
ADDENDUM

TO THE

NETWARE PERIPHERAL ARCHITECTURE (NWPA) FUNCTIONAL SPECIFICATION

 AND DEVELOPER’S GUIDE

VERSION 2.1D (SEPTEMBER 1995)

Attached are changes to Version 2.1D of the NWPA Functional Specification. These changes are supported

by Version 2.13 of NWPA.NLM These changes will be incorporated in the next release of the document.

1. Changes to NPAOptionStruct in Chapter 6.

These changes clarify the relationship between the parameters parameter0, parameter1 and parameter2 and

the option type identified by the parameter type, and corrects information related to these parameters.

2. Addition of NPAB_Get_Instance_Number(), NPAB_Get_Instance_Number_Mapping(), and

NPAB_Get_Unique_Identifier_Parameters().

These NBI related APIs are now supported by NWPA. The attachment provides their prototypes and

definitions.

NPAOptionStruct

Used by: HAM (CDM usage is optional)

Description: The NPAOptionStruct contains the HAM's command line option data on a per

option basis. Using this structure, the HAM can select the command line options

that it wants the NWPA to prompt the system operator for. The HAM must fill

out one of these structures and call NPA_Add_Option() for each option it

supports. With each successive call to NPA_Add_Option(), the NWPA adds the

current option to a select list. After the HAM has added all of its command line

options, it calls NPA_Parse_Options(), which parses the command line to

determine which options in the select list were actually chosen. Within the context

of NPA_Parse_Options(), the NWPA iteratively calls the HAM's

HAM_Check_Option() routine for each option (provided that the options are of

differing types) that was actually selected from the command line.

HAM_Check_Option() can direct the NWPA to either accept the option by

returning zero or reject the option by returning non-zero. If the option is accepted,

the NWPA places it in a use list. The HAM then calls NPA_Register_Options() to

direct the NWPA to physically register the options in its use list for the HAM.

The NWPA will not place multiple options of the same type, such as multiple

interrupts, in its use list for a single parse of the command line. Therefore, if the

host adapter supports multiple options of the same type and the HAM wants to

add/parse/register them, then the HAM must do the following:

1. Call NPA_Add_Option() to add the first option.

2. Call NPA_Parse_Options() and have HAM_Check_Option() accept the

option so that it is placed in the use list.

3. Call NPA_Add_Option() to add the next option of the same type.

4. Call NPA_Parse_Options() and have HAM_Check_Option() accept this

option so that it is also placed in the use list.

5. Repeat steps 3 and 4 until all of the options of the same type are in the

use list.

6. Call NPA_Register_Options() to have the Media Manager physically

register the options.

Syntax: struct NPAOptionStruct{
BYTE name[32];

LONG parameter0;

LONG parameter1;

LONG parameter2;

WORD type;

WORD flags;

BYTE string[16];

} ;

Parameters: name This is a 32 byte field to contain a length-preceded and null-terminated

string. The HAM places the name of the desired option, as it will appear on the

command line, in this field.

parameter0 This is a 4 byte field to contain the value associated with an option.

See Table 6-1 for the relationship between this parameter and the option type

selected.

parameter1 This is a 4 byte field to contain the length or range associated with

this option. Typically, this field is used in specifying memory decode ranges and

port lengths. See Table 6-1 for the relationship between this parameter and the

option type selected. For the Product ID option, Figure 6-1 shows the various

formats for product ID values (as applicable).

parameter2 This is a 4 byte field that can be either an input or an output

parameter. See Table 6-1 for the relationship between this parameter and the

option selected.

Note: Return values to this parameter are only valid after

NPA_Register_Options() has been called.

type This is a 2 byte field to contain a code indicating the option type. See Table

6-1 for the list of possible values for this field.

flags This is a 2 byte field to contain a bitmap indicating the status of the option.

The following is a list of the flags defined for this field:

0x0001 Option required -- If not specified on command line, then prompt

the user.

0x0002 Use this option -- Use this option whether or not it is specified on

the command line.

0x0004 Value required -- Tells NWPA to look for a “name =” on the

command line where name is the string contained in the Name

field and the user is expected to enter a value.

0x0008 Specific value required -- Same as Value required except that

instead of prompting the user for any value, a list of values will

be displayed from which to choose. To use this flag value,

developers must add a whole set of options of the same type with

this flag set. From this group, NWPA will create its

enumeration. Each value in the set is contained in parameter0 of

one of the options added in the set.

0x0010 Default value -- Contained in parameter0.

0x0020 Shareable option -- Such as shared interrupts.

All other bits in this field are reserved by NetWare.

Byte 1 Byte 0

MCA Bus

POS
Register 1

POS
Register 0

32-bit encoded EISA ID (LOHI byte order)

EISA Bus

Byte 2Byte 3

Byte 1

Byte 0

PC Card Bus (PCMCIA)

Byte 2Byte 3

16-bit Manufacturer ID
(TPLMID-MANF field of the

CISTPL-MANFID tuple)
(LOHI byte order)

16-bit Manufacturer Info
(TPLMID-CARD field of the

CISTPL-MANFID tuple)
(LOHI byte order)

Byte 1

PCI Bus

Byte 2Byte 3

16-bit Device ID
(LOHI byte order)

16-bit Vendor ID
(LOHI byte order)

Byte 0

Byte 1 Byte 0

32-bit encoded EISA ID (LOHI byte order)

PnP ISA Bus

Byte 2Byte 3

Byte 1 Byte 0

Note: LOHI byte order refers to a little-endian byte order.

Figure 6-1 Product ID Formats

string This is a 16-byte field that can be used to pass and\or receive information

to/from the command line. If flags is set to Specific value required, this field will

contain a length-preceded and NULL terminated string. String contains the ASCII

code for the value (or values) specified in parameter0. In this case where a

matching option was not specified on the command line, this value appears at the

console as a choice for the user. After a user makes a selection, the selected value

is placed back into this field.

If the developer desires to use this field to return information back from the

command line, (flags is set to Value required) this field must contain n-2, where n

is the maximum length of string plus the length count byte and the NULL

terminator byte. In this case, when the information is returned back, the length

byte will be updated to indicate the actual size of the string being returned. When

flags is set to Value required and the user was prompted to enter a value for this

option, the entered ASCII string is placed in this field.

Table 6-1 Option Type vs. Parameter Definitions

Hex Value Option parameter0 parameter1 parameter2

0x0000 HAM Defined Defined as needed by Defined as needed by the option. Defined as needed by String

option (such as the option. the option. ASCII code for the

NWDIAG) hexadecimal value

specified in

parameter0

0x0001 Interrupt Contains the IRQ level. 0x01 -Put at end of ISR chain String

Option (Default is front of ISR chain.) ASCII code for the

0x02- Adjust RealModeInterrupt hexadecimal value

mask. This enables real mode specified in

(DOS) Interrupts. parameter0

0x04- Reserved by NetWare.

Input: Contains the

busTag that is returned

by

NPAB_Get_Bus_Tag().

Output:

Used by NetWare.

0x0002 Port Option Value of the port Not used. Set to 0. String

address being added. ASCII code for the

Input: Contains the

busTag that is returned

by

NPAB_Get_Bus_Tag().

hexadecimal value

specified in

parameter0

0x0003 DMA Option Value of the DMA Not used. Set to 0. String

channel being added. ASCII code for the

Input: Contains the

busTag that is returned

by

NPAB_Get_Bus_Tag().

hexadecimal value

specified in

parameter0

0x0004 Memory decode Contains the shared Contains the number of

option memory absolute paragraphs in the onboard

address used by the memory.

adapter for onboard me

mory that is mapped

into NetWare’s logical

address table.

Input: Contains the

NBI defined busTag

that is returned by

NPAB_Get_Bus_Tag().

Output:Contains the

shared memory logical

address of the mapped

memory.

Hex Value Option parameter0 parameter1 parameter2

0x0005 Slot option Value of the slot being Not used. Set to 0. String

added. ASCII code for the

Input: Contains the

busTag that is returned

by

NPAB_Get_Bus_Tag().

decimal representation

of the hexadecimal

value specified in

parameter0

0x0006 Card option Value of the card being Not used. Set to 0. Not used. Set to 0. String

added. ASCII code for the

hexadecimal value

specified in parameter0.

0x0007 Reserved by Reserved by NetWare. Reserved by NetWare. Reserved by NetWare.

NetWare

0x0008 Product ID String

option ASCII code for the

Input: Contains the bus Input: Contains a pointer to an Input: Contains the

type returned from array of bytes that contain a bus size of the array

NPAB_Get_Bus_Type().

Output: Contains the

busTag.

architecture-dependent parameter pointed to by

that uniquely identifies an adapter parameter1.

board/peripheral/system option.

See Figure 6-1.

Output: Contains the slot

number.

Output:

Contains the uniqueID.

hexadecimal value

specified in

parameter0

0x0009 Reserved by Reserved by NetWare. Reserved by NetWare. Reserved by NetWare.

to NetWare

0x00FF

0x0100 For vendor use For vendor use as For vendor use as needed For vendor use as Vendors must register

to as needed needed. needed. with Novell Labs to use

0xFFFF these options in released

driver code.

Table 6-1 Option Type vs. Parameter Definitions (Continued)

NPAB_Get_Instance_Number

Purpose: Retrieves the instance number of the specified device or function on the

specified bus.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG NPAB_Get_Instance_Number(
LONG npaHandle,

LONG busTag,

LONG uniqueIdentifier,

WORD *instanceNumber);

Parameters:

Inputs:

npaHandle

busTag

uniqueIdentifier

Outputs:

instanceNumber

The HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_HAM_Module().

Architecture dependent value returned by NPAB_Get_Bus_Tag(). It

specifies the bus on which the operation is to be performed.

Architecture dependent value returned by NPAB_Get_Unique_Identifier()

or NPAB_Search_Adapter() that uniquely identifies a specific device or

function.

Receives the instance number for the specified device or function. This

value will be unique for all buses on the system.

Return Value: NBI_SUCCESSFUL - The requested operation was completed

successfully.

NBI_PARAMETER_ERROR - One or more of the parameters passed was

incorrect.

Description: There is a one-to-one correspondence betwen bus tag and unique identifier

pairs and instance numbers. An instance number can be thought of as a

logical slot number. If an adapter contains just one function, the instance

number is equivalent to the adapter’s physical slot number. Instance

numbers are unique across all buses and devices on the system. They are

generated or determined by NetWare and are consistent across system

boots. The parameters busTag and uniqueIdentifier can also be obtained

through adding and parsing the Product ID option (See NPAOptionStruct in

Chapter 6.). The Product ID option will also return the instanceNumber

(which is the same as “slot”).

NPAB_Get_Instance_Number_Mapping

Purpose:

Retrieves the bus tag and unique identifier associated with the instance

number specified.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG NPAB_Get_Instance_Number_Mapping(
LONG npaHandle,

WORD instanceNumber,

LONG *busTag,

LONG *uniqueIdentifier);

Parameters:

Inputs:

npaHandle

instanceNumber

Outputs:

busTag

uniqueIdentifier

The HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_HAM_Module().

The instance number of the device or function. The instance number is the

slot parameter passed in the load-time command line.

Receives the bus tag for the selected instance number.

Receives the unique identifier for the selected instance number.

Return Value: NBI_SUCCESSFUL - The requested operation was completed

successfully.

NBI_PARAMETER_ERROR - One or more of the parameters passed was

incorrect.

Description: There is a one-to-one correspondence betwen bus tag and unique identifier

pairs and instance numbers. An instance number can be thought of as a

logical slot number. If an adapter contains just one function, the instance

number is equivalent to the adapter’s physical slot number. Instance

numbers are unique across all buses and devices on the system. They are

generated or determined by NetWare and are consistent across system

boots.

NPAB_Get_Unique_Identifier_Parameters

Purpose: Returns bus-specific information about the device or function represented

by the given unique identifier.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG NPAB_Get_Unique_Identifier_Parameters(
LONG npaHandle,

LONG busTag,

LONG uniqueIdentifier,

LONG parameterCount,

LONG *parameters);

Parameters:

Inputs:

npaHandle

busTag

uniqueIdentifier

parameterCount

Outputs:

parameters

The HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_HAM_Module().

Architecture dependent value returned by NPAB_Get_Bus_Tag(). It

specifies the bus on which the operation is to be performed.

An architecture-dependent value returned by NPAB_Search_Adapter(),

NPAB_Get_Instance_Number_Mapping(), NPAB_Get_Unique_Identifier(),

or NPAB_Scan_Card_Info() that uniquely identifies a specific device or

function.

The number of elements in the parameter array to be filled in.

An array of LONGs to be filled in with the bus architecture-dependent

parameters represented by the specified unique identifier (See

NPAB_Get_Unique_Identifier() for the format.)

Return Value: NBI_SUCCESSFUL- The requested operation was successful.

NBI_PARAMETER_ERROR- One or more of the parameters passed was

incorrect.

NBI_UNSUPPORTED_OPERATION - The operation selected is not

supported by NBI.

Description: NPAB_Get_Unique_Identifier_Parameters() is the inverse of

NPAB_Get_Unique_Identifier(). This function returns bus-specific

information for a given unique identifier. The parameters busTag and

uniqueIdentifier can also be obtained through adding and parsing the

Product ID option (See NPAOptionStruct in Chapter 6.). The Product ID

option will also return the instanceNumber (which is the same as “slot”).

