have to select one driver for hard disk
support. DDFS drivers should discover devices and load subsequent support
modules.

It is preferable that the DDFS drivers also automatically attempt to load support for
modules other than disk (such as tape).

__
Driver Load Instances

There should be one physical load instance per physical adapter or card, unless the
driver has no command-line parameters. In that case, a single load instance is
sufficient. (Multifunction LAN cards already require one load instance per adapter
or per function.) This lets the user know what load line corresponds to which card so
the desired card can be disabled. There may be multiple logical load instances per
physical card.

Version 2.1d (September, 1995) C-55

