
Version 2.1d (September, 1995) 7-1

Chapter 7 Technical Reference for

NWPA Routines

This chapter is a technical reference for the routines that are part of the

NWPA. Technical information is supplied for the routines that are provided

by the NWPA, and functional descriptions are supplied for the routines that

a HAM or CDM is expected to implement.

CDM-Specific

C Custom-Device-Interface routines that are identified in the text by a

CDI_ prefix. These routines are part of the NWPA, and they provide

CDMs with an interface to the NWPA allowing them to register as

CDM modules and build and initiate HACB requests.

C Functional descriptions of the interface routines that a CDM is required

to implement. These routines are identified in the text by a CDM_

prefix. In general, these routines are expected to succeed with a return

value of zero. However, three of the routines

(CDM_Abort_CDMMessage(), CDM_Unload_Check(), and

CDM_Execute_CDMMessage()) give return values based on certain

conditions. These conditions and their respective return values are

specified.

HAM-Specific

C Host-Adapter-Interface routines that are identified in the text by the

HAI_ prefix. These routines provide HAMs with an interface to the

NWPA allowing them to register as HAM modules and report HACB

request completions.

C Functional descriptions of the interface routines that a HAM is required

to implement. These routines are identified in the text by a HAM_

prefix. In general, these routines are expected to succeed with a return

value of zero. However, three of the routines, HAM_Abort_HACB(),

HAM_Unload_Check(), and HAM_ISR(), give return values based on

certain conditions. These conditions and their respective return values

are specified.

General NWPA

C General NWPA support routines that are identified in the text by the

NPA_ prefix. These routines provide CDMs and HAMs with a stable

interface to the NetWare OS.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

7-2 Version 2.1d (September, 1995)

The technical reference information is listed in alphabetical order according

to routine names. The following is a list of the routines referenced in this

chapter:

CDI_Abort_HACB . 7-4

CDI_Allocate_HACB . 7-5

CDI_Bind_CDM_To_Object . 7-6

CDI_Blocking_Execute_HACB . 7-8

CDI_Chain_Message . 7-9

CDI_Complete_Message . 7-11

CDI_Execute_HACB . 7-13

CDI_Non_Blocking_Execute_HACB . 7-14

CDI_Object_Update . 7-15

CDI_Queue_Message . 7-18

CDI_Register_CDM . 7-20

CDI_Register_Object_Attribute . 7-22

CDI_Return_HACB . 7-24

CDI_Rescan_Bus . 7-25

CDI_Unbind_CDM_From_Object . 7-26

CDI_Unregister_CDM . 7-27

CDM_Abort_CDMMessage . 7-28

CDM_Callback . 7-29

CDM_Check_Option . 7-31

CDM_Execute_CDMMessage . 7-33

CDM_Get_Attribute . 7-34

CDM_Inquiry . 7-35

CDM_Set_Attribute . 7-38

CDM_Load . 7-39

CDM_Unload . 7-40

CDM_Unload_Check . 7-41

HAI_Activate_Bus . 7-42

HAI_Complete_HACB . 7-43

HAI_Deactivate_Bus . 7-44

HAI_PreProcess_HACB_Completion . 7-45

HAM_Abort_HACB . 7-46

HAM_Check_Option . 7-48

HAM_Execute_HACB . 7-50

HAM_ISR . 7-51

HAM_Load . 7-53

HAM_Software_Hot_Replace . 7-54

HAM_Timeout . 7-55

HAM_Unload . 7-57

HAM_Unload_Check . 7-58

Inx . 7-59

InBuffx . 7-60

NPA_Add_Option . 7-62

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-3

NPA_Allocate_Memory . 7-63

NPA_Cancel_Thread . 7-65

NPA_CDM_Passthru . 7-66

NPA_Delay_Thread . 7-68

NPA_Exchange_Message . 7-69

NPA_Get_Version_Number . 7-70

NPA_HACB_Passthru . 7-71

NPA_Interrupt_Control . 7-72

NPA_Micro_Delay . 7-74

NPA_Parse_Options . 7-75

NPA_Register_CDM_Module . 7-76

NPA_Register_For_Event_Notification . 7-78

NPA_Register_HAM_Module . 7-82

NPA_Register_Options . 7-84

NPA_Return_Bus_Type . 7-85

NPA_Return_Memory . 7-86

NPA_Spawn_Thread . 7-87

NPA_System_Alert . 7-89

NPA_Unload_Module_Check . 7-91

NPA_Unregister_Event_Notification . 7-92

NPA_Unregister_Module . 7-93

NPA_Unregister_Options . 7-94

NPAB_Get_Alignment . 7-95

NPAB_Get_Bus_Info . 7-96

NPAB_Get_Bus_Name . 7-97

NPAB_Get_Bus_Tag . 7-98

NPAB_Get_Bus_Type . 7-99

NPAB_Get_Card_Config_Info . 7-100

NPAB_Get_Unique_Identifier . 7-102

NPAB_Read_Config_Space . 7-104

NPAB_Scan_Bus_Info . 7-106

NPAB_Search_Adapter . 7-108

NPAB_Write_Config_Space . 7-110

Outx . 7-112

OutBuffx . 7-113

7-4 Version 2.1d (September, 1995)

CDI_Abort_HACB

Purpose: Issues an abort request to a device.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Abort_HACB (

LONG reserved,

LONG hacbPutHandle,

LONG flag);

Parameters:

Inputs:

reserved

hacbPutHandle

flag

Outputs:

The CDM should set this parameter to zero.

Handle to the HACB request being aborted. The value of this parameter is

obtained from the hacbPutHandle field of the original SHACB's member

HACB.

Flag indicating the type of abort the HAM is to perform. Its possible values

are as follows:

0x00000000 This value tells the HAM to unconditionally abort the

HACB even if it has already been sent to the device.

0x00000001 This value tells the HAM to conditionally abort the

HACB if aborting only entails the unlinking of the

HACB from the device queue. This is referred to as a

clean abort.

0x00000002 This value tells the HAM to check and see if the

HACB can be cleanly aborted, but not to perform an

abort.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Abort_HACB() is used by a CDM to abort a HACB sent to a HAM.

Version 2.1d (September, 1995) 7-5

CDI_Allocate_HACB

Purpose: Allocates SHACBs that are used to communicate with the HAM.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Allocate_HACB(

LONG cdmosHandle,

struct SHACBStruct **SHACB);

Parameters:

Inputs:

cdmosHandle

SHACB

Outputs:

SHACB

The CDM's handle for using the CDI_ APIs. The value of cdmosHandle

was assigned during CDI_Register_CDM(), and it is used in conjunction

with the CDM-generated cdmHandle to uniquely identify a CDM when it

interfaces with the NWPA through the CDI_ API set.

Address of a pointer to a memory storage location of type SHACBStruct.

For a detailed description of the data structure refer to Chapter 6. The

following is the structure's ANSI C definition:
typedef struct SHACBStruct

{

LONG cdmSpace[8];

struct HACBStruct HACB;

} SHACB;

Receives a pointer to the newly allocated SHACBStruct.

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Allocate_HACB() is used by a CDM to allocate a SHACB. It is during

the context of this routine that the SHACB's HACBPutHandle field is

assigned a value by the NWPA. The CDM must not alter the value in this

field. A SHACB allocated with CDI_Allocate_HACB() is not guaranteed to

be below the 16 megabyte boundary. Also, certain fields in the member

HACB are pre-initialized by the NWPA at allocation, and their values must

be maintained. Therefore, do not clear or zero the HACB. Additionally, to

adhere to SFT III (System Fault Tolerance) requirements, only the

information in two of the HACB's fields get returned to upper system

layers. These are the Control_Info and hacbCompletion fields described in

section 3.3.2. The NWPA guarantees the member HACB's data buffer to be

physically contiguous.

7-6 Version 2.1d (September, 1995)

CDI_Bind_CDM_To_Object

Purpose: Binds a CDM to a device and registers with the NWPA the I/O and control

functions that the CDM will support for the device.

Architecture Type: All

Thread Context: Blocking

Syntax: LONG CDI_Bind_CDM_To_Object (

LONG cdmosHandle,

LONG npaDeviceID,

LONG cdmBindHandle,

LONG *cdiBindHandle,

struct UpdateInfoStruct *info,

LONG infoSize);

Parameters:

Inputs:

cdmosHandle

npaDeviceID

cdmBindHandle

cdiBindHandle

info

The CDM's handle for using the CDI_ APIs. The value of cdmosHandle

was assigned during CDI_Register_CDM(), and it is used in conjunction

with the CDM-generated cdmHandle to uniquely identify a CDM when it

interfaces with the NWPA through the CDI_ API set.

The object ID that the NWPA assigned to the target device in its device

database. This value is passed to the CDM through its CDM_Inquiry()

entry point.

A unique handle generated by the CDM to identify the device to which it

intends to bind. Following the bind, this handle will be the token the NWPA

passes to the CDM when routing I/O messages to a device. From this

handle, the CDM must be able to locate the target device's information

including the HAM-generated DeviceHandle and the NWPA-generated

NPABusID.

Address of a local variable of type LONG.

A pointer to an UpdateInfoStruct. This structure contains the information

telling the NWPA what functions the CDM will support for the device. For

a detailed description of this structure, refer to Chapter 6. The following is

the structure's ANSI C definition:

struct UpdateInfoStruct

{

BYTE Name[64];

LONG mediaType;

LONG cartridgeType;

LONG unitSize;

LONG blockSize;

LONG capacity;

LONG preferredUnitsize;

LONG functionMask;

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-7

infoSize

Outputs:

cdiBindHandle

LONG controlMask;

LONG unfunctionMask;

LONG uncontrolMask;

LONG mediaSlot;

BYTE activateFlag;

BYTE removableFlag;

BYTE readOnlyFlag;

BYTE magazineLoadedFlag;

BYTE acceptsMagazinesFlag;

BYTE objectInChangerFlag;

BYTE objectIsLoadableFlag;

BYTE lockFlag;

LONG diskGeometry;

LONG reserved[7];

union

{

struct ChangerInfo

{

LONG numberOfSlots;

LONG numberOfExchangeSlots;

LONG numberOfDevices;

LONG deviceObjects[n];

} ci;

} u1;

} ;

The size of the UpdateInfoStruct pointed at by info.

Receives an NWPA generated handle for the target device to which the

CDM is binding. This handle is the NWPA's counterpart to the CDM's

cdmBindHandle.

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Bind_CDM_To_Object() is used to bind a device object to a CDM.

This routine is used within the context of CDM_Inquiry().

7-8 Version 2.1d (September, 1995)

CDI_Blocking_Execute_HACB

Purpose: Initiates the execution of a HACB request by issuing it to a HAM.

Architecture Type: All

Thread Context: Blocking

Syntax: LONG CDI_Blocking_Execute_HACB (

LONG npaBusID,

LONG hacbPutHandle);

Parameters:

Inputs:

npaBusID The object ID that the NWPA assigned to the target bus in its object

hacbPutHandle Handle to the HACB request being executed. The value of this parameter is

Outputs: None

database. The CDM received this ID through its CDM_Inquiry() entry

point during which it bound to the device.

obtained from the HACBPutHandle field of the original SHACB's member

HACB.

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Blocking_Execute_HACB() is used if the CDM must issue multiple

HACBs to the HAM to complete a single CDM message request. This

routine must be called from a blocking thread. Typically, a CDM will use

CDI_Blocking_Execute_HACB() within the context of CDM_Inquiry(),

also a blocking thread, to test a device to see if it should bind to the device.

CDI_Blocking_Execute_HACB() causes the OS to treat the current thread as

if it were the current process. This ensures that a request is carried to

completion, and instructions immediately following this call can expect the

request data to be present. Consequently, since

CDI_Blocking_Execute_HACB() runs a HACB request to completion, a

callback is not necessary unlike the requirement for its non-blocking

counterpart, CDI_Execute_HACB().

Version 2.1d (September, 1995) 7-9

CDI_Chain_Message

Purpose: Chains CDM message requests through layers of CDM filters prior to being

received by a translator CDM (also referred to as a base CDM) where the

message is converted to a SHACB. This routine is only used by filter

CDMs.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Chain_Message(

LONG cdiBindHandle,

LONG msgPutHandle,

LONG *cdmMessage,

void (*callback)(),

LONG parameter);

Parameters:

Inputs:

cdiBindHandle

msgPutHandle

cdmMessage

callback

parameter

Outputs:

The NWPA-generated bind handle that was assigned to the calling CDM

when it bound to the target device using CDI_Bind_CDM_To_Object().

Handle to the CDM Message (CDMMessageStruct) being passed

downward. The value of this parameter is obtained from theMsgPutHandle

field of the CDMMessageStruct.

Pointer to the chained CDM Message casted to a pointer to LONG.

Address of the filter CDM's callback routine. The NWPA calls this routine

when the translator (base) CDM completes the CDM message associated

with the request. If the filter CDM does not require a callback, then this

field should be set to zero.

The input parameter of the filter CDM's callback routine. This routine can

be whatever is needed to identify the chained message. If the filter CDM

does not require a callback, then this field should be set to zero.

None.

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Chain_Message() is used by filter CDMs to chain CDM messages

through each layer in a CDM filter chain until the message is received by a

translator (base) CDM. Each filter CDM in the chain has the ability to alter

("massage") CDM message information before passing the message to the

next filter. The translator CDM is the last link in the chain, meaning that no

more data massaging of the CDM message is performed. Instead, as the last

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

7-10 Version 2.1d (September, 1995)

link in the chain, the translator CDM converts the CDM message into a

SHACB request and initiates its execution. CDI_Chain_Message() allows

the filter CDM to specify a callback routine, so that it can be notified when

the request cycle associated with the message has been completed. If there

are multiple filter CDMs then their respective callbacks are called in reverse

order, thereby, rippling completion-notification upward through the chain.

Version 2.1d (September, 1995) 7-11

CDI_Complete_Message

Purpose: Informs the NWPA that a message request has been completed.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Complete_Message(

LONG msgPutHandle,

LONG npaCompletionCode,

LONG appReturnCode);

Parameters:

Inputs:

msgPutHandle

npaCompletionCode

Handle to the CDM message (CDMMessageStruct) from which the

SHACB being completed was built. The value of this parameter is obtained

from theMsgPutHandle field of the CDMMessageStruct.

This is zero for no error or non-zero if it should contain an error code. The

NWPA completion codes are listed below:
#define ERROR_NO_ERROR_FOUND 0X00000000

#define ERROR_ABORT_UNCLEAN 0X00000003

#define ERROR_ABORT_CLEAN 0x0000000A

#define ERROR_CORRECTED_MEDIA_ERROR 0x00000010

#define ERROR_MEDIA_ERROR 0x00000011

#define ERROR_DEVICE_ERROR 0x00000012

#define ERROR_ADAPTER_ERROR 0x00000013

#define ERROR_NOT_SUPPORTED_BY_DEVICE 0x00000014

#define ERROR_NOT_SUPPORTED_BY_DRIVER 0x00000015

#define ERROR_PARAMETER_ERROR 0x00000016

#define ERROR_MEDIA_NOT_PRESENT 0x00000017

#define ERROR_MEDIA_CHANGED 0x00000018

#define ERROR_PREVIOUSLY_WRITTEN 0x00000019

#define ERROR_MEDIA_NOT_FORMATTED 0x0000001A

#define ERROR_BLANK_MEDIA 0x0000001B

#define ERROR_END_OF_MEDIA 0x0000001C

#define ERROR_FILE_MARK_DETECTED 0x0000001D

#define ERROR_SET_MARK_DETECTED 0x0000001E

#define ERROR_WRITE_PROTECTED 0x0000001F

#define ERROR_OK_EARLY_WARNING 0x00000020

#define ERROR_BEGINNING_OF_MEDIA 0x00000021

#define ERROR_MEDIA_NOT_FOUND 0x00000022

#define ERROR_MEDIA_NOT_REMOVED 0x00000023

#define ERROR_UNKNOWN_COMPLETION 0x00000024

#define ERROR_IO_ERROR 0x00000028

#define ERROR_CHANGER_SOURCE_EMPTY 0x00000029

#define ERROR_CHANGER_DEST_FULL 0x0000002A

#define ERROR_CHANGER_JAMMED 0x0000002B

#define ERROR_MAGAZINE_NOT_PRESENT 0x0000002D

#define ERROR_MAGAZINE_SOURCE_EMPTY 0x0000002E

#define ERROR_MAGAZINE_DEST_FULL 0x0000002F

#define ERROR_MAGAZINE_JAMMED 0x00000030

#define ERROR_ABORT_CAUSED_PRIOR_ERROR 0x00000031

#define ERROR_CHANGER_ERROR 0x00000032

#define ERROR_MAGAZINE_ERROR 0x00000033

#define ERROR_BLOCKSIZE_MISMATCH 0x00000034

#define ERROR_DECOMPRESSION_ALGORITHM_MISMATCH 0x00000035

Application return code. This parameter passes specific information directly

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

7-12 Version 2.1d (September, 1995)

appReturnCode from the CDM to a NWPA application.

Outputs:

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Complete_Message() is used by a CDM to notify the NWPA that a

specific HACB request has been completed. CDI_Complete_Message() is

generally called within the context of the CDM's CDM_Callback() routine,

which is the point where the CDM is notified that a HACB request has been

completed. CDM_Callback() is responsible for checking the value in the

HACB's hacbCompletion field to determine the request's completion status.

If the field value is zero, it indicates that the request completed without

error, and CDI_Complete_Message() should be called with

npaCompletionCode = 0x00000000 (NO ERROR). If the field value is

non-zero, it indicates that an error occurred while processing the request. In

the error case, CDM_Callback() can do one of the following:

Option 1: Map the error into one of the NWPA completion codes

applicable to the condition and call

CDI_Complete_Message() with NPACompletionCode

equal to this code.

Option 2: Spawn a blocking, error handling thread using

NPA_Spawn_Thread() and return. The spawned error

handling thread can request sense information and try to

remedy the error. If the error is remedied and the request

can be completed successfully, then

CDI_Complete_Message() should be called within the

context of the error handling routine with

npaCompletionCode = 0x00. However, if the error cannot

be remedied, then the error handling routine should

perform the tasks prescribed in option 1. If the error is

severe enough, the device may need to be deactivated.

Additionally, CDI_Complete_Message() provides the channel for a CDM to

ripple specific information up to an application. For example, a tape

application may require an I/O request to return the actual number of blocks

read/written from/to a device. The CDM provides this information via the

appReturnCode parameter

Version 2.1d (September, 1995) 7-13

CDI_Execute_HACB

Purpose: Initiates the execution of a SHACB request.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Execute_HACB (

LONG msgPutHandle,

LONG hacbPutHandle,

LONG (*CDM_Callback)());

Parameters:

Inputs:

msgPutHandle

hacbPutHandle

CDM_Callback

Outputs:

Handle to the CDM message (CDMMessageStruct) from which the

SHACB was built. The value of this parameter is obtained from the

MsgPutHandle field of the CDMMessageStruct.

Handle to the HACB request being executed. The value of this parameter is

obtained from the HACBPutHandle field of the original SHACB's member

HACB.

Address of the CDM routine to be called when the HACB request

completes. A callback routine must be specified for each issued request.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Execute_HACB() is used by a CDM to initiate the execution of a

HACB request by routing a HACB to the HAM supporting the target

device. Most HACB requests should be executed using this routine.

7-14 Version 2.1d (September, 1995)

CDI_Non_Blocking_Execute_HACB

Purpose: Allows the CDM to issue AEN HACBs to the HAM.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Non_Blocking_Execute_HACB(

LONG npaBusID,

LONG hacbPutHandle,

LONG (*CDM_Callback)());

Parameters:

Inputs:

npaBusID

hacbPutHandle

CDM_Callback

Outputs:

The object ID that the NWPA assigned to the target bus in its object

database. The CDM received this ID through its CDM_Inquiry() entry

point during which it bound to the device.

Handle to the HACB request being issued. The value of this parameter is

obtained from the HACBPutHandle field of the original SHACB's member

HACB.

Address of the CDM routine to be called when the HACB request

completes. A callback routine must be specified for each issued request.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Non_Blocking_Execute_HACB() is used by a CDM to issue

Asynchronous Event Notification (AEN) HACBs to the HAM. The CDM

indicates which device it wants the AEN to monitor by placing the

appropriate handle in the HACB's DeviceHandle field. For more

information about AEN HACBs, refer to section 4.3.2.

Version 2.1d (September, 1995) 7-15

CDI_Object_Update

Purpose: Allows the CDM to update device object information

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Object_Update (

LONG cdmosHandle,

LONG cdiBindHandle,

struct UpdateInfoStruct *info,

LONG infoSize,

LONG reasonFlag);

Parameters:

Inputs:

cdmosHandle

cdiIBindHandle

info

The CDM's handle for using the CDI_ APIs. The value of cdmosHandle

was assigned during CDI_Register_CDM(), and it is used in conjunction

with the CDM-generated CDMHandle to uniquely identify a CDM when it

interfaces with the NWPA through the CDI_ API set.

The NWPA-generated bind handle that was assigned to the calling CDM

when it bound to the target device using CDI_Bind_CDM_To_Object().

A pointer to an UpdateInfoStruct. This structure contains the information

telling the NWPA what items will be updated for the target device. For a

detailed description of this structure, refer to Chapter 6. The following is

the structure's ANSI C definition:
struct UpdateInfoStruct

{

BYTE name[64];

LONG mediaType;

LONG cartridgeType;

LONG unitSize;

LONG blockSize;

LONG capacity;

LONG preferredUnitsize;

LONG functionMask;

LONG controlMask;

LONG unfunctionMask;

LONG uncontrolMask;

LONG mediaSlot;

BYTE activateFlag;

BYTE removableFlag;

BYTE readOnlyFlag;

BYTE magazineLoadedFlag;

BYTE acceptsMagazinesFlag;

BYTE objectInChangerFlag;

BYTE objectIsLoadableFlag;

BYTE lockFlag;

LONG diskGeometry;

LONG reserved[7];

union

{

struct ChangerInfo

{

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

7-16 Version 2.1d (September, 1995)

infoSize

reasonFlag

None

Outputs:

LONG numberOfSlots;

LONG numberOfExchangeSlots;

LONG numberOfDevices;

LONG deviceObjects[n];

} ci;

} u1;

} ;

The size of the UpdateInfoStruct pointed at by info.

A NWPA recognized code corresponding to the reason why the update is

being done. The following is a list of valid codes that may be placed in this

field:
ALERT_UNKNOWN 0X00000000

ALERT_DRIVER_UNLOAD 0X00000001

ALERT_DEVICE_FAILURE 0X00000002

ALERT_PROGRAM_CONTROL 0X00000003

ALERT_MEDIA_DISMOUNT 0X00000004

ALERT_MEDIA_EJECT 0X00000005

RESERVED2 0X00000006

RESERVED3 0X00000007

ALERT_MEDIA_LOAD 0X00000008

ALERT_MEDIA_MOUNT 0X00000009

ALERT_DRIVER_LOAD 0X0000000A

RESERVED4 0X0000000B

RESERVED5 0X0000000C

ALERT_MAGAZINE_LOAD 0X0000000D

ALERT_MAGAZINE_UNLOAD 0X0000000E

RESERVED6 0X0000000F

ALERT_CHECK_DEVICE 0X00000010

ALERT_CONFIGURATION_CHANGE 0X00000011

RESERVED7 0X00000012

RESERVED8 0X00000013

ALERT_LOST_HARDWARE_FAULT_TOLERANCE 0X00000014

RESERVED9 0X00000015

RESERVED10 0X00000016

RESERVED11 0X00000017

ALERT_DEVICE_END_OF_MEDIA 0X00000018

ALERT_MEDIA_INSERTED 0X00000019

RESERVED12 0X0000001A

RESERVED13 0X0000001B

RESERVED14 0X0000001C

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Object_Update() is used by a CDM to update device object

information with the NWPA. Typically, object updating is done when the

CDM needs to deactivate a device or put in capacity, unitsize, or blocksize

information for a removable device on a mount. Although it is not a specific

NWPA requirement, it is good practice for a CDM to store the device

object information for each device it supports into a local structure.

Whenever device information is updated, the update information should

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-17

also be mirrored into the local storage structure. Doing this allows the CDM

to know the current operational information for each device it supports.

However, to save the NWPA time and overhead in performing the update,

the CDM should allocate a reusable UpdateInfoStruct to use exclusively as

an input parameter to CDI_Object_Update(). Then, when an update is

necessary, the CDM should do the following:

1. Set all of the fields of the reusable UpdateInfoStruct to -1.

This is easily accomplished using the OS routine CSetB().

2. Place the new values in the fields that are to be updated,

thereby, leaving a -1 in all of the fields that are not to be

updated. The -1 indicates a no-change condition to the

NWPA.

Note: Updated field values should be mirrored into the corresponding

fields of device's local storage structure.

3. Call CDI_Object_Update() to update the device object

information with the NWPA.

7-18 Version 2.1d (September, 1995)

CDI_Queue_Message

Purpose: Registers an abort routine with the NWPA for a CDM that internally

queues CDM messages.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Queue_Message(

LONG msgPutHandle,

LONG (*AbortRoutine)(),

LONG abortParameter,

void (*ExecuteRoutine)(),

LONG executeParameter);

Parameters:

Inputs:

msgPutHandle

AbortRoutine

abortParameter

ExecuteRoutine

executeParameter

Outputs:

Handle to the CDM message (CDMMessageStruct) from which the

SHACB was built. The value of this parameter is obtained from the

MsgPutHandle field of the CDMMessageStruct.

Address of the CDM's internal queue abort routine. Since an abort routine

is registered on a per enqueue basis, a CDM can have more than one.

However, within this manual, this routine is generically referred to as

CDM_Abort_CDMMessage().

Input parameter to CDM_Abort_CDMMessage(). This parameter can

contain anything that the CDM needs to complete the abort. Typically, this

parameter is a handle to the original CDM message that initiated the

request. To avoid memory problems, however, this parameter should not be

a memory pointer.

(Optional) A pointer to a CDM entry point where the NWPA can send

postponed requests from the NetWare elevators. This functionality is

mainly applicable to CDM filters, and even then it is limited to a small

audience of developers. If a developer does not understand the explanation

given here, then this is not a feature the developer needs. If not used, which

is the typical case, this parameter should be set to zero.

(Optional) Input parameter to the routine specified in ExecuteRoutine.

Like ExecuteRoutine, this functionality is applicable to a limited audience.

Typically, this parameter should be set to zero.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-19

Description: CDI_Queue_Message() is used by a CDM that does internal queuing of

CDM messages. Generally, a CDM will not need to do internal queuing,

unless the CDM must build multiple HACB requests to accomplish a single

CDM message request issued by the NWPA. A CDM must call

CDI_Queue_Message() each time it queues a message, that is, every time it

does not call either CDI_Execute_HACB() or CDI_Chain_Message() (filter

CDMs only) within the context of CDM_Execute_CDMMessage() for that

message. For each message the CDM queues, CDI_Queue_Message()

registers an abort routine that can be called by the NWPA in case an abort

is issued on that request. CDI_Queue_Message() only implies that a

message is enqueued. The CDM must provide the actual enqueue/dequeue

functionality. Dequeuing is implied when either CDI_Execute_HACB(),

CDI_Blocking_Execute_HACB(), or CDI_Complete_Message() is called on

the message.

LONG

BYTE BYTE WORD

CDM Type Device Type Host Adapter Type
LSBMSB

7-20 Version 2.1d (September, 1995)

CDI_Register_CDM

Purpose: Registers a CDM with the NWPA.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Register_CDM(

LONG *cdmHandle,

LONG cdmHandle,

LONG types,

BYTE *name,

LONG npaHandle);

Parameters:

Inputs:

cdmosHandle

cdmHandle

types

Address of a local variable of type LONG.

Handle that the CDM generated for itself. This handle is the CDM's own

unique identifier. It is used in conjunction with the OS-generated

cdmosHandle to uniquely identify a CDM when it interfaces with the

NWPA through the CDI_ API set.

A packed LONG containing information that identifies for the NWPA the

CDM's CDM type (filter, enhancer, or base-translator), and the device types

and host adapter type it supports. The parameter is divided as follows:

Possible values for CDM types

0x01 Base-Translator

0x02 Enhancer

0x03 Filter

Possible values for device types:

0x00 Direct-access device (magnetic disk)

0x01 Sequential-access device (magnetic tape)

0x02 Printer device

0x03 Processor device

0x04 Write once device (some optical disks)

0x05 CD-ROM device

0x06 Scanner device

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-21

name Length-preceded string containing the CDM's name. Maximum string

npaHandle The CDM's handle for using the NPA_ APIs. Its value was assigned during

Outputs:

cdmosHandle Receives a CDM-OS handle used as a communication token between the

0x07 Optical memory device (some optical disks)

0x08 Media changer device (jukebox) or magazine

0x09 Communications device

0x0A-0B Defined by ASC IT8 (Graphic Arts Pre-Press)

0x0C-1E Reserved

0x1F Unknown or no device type

0xFF Call CDM_Inquiry() for every type of device

Possible values for host adapter types:

0x0001 SCSI

0x0002 IDE\ATA

0x0003 Custom

0x0004-00FE Reserved

0xFFFF Any bus type

length is 64 bytes where byte 0 contains the string length and bytes 1

through 63 can contain characters.

NPA_Register_CDM_Module().

CDM and the NWPA. This handle is used in conjunction with the

CDM-generated CDMHandle to uniquely identify a CDM when it

interfaces with the NWPA through the CDI_ API set.

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Register_CDM() is used to register the module as a CDM and make its

entry points, registered during NPA_Register_CDM_Module(), visible to

the system. This is the last routine called within CDM_Load() prior to

CDM_Load() returning its thread to the OS calling process.

7-22 Version 2.1d (September, 1995)

CDI_Register_Object_Attribute

Purpose: Registers device attributes with the NWPA, which then makes these

attributes visible to the application layer.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Register_Object_Attribute(

LONG npaHandle,

LONG cdmBindHandle,

struct AttributeInfo *info,

LONG (*GetRoutine),

LONG (*SetRoutine));

Parameters:

Inputs:

npaHandle

cdmBindHandle

info

GetRoutine

The CDM's handle for using the NPA_ APIs. Its value was assigned during

NPA_Register_CDM_Module().

Handle generated by the CDM to uniquely identify the device. This is the

handle the CDM passed to CDI_Bind_CDM_To_Object() when it bound to

the device.

A pointer to an AttributeInfoStruct structure. This structure contains

specific information about an attribute. For a detailed description of this

structure, refer to Chapter 6. The following is the ANSI C definition of the

structure:

struct AttributeInfoStruct

{

LONG attributeID;

LONG attributeType;

LONG attributeLength;

BYTE attributeName[64];

};

Pointer to a local CDM entry point (CDM_Get_Attribute()) responsible for

returning attribute information. The following is the ANSI C prototype of

this entry point:

LONG CDM_Get_Attribute (

LONG cdmBindHandle,

void *infoBuffer,

LONG infoBufferLength,

LONG attributeID);

For a given attribute, the CDM indicates the expected data type of the

InfoBuffer input parameter by the value it places in the AttributeType field

of the attribute's AttributeInfoStruct at registration. A pointer to this

structure is passed to the attribute registration routine,

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-23

SetRoutine If the attribute is not settable, this field is set to zero. If the attribute is

Outputs:

CDM_Get_Attribute() places the return attribute information in the

location pointed at by the InfoBuffer input parameter and the byte-length of

the return information in the location pointed at by the infoBufferLength

input parameter.

settable, this field contains a pointer to a local CDM entry point

(CDM_Set_Attribute()) responsible for setting attribute information. The

following is the ANSI C prototype of this entry point:

LONG CDM_Set_Attribute (

LONG cdmBindHandle,

void *infoBuffer,

LONG infoBufferLength,

LONG attributeID);

CDM_Set_Attribute() sets the attribute to the information contained in the

infoBuffer input parameter. The length of this buffer is specified in the

infoBufferLength input parameter. If the attribute change affects any of the

information that the CDM originally reported to the NWPA during its bind

to the device, it must update these changes to the NWPA by filling out the

appropriate fields of an UpdateInfoStruct and calling

CDI_Object_Update(). The context of the set routine is blocking; therefore,

the CDM can issue any necessary commands to set the mode of the device.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Register_Object_Attribute() allows a CDM to present attribute

information about a device it manages to the application layer. To present

the information, a CDM must register a get-routine

(CDM_Get_Attribute()) that returns attribute information into a buffer

provided by the calling process. If a device attribute can be changed by an

application, then the CDM must register a set-routine

(CDM_Set_Attribute()).

7-24 Version 2.1d (September, 1995)

CDI_Return_HACB

Purpose: Returns memory allocated for a SHACB back to the system memory pool.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Return_HACB (

LONG cdmosHandle,

LONG hacbPutHandle);

Parameters:

Inputs:

cdmosHandle

hacbPutHandle

Outputs:

The CDM's handle for using the CDI_ APIs. The value of cdmosHandle

was assigned during CDI_Register_CDM(), and it is used in conjunction

with the CDM-generated CDMHandle to uniquely identify a CDM when it

interfaces with the NWPA through the CDI_ API set.

Handle to the HACB being deallocated. The value of this parameter is

obtained from the hacbPutHandle field of the original SHACB's member

HACB.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Return_HACB() is used by a CDM to return the memory allocated for

a SHACB to the system memory pool. Typically, CDI_Return_HACB() is

called when a SHACB structure becomes corrupted and cannot be reused

for building subsequent requests or when the CDM is ready to unload.

Version 2.1d (September, 1995) 7-25

CDI_Rescan_Bus

Purpose: This API is used by the CDM to update the NWPA's device object database

anytime the CDM changes the private/public status of a device it controls.

Architecture Type: All

Thread Context: Blocking

Syntax: LONG CDI_Rescan_Bus (LONG npaBusID):

Parameters:

Inputs:

npaBusID

Outputs:

The object ID that the NWPA assigned to the target bus in its object

database. The CDM received this target ID as an input parameter to its

CDM_Inquiry() entry point.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: The primary use of this API is to place devices that were originally detected

by the CDM via the Case 2 scan (see HAM_Scan_For_Devices) back into

the object database maintained by the Media Manager so that they can be

available to other applications.

7-26 Version 2.1d (September, 1995)

CDI_Unbind_CDM_From_Object

Purpose: Unbinds a CDM from a device object.

Architecture Type: All

Thread Context: Blocking

Syntax: LONG CDI_Unbind_CDM_From_Object (

LONG cdmosHandle,

LONG cdiBindHandle);

Parameters:

Inputs:

cdmosHandle

cdiBindHandle

Outputs:

The CDM's handle for using the CDI_ APIs. The value of cdmosHandle

was assigned during CDI_Register_CDM(), and it is used in conjunction

with the CDM-generated CDMHandle to uniquely identify a CDM when it

interfaces with the NWPA through the CDI_ API set.

The NWPA-generated bind handle that was assigned to the calling CDM

when it bound to the target device using CDI_Bind_CDM_To_Object().

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Unbind_CDM_From_Object() is used by the CDM to unbind itself

from a device. When a CDM is unbound, it no longer has to handle requests

for that device. Typically, the CDM calls this routine at unload time within

the context of CDM_Unload(). However, if somehow the CDM determines

that it should no longer support a device, it can call

CDI_Unbind_CDM_From_Object(), and it will no longer have to handle

requests for that device.

Version 2.1d (September, 1995) 7-27

CDI_Unregister_CDM

Purpose: Unregisters a CDM and its entry points from the NWPA.

Architecture Type: All

Thread Context: Blocking

Syntax: LONG CDI_Unregister_CDM (

LONG cdmosHandle,

LONG cdmHandle);

Parameters:

Inputs:

cdmosHandle

cdmHandle

Outputs:

The CDM's handle for using the CDI_ APIs. The value of cdmosHandle

was assigned during CDI_Register_CDM(), and it is used in conjunction

with the CDM-generated CDMHandle to uniquely identify a CDM when it

interfaces with the NWPA through the CDI_ API set.

Handle that the CDM generated for itself. This handle is the CDM's own

unique identifier. It is used in conjunction with the OS-generated

cdmosHandle to uniquely identify a CDM when it interfaces with the

NWPA through the CDI_ API set. Also, the CDM must be able to access

its device list through this handle.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Unregister_CDM() is used to unregister the CDM from the NWPA

prior to being unloaded. It is called within the context of CDM_Unload() to

flush pending I/O before being the CDM is unloaded.

7-28 Version 2.1d (September, 1995)

CDM_Abort_CDMMessage

Purpose: The CDM's entry for receiving aborts on messages it has queued.

Thread Context: Non-Blocking

Syntax: LONG CDM_Abort_CDMMessage (LONG parameter);

Parameters:

Inputs:

parameter

Outputs:

The NWPA passes the value of this parameter, which is the parameter

specified as an input argument to CDI_Queue_Message(). The CDM

decides the value of this parameter, which can be anything it needs to

complete the abort. Typically, this parameter is a handle to the original

CDM message that initiated the request. To avoid memory problems, this

parameter should not be a memory pointer.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDM_Abort_CDMMessage() is the CDM's entry point for receiving

requests to abort messages in its process queue. This routine, and its input

parameter, become visible to the NWPA during CDI_Queue_Message().

The CDM is required to provide CDM_Abort_CDMMessage() only if it

will provide its own internal request queue. CDMs that support devices,

such as tape devices, that require multiple HACB requests to execute a

command fall into this category. For such devices,

CDM_Abort_CDMMessage() must provide the means to not only remove

pending HACB requests from a queue, it must be able to abort HACB

requests already sent to the HAM by calling CDI_Abort_HACB()

Version 2.1d (September, 1995) 7-29

CDM_Callback

Purpose: The CDM's entry point for being notified of the completion of a

non-blocking HACB request.

Thread Context: Non-Blocking

Syntax: LONG CDM_Callback(

struct SHACBStruct *SHACB,

LONG npaCompletionCode);

Parameters:

Inputs:

SHACB

npaCompletionCode

Outputs:

The NWPA passes the value of this parameter, which is a pointer to the

SHACBStruct encapsulating theHACBStruct that contains the data of the

request just completed. For a detailed description of this structure and its

member HACBStruct, refer to Chapter 3. The following is the structure's

ANSI C definition:

typedef struct SHACBStruct

{

LONG cdmSpace[8];

struct hacbStruct HACB;

} SHACB;

The NWPA generates and passes the value of this parameter, which is a

completion code for an internal NWPA process. If the value of this

parameter is zero, it means that the value in the HACB's hacbCompletion

field is valid; therefore, normal callback processing should be performed. If

the value of this parameter is non-zero, it means that an internal messaging

error has occurred. In this case, CDM_Callback() should simply complete

the request by calling CDI_Complete_Message() passing it the value of

NPACompletionCode as the API's NPACompletionCode input parameter.

None

Return Value: 0 to succeed

Description: CDM_Callback() is the CDM's entry point for being notified of HACB

completion. Within the context of CDM_Callback(), the CDM can check a

HACB's completion status (provided NPACompletionCode == 0) and

determine a course of action. Depending on a HACB's completion status,

contained in the HACB's hacbCompletion field, the CDM can do one of the

following:

Option 1: If the HACB completion status is successful

(hacbCompletion=0x0000), complete the HACB

by calling CDI_Complete_Message() with a value

of zero in the NPACode input parameter.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

7-30 Version 2.1d (September, 1995)

Option 2: If the HACB completion status indicates an error

(hacbCompletion=0x0001 to 0x0008), translate

the error into an appropriate NWPA error code,

and complete the HACB by calling

CDI_Complete_Message() with the NWPA error

code as the value in the NPACode input

parameter.

Option 3: If the HACB completion status indicates an error,

spawn a blocking, error handling thread to try and

remedy the error. In this situation, the CDM must

provide some error handling routines. If the error

handling routine can remedy the error, then within

its context it should complete the HACB as

described in option 1. If the error could not be

remedied, then the error handling routine should

complete the HACB as described in option 2.

CDM_Callback() becomes visible to the NWPA when the CDM executes a

HACB request by calling CDI_Execute_HACB(). Along with a pointer to

the HACB to be executed, the CDM supplies the address of the

CDM_Callback() as an input parameter to CDI_Execute_HACB(). The

CDM must supply these parameters for each HACB request it executes.

The NWPA associates the specified HACB request with the specified

callback routine, and makes the callback after the HACB request completes.

Since a callback routine is specified for each call to CDI_Execute_HACB(),

the CDM can provide either one all-inclusive callback routine or a set of

callback routines where each provides specific functionality specially

designed for a certain type of HACB request. In this manual, however, the

term CDM_Callback() is used to generically refer to either case.

Important: CDM_Callback() should not hold the current thread for any lengthy amount of

time, and it must not make any calls to blocking processes. If blocking threads

such as error handling threads are necessary, then CDM_Callback() should spawn

them using NPA_Spawn_Thread(), and then relinquish control by returning to the

calling process.

Version 2.1d (September, 1995) 7-31

CDM_Check_Option

Purpose: The CDM's entry point for accepting and verifying the command line

options parsed by NPA_Parse_Options() are valid for the CDM.

Thread Context: Non-Blocking

Syntax: LONG CDM_Check_Option(

struct NPAOptionStruct *option,

LONG instance,

LONG flag);

Parameters:

Inputs:

option

instance

flag

Outputs:

The NWPA passes the value of this parameter, which is a pointer to the

NPAOptionStruct associated with this instance of the CDM module. The

following is the structure's ANSI C definition:

struct NPAOptionStruct

{

BYTE name[32];

LONG parameter0;

LONG parameter1;

LONG parameter2;

WORD type;

WORD flags;

BYTE string[n];

};

The NWPA passes the value of this parameter, which is a CDM-generated

number identifying a device instance. The NWPA will use this number to

associate different groups of options with a particular device being

managed by the CDM.

The NWPA passes the value of this parameter, which indicates the process

that called CDM_Check_Option(). This parameter is defined as follows;

0x00000000 Called by NPA_Parse_Options().

0x00000001 Called by NPA_Register_Options().

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDM_Check_Option() is registered with the NWPA during

NPA_Register_CDM_Module(), and it is called by the NWPA during two

different phases of CDM initialization. CDM_Check_Option() is called by

NPA_Parse_Options() during the command-line parsing phase and again by

NPA_Register_Options() during the options registration phase.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

7-32 Version 2.1d (September, 1995)

When called under the context of NPA_Parse_Options(), the CDM should

only determine if the current option is acceptable. Under this context, the

NWPA has not physically associated the options with a device instance in

its database.

When called under the context of NPA_Register_Options(), the NWPA has

already placed the options in its database, and the CDM can set its

operational states accordingly.

Since CDMs do not directly interface with the hardware, they should not

attempt to register for hardware options such as interrupts, DMA channels,

ports, etc. CDM command-line options should only set software,

operational modes for the CDM.

If the CDM determines that an error occurred in registering its options, it

will need the to unregister these options using NPA_Unregister_Options()

passing Instance as an input parameter.

Version 2.1d (September, 1995) 7-33

CDM_Execute_CDMMessage

Purpose: The CDM's entry point for receiving a CDM message which routes them to

the proper CDM control or I/O routine to build a SHACB request.

Thread Context: Non-Blocking

Syntax: LONG CDM_Execute_CDMMessage(

LONG cdmBindHandle,

struct CDMMessageStruct *msg);

Parameters:

Inputs:

cdmBindHandle

msg

Outputs:

The NWPA passes the value of this parameter, which is a handle to the

device being targeted by the CDM Message request (CDMMessageStruct).

The CDM generated the value of cdmBindHandle during the context of

CDM_Inquiry() when it bound to the device. The CDM bound to the device

by calling CDI_Bind_CDM_To_Object(). From this handle, the CDM

locates the target device's information including the HAM-generated

DeviceHandle and the NWPA-generated NPABusID.

The NWPA passes the value of this parameter, which is a pointer to the

CDMMessageStruct containing the data from which a CDM control or I/O

routine will build a SHACB. For a detailed description of this structure

refer to Chapter 6. The following is the ANSI C definition:

struct CDMMessageStruct

{

LONG msgPutHandle;

LONG function;

LONG parameter0;

LONG parameter1;

LONG parameter2;

LONG bufferLength;

void* buffer;

LONG cdmReserved[2]; } ;

None

Return Value: Returns the return value of the internal CDM routine called to service the

request:

0 if the CDM routine executed successfully.

Non-zero if the specified function is not supported by the CDM.

Description: CDM_Execute_CDMMessage() is the CDM's entry point for receiving and

routing a CDM message to the proper CDM routine that will convert the

message into a SHACB.

7-34 Version 2.1d (September, 1995)

CDM_Get_Attribute

Purpose: The CDM entry point from which applications may retrieve attribute

information for a specific attribute.

Thread Context: Non-Blocking

Syntax: LONG CDM_Get_Attribute(

LONG cdmBindHandle,

void *infoBuffer,

LONG infoBufferLength,

LONG attributeID);

Parameters:

Inputs:

cdmBindHandle

infoBuffer

infoBufferLength

attributeID

Outputs:

The NWPA passes the value of this parameter, which is a handle to the

device being targeted by the CDM Message request (CDMMessageStruct).

The CDM generated the value of cdmBindHandle during the context of

CDM_Inquiry() when it bound to the device. The CDM bound to the device

by calling CDI_Bind_CDM_To_Object(). From this handle, the CDM

locates the target device's information including the HAM-generated

DeviceHandle and the NWPA-generated NPABusID.

This points to where the information associated with the attribute being

retrieved will be stored by CDM_Get_Attribute().

Size of the infoBuffer in bytes.

The ID of the attribute selected. This is the ID that was registed by the

CDM for this attribute during CDI_Register_Object_Attribute().

None

Return Value: 0 to succeed.

Description: CDM_Get_Attribute() is the entry point from which the NWPA can

retrieve registered device attribute information for an application. This

entry point gets registered with the NWPA when the CDM registers the

attribute by calling CDI_Register_Object_Attribute().

Note: The CDM registers a get-attribute routine with each call to

CDI_Register_Object_Attribute(). Therefore, the CDM can implement either one routine

to handle all get-attribute calls, or distribute the calls through multiple routines. This

developerìs guide uses CDM_Get_Attribute() to generically refer to either case.

Version 2.1d (September, 1995) 7-35

CDM_Inquiry

Purpose: The CDM's entry point for inquiring online devices and determining

whether or not it will bind to the device.

Thread Context: Blocking

Syntax: LONG CDM_Inquiry(

LONG npaDeviceID,

LONG npaBusID,

struct DeviceInfoStruct *deviceInfo,

LONG flag,

LONG cdmHandle);

Parameters:

Inputs:

npaDeviceID

npaBusID

deviceInfo

The NWPA passes the value of this parameter, which is the object ID that

the NWPA assigned to the target device in its device database.

The NWPA passes the value of this parameter, which is the object ID that

the NWPA assigned to the target bus in its object database. If Flag is set to

0x00000003 or 0x00000004, this is the only valid parameter for this API.

All other parameters will be set to 0.

The NWPA passes the value of this parameter, which is a pointer to a

DeviceInfoStruct. The HAM supporting the target device fills in this

structure with all the pertinent device information that the CDM may need

to send I/O to the device and determine if it should bind to the device.

Additionally, this structure has an InquiryInfoStruct as a data member that

contains bus-specific inquiry information. For a detailed description of this

structure, refer to Chapter 6. The following is the structure's ANSI C

definition:

typedef struct DeviceInfoStruct

{

LONG deviceHandle;

BYTE deviceType;

BYTE unitNumber;

BYTE busID;

BYTE cardNo;

LONG attributeFlags;

LONG haxDataPerTransfer;

LONG haxLengthSGElement;

BYTE haxSGElements;

BYTE reserved1[2];

BYTE elevatorThreshold;

LONG maxUnitsPerTransfer;

WORD haType;

union /* Device Specific Information */

{

struct /* SCSI Synchronous Information */

{

BYTE transferPeriodFactor;

BYTE offset;

} SCSI;

struct /* Other Device Information */

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

7-36 Version 2.1d (September, 1995)

flag

{

BYTE reserved2[2];

} OTHER;

} INFO;

struct InquiryInfoStruct InquiryInfo;

}deviceInfoDef;

The NWPA passes the value of this parameter, which indicates the type of

inquiry to perform. This parameter can have one of the following values:

0x00000000 Indicates a new device and the CDM should check it and

bind to it if the device meets the CDM's bind conditions.

0x00000001 (Applies only to filter CDMs) Indicates that the CDM is

already bound to the specified device, but device

information has changed. Therefore, the CDM may need to

bind again or issue an object update. To base-translator

and enhancer CDMs, this constitutes a no-op.

0x00000002 Indicates to the CDM that the specified device is no longer

valid; therefore, the CDM should remove the device from

its list and free any local structures associated with the

device.

0x00000003 Indicates to the CDM that an End of Bus condition has

occurred during a Scan For New Devices. This means that

there are no more public devices on this bus. The CDM

may then scan for specific devices not found during the

normal scan. The specific devices can become public or

private devices depending on the Scan function case used.

For more details, refer to Chapter 8 HACB Type Zero

Functions under Function 1- HAM_Scan_For_Devices

If this flag is set, NPABusID is the only valid parameter

for this API. All other parameters will be set to 0.

0x00000004 Indicates to the CDM that an End of Bus condition

occurred when the bus is being deactivated (i.e. when the

HAM associated with the bus is being unloaded). The

CDM must remove any private devices on this bus and all

of the local structures associated with these devices from

its list. This is done by using Scan case 3 of

HAM_Scan_For_Devices If this flag is set, NPABusID is

the only valid parameter for this API. All other parameters

will be set to 0.

The NWPA passes the value of this parameter, which is the identifier the

CDM generated for itself and registered with the NWPA during

CDI_Register_CDM().

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-37

cdmHandle None

Outputs:

Return Value: 0 to succeed.

Description: CDM_Inquiry() is the CDM's entry point for logically binding to a device.

A logical bind means that the CDM will field message requests for the

device, and indicates this to the NWPA by calling

CDI_Bind_CDM_To_Object() and returning zero from this routine. This

entry point gets registered with the NWPA during

NPA_Register_CDM_Module(). Immediately after CDM registration, the

NWPA calls CDM_Inquiry() for each device matching the device type that

the CDM registered for with CDI_Register_CDM(). It receives subsequent

calls each time a new device with that device type comes online. The CDM

registers the device types it will support--along with the host adapter

interface it will support--by placing the appropriate values in the Types

input parameter of CDI_Register_CDM().

CDM_Inquiry() is responsible for building and maintaining a CDM's

device list. It does this by binding to devices matching the device type the

CDM is designed to support. To bind to a device, a CDM must generate a

CDMBindHandle from which the CDM can identify the device and access

essential device information, such as the device's handle and the handle of

the HAM supporting the device. Next, it must create an instance of an

UpdateInfoStruct for the device, fill in its fields with the appropriate

information, and pass both the CDMBindHandle and a pointer to the

UpdateInfoStruct to CDI_Bind_CDM_To_Object(). This is all done within

the context of CDM_Inquiry(). CDM_Inquiry() is a blocking process, and

part of its purpose is to allow a CDM the opportunity to issue non-intrusive

commands (such as a mode sense) to determine if it should bind to the

device. These commands should be issued using

CDI_Blocking_Execute_HACB(). The CDM should not issue any command

that may change the state of the device during the context of

CDM_Inquiry().

Note: If the CDM decides not to logically bind to a device, CDM_Inquiry() must return a

non-zero return code.

7-38 Version 2.1d (September, 1995)

CDM_Set_Attribute

Purpose: This is the local CDM entry point responsible for setting attribute

information for a specific attribute.

Thread Context: Non-Blocking

Syntax: LONG CDM_Set_Attribute(

LONG cdmBindHandle,

void *infoBuffer,

LONG infoBufferLength,

LONG attributeID);

Parameters:

Inputs:

cdmBindHandle

infoBuffer

infoBufferLength

attributeID

Outputs:

The NWPA passes the value of this parameter, which is a handle to the

device being targeted by the CDM Message request (CDMMessageStruct).

The CDM generated the value of cdmBindHandle during the context of

CDM_Inquiry() when it bound to the device. The CDM bound to the device

by calling CDI_Bind_CDM_To_Object(). From this handle, the CDM

locates the target device's information including the HAM-generated

DeviceHandle and the NWPA-generated NPABusID.

This points to where CDM_Set_Attribute will find the information

regarding the desired setting of the selected attribute.

Size of the infoBuffer in bytes.

The ID of the attribute to be set. This is the ID that was registed by the

CDM for this attribute during CDI_Register_Object_Attribute().

None

Return Value:

Description: CDM_Set_Attribute() is the entry point from which the NWPA can set a

registered device attribute for an application. This entry point gets

registered with the NWPA when the CDM registers the attribute by calling

CDI_Register_Object_Attribute().

Note: The CDM registers a set-attribute routine with each call to

CDI_Register_Object_Attribute(). Therefore, the CDM can implement either one routine

to handle all set-attribute calls, or distribute the calls through multiple routines. This

developerìs guide uses CDM_Set_Attribute() to generically refer to either case.

Version 2.1d (September, 1995) 7-39

CDM_Load

Purpose: The CDM's load-time entry point for initializing and registering the CDM.

Thread Context: Blocking

Syntax: LONG CDM_Load(

LONG loadHandle,

LONG screenID,

BYTE *commandLine);

Parameters:

Inputs:

loadHandle

screenID

commandLine

Outputs:

The OS assigns the value of this parameter when it receives a command line

request to load the CDM. Its value is the CDM's load handle, and the OS

uses this handle to keep track of the CDM.

The OS passes the value of this parameter, which is a handle to the console.

The NPA_ routines that output messages to the console require this handle

as an argument, and it is provided in case the CDM needs to output any

screen messages during its initialization.

This parameter is a pointer to the command line. The OS passes this pointer

so that the CDM can receive command line configuration options if any are

required.

None

Return Value: 0 if successful.

Non-zero if unsuccessful (fails the load).

Description: CDM_Load() is the initial entry point for a CDM, and it performs CDM

initialization and registration. This routine becomes visible to the OS when

the definition (.DEF) file is processed by the NLMLINK utility. When the

CDM is loaded, the OS calls CDM_Load() passing it three parameters,

loadHandle, screenID, and commandLine. loadHandle and screenID are

generated by the OS to be used in allocating resources and for outputting

console error messages that may occur during the load process.

commandLine is a pointer to the command line arguments specified by the

system operator at load time. These arguments may specify any

configuration required by the CDM, provided that the CDM supports

command line options.

7-40 Version 2.1d (September, 1995)

CDM_Unload

Purpose: The CDM's last unload-time entry point that prepares the CDM for

unloading and returns resources back to the system.

Thread Context: Blocking

Syntax: LONG CDM_Unload (void);

Parameters: None

Return Value: 0 to succeed

Description: CDM_Unload() is the CDM's entry point from the OS when it receives an

UNLOAD command for this CDM. CDM_Unload() is then responsible for

releasing all appropriate resources, cleaning up any Hacbs it generated and

issued, and unregistering the CDM. Upon entry into this routine the CDM

needs to stay operational until all its pending I/O is flushed and the NWPA

quiesces any incoming I/O. To do this, the first call the CDM should make

within CDM_Unload() is to CDI_Unregister_CDM(). It is during the

context of CDI_Unregister_CDM() that the NWPA flushes pending I/O and

quiesces new I/O for this CDM. Upon return from CDI_Unregister_CDM(),

the CDM is guaranteed not to have any pending I/O. It is at this point that

the CDM starts cleaning up its resources.

Note: The CDM absolutely must abort any outstanding Hacbs it generates and issues, such as

Asynchronous Event Notification Hacbs. Otherwise, the CDM will cause the server to

Abend.

Version 2.1d (September, 1995) 7-41

CDM_Unload_Check

Purpose: The CDM's first unload-time entry point that checks to see which devices

are currently bound to the CDM. This entry point is called by the OS prior

to calling CDM_Unload().

Thread Context: Non-Blocking

Syntax: LONG CDM_Unload_Check (LONG screenID);

Parameters:

Inputs:

screenID

Outputs:

The OS passes the value of this parameter, which is a handle to the console.

The NPA_ routines that output messages to the console require this handle

as an argument.

None

Return Value: 0 if no devices are locked, meaning that the CDM can be cleanly unloaded.

Non-zero if the CDM is bound to one or more devices.

Description: CDM_Unload_Check() is called when the OS receives a request from the

console to unload the CDM . This routine is responsible for checking to see

if any of the CDM's devices are currently being used (locked) by an

application. CDM_Unload_Check() checks the lock status for a particular

adapter by calling NPA_Unload_Module_Check(). The OS looks at the

return value to determine if the CDM can be cleanly unloaded, meaning that

there are no current I/O processes on the devices controlled by this CDM. If

any devices are locked, the OS displays a message at the console listing the

devices that will be deactivated and the corresponding NetWare volumes

that will be dismounted if the action is continued. The user then has the

option to either continue or abort the unload.

7-42 Version 2.1d (September, 1995)

HAI_Activate_Bus

Purpose: Activates a bus instance managed by the HAM.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG HAI_Activate_Bus(

LONG *npaBusHandle,

LONG hamBusHandle,

LONG npaHandle);

Parameters:

Inputs:

npaBusHandle Address of a local variable of type LONG.

hamBusHandle HAM-generated handle to a bus instance the HAM is managing. From this

npaHandle The HAM's handle for using the NPA_ APIs. Its value was assigned during

Outputs:

npaBusHandle Receives an NWPA generated handle for the target bus the HAM is

handle, the HAM must be able to locate its list of devices attached to the

bus.

NPA_Register_HAM_Module().

managing. This handle is the NWPA's counterpart to the HAM's

hamBusHandle. This handle is used in conjunction with the

HAM-generated hamBusHandle to uniquely identify a HAM when it

interfaces with the NWPA through the HAI_ API set.

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: HAI_Activate_Bus() is used to activate a bus instance managed by the

HAM. This is the last API called within HAM_Load() prior to

HAM_Load() returning its thread to the OS.

Version 2.1d (September, 1995) 7-43

HAI_Complete_HACB

Purpose: Used by the HAM to complete a HACB I/O request.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG HAI_Complete_HACB (LONG hacbPutHandle);

Parameters:

Inputs:

hacbPutHandle

Outputs:

Value of the hacbPutHandle field of the HACB being completed. This

handle is assigned by the NWPA when a CDM issues the HACB to the

HAM.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: HAI_Complete_HACB() is used to post completion of a HACB I/O request

to the NWPA, whether the request completed successfully, with an error, or

aborted.

7-44 Version 2.1d (September, 1995)

HAI_Deactivate_Bus

Purpose: Deactivates a bus instance of the HAM.

Architecture Type: All

Thread Context: Blocking or Non-Blocking

Syntax: LONG HAI_Deactivate_Bus(

LONG npaBusHandle,

LONG hamBusHandle,

LONG npaHandle);

Parameters:

Inputs:

npaBusHandle

hamBusHandle

npaHandle

Outputs:

NWPA-generated handle to the target bus. This parameter was output to

the HAM from HAI_Activate_Bus() when the bus was activated.

HAM-generated handle to the target bus instance the HAM is managing.

From this handle, the HAM must be able to locate its list of devices

attached to the bus. The HAM passed this parameter to

HAI_Activate_Bus() when the bus was activated.

The HAM's handle for using the NPA_ APIs. Its value was assigned during

NPA_Register_HAM_Module().

None.

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: HAI_Deactivate_Bus() is used to deactivate a bus in preparation for the

HAM to be unloaded. It is called within the context of HAM_Unload() to

flush pending I/O before being the HAM is unloaded. This API must be

called for each bus instance that the HAM supports.

Version 2.1d (September, 1995) 7-45

HAI_PreProcess_HACB_Completion

Purpose: Used to allow a diagnostic NLM to interject HACB errors.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: void HAI_PreProcess_HACB_Completion (LONG hacbPutHandle);

Parameters:

Inputs:

hacbPutHandle

Outputs:

Handle to the HACB request being preprocessed. The value of this

parameter is obtained from the hacbPutHandle field of the current HACB.

None

Return Value: None

Description: A HAM only uses HAI_PreProcess_HACB_Completion() if the NWDIAG

option was specified on the command line. The HAM calls

HAI_PreProcess_HACB_Completion() after the HACB request has been

processed by a device, but before the HAM determines proper queue state

and completes the HACB using HAI_Complete_HACB(). For more

information, refer to section 4.3.5.

7-46 Version 2.1d (September, 1995)

HAM_Abort_HACB

Purpose: Aborts HACB requests received by a HAM.

Thread Context: Non-Blocking

Syntax: LONG HAM_Abort_HACB(

LONG hamBusHandle,

struct HACBStruct *HACB,

LONG flag);

Parameters:

Inputs:

hamBusHandle

HACB

flag

Outputs:

The NWPA passes the value of this parameter, which is the

HAM-generated handle to the target bus instance the HAM is managing.

From this handle, the HAM must be able to locate its list of devices

attached to the bus. The HAM passed this parameter to

HAI_Activate_Bus() when the bus was activated.

The NWPA passes a pointer to the HACB request that is to be aborted.

Refer to Chapter 3 for a definition and description of this structure.

The NWPA passes the value of this parameter. The value of this parameter

indicates the type of abort to perform. Its possible values are:

0x00000000 This value tells the HAM to unconditionally abort the

HACB even if it has already been sent to the device.

0x00000001 This value tells the HAM to conditionally abort the HACB

if aborting only entails the unlinking of the HACB from

the device queue. This is a clean abort.

0x00000002 This value tells the HAM to check and see if the HACB

can be cleanly aborted, but not to perform an abort.

None

Return Value: The following table indicates the proper return value associated with each

input flag value:

Input Flag˘̆ Unconditional Abort Conditional Abort Check Abort Status

------ 0x00000000 0x00000001 0x00000002

Return Value

˙̇

0 Indicates the HACB was cleanly Same as Unconditional Indicates clean abort

aborted. The HACB was Abort. if an abort was to be

completed with the Abort issued on the HACB

completion code within the

context of this routine.

Technical Reference for NWPA Routines

Input Flag˘̆ Unconditional Abort Conditional Abort Check Abort Status

------ 0x00000000 0x00000001 0x00000002

Return Value

˙̇

Version 2.1d (September, 1995) 7-47

-1 Indicates that the HACB could Indicates that the HACB Indicates dirty abort if

not be aborted cleanly within the could not be aborted an abort was to be

current thread context. The HAM cleanly during the context issued on theHACB.

will flag the HACB and abort it of this routine. Therefore,

later during its ISR. This means the HAM took no action

the HAM will complete the on the HACB.

HACB with the Abort completion

code in the ISR.

-2 The HAM could not find the target HACB. Essentially, the HAM lost the HACB request.

The result of losing the HACB will be an Abend.

Description: HAM_Abort_HACB() is the HAM's entry point for aborting I/O requests,

and it is a non-blocking routine. This routine is registered with the NWPA

during NPA_Register_HAM_Module(). The NWPA passes three arguments

to HAM_Abort_HACB(). The first two arguments are exactly the same as

those passed to HAM_Execute_HACB(). The third argument is the Flags

parameter, and its value indicates the conditions that determine the abort

type. When an unconditional abort is indicated, HAM_Abort_HACB() is

required to cancel the indicated HACB request no matter what. If the

HACB is currently in the device queue, the abort merely entails unlinking

the HACB from the queue, placing the abort code (0x0004) in its

hacbCompletion field, calling HAI_Complete_HACB(), and returning a

zero. This abort case is referred to as a clean abort. If the HACB has

already been sent to the device, then the value in Flags must be visible to

HAM_ISR() so that it can abort the HACB request even after it was

processed by the device. The NWPA guarantees that aborts are done during

a single thread with interrupts disabled; therefore, no new requests are

pulled from the device queue and issued to the device during an abort

sequence. This ensures that a calling process can issue a clean abort check,

and if the abort can be done cleanly, issue the abort without entering a

critical-race window where the request gets sent to the device somewhere

between the check request and the abort request.

7-48 Version 2.1d (September, 1995)

HAM_Check_Option

Purpose: The HAM's entry point for accepting and verifying the command line

options parsed by NPA_Parse_Options() are valid for the HAM. These

command line options indicate hardware resources such as interrupts, ports,

DMA channels, shared memory decoding, etc.

Thread Context: Non-Blocking

Syntax: LONG HAM_Check_Option(

struct NPAOptionStruct *option,

LONG instance,

LONG flag);

Parameters:

Inputs:

option

instance

flag

Outputs:

The NWPA passes the value of this parameter, which is a pointer to the

NPAOptionStruct associated with this instance of the HAM module. The

following is the structure's ANSI C definition:

struct NPAOptionStruct

{

BYTE name[32];

LONG parameter0;

LONG parameter1;

LONG parameter2;

WORD type;

WORD flags;

BYTE string[n];

} ;

The NWPA passes the value of this parameter, which is a HAM-generated

number corresponding to an adapter card instance being managed by the

HAM. The NWPA will use this number to group a set of hardware options

with a particular adapter instance.

The NWPA passes the value of this parameter, which indicates the process

that called HAM_Check_Option(). This parameter is defined as follows;

0x00000000 Called by NPA_Parse_Options()

0x00000001 Called by NPA_Register_Options().

None

Return Value: 0 to accept option.

Non-zero to reject option.

Description: HAM_Check_Option() is registered with the NWPA during

NPA_Register_HAM_Module(), and it is called by the NWPA during two

different phases of HAM initialization. HAM_Check_Option() is called by

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-49

NPA_Parse_Options() during the command-line parsing phase and again by

NPA_Register_Options() during the options registration phase.

NPA_Parse_Options() iteratively calls HAM_Check_Option() for each

option found in the HAM's select list. HAM_Check_Option() is

responsible for accepting or rejecting the selected option. This routine can

logically check the compatibility of the option combination for each

iteration. If the option is accepted, then the NWPA places the option into a

use list. The HAM should not try to ping any resources under this context

because it does not physically own them at this time.

NPA_Register_Options() iteratively calls HAM_Check_Option() for each

option found in the HAM's use list. HAM_Check_Option() again is

responsible for accepting or rejecting the selected option. This time,

however, the HAM can ping resources to validate them because the NWPA

physically registers them for the HAM. If the HAM determines that an error

occurred in registering its options, it will need the to unregister these

options using NPA_Unregister_Options() passing Instance as an input

parameter. Also, if a HAM is to support hot replacement, this routine

should be designed to accept configuration data from the module being

replaced. The NWPA quiesces requests on the elevator of the active HAM

while the two modules swap data. To properly support data swapping, the

HAMs should pass data indexes rather than data pointers.

7-50 Version 2.1d (September, 1995)

HAM_Execute_HACB

Purpose: The HAM's entry point for receiving a HACB request and routing it to the

appropriate device queue.

Thread Context: Non-Blocking

Syntax: LONG HAM_Execute_HACB(

LONG hamBusHandle,

struct HACBStruct *HACB);

Parameters:

Inputs:

hamBusHandle

HACB

Outputs:

The NWPA passes the value of this parameter, which is the

HAM-generated handle to a bus instance the HAM is managing. From this

handle, the HAM must be able to locate its list of devices attached to the

bus.

The NWPA passes a pointer to the HACB request that is to be processed.

None

Return Value: 0 to succeed.

Description: HAM_Execute_HACB() is the HAM's entry point for receiving and

executing I/O requests, and it must be a non-blocking routine. This routine

is registered with the NWPA by the use of NPA_Register_HAM_Module().

Note: HAM_Execute_HACB() is responsible for controlling the device queue state. For more

information about how this entry point controls queue state, refer to section 4.3.1.3. For

more information about indicating queue state to the CDM, refer to the description of the

HACB's hacbCompletion field in Chapter 3 and Appendix B.

Version 2.1d (September, 1995) 7-51

HAM_ISR

Purpose: The HAM's interrupt-time entry point. This entry point determines the

request causing an interrupt, completes I/O transfers, posts HACB

completion status, and completes HACB requests.

Thread Context: Interrupt Level, Non-Blocking

Reqirements: This routine cannot make calls to blocking routines.

Syntax: LONG HAM_ISR (LONG irqLevel);

Parameters:

Inputs:

irqLevel

Outputs:

The OS passes the value of this parameter, which is a value indicating the

interrupt level on which to take action. The HAM specified the interrupt

level in the Option parameter0 field of the NPAOptionStruct registered for

the HAM during NPA_Register_Options().

None

Return Value: 0 if interrupt was serviced successfully.

Non-zero if interrupt was not serviced.

Description: HAM_ISR() is registered with the NWPA during

NPA_Register_HAM_Module(), and it is the HAM's entry point for being

notified of hardware interrupts. The term "notified" is used here because

actual hardware interrupts are vectored to a system ISR within the OS. The

NWPA automatically channels the interrupt from the OS to the HAM

through this entry point, and the state upon entering HAM_ISR() is with

interrupts disabled. HAM_ISR() must determine the adapter that caused the

interrupt, determine if an error occurred for the request, complete the

HACB, and send a new HACB to the device from the device's process

queue. If no error occurred, then HAM_ISR() transfers I/O data to/from the

buffer indicated in the HACB (in the case of programmed I/O), places the

appropriate completion code in the hacbCompletion field, calls

HAI_Complete_HACB(), and sends a new HACB request in the process

queue to the device. If an error occurred, then HAM_ISR() freezes that

device's process queue, places the appropriate error completion code in the

hacbCompletion field, and calls HAI_Complete_HACB() on the HACB.

Note: HAM_ISR() is responsible for controlling the device queue state, and for calling a

diagnostic hook if a HAM-local diagnostic flag is set. For more information about how this

entry point controls queue state, refer to section 4.3.1.3.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

7-52 Version 2.1d (September, 1995)

For more information about indicating queue state to the CDM, refer to the

description of the HACB's hacbCompletion field in Chapter 3 and Appendix B.

Version 2.1d (September, 1995) 7-53

HAM_Load

Purpose: The load-time entry point for initializing and registering a HAM.

Thread Context: Blocking

Syntax: LONG HAM_Load(

LONG loadHandle,

LONG screenID,

BYTE *commandLine);

Parameters:

Inputs:

loadHandle

screenID

commandLine

Outputs:

The OS assigns the value of this parameter when it receives a command line

request to load the HAM. This handle is used to identify the HAM.

The OS passes this parameterìs value, which is a handle to the console. The

NPA_ routines that output messages to the console require this handle as an

argument, and it is provided in case the HAM needs to output any screen

messages during its initialization.

This parameter is a pointer to the command line. The OS passes this pointer

so the HAM can receive command line configuration options.

None

Return Value: 0 if successful.

Non-zero if unsuccessful (fails the load).

Description: HAM_Load() is the initial entry point for a HAM, and it performs HAM

initialization and registration. This routine becomes visible to the OS when

the definition (.DEF) file is processed by the NLMLINK utility. When the

HAM is loaded, the OS calls HAM_Load() passing it the parameters listed

above. loadHandle and screenID are generated by the OS to be used in

allocating resources and for outputting console error messages that may

occur during the load process. commandLine is a pointer to the command

line arguments specified by the system operator at load time. These

arguments specify I/O port addresses and ranges, memory decode addresses

and lengths, interrupts, and DMA addresses.

Note: Since the HAM may need to do some I/O with an adapter during its initialization,

HAM_Load() is a blocking process. It is called within the context of the NetWare LOAD

utility. Additionally, the HAM may disable interrupts (see NPA_Interrupt_Control())

within the context of this routine if the adapters being checked are under heavy I/O traffic.

Disabling interrupts may not be necessary, however, if the HAM does disable interrupts

within HAM_Load(), the HAM must enable them before returning from HAM_Load().

7-54 Version 2.1d (September, 1995)

HAM_Software_Hot_Replace

Purpose: The HAM's entry point for exchanging configuration information with a

newer version HAM.

Thread Context: Non-Blocking

Syntax: LONG HAM_Software_Hot_Replace(

LONG messageLength,

void *message);

Parameters:

Inputs:

messageLength

message

Outputs:

The NWPA passes the value of this parameter, which is the length in bytes

of the data being passed between the modules.

The NWPA passes the value of this parameter, which is a pointer to the

buffer containing the data to be passed.

None

Return Value: 0 to succeed.

Description: HAM_Software_Hot_Replace() is the entry point that

NPA_Exchange_Message() uses to pass data between a HAM already in

server memory and the HAM being newly loaded to replace it. This routine

is registered with the NWPA during NPA_Register_HAM_Module().

NPA_Exchange_Message() is the channel that links the respective hot

replace entry points for each HAM. Through this entry point, the

replacement HAM can request configuration information from the HAM

being replaced so that the new HAM can simply take the old HAM's place

and be immediately operational.

Warning: Since the older version of the HAM will be removed from memory, data-passing

between the two modules must be done by handles or indexes to avoid the passing

of bad memory pointers.

Version 2.1d (September, 1995) 7-55

HAM_Timeout

Purpose: Provides a recovery mechanism from forever-in-error conditions.

Thread Context: Blocking or Non-Blocking (based on NPA_Spawn_Thread() setting).

Syntax: void HAM_Timeout (LONG parameter);

Parameters:

Inputs:

parameter

Outputs:

Parameter specified in NPA_Spawn_Thread() when this routine was

scheduled. This parameter is used to assist in the timeout process.

None.

Return Value: None

Description: This routine is used as a background error-recovery routine. It gets

scheduled for periodic entry as an asynchronous event by calling

NPA_Spawn_Thread(), and it executes after the elapse of the time interval

specified in the clockTicks argument passed to NPA_Spawn_Thread(). The

time interval between iterations is left up to the HAM developer. A routine

scheduled with NPA_Spawn_Thread() executes its thread only once.

Therefore, for periodic execution, this routine must, within its own context,

reschedule itself by calling NPA_Spawn_Thread(). This routine should be

initially scheduled within the context of HAM_Load(). If an I/O request or

other host adapter action hangs while being processed, the HAM should not

indefinitely wait to service it. Doing so could cause a forever-in-error

condition from which the HAM cannot recover. The routine provides a

rescue mechanism for such a condition by allowing the HAM to regain

process control if the I/O is not completed in the allotted time specified in

the TimeoutAmount field of the HACB. The routine must be able to access

a list of all HACB requests that are currently being processed by devices

supported by the HAM. This list must be updated each time a device

completes a HACB request and accepts a new one. Each time it is executed,

This routine should scan the HACB list and decrement the time in each

HACB's TimeoutAmount field by the value specified in clockTicks. If a

HACB's TimeoutAmount value reaches zero, this routine should:

1. Unlink the HACB from the list.

2. Place the timeout error code (0x0002) in its hacbCompletion field.

3. CallHAI_Complete_HACB() on the HACB.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

7-56 Version 2.1d (September, 1995)

Warning: HAM_Timeout() needs to check the timeout granularity set in the HACB's

ControlFlags field (bit 3). From this check HAM_Timeout() can determine the

HACB's timeout unit of measure before blindly decrementing the value in

TimeoutAmount. A unit conversion may be necessary to make the units of

ClockTicks compatible with the units of TimeoutAmount.

Version 2.1d (September, 1995) 7-57

HAM_Unload

Purpose: The HAM's last unload-time entry point that prepares the HAM for

unloading and returns resources back to the system.

Thread Context: Blocking

Syntax: LONG HAM_Unload (void);

Parameters: None.

Return Value: 0 to succeed.

Description: HAM_Unload() is the HAM's entry point from the OS when it receives an

UNLOAD command for this HAM. HAM_Unload() is then responsible for

releasing all appropriate resources and unregistering the HAM. Upon entry

into this routine the HAM needs to stay operational until all its pending I/O

is flushed and the NWPA quiesces any incoming I/O. To do this, the first

call the HAM should make within HAM_Unload() is to

HAI_Deactivate_Bus(). It is during the context of HAI_Deactivate_Bus()

that the NPA actually flushes pending I/O and quiesces new I/O for this

HAM. Upon return from HAI_Deactivate_Bus(), the HAM is guaranteed

not to have any pending I/O.

7-58 Version 2.1d (September, 1995)

HAM_Unload_Check

Purpose: The HAM's first unload-time entry point that checks to see which devices

are currently bound to the HAM. This entry point is called by the OS prior

to calling HAM_Unload().

Thread Context: Non-Blocking

Syntax: LONG HAM_Unload_Check (LONG screenID);

Parameters:

Inputs:

screenID The OS passes the value of this parameter, which is a handle to the console.

Outputs:

The NPA_ routines that output messages to the console require this handle

as an argument.

None

Return Value: 0 if no devices are locked, meaning that the HAM can be cleanly unloaded.

Non-zero if one or more devices are currently being used by an application.

Description: HAM_Unload_Check() is called when the OS receives a request from the

console to unload the HAM . This routine is responsible for checking to see

if any of the HAM's devices are currently being used (locked) by an

application. HAM_Unload_Check() checks the lock status for a particular

adapter by calling NPA_Unload_Module_Check().

The OS looks at the return value to determine if the HAM can be cleanly

unloaded, meaning that there are no current I/O processes on the devices

controlled by this HAM. If any devices are locked, the OS displays a

message at the console listing the devices that will be deactivated and the

corresponding NetWare volumes that will be dismounted if the action is

continued. The user then has the option to either continue or abort the

unload.

Version 2.1d (September, 1995) 7-59

Inx

Purpose: Takes a bus identifier and an I/O address in that busìs I/O address space

and performs whatever operations are necessary to acquire and return the

requested data.

Thread Context: Non-Blocking

Syntax: BYTE In8 (

LONG busTag,

void *ioAddr);

WORD In16 (

LONG busTag,

void *ioAddr);

LONG In32 (

LONG busTag,

void *ioAddr);

Parameters:

Inputs:

busTag An architecture dependent value returned by NPAB_Get_Bus_Tag(). This

ioAddr The I/O address in the bus architecture of the adapter from where the input

Outputs:

value specifies the bus on which the operation is to be performed.

is to occur.

None

Return Value: An unsigned value of the size and data type defined by each respective

routine.

Description: These routines are only used by HAMs written for adapters intended for

bus architectures that have an I/O address space. The HAM is expected to

use the routine appropriate to the data width of the port from where the

input is to occur.

The value of ioAddr should be the port address the HAM would normally

expect for the given bus architecture. For example, if an ISA card with a

base port address of 300h is placed on an EISA bus, the HAM will set

ioAddr to 300h when it wants to input from that base port.

7-60 Version 2.1d (September, 1995)

InBuffx

Purpose: Takes a bus identifier, an I/O address in that busìs I/O address space, a

destination buffer in the CPUìs logical address space, and a count of

transfer data units to perform whatever operations are necessary to acquire

and return the requested number of data units into the destination buffer.

Thread Context: Non-Blocking

Syntax: LONG InBuff8 (

BYTE *buffer,

LONG busTag,

void *ioAddr,

LONG count);

LONG InBuff16 (

BYTE *buffer,

LONG busTag,

void *ioAddr,

LONG count);

LONG InBuff32 (

BYTE *buffer,

LONG busTag,

void *ioAddr,

LONG count);

Parameters:

Inputs:

buffer The logical memory address of the destination buffer. This address is in the

busTag An architecture dependent value returned by NPAB_Get_Bus_Tag(). This

ioAddr The I/O address in the bus architecture of the adapter from where the input

count The number of transfer units in the specified data size.

Outputs:

CPUìs logical address space.

value specifies the bus on which the operation is to be performed.

is to occur.

None

Return Value: 0 - The requested operation was completed successfully.

1 - Memory protection prevented by the completion of the requested

operation.

3 - Memory error occurred while attempting to perform the requested

operation.

4 - One of the parameters was invalid.

5 - The requested operation could not be completed.

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-61

Description: These routines are only used by HAMs written for adapters intended for

bus architectures that have an I/O address space. The HAM is expected to

use the routine appropriate to the data width of the port from where the

input is to occur. A buffer is filled with data from the specified I/O address

with the number of data units specified (count). The buffer address will fill

forward.

The value of ioAddr should be the port address the HAM would normally

expect for the given bus architecture. For example, if an ISA card with a

base port address of 300h is placed on an EISA bus, the HAM will set

ioAddr to 300h when it wants to input from that base port.

7-62 Version 2.1d (September, 1995)

NPA_Add_Option

Purpose: Specifies command line options and configuration information that can be

parsed out and registered for this instance of the application.

Architecture Type: All

Requirements: The NPAOptionStruct must be initialized before calling this routine.

Thread Context: Non-Blocking

Syntax: LONG NPA_Add_Option(

LONG npaHandle,

struct NPAOptionStruct *option);

Parameters:

Inputs:

npaHandle

option

Outputs:

The CDM's or HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_CDM_Module() or NPA_Register_HAM_Module(),

respectively.

Pointer to the NPAOptionStruct associated with this CDM / HAM. The

NPAOptionStruct contains information about hardware options associated

with this CDM / HAM. The following is the ANSI C definition of the

structure:
struct NPAOptionStruct{

BYTE name[32];

LONG parameter0;

LONG parameter1;

LONG parameter2;

WORD type;

WORD flags;

BYTE string[n];

} ;

None

Return Value: 0 if successful, Non-zero if unsuccessful.

Description: NPA_Add_Option() is used to query the systems operator for command line

parameters that will be used by the CDM/HAM. The command line

parameters identify configuration information and reserve hardware

resources needed by a CDM / HAM. *Option is an optional parameter for

CDMs since they do not generally require the reservation of hardware

resources or command line configuration information. Therefore, in the case

of a CDM, the value of *Option can be set to zero. However, for HAMs

this is the mechanism for setting port, interrupt, DMA channel, and memory

decode options. A description of the NPAOptionStruct can be found in

Chapter 6.

Version 2.1d (September, 1995) 7-63

NPA_Allocate_Memory

Purpose: Allocates a block of system memory for local use of the module. The

memory block is returnable to the system.

Architecture Type: All

Thread Context: Non-Blocking/Blocking (See flag below for details)

Requirements: This routine cannot be called at interrupt level. If flag is set to Blocking,

this routine must be called in a blocking context.

Syntax: LONG NPA_Allocate_Memory(

LONG npaHandle,

void **virtualPointer,

void **physicalPointer,

LONG bufferSize,

LONG flag,

LONG *sleptFlag);

Parameters:

Inputs:

npaHandle

virtualPointer

physicalPointer

bufferSize

flag

The CDM's or HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_CDM_Module() or NPA_Register_HAM_Module(),

respectively.

Address of pointer to memory storage location of the desired data type.

Address of pointer to memory storage location of the desired data type.

Size, in bytes, of the memory block being requested.

Indicator telling the NWPA the type of allocation being requested. Knowing

the allocation type allows the NWPA to track the memory resource. This

parameter can have one of the following values:

0x00000000 Indicates a normal memory request.

0x00000001 Indicates a request for I/O contiguous memory.

0x00000002 Indicates a request for memory below 16 MB

(supporting adapters using DMA).

0x00000004 Selects the Blocking version of this routine. If this

flag is set, this routine may sleep (block) to allow

a single additional attempt to allocate the

requested memory. If it was required to sleep to

allocate the memory, the sleptFlag parameter will

be non-zero. Use of this flag requires the call to be

made in a blocking context. If this flag is set on a

3.12 NetWare Server, it will default to a normal

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

7-64 Version 2.1d (September, 1995)

sleptFlag A pointer to where the Sleep indicator is to be placed. If flag is not set to

Outputs:

virtualPointer Receives the starting virtual address of the allocated memory block from

physicalPointer Receives the starting physical (absolute) address of the allocated memory

sleptFlag This parameter is only used if Flag is set to Blocking. A non-zero value

memory request (0x00000000) and sleptFlag will

be ignored.

Blocking, this parameter is not used and should be set to zero.

the OS.

block from the OS.

indicates that the routine went to sleep to complete the allocation request.

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: NPA_Allocate_Memory() is used to allocate system memory required by a

CDM / HAM, such as special data structures or buffers. This allocation

will be on paragraph (16-byte) boundaries. The CDM / HAM must provide

the storage locations (virtualPointer and physicalPointer) for the outputs it

receives during this call. NPA_Allocate_Memory() is passed the two

pointer-to-pointer variables and a buffer size. NPA_Allocate_Memory()

allocates a memory block of the requested size and assigns its starting

virtual address to one of the pointer-to-pointer variables and assigns its

starting physical address to the other variable. The virtual address is the

logical NetWare address of the allocated memory block. The physical

address is the absolute hardware address of the allocated memory block,

and it is provided to support adapters using DMA. The memory allocated

by this routine is not initialized to any value, it is raw memory. The CDM /

HAM is responsible for initializing allocated memory. Additionally, this

routine may be called during the context of any process, except a process

within an interrupt level. Memory should not be allocated at the interrupt

level. Memory is returned to the system pool using

NPA_Return_Memory().

Note: If the CDM allocates a memory buffer that will be accessed by a HAM, it must allocate the

memory as an I/O buffer.

Version 2.1d (September, 1995) 7-65

NPA_Cancel_Thread

Purpose: Cancels asynchronous blocking or non-blocking threads of execution

scheduled for an NWPA application.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: Interrupts must be disabled.

Syntax: LONG NPA_Cancel_Thread(

LONG npaHandle,

LONG (*ExecuteRoutine)(),

LONG parameter);

Parameters:

Inputs:

npaHandle

ExecuteRoutine

parameter Parameter value that was originally passed into NPA_Spawn_Thread()

Outputs: None

The CDM's or HAM's handle for using the NPA_ APIs. Its value was

assigned during NPA_Register_CDM_Module() or

NPA_Register_HAM_Module(), respectively.

Pointer to the CDM / HAM routine that was originally passed into

NPA_Spawn_Thread() when the thread was originally spawned.

when the thread was originally spawned.

Return Value: 0 if successful.

Non-zero if unsuccessful, meaning that the spawned thread has already

begun execution.

Description: NPA_Cancel_Spawn_Thread() is used to cancel an instance of an

asynchronous thread that was spawned using NPA_Spawn_Thread(). The

NWPA uses the input parameters, ExecuteRoutine and Parameter, to

identify the thread to cancel; therefore, these two parameters must match

exactly with the parameters passed to NPA_Spawn_Thread(). A return

value of zero indicates that the spawned thread was successfully cancelled.

A non-zero return value indicates that the spawned thread could not be

cancelled because it is currently running. A CDM/HAM must make a

separate call for each spawned thread it wishes to cancel. Additionally, a

CDM/HAM must call this routine for all pending threads that it spawned

before it can unload.

7-66 Version 2.1d (September, 1995)

NPA_CDM_Passthru

Purpose: Sends a CDMMessage to a device in order to receive status or diagnostic

information about the device. It is used for vendor specific commands.

Architecture Type: All

Thread Context: Blocking

Requirements: None.

Syntax: LONG NPA_CDM_Passthru(

LONG *appReturnCode,

LONG mmDeviceID,

LONG function,

LONG vendorID,

LONG parameter1,

LONG parameter2,

LONG parameter3,

LONG BufferLength,

void *Buffer);

Parameters:

Inputs:

mmDeviceID Media Manager object ID for the device. See theMedia Manager

function

vendorID

parameter1

parameter2

parameter3

bufferLength

buffer

Outputs:

appReturnCode

Functional Specification and Developerìs Guide for details on how to

obtain this ID.

Must be either 0x1E or 0x3E for the PassThru function.

Novell assigned vendor ID. This is used to confirm compatibility between

vendor-specific applications and vendor-specific CDMs. Must be 0x100 or

greater.

Vendor specific.

Vendor specific.

Vendor specific.

Length of the buffer in bytes.

Address of buffer passed to the CDM to send or receive data.

Value returned by the managing CDM during CDI_Complete_Message(). It

can be any LONG value understood by both the application and the custom

CDM

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-67

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: NPA_CDM_Passthru() is used to send vendor specific requests to the

managing CDM of a device. This command sends a request, then returns

when the request is complete. The CDM must check the VendorID to

verify that the request came from an appropriate application. The CDM

must also register the acceptance of these passthru requests by setting bit

0x40000000 in the function mask for 0x3E support and/or control mask for

0x1E support (reference CDI_Object_Update()). The CDM must

understand the parameters being sent, and take the necessary action

including HACBs to the device if needed.

7-68 Version 2.1d (September, 1995)

NPA_Delay_Thread

Purpose: Delays the current process for a specified number of clock ticks.

Architecture Type: All

Thread Context: Blocking

Requirements: This routine must be called only from a blocking process level.

Syntax: LONG NPA_Delay_Thread(

LONG npaHandle,

LONG clockTicks);

Parameters:

Inputs:

npaHandle

clockTicks

Outputs:

The CDM's or HAM's handle for using the NPA_ APIs. Its value was

assigned during NPA_Register_CDM_Module() or

NPA_Register_HAM_Module(), respectively.

Value specifying the time in clock ticks to let this process sleep. A clock

tick translates to 1/18th of a second (55ms).

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: NPA_Delay_Thread() is used to cause the current process to sleep for the

number of clock ticks specified in the clockTicks parameter. During its

sleep period, the process temporarily yields its thread. The purpose of this

routine is to prevent a blocking process--that will not complete for at least a

specified time period--from dominating vital resources and blocking other

vital NWPA processes. After the specified time elapses, the thread is

returned, and the process continues from the point after it called

NPA_Delay_Thread().

Version 2.1d (September, 1995) 7-69

NPA_Exchange_Message

Purpose: Provides a communication link between two different versions of a HAM in

order to facilitate software hot replacement.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG NPA_Exchange_Message(

LONG npaHandle,

LONG messageLength,

void *message);

Parameters:

Inputs:

npaHandle

messageLength

message

Outputs:

The HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_HAM_Module().

Size, in bytes, of the message (data buffer) being passed or received.

Pointer to the message (data buffer) being passed or received.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: NPA_Exchange_Message() is used to exchange I/O configuration

information between an older version of a module and the updated version

that will replace it by calling the new HAM_Software_Hot_Replace()

routine. Calling NPA_Exchange_Message() is dependent on the return value

of NPA_Register_HAM_Module(). If the return value is zero, it indicates

that the load event is either an initial load of the module or a new instance

of the module. If the return value is one, it indicates that the module

currently being loaded should hot replace the already loaded module having

the same NovellAssignedModuleID value. In the case where the return

value equals zero, normal initialization and registration should take place

excluding a call to NPA_Exchange_Message(). In the case where the return

value equals one, NPA_Exchange_Message() needs to be called in order for

the two modules to communicate with each other.

NPA_Exchange_Message() should be called within the context of

HAM_Load().

7-70 Version 2.1d (September, 1995)

NPA_Get_Version_Number

Purpose: Provides the revision level of the current NWPA version.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG NPA_Get_Version_Number(LONG *revisionNumber);

Parameters:

Inputs:

Outputs:

revisionNumber

None

The NWPA version number currently running. The return value is in the

format 00XXYYZZ, where XX is the major revision level, YY is the minor

revision level, and ZZ is the sub-minor revision level (interpreted as a letter

with 01=A and 26=Z). Example: a value of 00022002 would mean

NWPA Version 2.20B.

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: NPA_Get_Version_Number() allows developers to have access to the

current version number of the NWPA that is running. This number may be

used to maintain version and feature compatibility on a server between

HAMs, CDMs and the NWPA.

Version 2.1d (September, 1995) 7-71

NPA_HACB_Passthru

Purpose: Sends a HACB message to a device in order to receive status or diagnostic

information about the device. It is used for vendor-specific commands.

Architecture Type: All

Thread Context: Blocking

Requirements: None.

Syntax: LONG NPA_HACB_Passthru(

LONG mmAdapterID,

struct HACBDef *HACB);

Parameters:

Inputs:

mmAdapterID

HACB

Outputs:

The Media Manager object ID for the adapter.This can be obtained by

using MM_Find_Object_Type(0, &id) to get the ID, then

MM_Return_Generic_Info() to get the name of the HAM, and

verify it is the correct one. See theMedia Manager Functional

Specification and Developerìs Guide for details.

Address of a HACB to be sent.

None

Return Value: 0 if successful, Non-zero if unsuccessful.

Description: NPA_HACB_Passthru() is used to send vendor specific requests directly to

a HAM. The request is sent, and the call returns after the request is

complete. The application must have an understanding of the device and

handle any errors that occur as a result of the requests. The application

must make sure that the HAM is returned to its original condition (i.e.

queue frozen or unfrozen) when finished with the requests. The requests

can be HACBType=0 Functions 0-3, or HACBType=0x100 or greater.

When non-HACBType 0 requests are sent, the HACBType must be the

Novell assigned vendor ID. The HAM must check this field and report an

Unsupported Interface Type (0x00030044) error if the vendor id is not

supported. The HAM must otherwise service the request and send the

appropriate command to the device as needed. The Command Block

Overlay Area can be used as needed for the request. It is important to

remember that the data in this overlay area goes to the HAM only. This

data, if changed by the HAM may not be seen by the application upon

return. All data passed from the HAM to the application must go through

the buffer addressed by vDataBufferPtr.

7-72 Version 2.1d (September, 1995)

NPA_Interrupt_Control

Purpose: Performs interrupt masking capabilities on the default (primary) system I/O

bus.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG NPA_Interrupt_Control(

LONG npaHandle,

LONG irqLevel,

LONG flag);

Parameters:

Inputs:

npaHandle

irqLevel

flag

Outputs:

The CDM's or HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_CDM_Module() or NPA_Register_CDM_Module(),

respectively.

Value indicating the interrupt level on which to take action.

Value indicating the type of action to perform. This parameter can have one

of the following values:

0x00000000 Enable interrupts (This will unmask the IRQ level)

0x00000001 Disable interrupts (This will mask the IRQ level)

0x00000002 Check the hardware interrupt.

None

Return Value:
Input Flag Value Return Value

0x00000000 0 if enabling interrupts was successful.

Non-zero if enabling interrupts was unsuccessful.

0x00000001 0 if disabling interrupts was successful.

Non-zero if disabling interrupts was unsuccessful.

0x00000002 0 if the interrupts at the specified level are disabled.

Non-zero if the interrupts at the specified level are enabled.

Description: NPA_Interrupt_Control() is used to either unmask an interrupt, mask an

interrupt, or check the current masking of an interrupt at the specified level

on the default system I/O bus. The action to be performed is determined by

the value of the flag parameter passed into NPA_Interrupt_Control() as

discussed above. Implementation of this routine involves the setting or

testing of bits in the hardware's interrupt mask register.

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-73

7-74 Version 2.1d (September, 1995)

NPA_Micro_Delay

Purpose: Delays a set number of microseconds for use in allowing for interface

delays etc.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: Maximum count of 10,000 microseconds (10 milliseconds)

Syntax: LONG NPA_Micro_Delay(LONG count);

Parameters:

Inputs:

count

Outputs:

The number (between 0 and 10,000) of microseconds to delay.

None

Return Value: 0 if successful.

Non-zero if count was not a valid number

Description: NPA_Micro_Delay() is used to delay for a short amount of time while

allowing an interface state to change, etc. The thread will not be switched,

and the interrupt state will not change. This call can be made during

interrupt service routines (ISRs); however, it is recommended it be used

sparingly within ISRs so that interrupts are not disabled for extensive

periods of time.

Note: The resolution of this timer is approximately 10 microseconds.

Version 2.1d (September, 1995) 7-75

NPA_Parse_Options

Purpose: Parses the command line at LOAD time for configuration options.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: This routine must be called from a blocking process level. When used

correctly, this routine is called within the context of the module's

initialization routine (CDM/HAM_Load()), which is a blocking process.

Syntax: LONG NPA_Parse_Options(

LONG npaHandle,

LONG screenID,

BYTE *commandLine);

Parameters:

Inputs:

npaHandle

screenID

commandLine

Outputs:

The CDM's or HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_CDM_Module() or NPA_Register_CDM_Module(),

respectively.

Handle to the server console that was passed into the CDM/ HAM_Load()

routine.

Pointer to the characters entered on the command line at load time. Its value

was passed into the CDM/HAM_Load() routine.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: NPA_Parse_Options() is used to parse the command line parameters

specified by the systems operator. Once the command line is parsed,

NPA_Parse_Options() calls CDM/HAM_Check_Option() so that the CDM

/ HAM can validate the command line options and set its I/O configuration.

7-76 Version 2.1d (September, 1995)

NPA_Register_CDM_Module

Purpose: Registers a CDM with the NWPA.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: This routine is the first API called during CDM_Load(). Additionally, the

module must provide the storage locations for the outputs it receives during

this call.

Syntax: LONG NPA_Register_CDM_Module(

LONG *npaHandle,

LONG NovellAssignedModuleID,

LONG loadHandle,

LONG (*CDM_Check_Option)(),

LONG (*CDM_Execute_CDMMessage)(),

LONG (*CDM_Inquiry)(),

LONG instance);

Parameters:

Inputs:

npaHandle

NovellAssignedModuleID

loadHandle

CDM_Check_Option

CDM_Execute_CDMMessage

CDM_Inquiry

Address of a local variable of type LONG.

The CDM vendor ID assigned by Novell Labs. This parameter is a unique

ID associating a CDM with its manufacturer. Every CDM must have its

own unique ID.

Handle that the OS assigned to the CDM at load time. The value for this

parameter was passed into the CDM's load-time entry point, CDM_Load().

Pointer to the CDM_Check_Option() entry point called during the parsing

of load-time command line options and again at option registration.

Note: For a CDM, command line options should only indicate

operational modes for the software module. They must not

indicate hardware options such as interrupts, ports, DMA

channels, etc. If the CDM does not support command line

options, this parameter should be set to zero.

Pointer to the CDM_Execute_CDMMessage() routine, which is the CDM's

main entry point for receiving and routing CDMMessages.

Pointer to the CDM_Inquiry() entry point, which is the CDM's routine for

checking device information and determining whether or not to bind to a

device.

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-77

instance A CDM-generated number identifying a device instance. The NWPA will

Outputs:

npaHandle

use this number to associate different groups of options with a particular

device being managed by the CDM.

Note: If the CDM does not support command line options, this

parameter should be set to zero.

Receives a unique NWPA handle for the CDM module. This handle is a tag

the NWPA uses to track the CDM module, and it is a required argument for

using the NPA_ APIs.

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: NPA_Register_CDM_Module() is used to register the CDM module with

the NPA, along with the application's entry points. This routine should be

the first API called during the module's load-time entry point,

CDM_Load(). It is during the context of this API that the CDM receives its

unique NWPA handle. This handle is a necessary argument for using the

other NPA_ APIs that provide system resources to the module.

7-78 Version 2.1d (September, 1995)

NPA_Register_For_Event_Notification

Purpose: Registers a procedure to be called prior to specific system events.

Architecture Type: All

Thread Context: Blocking

Requirements: Must be called only from a blocking process level.

Syntax: LONG NPA_Register_For_Event_Notification(

LONG npaHandle,

LONG *eventHandle,

LONG eventType,

LONG priority,

LONG (*WarnRoutine)(

void (*OutputRoutine)(void *ControlString, ...),

LONG parameter),

void (*ReportRoutine)(

LONG parameter));

Parameters:

Inputs:

npaHandle

eventType

The CDM's or HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_CDM_Module() or NPA_Register_CDM_Module(),

respectively.

Indicates the type of event for which the caller wishes notification. The

following describes events for which notification may be received, the type of

notification that can be made (Warn, Report, or both), the thread context of

the notification call (blocking or non-blocking), and the defined use of the

input parameter (parameter) passed to the notification call (WarnRoutine()

or ReportRoutine()).

Type Number

Type Definition (In Decimal)

EVENT_VOL_SYS_MOUNT 0

The input parameter is undefined.

The Report Routine is called immediately after vol SYS is mounted.

The Report Routine may block the thread.

EVENT_VOL_SYS_DISMOUNT 1

The input parameter is undefined.

Both the Warn and Report routines are called before vol SYS is dismounted.

The Report Routine may block the thread.

EVENT_ANY_VOL_MOUNT 2

The input parameter is the volume number.

The Report routine is called immediately after any volume is mounted.

The Report Routine may block the thread.

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-79

EVENT_ANY_VOL_DISMOUNT 3

The input parameter is the volume number.

Both the Warn and Report routines are called before any volume is dismounted.

The Report Routine may block the thread.

EVENT_DOWN_SERVER 4

The input parameter is undefined.

Both the Warn and Report routines are called before the server is shut down.

The Report Routine may block the thread.

EVENT_CHANGE_TO_REAL_MODE 5

The input parameter is undefined.

The Report routine is called before the server changes to real mode.

The Report Routine may not block the thread.

EVENT_RETURN_FROM_REAL_MODE 6

The input parameter is undefined.

The Report routine is called after the server has returned from real mode.

The Report Routine may not block the thread.

EVENT_EXIT_TO_DOS 7

The input parameter is undefined.

The Report routine is called before the server exits to DOS.

The Report Routine may block the thread.

EVENT_MODULE_UNLOAD 8

The input parameter is the module handle.

Both the Warn and Report routines are called before a module is unloaded from the

console command line. Only the Report Routine is called when a module unloads

itself. The Report Routine may block the thread.

EVENT_ACTIVATE_SCREEN 14

The input parameter is the Screen ID.

The Report routine is called after the screen becomes the active screen.

The Report Routine may block the thread.

EVENT_UPDATE_SCREEN 15

The input parameter is the Screen ID.

The Report routine is called after a change is made to the screen image.

The Report Routine may block the thread.

EVENT_UPDATE_CURSOR 16

The input parameter is the Screen ID.

The Report routine is called after a change to the cursor position or state occurs.

The Report Routine may not block the thread.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

7-80 Version 2.1d (September, 1995)

priority

WarnRoutine

ReportRoutine

EVENT_KEY_WAS_PRESSED 17

The input parameter is undefined.

The Report routine is called after any key on the keyboard is pressed (including

shift/alt/control).

The Report Routine is called at interrupt time, it may not block the thread.

EVENT_DEACTIVATE_SCREEN 18

The input parameter is the Screen ID.

The Report routine is called after the screen becomes inactive.

The Report Routine may not block the thread.

EVENT_OPEN_SCREEN 20

The input parameter is the Screen ID for the newly created screen.

The Report routine is called after the screen is created.

The Report Routine may block the thread.

EVENT_CLOSE_SCREEN 21

The input parameter is the Screen ID for the screen being closed.

The Report routine is called before the screen is closed.

The Report Routine may block the thread.

EVENT_MODULE_LOAD 27

The input parameter is the module handle.

The Report routine is called after the module has been loaded.

The Report Routine may block the thread.

EVENT_GENERIC 32

The priority used to call this notification routine. Priorities are defined as

follows:

Priority Number

Priority Definition (in Decimal)

EVENT_PRIORITY_OS 0

EVENT_PRIORITY_APPLICATION 20

EVENT_PRIORITY_DEVICE 40

A pointer to a routine that is called when the OS makes an EventCheck call. If

the warn routine does not want the event to occur, it must output a message

and then return a non-zero value. Most event notification routines are called

at process level, but some are made at interrupt level (meaning the thread may

not be blocked). The above table of event types specifies which events must

be checked to determine if the event allows its thread to be blocked.

A pointer to a routine that is called when the OS makes an EventReport call.

Most event notification routines are called at process level, but some are

made at interrupt level (meaning the thread may not be blocked). The above

table of event types specifies which events must be checked to determine if

the event allows its thread to be blocked.

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-81

Outputs:

eventHandle

Receives a 32-bit handle to the registered event. This event handle is passed

as an input parameter to NPA_Unregister_Event_Notification().

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: On some occasions a driver is required to perform some action prior to the

OS terminating, switching to real mode, exiting to DOS, etc. The driver

should call NPA_Register_For_Event_Notification() providing notification

procedure pointers as indicated above. Even though the calls to register and

unregister the event notification are blocking, the actual call to the event

notification procedure provided by the driver is not always made from

blocking process level (the environment varies with the particular event being

reported). The Warn Routine will be provided with two parameters when

called. The first is the Output Routine which must be used to output messages

(the Output Routine must be called with a control string and as many

parameters as the control string indicates), and the second is the parameter

described in each of the event types above. When the Report routine is called

it is passed a single parameter. This is the same parameter described in each

of the event types described above.

7-82 Version 2.1d (September, 1995)

NPA_Register_HAM_Module

Purpose: Registers a HAM with the NWPA.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: This routine is the first API called during HAM_Load(). Additionally, the

module must provide the storage locations for the outputs it receives during

this call.

Syntax: LONG NPA_Register_HAM_Module(

LONG *npaHandle,

LONG NovellAssignedModuleID,

LONG loadHandle,

LONG (*HAM_Check_Option)(),

LONG (*HAM_Software_Hot_Replace)(),

LONG (*HAM_ISR)(),

LONG (*HAM_Execute_HACB)(),

LONG (*HAM_Abort_HACB)()

LONG instance);

Parameters:

Inputs:

npaHandle

NovellAssignedModuleID

loadHandle

HAM_Check_Option

HAM_Software_Hot_Replace

HAM_ISR

Address of a local variable of type LONG.

The HAM vendor ID assigned by Novell Labs. This parameter is a unique

ID associating a HAM with its manufacturer. Every HAM must have its

own unique ID.

Handle that the OS assigned to the HAM at load time. The value for this

parameter was passed into the HAM's load-time entry point, HAM_Load().

Pointer to the HAM_Check_Option() entry point called during the parsing

of load-time command line options and again at option registration.

Pointer to the HAM_Software_Hot_Replace() entry point used in

dynamically updating versions of a HAM.

Note: Hot replacement is an optional feature for a HAM. If the HAM

does not support hot replacement, it should set this parameter to

zero. Doing so will force the NWPA to never allow hot

replacement of this HAM.

Pointer to the HAM_ISR() routine, which is the HAM's Interrupt Service

Routine (ISR).

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-83

HAM_Execute_HACB Pointer to the HAM_Execute_HACB() routine, which is the HAM's main

HAM_Abort_HACB Pointer to the HAM_Abort_HACB() routine, which is the HAM's main

instance A HAM-generated number identifying an adapter card instance. The

Outputs:

npaHandle Receives a unique NWPA handle for the HAM module. This handle is a tag

entry point for receiving HACB I/O requests.

entry point for receiving aborts on HACB I/O requests.

NWPA will use this number to associate different groups of registered

hardware options with a particular adapter card being managed by the

HAM.

the NWPA uses to track the HAM module, and it is a required argument for

using the NPA_ APIs.

Note: The NWPA recognizes reentrant modules, meaning that a single

code image of the HAM will manage multiple adapters.

Therefore, if a reentrant HAM calls

NPA_Register_HAM_Module() again to assign a new instance

number to the new adapter card instance, the NWPA will ensure

that the value output to this variable is the same for each call.

Return Value: 0 if successful and not a hot replace case. 1 if successful and hot replace

case. Other non-zero value if unsuccessful.

Description: NPA_Register_HAM_Module() is used to register the HAM module with

the NWPA, along with the application's entry points. This routine should be

the first API called during the module's load-time entry point,

HAM_Load(). It is during the context of this API that the HAM receives its

unique NWPA handle. This handle is a necessary argument for using the

other NPA_ APIs that provide system resources to the module.

NPA_Register_HAM_Module() also determines if a version of a HAM

currently loaded in server memory is to be hot replaced with a newer HAM

version. NPA_Register_HAM_Module() makes this determination by

comparing the NovellAssignedModuleID and the loadHandle of a newly

loaded HAM with other HAMs that are already loaded. If there is a match

in NovellAssignedModuleID values between the newly loaded HAM and an

already loaded HAM, but their respective loadHandle values differ, then

the NWPA determines that the newly loaded HAM is hot replacing the

already loaded HAM.

7-84 Version 2.1d (September, 1995)

NPA_Register_Options

Purpose: Registers options that have been parsed out from the command line, and,

for those modules that support it, initiates hot replacement.

Architecture Type: All

Thread Context: Blocking

Requirements: This routine must be called only from a blocking process level. When used

correctly, this routine is called within the context of the module's

initialization routine (CDM/HAM_Load()), which is a blocking process.

Syntax: LONG NPA_Register_Options(

LONG npaHandle,

LONG instance);

Parameters:

Inputs:

npaHandle

instance

Outputs:

The CDM's or HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_CDM_Module() or NPA_Register_CDM_Module(),

respectively.

The instance number the CDM or HAM intends to associate with the

current group of options being registered. This instance corresponds to

either a CDM's device instance or a HAM's adapter instance. This instance

number was what the CDM or HAM passed to

NPA_Register_CDM_Module() or NPA_Register_HAM_Module(),

respectively.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: NPA_Register_Options() is used to register the command line options

allowed by a CDM/HAM. These options can be custom parameters, or as in

the case of the HAM, they may specify the interrupt, port, and DMA range

values allowed by the HAM. Command line options may be anything

needed by the CDM/HAM in from custom initialization parameters.

NPA_Register_Options() must be called during CDM/HAM initialization

within the context of CDM/HAM_Load(). Any data structures required by

the module should be allocated prior to making this call, because once this

routine returns, the module must be ready to accept I/O requests.

Version 2.1d (September, 1995) 7-85

NPA_Return_Bus_Type

Purpose: Returns a bitmap indicating the I/O bus type.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None

Syntax: LONG NPA_Return_Bus_Type (LONG npaHandle);

Parameters:

Inputs:

npaHandle

Outputs:

The HAM's handle for using the NPA_ APIs. Its value was assigned during

NPA_Register_HAM_Module().

None

Return Value: Bitmap defined as follows:

0x00000001 MCA

0x00000002 EISA

0x00000004 PCI

0x00000008 PCMCIA

0x00000010 ISA

Description: NPA_Return_Bus_Type() is used to determine the processor bus type, for

use by the HAM during its initialization/registration routine

(HAM_Load()). This routine is only valid when used with machines having

an Intel based architecture.

7-86 Version 2.1d (September, 1995)

NPA_Return_Memory

Purpose: Returns previously allocated memory to the system.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG NPA_Return_Memory(

LONG npaHandle,

void *virtualPointer);

Parameters:

Inputs:

npaHandle

virtualPointer

Outputs:

The CDM's or HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_CDM_Module() or NPA_Register_CDM_Module(),

respectively.

Pointer to the logical NetWare address of the memory block being returned

to the system. The memory block must have been originally allocated using

NPA_Allocate_Memory().

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: NPA_Return_Memory() is used to return allocated system memory, such as

special data structures or buffers required by a CDM / HAM, back to the

system's memory pool. To minimize impacts on overall server performance,

CDMs and HAMs are expected to periodically clean up local memory. It is

essential that local memory be returned before unloading.

NPA_Return_Memory() may be called during the context of any process,

except a process within an interrupt level. Memory should not have been

allocated at the interrupt level. This routine is intended to return memory

blocks that were allocated using NPA_Allocate_Memory().

Version 2.1d (September, 1995) 7-87

NPA_Spawn_Thread

Purpose: Schedules execution of a blocking or non-blocking asynchronous event, or a

timer-interrupt-level callback.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG NPA_Spawn_Thread(

LONG npaHandle,

void (*ExecuteRoutine)(),

LONG parameter,

LONG clockTicks,

LONG flag);

Parameters:

Inputs:

npaHandle

ExecuteRoutine

parameter

clockTicks

flag

Outputs:

The CDM's or HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_CDM_Module() or NPA_Register_CDM_Module(),

respectively.

Pointer to the CDM / HAM routine that is called to execute the spawned

thread.

Input parameter required by ExecuteRoutine. If ExecuteRoutine does not

require an input parameter value, set Parameter equal to zero.

Value specifying the time in clock ticks to elapse before this thread is

initiated. A clock tick translates to 1/18th of a second (55ms).

Value specifying whether the spawned thread is blocking or non-blocking:

0x00000000 Indicates a non-blocking thread. (Default)

0x00000001 Indicates a blocking thread.

0x00000002 Indicates the thread is scheduled to execute during

the timer chip interrupt following the specified

tick count.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: NPA_Spawn_Thread() is used to schedule an asynchronous background

thread for a CDM / HAM that becomes active after the time specified in the

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

7-88 Version 2.1d (September, 1995)

clockTicks parameter. If the value in clockTicks is zero, the thread is

immediately scheduled. Whether scheduling is immediate or delayed the

thread is initiated by NetWare calling the entry point whose address was

passed into NPA_Spawn_Thread() as an argument. NPA_Spawn_Thread()

can be used to set up an entry point for a background timer or to create a

designated gremlin process that can run throughout the time that the CDM /

HAM is loaded in file server memory. An example of a gremlin process is

the HAM's timeout handler that monitors the allowable execution time of

an I/O request specified in the TimeoutAmount field of a HACB. If the

value of the flag parameter is zero, NPA_Spawn_Thread() schedules a

non-blocking thread. If the spawned thread is non-blocking, no blocking

calls can be issued during its context. On the other hand, if the value of the

flag parameter is one, NPA_Spawn_Thread() schedules a blocking thread

from which other blocking calls can be made. However, as much as

possible, blocking calls should be kept to a minimum to avoid impact on

server performance.

In the case where flag equals 2 (timer interrupt time callback), the execute

routine must adhere to interrupt level constraints. In addition, if NetWare is

running in a non-dedicated environment (such as NetWare for OS/2 or

NetWare for Windows) the execute routine must be concerned about the

watchdog timer, which could result in a system NMI causing ill effects. It

is suggested that an interrupt time callback keep its execution time under 20

milliseconds.

Note: NPA_Spawn_Thread() is a one-shot thread. In order to reschedule an asynchronous thread

for execution, NPA_Spawn_Thread() must be called again.

Version 2.1d (September, 1995) 7-89

NPA_System_Alert

Purpose: Allows a CDM or HAM to queue alert messages to the console screen and

notify the system of hardware or software problems during threads where

the driver does not have access to the console's screen handle.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG NPA_System_Alert(

LONG npaHandle,

BYTE *controlString,

LONG alertMask,

LONG targetNotifyMask,

LONG alertID,

LONG alertClass,

LONG alertSeverity,

LONG paramCount,

args...);

Parameters:

Inputs:

npaHandle

controlString

alertMask

targetNotifyMask

The CDM's or HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_CDM_Module() or NPA_Register_CDM_Module(),

respectively.

Pointer to a null-terminated control string similar to that used in the C

sprintf() function, including embedded returns, line-feeds, tabs, bells, and %

specifiers (except floating-point specifiers).

A bit-mask indicating how the alert gets posted. Valid values are:

QUEUE_THIS_ALERT_MASK 0x00000001

ALERTID_VALID_MASK 0x00000002

ALERT_LOCUS_VALID_MASK 0x00000004

ALERT_EVENT_NOTIFY_ONLY_MASK 0x00000008

ALERT_NO_EVENT_NOTIFY_MASK 0x00000010

This field is usually set to QUEUE_THIS_ALERT_MASK .

A bit-mask identifying the destination of the notification:

NOTIFY_CONNECTION_BIT 0x00000001

NOTIFY_EVERYONE_BIT 0x00000002

NOTIFY_ERROR_LOG_BIT 0x00000004

NOTIFY_CONSOLE_BIT 0x00000008

This field is usually set to NOTIFY_CONSOLE_BIT.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

7-90 Version 2.1d (September, 1995)

alertID Provides error code for system log:

alertClass

alertSeverity Indicates the severity of the error:

paramCount The number of additional arguments being passed in the args input

args

Outputs:

OK 0x00000000

ERR_HARD_FAILURE 0x000000FF

Indicates the class of the error:

CLASS_UNKNOWN 0x00000000

CLASS_TEMP_SITUATION 0x00000002

CLASS_HARDWARE_ERROR 0x00000005

CLASS_BAD_FORMAT 0x00000009

CLASS_MEDIA_FAILURE 0x00000011

CLASS_CONFIGURATION_ERROR 0x00000015

CLASS_DISK_INFORMATION 0x00000018

SEVERITY_INFORMATIONAL 0x00000000

SEVERITY_WARNING 0x00000001

SEVERITY_RECOVERABLE 0x00000002

SEVERITY_CRITICAL 0x00000003

SEVERITY_FATAL 0x00000004

SEVERITY_OPERATION_ABORTED 0x00000005

parameter. If no arguments are to be passed, set this parameter to zero.

Note: This routine accepts up to four additional arguments.

Additional arguments corresponding to the % specifiers contained in the

ControlString input parameter. If no % specifiers are contained in

ControlString, then this parameter does not need to be used.

None

Return Value: 0 if successful.

-1 if the NWPA object for the calling CDM/HAM cannot be found.

-2 if paramCount is out of range (exceeds 4).

Description: The main purpose of NPA_System_Alert() is to give CDMs and HAMs a

method of issuing alert messages to the console screen without having to

provide the console's screen handle. The only time that a CDM or HAM has

access to a valid console screen handle is during its load-time initialization

and unload routines. The handles passed to these two routines should not be

saved. They are only valid during the context of the respective routines. By

using NPA_System_Alert(), CDMs and HAMs alleviate cursor and

negotiation conflicts with other NLMs that may try to access the console

screen.

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-91

7-92 Version 2.1d (September, 1995)

NPA_Unload_Module_Check

Purpose: Determines if a module can be cleanly unloaded meaning that no

applications are currently using devices it controls.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG NPA_Unload_Module_Check(

LONG npaHandle,

LONG NovellAssignedModuleID,

LONG screenID);

Parameters:

Inputs:

npaHandle

NovellAssignedModuleID

screenID

Outputs:

The CDM's or HAM's module handle for using the NPA_ APIs, assigned

during NPA_Register_CDM_Module() or NPA_Register_HAM_Module(),

respectively.

The vendor ID assigned by Novell Labs. This parameter is the unique ID

associating a module with its manufacturer.

ID to the server console. Its value was passed to the HAM through

HAM_Unload_Check().

None

Return Value: 0 if no devices are locked.

Non-zero if one or more devices are locked by an application.

Description: NPA_Unload_Module_Check() is used to determine if an application is

currently using any devices controlled by the module. A CDM or HAM

should call this API within the context of their respective unload-time entry

points, CDM_Unload_Check() and HAM_Unload_Check() respectively.

The OS will call these entry points when the UNLOAD command is issued

on the CDM / HAM from the command line. The purpose of

NPA_Unload_Module_Check() is to determine if the module can be cleanly

unloaded without losing any current I/O processes.

Version 2.1d (September, 1995) 7-93

NPA_Unregister_Event_Notification

Purpose: Unregisters a notification procedure previously registered with

NPA_Register_For_Event_Notification().

Architecture Type: All

Thread Context: Blocking

Requirements: Must be called only from a blocking process level.

Syntax: LONG NPA_Unregister_Event_Notification(LONG eventHandle);

Parameters:

Inputs:

eventHandle

Outputs:

32-bit value identifying the notification procedure to be unregistered. This

value was output by NPA_Register_For_Event_Notification() when the

notification procedure was registered.

None

Return Value: 0 if unregistering the notification procedure was successful.

-1 eventHandle was an invalid parameter.

Description: NPA_Unregister_Event_Notification() removes the notification procedure

specified in eventHandle from a list of procedures scheduled to be called by

the Media Manager prior to (or following) specific system events. The

notification-procedure identifier, eventHandle, is an output parameter of

NPA_Register_For_Event_Notification(), which is the routine used to

register the procedure. If a notification procedure was registered, then it

must be unregistered prior to the driver being unloaded.

7-94 Version 2.1d (September, 1995)

NPA_Unregister_Module

Purpose: Unregisters an NWPA application with the NWPA.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: This routine should only be called with intent to remove the module's code

image from server memory.

Syntax: LONG NPA_Unregister_Module(

LONG npaHandle,

LONG NovellAssignedModuleID);

Parameters:

Inputs:

npaHandle

NovellAssignedModuleID

Outputs:

The CDM's or HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_CDM_Module() or NPA_Register_CDM_Module(),

respectively.

The CDM/HAM vendor ID assigned by Novell, Inc.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: NPA_Unregister_Module() is used to unregister the CDM / HAM, along

with its respective entry points, from the NWPA. The intent of this routine

is prepare the module for having its code image removed from server

memory. NPA_Unregister_Module() should be called within the context of

the module's exit routine (CDM/HAM_Unload()).

Warning: NPA_Unregister_Module() should not be used to exit a single instance of a

reentrant module. Doing so will crash the other instances that are still running.

Version 2.1d (September, 1995) 7-95

NPA_Unregister_Options

Purpose: Unregisters the configuration options associated with an NWPA

application.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: To unregister options on an instance basis, the module must provide the

appropriate handle to the load-instance.

Syntax: LONG NPA_Unregister_Options(

LONG npaHandle,

LONG instance);

Parameters:

Inputs:

npaHandle

instance

Outputs:

The CDM's or HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_CDM_Module() or NPA_Register_CDM_Module(),

respectively.

The instance number the CDM or HAM associated with the current group

of options being unregistered. This instance corresponds to either a CDM's

device instance or a HAM's adapter instance. This is the instance number

that the CDM or HAM passed to NPA_Register_CDM_Module() or

NPA_Register_HAM_Module(), respectively.

Note: By setting this parameter to -1, the NWPA unregisters all option

instances associated with the CDM or HAM.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: NPA_Unregister_Options() is used to unregister the command line options

associated with a module (or an instance of itself) prior to being unloaded.

This API is called within the context of CDM/HAM_Unload().

7-96 Version 2.1d (September, 1995)

NPAB_Get_Alignment

Purpose: Called to obtain alignment requirements of the underlying platform.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG NPAB_Get_Alignment(

LONG npaHandle,

LONG type);

Parameters:

Inputs:

npaHandle

type

Outputs:

The HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_HAM_Module().

0 - Alignment requirement

1 - Best case alignment

Other - Undefined

None

Return Value: Power of 2, byte-boundary data alignment requirement.

Description: If type is equal to 0, the function returns the data alignment requriement of

a data object of an arbitrary type for the platform to function without

execeptions or corrupted data. All operations and îreal worldï use of these

operations should be considered in determining this value. That is, if

DMAing into an arbitrary memory location can cause data corruption due to

noncoherent caching, then the function should return a value equal to at

least the cache line size. Without this function, you cannot write platform

independent DMA code, since the code cannot determine what

characteristics it must meet. If type is equal to 1, the function returns the

data alignment requirement for the platform to function at its best

performance. The value returned for type equal to 0 should always be less

than or equal to the value returned for type equal to 1. For most Intel

processor based platforms, type equal to 0 should return a 0 and type equal

to 1 should return the bus width of the processor (4 for a 386 or 486). An

HP-PA-RISC machine should return 32 for both type equal to 0 and type

equal to 1, due to the requirements of the memory cache.

Version 2.1d (September, 1995) 7-97

NPAB_Get_Bus_Info

Purpose: Returns the size of the bus addresses associated with busTag.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG NPAB_Get_Bus_Info(

LONG npaHandle,

LONG busTag,

LONG *physicalMemAddrSize,

LONG *ioAddrSize);

Parameters:

Inputs:

npaHandle

busTag

Outputs:

physicalMemAddrSize

ioAddrSize

The HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_HAM_Module().

An architecture dependent value returned by NPAB_Get_Bus_Tag(). It

specifies the bus on which the operation is to be performed.

The size in bits of a physical address on the bus specified by busTag.

The size in bits of an I/O address on the bus specified by busTag.

Return Value: 0 - The requested operation was completed successfully.

6 - The specified bus does not exist.

Description: See Purpose: above.

7-98 Version 2.1d (September, 1995)

NPAB_Get_Bus_Name

Purpose: Gets the busTag name.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG NPAB_Get_Bus_Name(

LONG npaHandle,

LONG busTag,

BYTE **busName);

Parameters:

Inputs:

npaHandle

busTag

Outputs:

busName

The HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_HAM_Module().

An architecture dependent value returned by NPAB_Get_Bus_Tag(). It

specifies the bus on which the operation is to be performed.

This parameter gets a pointer to a NULL-terminated string, which is the

architecture and platform dependent name of the specified bus.

Return Value: 0 - The requested operation was completed successfully.

4 - One of the parameters was invalid.

Description: The returned string belongs to the NetWare Bus Interface (NBI) and must

not be modified by the HAM. If the HAM needs to reference this string at

some later time, it should make a local copy of it.

Version 2.1d (September, 1995) 7-99

NPAB_Get_Bus_Tag

Purpose: Takes the optional, user supplied busName parameter and returns a

busTag.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG NPAB_Get_Bus_Tag(

LONG npaHandle,

BYTE *busName,

LONG *busTag);

Parameters:

Inputs:

npaHandle

busName

Outputs:

busTag

The HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_HAM_Module().

Pointer to an architecture dependent string that is determined by the

platform developer. It specifies the bus on which the HAMìs hardware is to

be found.

Receives a system architecture dependent value identifying a specific bus in

the system. The HAM should save this value as it is needed as an input

parameter to subsequent HAI/NBI routines and for registering hardware

resources.

Return Value: 0 - The requested operation was completed successfully.

6 - No bus format that corresponds with busName was found.

Description: The HAM should not interpret busName or busTag, but simply use them as

described in this specification.

A busTag value of 0 always refers to the default expansion system bus. A

busTag value of -1 always refers to the processor (CPU) bus.

7-100 Version 2.1d (September, 1995)

NPAB_Get_Bus_Type

Purpose: Returns a value indicating the bus type of the bus specified by busTag.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG NPAB_Get_Bus_Type(

LONG npaHandle,

LONG busTag,

LONG *busType);

Parameters:

Inputs:

npaHandle

busTag

Outputs:

busTag

The HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_HAM_Module().

This parameter is an architecture dependent value returned by

NPAB_Get_Bus_Tag(). It specifies on which bus the operation is to be

performed.

A value indicating one of the following bus types as follows

0=ISA

1=MCA

2=EISA

3=PCMCIA

4=PCI

5=VESA

6=NuBus

7=Open Firmware Motherboard

Return Value: 0 - The requested operation was completed successfully.

4 - Parameter error, busTag was invalid.

Description: This routine returns a value indicating the bus type of the specified bus. All

instances of a particular bus type return the same value. For example, all

EISA buses return 2.

Version 2.1d (September, 1995) 7-101

NPAB_Get_Card_Config_Info

Purpose: Retrieves and returns configuration information for bus architectures that

keep this information on a per slot basis.

Architecture Type: All

Thread Context: Blocking

Requirements: None.

Syntax: LONG NPAB_Get_Card_Config_Info(

LONG npaHandle,

LONG busTag,

LONG uniqueID,

LONG size,

LONG param1,

LONG param2,

void *configInfo);

Parameters:

Inputs:

npaHandle

busTag

uniqueID

size

param1

param2

Outputs:

configInfo

The HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_HAM_Module().

An architecture dependent value returned by NPAB_Get_Bus_Tag(). It

specifies the bus on which the operation is to be performed.

Architecture dependent value returned by NPAB_Get_Unique_Identifier()

or NPAB_Search_Adapter() that specifies the location on the bus where the

adapter card is found.

Specifies the number of bytes to be returned into the configuration buffer.

Bus architecture dependent values that further specify what information is

to be returned.

A pointer to a bus architecture dependent structure used to receive the

returned information. The caller needs to be sure that the buffer is at least

size bytes long.

Return Value: 0 - The requested operation was completed successfully.

4 - One of the parameters was invalid.

5 - busTag denotes a bus type for which the slot has not configuration

information.

6 - The uniqueID input parameter has no card present.

Description: Call NPAB_Get_Card_Config_Info() only if the busTag that identifies a

bus has configuration information for the bus on a per slot basis. It is the

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

7-102 Version 2.1d (September, 1995)

callerìs responsibility to know how much and what sort of information is

returned, so that configInfo is set pointing to a sufficiently large space and

the resulting information can be interpreted. Param1 and param2 are

defined on a per bus architecture basis. In other words, their meanings

must be the same on all implementations of a particular bus but will vary

from one bus to another. One or both of these parameters can be unused,

and if unused, should be set to 0.

The following are the parameter values for the specified bus type.

EISA Bus

size 320

param1 EISA configuration block number

param2 n/a

configInfo filled in with EISA configuration information for the

specified uniqueID. For a definition of the information

returned, see EISA Specification.

MCA Bus

size 8

param1 n/a

param2 n/a

configInfo filled in with I/O port values from POS0 - POS7 (100h -

107h) for the specified uniqueID. For a definition of the

information returned, see Personal System/2 Hardware

Interface Technical Reference.

PCI Bus

size 256

param1 PCI function number

param2 n/a

configInfo filled in with PCI configuration information for the

specified uniqueID. For a definition of the information

returned, see PCI Local Bus Specification.

PC Card Bus (PCMCIA)

size large enough to contain the 37 bytes of information

returned by GetConfigurationInfo (PCMCIA call) plus

room for the tuples.

param1 n/a

param2 n/a

configInfo filled in with PCMCIA configuration information for the

specified uniqueID. The information is the data returned

by GetConfigurationInfo (a PCMCIA call) and as many of

the tuples as there is buffer space. For a definition of the

information returned, see PCMCIA Standards.

Version 2.1d (September, 1995) 7-103

NPAB_Get_Unique_Identifier

Purpose: Returns a bus-specific value that uniquely identifies a specific device (such

as an OEM chip set) on an adapter.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG NPAB_Get_Unique_Identifier(

LONG npaHandle,

LONG busTag,

LONG *parameters,

LONG parameterCount,

LONG *uniqueID);

Parameters:

Inputs:

npaHandle

busTag

parameters

The HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_HAM_Module().

A system architecture dependent value returned by NPAB_Get_Bus_Tag().

It specifies on which bus the operation is to be performed.

A bus-architecture-dependent array of parameters needed by the system to

generate the unique identifier. These parameters specify values like slot

and function. The following are the parameter values for each bus type:

EISA Bus

parameterCount 1

parameters[0] physical slot number

MCA Bus

parameterCount 1

parameters[0] physical slot number

PCI Bus

parameterCount 2

parameters[0] 0 (PCI version 2.0)

physical slot number (PCI version 2.1)

parameters[1] bus/device/function number combination

equivalent to the value returned from the

PCIBIOSFindDevice function.

PC Card (PCMCIA) Bus

parameterCount TBD

parameters[0] TBD

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

7-104 Version 2.1d (September, 1995)

parameterCount

Outputs:

uniqueID

PnP ISA Bus

parameterCount 2

parameters[0] CSN

parameters[1] logical device number

Note: Novell provides a registry of the meanings of these parameters for

each bus.

The number of elements in the input parameter array, parameters.

Receives the architecture-dependent value that uniquely identifies a specific

device on an adapter.

Return Value: 0 - The requested operation was completed successfully.

4 - The busTag parameter was invalid.

6 - The function is not available.

Description: This routine allows for ergonomic parameters used in identifying adapters

placed in physical slots and the functions on the adapter to be converted to

system architecture-dependent values required in the operation of the

adapter. Unique identifiers are interpreted only by other HAI/NBI routines.

To the caller they are a îmagic cookieï with no predefined format.

Version 2.1d (September, 1995) 7-105

NPAB_Read_Config_Space

Purpose: Retrieves and returns configuration information for the bus architecture that

keeps this information on a per slot basis.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG NPAB_Read_Config_Space(

LONG npaHandle,

LONG dataType,

LONG busTag,

LONG uniqueID,

LONG offset,

void *readData);

Parameters:

Inputs:

npaHandle

dataType

busTag

uniqueID

offset

Outputs:

readData

The HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_HAM_Module().

Indicates the data type (and size) of the output data:

0 - BYTE 8 bits

1 - WORD 16 bits

2 - LONG 32 bits

A system architecture dependent value returned by NPAB_Get_Bus_Tag().

It specifies on which bus the operation is to be performed.

The unique identifier for the specified adapter or function as returned by

NPAB_Get_Unique_Identifier(), NPAB_Search_Adapter(), or

NPAB_Scan_Card_Info().

The byte offset into the specified adapter or functionìs configuration space

of the item to be read.

Receives an unsigned value of type dataType.

Return Value: 0 - The requested operation was completed successfully.

4 - The busTag parameter was invalid.

6 - The function is not available.

Description: This routine takes a bus identifier and an offset in that busìs configuration

space and performs whatever operations are necessary to acquire and return

the requested data.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

7-106 Version 2.1d (September, 1995)

This routine is provided only for drivers that need to interact with

configuration space. On most buses, NPAB_Get_Card_Config_Info() will

satisfy a driverìs needs.

Note: For most buses, this routine will do nothing. It has meaning only

on buses that have a configuration address space that is separate

from memory or I/O space (for example, a PCI bus).

Version 2.1d (September, 1995) 7-107

NPAB_Scan_Bus_Info

Purpose: Specifies the buses that are available on the system.

Architecture Type: All

Thread Context: Blocking

Requirements: None.

Syntax: LONG NPAB_Scan_Bus_Info(

LONG npaHandle,

LONG *scanSequence,

LONG *busTag,

LONG *busType,

BYTE **busName);

Parameters:

Inputs:

npaHandle

scanSequence

Outputs:

scanSequence

busTag

busType

busName

The HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_HAM_Module().

Initialized to -1 to start the first search iteration.

Receives a system-generated sequence value to be passed into subsequent

calls to this routine.

Receives an architecture-dependent value used by the system to identify the

bus found in the current search iteration.

Receives a value indicating the bus type of the target bus found in the

current search iteration:

0 = PC ISA bus

1 = PC MCA bus

2 = PC EISA bus

3 = PC Card (PCMCIA) bus

4 = PCI bus

5 = VESA local bus

6 = NuBus

7=Open Firmware Motherboard

Receives a pointer to a static, NULL-terminated, architecture-dependent

string for the target bus found in the current search iteration. This string is

determined by the system platform developer. The caller should not modify

this string. To reference this string, make a copy of it.

Return Value: 0 - The requested operation was completed successfully.

4 - One or more of the parameters was invalid.

6 - There are no more buses

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

7-108 Version 2.1d (September, 1995)

Description: This routine scans the system for available buses on a find-first-find-next

basis. The routine returns busTag, busType, and busName information

about the target bus for each iteration.

Version 2.1d (September, 1995) 7-109

NPAB_Search_Adapter

Purpose: Takes a bus type and a pointer to a product ID and returns a bus tag and

unique identifier indicating where the specified product (adapter board) was

found.

Architecture Type: All

Thread Context: Blocking

Requirements: None.

Syntax: LONG NPAB_Search_Adapter(

LONG npaHandle,

LONG *scanSequence,

LONG busType,

LONG productIDLength,

BYTE *productID,

LONG *busTag,

LONG *uniqueID);

Parameters:

Inputs:

npaHandle

scanSequence

busType

productIDLength

productID

Outputs:

scanSequence

The HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_HAM_Module().

Initialized to -1 to start the first search iteration.

Indicates the bus type on which to perform the search:

0 = PC ISA bus

1 = PC MCA bus

2 = PC EISA bus

3 = PC Card (PCMCIA) bus

4 = PCI bus

5 = VESA local bus

6 = NuBus

7= Open Firmware Motherboard

Byte-length of the product ID string.

Pointer to a bus-architecture-dependent parameter that uniquely identifies

an adapter board/peripheral/system option. For example, for an EISA bus,

the EISA product ID is defined in the EISA Specification document.

Receives a system-generated sequence value to be passed into subsequent

calls to this routine.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

7-110 Version 2.1d (September, 1995)

busTag Receives an architecture-dependent value used by the system to identify the

uniqueID Receives an architecture-dependent value identifying the specific device or

bus on which the adapter was found in the current search iteration.

function. Iterative calls to this routine will return information for each

instance of the productID and compatible products, including multiple

instances on a single card (each have a different function number). The slot

number associated with the adapter can be gleaned from uniqueID using

NPAB_Get_Unique_Identifier().

Return Value: 0 - The requested operation was completed successfully.

4 - One or more of the parameters was invalid.

6 - No more items present

Description: The HAM calls this routine reiteratively to find all adapter instances with

the specified product ID. The routine returns the bus tag and the system

unique ID for each adapter instance.

This routine can only be used if the HAMìs adapter has a unique product

ID associated with it that can be read by NetWareìs bus interface (NBI).

Also, the product ID must be retrievable according to some accepted

standard, such as EISA, MCA, or PCI.

Version 2.1d (September, 1995) 7-111

NPAB_Write_Config_Space

Purpose: Writes information to the configuration space for the bus architecture that

keeps this information on a per slot basis.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG NPAB_Write_Config_Space(

LONG npaHandle,

LONG dataType,

LONG busTag,

LONG uniqueID,

LONG offset,

void *writeData);

Parameters:

Inputs:

npaHandle

dataType

busTag

uniqueID

offset

writeData

Outputs:

The HAM's handle for using the NPA_ APIs, assigned during

NPA_Register_HAM_Module().

Indicates the data type (and size) of the output data:

0 - BYTE 8 bits

1 - WORD 16 bits

2 - LONG 32 bits

A system architecture dependent value returned by NPAB_Get_Bus_Tag().

It specifies on which bus the operation is to be performed.

The unique identifier for the specified adapter or function as returned by

NPAB_Get_Unique_Identifier(), NPAB_Search_Adapter(), or

NPAB_Scan_Card_Info().

The byte offset into the specified adapter or functionìs configuration space

of the item to be read.

Pointer to the data item of type dataType that is to be written in the

specified configuration address on the specified bus.

None

Return Value: 0 - The requested operation was completed successfully.

4 - The busTag parameter was invalid.

6 - The function is not available.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

7-112 Version 2.1d (September, 1995)

Description: This routine takes a value, a bus identifier and an offset in that busìs

configuration space and performs whatever operations are necessary to

deliver the value to the specified location.

This routine is provided only for drivers that need to interact with

configuration space. Usually, any îwritesï to configuration space are done

by the system or a configuration management utility before any drivers are

loaded.

Note: For most buses, this routine will do nothing. It has meaning only

on buses that have a configuration address space that is separate

from memory or I/O space (for example, a PCI bus).

Version 2.1d (September, 1995) 7-113

Outx

Purpose: Takes a bus identifier, a value, and an I/O address in that busìs I/O address

space and performs whatever operations are necessary to deliver the value

to the specified place.

Thread Context: Non-Blocking

Syntax: void Out8 (

LONG busTag,

void *ioAddr,

BYTE outputVal);

void Out16 (

LONG busTag,

void *ioAddr,

WORD outputVal);

void Out32 (

LONG busTag,

void *ioAddr,

LONG outputVal);

Parameters:

Inputs:

busTag An architecture dependent value returned by NPAB_Get_Bus_Tag(). This

ioAddr The I/O address in the bus architecture of the adapter to which the output is

outputVal The value to be sent to the specified I/O address on the specified bus. The

Outputs:

value specifies the bus on which the operation is to be performed.

to occur.

type of this value must correspond with the routine being called.

None

Return Value: None

Description: These routines are only used by HAMs written for adapters intended for

bus architectures that have an I/O address space. The HAM is expected to

use the routine appropriate to the data width of the port to which the output

is to occur.

The value of ioAddr should be the port address the HAM would normally

expect for the given bus architecture. For example, if an ISA card with a

base port address of 300h is placed on an EISA bus, the HAM will set

ioAddr to 300h when it wants to output to that base port.

7-114 Version 2.1d (September, 1995)

OutBuffx

Purpose: Takes a bus identifier, an I/O address in that busìs I/O address space, a

source buffer in the CPUìs logical address space, and a count of transfer

data units to perform whatever operations are necessary to output the

specified number of data units from the source buffer to the I/O address.

Thread Context: Non-Blocking

Syntax: LONG OutBuff8 (

LONG busTag,

void *ioAddr,

void *buffer,

LONG count);

LONG OutBuff16 (

LONG busTag,

void *ioAddr,

void *buffer,

LONG count);

LONG OutBuff32 (

LONG busTag,

void *ioAddr,

void *buffer,

LONG count);

Parameters:

Inputs:

busTag An architecture dependent value returned by NPAB_Get_Bus_Tag(). This

ioAddr The I/O address in the bus architecture of the adapter to which the output is

buffer The logical memory address of the source buffer. This address is in the

count The number of transfer units in the specified data size.

Outputs:

value specifies the bus on which the operation is to be performed.

to occur.

CPUìs logical address space.

None

Return Value: 0 - The requested operation was completed successfully.

1 - Memory protection prevented by the completion of the requested

operation.

3 - Memory error occurred while attempting to perform the requested

operation.

4 - One of the parameters was invalid.

5 - The requested operation could not be completed.

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-115

Description: These routines are only used by HAMs written for adapters intended for

bus architectures that have an I/O address space. The HAM is expected to

use the routine appropriate to the data width of the port to which the output

is to occur. The specified number of data units from the source buffer is

output to the specified I/O address.

The value of ioAddr should be the port address the HAM would normally

expect for the given bus architecture. For example, if an ISA card with a

base port address of 300h is placed on an EISA bus, the HAM will set

ioAddr to 300h when it wants to output to that base port.

