
ADDENDUM

TO THE

NETWARE PERIPHERAL ARCHITECTURE (NWPA) FUNCTIONAL SPECIFICATION

AND DEVELOPER’S GUIDE

VERSION 2.1D (SEPTEMBER 1995)

Attached are changes to Version 2.1D of the NWPA Functional Specification. These changes are
supported by Version 2.13 of NWPA.NLM These changes will be incorporated in the next release of the
document.

1. Changes to NPAOptionStruct in Chapter 6.

These changes clarify the relationship between the parameters parameter0, parameter1 and parameter2
and the option type identified by the parameter type, and corrects information related to these parameters.

2. Addition of NPAB_Get_Instance_Number(), NPAB_Get_Instance_Number_Mapping(), and
NPAB_Get_Unique_Identifier_Parameters().

These NBI related APIs are now supported by NWPA. The attachment provides their prototypes and
definitions.

NPAOptionStruct

Used by: HAM (CDM usage is optional)

Description: The NPAOptionStruct contains the HAM's command line option data on a per
option basis. Using this structure, the HAM can select the command line
options that it wants the NWPA to prompt the system operator for. The HAM
must fill out one of these structures and call NPA_Add_Option() for each option
it supports. With each successive call to NPA_Add_Option(), the NWPA adds
the current option to a select list. After the HAM has added all of its command
line options, it calls NPA_Parse_Options(), which parses the command line to
determine which options in the select list were actually chosen. Within the
context of NPA_Parse_Options(), the NWPA iteratively calls the HAM's
HAM_Check_Option() routine for each option (provided that the options are of
differing types) that was actually selected from the command line.
HAM_Check_Option() can direct the NWPA to either accept the option by
returning zero or reject the option by returning non-zero. If the option is
accepted, the NWPA places it in a use list. The HAM then calls
NPA_Register_Options() to direct the NWPA to physically register the options
in its use list for the HAM.

The NWPA will not place multiple options of the same type, such as multiple
interrupts, in its use list for a single parse of the command line. Therefore, if
the host adapter supports multiple options of the same type and the HAM
wants to add/parse/register them, then the HAM must do the following:

1. Call NPA_Add_Option() to add the first option.

2. Call NPA_Parse_Options() and have HAM_Check_Option() accept the
option so that it is placed in the use list.

3. Call NPA_Add_Option() to add the next option of the same type.

4. Call NPA_Parse_Options() and have HAM_Check_Option() accept this
option so that it is also placed in the use list.

5. Repeat steps 3 and 4 until all of the options of the same type are in the
use list.

6. Call NPA_Register_Options() to have the Media Manager physically
register the options.

Syntax: struct NPAOptionStruct{BYTE name[32];
LONG parameter0;
LONG parameter1;
LONG parameter2;
WORD type;
WORD flags;
BYTE string[16];

} ;

Parameters: name This is a 32 byte field to contain a length-preceded and null-terminated
string. The HAM places the name of the desired option, as it will appear on the
command line, in this field.

parameter0 This is a 4 byte field to contain the value associated with an option.
See Table 6-1 for the relationship between this parameter and the option type
selected.

parameter1 This is a 4 byte field to contain the length or range associated with
this option. Typically, this field is used in specifying memory decode ranges
and port lengths. See Table 6-1 for the relationship between this parameter and
the option type selected. For the Product ID option, Figure 6-1 shows the
various formats for product ID values (as applicable).

parameter2 This is a 4 byte field that can be either an input or an output
parameter. See Table 6-1 for the relationship between this parameter and the
option selected.

Note: Return values to this parameter are only valid after
NPA_Register_Options() has been called.

type This is a 2 byte field to contain a code indicating the option type. See
Table 6-1 for the list of possible values for this field.

flags This is a 2 byte field to contain a bitmap indicating the status of the
option. The following is a list of the flags defined for this field:

0x0001 Option required -- If not specified on command line, then
prompt the user.

0x0002 Use this option -- Use this option whether or not it is specified
on the command line.

0x0004 Value required -- Tells NWPA to look for a “name =” on the
command line where name is the string contained in the Name field and the
user is expected to enter a value.

0x0008 Specific value required -- Same as Value required except that
instead of prompting the user for any value, a list of values will be displayed
from which to choose. To use this flag value, developers must add a whole set
of options of the same type with this flag set. From this group, NWPA will
create its enumeration. Each value in the set is contained in parameter0 of one
of the options added in the set.

0x0010 Default value -- Contained in parameter0.
0x0020 Shareable option -- Such as shared interrupts.
All other bits in this field are reserved by NetWare.

Note: LOHI byte order refers to a little-endian byte order.

Figure 6-1 Product ID Formats

string This is a 16-byte field that can be used to pass and\or receive
information to/from the command line. If flags is set to Specific value required,
this field will contain a length-preceded and NULL terminated string. String
contains the ASCII code for the value (or values) specified in parameter0. In
this case where a matching option was not specified on the command line, this
value appears at the console as a choice for the user. After a user makes a
selection, the selected value is placed back into this field.

If the developer desires to use this field to return information back from the
command line, (flags is set to Value required) this field must contain n-2, where
n is the maximum length of string plus the length count byte and the NULL
terminator byte. In this case, when the information is returned back, the length
byte will be updated to indicate the actual size of the string being returned.
When flags is set to Value required and the user was prompted to enter a value
for this option, the entered ASCII string is placed in this field.

Table 6-1 Option Type vs. Parameter Definitions
Hex Value Option parameter0 parameter1 parameter2

0x0000 HAM Defined
option (such as
NWDIAG)

Defined as needed by the
option.

Defined as needed by the option. Defined as needed by
the option.

String
ASCII code for the
hexadecimal value
specified in

0x0001 Interrupt Option Contains the IRQ level. 0x01 -Put at end of ISR chain
(Default is front of ISR chain.)
0x02- Adjust RealModeInterrupt
mask. This enables real mode
(DOS) Interrupts.
0x04- Reserved by NetWare.

Input: Contains the
busTag that is returned
by
NPAB_Get_Bus_Tag().
Output:
Used by NetWare.

String
ASCII code for the
hexadecimal value
specified in

0x0002 Port Option Value of the port address
being added.

Not used. Set to 0. Input: Contains the
busTag that is returned
by
NPAB_Get_Bus_Tag().

String
ASCII code for the
hexadecimal value
specified in

0x0003 DMA Option Value of the DMA
channel being added.

Not used. Set to 0. Input: Contains the
busTag that is returned
by
NPAB_Get_Bus_Tag().

String
ASCII code for the
hexadecimal value
specified in

0x0004 Memory decode
option

Contains the shared
memory absolute
address used by the
adapter for onboard me
mory that is mapped into
NetWare’s logical
address table.

Contains the number of
paragraphs in the onboard
memory.

Input: Contains the
NBI defined busTag
that is returned by
NPAB_Get_Bus_Tag().
Output:Contains the
shared memory logical
address of the mapped
memory.

0x0005 Slot option Value of the slot being
added.

Not used. Set to 0. Input: Contains the
busTag that is returned
by
NPAB_Get_Bus_Tag().

String
ASCII code for the
decimal representation
of the hexadecimal value
specified in

0x0006 Card option Value of the card being
added.

Not used. Set to 0. Not used. Set to 0. String
ASCII code for the
hexadecimal value
specified in parameter0.

0x0007 Reserved by
NetWare

Reserved by NetWare. Reserved by NetWare. Reserved by NetWare.

0x0008 Product ID
option

Input: Contains the bus
type returned from
NPAB_Get_Bus_Type().

Output: Contains the
busTag.

Input: Contains a pointer to an
array of bytes that contain a bus
architecture-dependent parameter
that uniquely identifies an adapter
board/peripheral/system option.
See Figure 6-1.

Input: Contains the
size of the array pointed
to by parameter1.

Output:
Contains the uniqueID.

String
ASCII code for the
hexadecimal value
specified in

Hex Value Option parameter0 parameter1 parameter2
Output: Contains the slot
number.

0x0009
to

0x00FF

Reserved by
NetWare

Reserved by NetWare. Reserved by NetWare. Reserved by NetWare.

0x0100
to

0xFFFF

For vendor use
as needed

For vendor use as
needed.

For vendor use as needed For vendor use as
needed.

Vendors must register
with Novell Labs to use
these options in released
driver code.

Table 6-1 Option Type vs. Parameter Definitions (Continued)

NPAB_Get_Instance_Number

Purpose: Retrieves the instance number of the specified device or function on the
specified bus.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG NPAB_Get_Instance_Number(LONG npaHandle,
LONG busTag,
LONG uniqueIdentifier,
WORD *instanceNumber);

Parameters:
Inputs:

npaHandle

busTag

uniqueIdentifier

Outputs:
instanceNumber

The HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_HAM_Module().

Architecture dependent value returned by NPAB_Get_Bus_Tag(). It
specifies the bus on which the operation is to be performed.

Architecture dependent value returned by NPAB_Get_Unique_Identifier()
or NPAB_Search_Adapter() that uniquely identifies a specific device or
function.

Receives the instance number for the specified device or function. This
value will be unique for all buses on the system.

Return Value: NBI_SUCCESSFUL - The requested operation was completed
successfully.
NBI_PARAMETER_ERROR - One or more of the parameters passed
was incorrect.

Description: There is a one-to-one correspondence betwen bus tag and unique
identifier pairs and instance numbers. An instance number can be thought
of as a logical slot number. If an adapter contains just one function, the
instance number is equivalent to the adapter’s physical slot number.
Instance numbers are unique across all buses and devices on the system.
They are generated or determined by NetWare and are consistent across
system boots. The parameters busTag and uniqueIdentifier can also be
obtained through adding and parsing the Product ID option (See
NPAOptionStruct in Chapter 6.). The Product ID option will also return
the instanceNumber (which is the same as “slot”).

NPAB_Get_Instance_Number_Mapping

Purpose:
Retrieves the bus tag and unique identifier associated with the instance
number specified.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG NPAB_Get_Instance_Number_Mapping(LONG npaHandle,
WORD instanceNumber,
LONG *busTag,
LONG *uniqueIdentifier);

Parameters:
Inputs:

npaHandle

instanceNumber

Outputs:
busTag

uniqueIdentifier

The HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_HAM_Module().

The instance number of the device or function. The instance number is
the slot parameter passed in the load-time command line.

Receives the bus tag for the selected instance number.

Receives the unique identifier for the selected instance number.

Return Value: NBI_SUCCESSFUL - The requested operation was completed
successfully.
NBI_PARAMETER_ERROR - One or more of the parameters passed
was incorrect.

Description: There is a one-to-one correspondence betwen bus tag and unique
identifier pairs and instance numbers. An instance number can be thought
of as a logical slot number. If an adapter contains just one function, the
instance number is equivalent to the adapter’s physical slot number.
Instance numbers are unique across all buses and devices on the system.
They are generated or determined by NetWare and are consistent across
system boots.

NPAB_Get_Unique_Identifier_Parameters

Purpose: Returns bus-specific information about the device or function
represented by the given unique identifier.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG NPAB_Get_Unique_Identifier_Parameters(LONG npaHandle,
LONG busTag,
LONG uniqueIdentifier,
LONG parameterCount,
LONG *parameters);

Parameters:
Inputs:

npaHandle

busTag

uniqueIdentifier

parameterCount

Outputs:
parameters

The HAM's handle for using the NPA_ APIs, assigned during
NPA_Register_HAM_Module().

Architecture dependent value returned by NPAB_Get_Bus_Tag(). It
specifies the bus on which the operation is to be performed.

An architecture-dependent value returned by NPAB_Search_Adapter(),
NPAB_Get_Instance_Number_Mapping(), NPAB_Get_Unique_Identifier(),
or NPAB_Scan_Card_Info() that uniquely identifies a specific device or
function.

The number of elements in the parameter array to be filled in.

An array of LONGs to be filled in with the bus architecture-dependent
parameters represented by the specified unique identifier (See
NPAB_Get_Unique_Identifier() for the format.)

Return Value: NBI_SUCCESSFUL- The requested operation was successful.
NBI_PARAMETER_ERROR- One or more of the parameters passed
was incorrect.
NBI_UNSUPPORTED_OPERATION - The operation selected is not
supported by NBI.

Description: NPAB_Get_Unique_Identifier_Parameters() is the inverse of
NPAB_Get_Unique_Identifier(). This function returns bus-specific
information for a given unique identifier. The parameters busTag and
uniqueIdentifier can also be obtained through adding and parsing the
Product ID option (See NPAOptionStruct in Chapter 6.). The Product ID
option will also return the instanceNumber (which is the same as “slot”).

