
Version 2.1d (September, 1995) 6-1

Chapter 6 Technical Reference for

NWPA Data Structures

This chapter is a technical reference for data structures used by CDMs and

HAMs. The following is a list of the structures described in this chapter:

AttributeInfoStruct . 6-2

CDMMessageStruct . 6-4

DeviceInfoStruct . 6-7

ErrorSenseInfoStruct . 6-13

HACBStruct . 6-15

HAMInfoStruct . 6-17

InquiryInfoStruct . 6-19

NPAOptionStruct . 6-20

SuperHACBStruct . 6-25

UpdateInfoStruct . 6-26

6-2 Version 2.1d (September, 1995)

AttributeInfoStruct

Used by: CDM

Description: The AttributeInfoStruct is a structure that the CDM uses to store

device-attribute information for a device (or devices) the CDM manages. A

copy of this information is passed to the Media Manager when the CDM

registers an attribute by calling CDI_Register_Object_Attribute().

A CDM can register multiple attributes, one attribute for each call to

CDI_Register_Object_Attribute(). The CDM is expected to maintain an

instance of this structure for each attribute it registers.

By registering device attributes with the Media Manager, the CDM can

present specific information about a device's operational modes to the

application layer. For example, a tape CDM can inform an application that

its tape device supports multiple blocksizes.

For more information about attributes, refer to the technical reference

information on the CDI_Register_Object_Attribute() API found in Chapter

7.

Syntax: struct AttributeInfoStruct

{

LONG attributeID;

LONG attributeType;

LONG attributeLength;

BYTE attributeName[64];

};

Parameters: attributeID This is a 4 byte field containing a unique ID for the attribute

being registered. Currently, the NWPA defines the following attribute IDs:

0x44454D0A Media Type

0x5241430E Cartridge Type

0x494E5509 Unitsize

0x4F4C420A Blocksize

0x50414308 Capacity

0x4552500E Preferred Unitsize

0x4D455209 Removable Device

0x41455209 Read Only Device

0x50415412 Tape Position Size

0x5041540F Tape Media Size

0x50415411 Tape Write Format

0x50415410 Tape Read Format

0x4E494D12 Minimum Blocksize

0x58414D12 Maximum Blocksize

0x54414415 Data Compression Information

Technical Reference for NWPA Data Structures

Version 2.1d (September, 1995) 6-3

attributeType This is a 4 byte field indicating the data-type of the

InfoBuffer parameter for the get/set entry points associated with the

attribute being registered through CDI_Register_Object_Attribute(). The

data types are defined as follows:

0x00000001 String

0x00000002 BYTE

0x00000003 WORD

0x00000004 LONG

0x00000005 Other: Indicates that the calling

application knows what data type to

expect from the target CDM.

attributeLength This is a 4 byte field containing a value that indicates the

byte-length of the infoBuffer input parameter to the get/set entry points

associated with the attribute. These entry points are registered during

CDI_Register_Object_Attribute() along with the attribute.

attributeName This is a 64 byte field containing a byte-length-preceded

string. The string contains the ASCII codes that make up the name of the

attribute being registered, and it is also NULL terminated.

6-4 Version 2.1d (September, 1995)

CDMMessageStruct

Used by: CDM

Description: The CDMMessageStruct is a data packet containing a control or I/O request

from the Media Manager (CDMMessage). The CDMMessageStruct is

identical to the Media Manager internal message structure. The fields in

CDMMessageStruct contain the pertinent information required to build a

control or I/O request. A pointer to this structure is then passed to the CDM

which processes the CDMMessageStruct and converts it into a HACB

request that is compatible with the adapter supporting the desired device.

Syntax: struct CDMMessageStruct

{ LONG msgPutHandle;

LONG function;

LONG parameter0;

LONG parameter1;

LONG parameter2;

LONG bufferLength;

void* buffer;

LONG cdmReserved[2];

} ;

Parameters: msgPutHandle This is a 4 byte field containing a handle to the current I/O

request issued by the Media Manager. The Media Manger generates this

value and uses it to track a request through different execution stages. This

field value is needed as an argument for many of the APIs described in this

manual, and it should never be altered.

function This is a 1 LONG field. The upper WORD contains control

attributes set by the Media Manager for the I/O request, and the lower

WORD contains a Media Manager function code set by an application.

For processor independence reasons, the CDM should use the following

macros to extract information from this field:

#define GET_MSW (function) ((function >> 16) & 0xFFFF)

#define GET_LSW (function) (function & 0xFFFF)

Media Manager control and I/O requests are equated to unique hexadecimal

function codes (0x0000 - 0x0047). A Media Manager application makes an

I/O request by calling a Media Manager API. The application selects a

desired I/O action by passing one of the Media Manager function codes as

an input parameter. In turn, the Media Manager packages the request into a

CDMMessage (CDMMessageStruct) placing the function code in the

lower WORD of this field, and then issues the CDM Message to the target

CDM.

The CDM maps this code into a call to one of its locally-implemented

control or I/O routines designed to build the corresponding SHACB

request. A list of CDMMessage types, their corresponding Media Manager

function codes, and their corresponding request descriptions can be found in

Technical Reference for NWPA Data Structures

Version 2.1d (September, 1995) 6-5

Chapter 9. As previously mentioned, in building the CDMMessage the

Media Manager places control attributes associated with the request in the

upper WORD of this field. Most of these attributes only have meaning to

the Media Manager and OS. The attributes that do have meaning to a CDM

are defined as follows:

#define SCATTER_ON_BIT 0x0080 Indicates that the request

is in the NWPA's

scatter/gather format. To

inform the HAM, the CDM

must set the

Scatter/Gather_Flag in the

corresponding HACB.

#define HARDWARE_VERIFY_BIT 0x0100 Tells CDMs that they

must set the verify bit

for all write commands.

#define CACHE_OKAY 0x8000 Indicates that controller

and/or device level caching

is okay. If this bit is not

set, all write commands

must write-through any

controller/device caches.

bufferLength This is a 1-LONG field. Typically, its value indicates the size

of the buffer field. However, its content depends on whether or not the

request is in scatter/gather format. If it is in scatter/gather format, this field

contains the number of entries in the scatter/gather request list. If it is not

in scatter/gather format, this field contains the length, in bytes, of the data

buffer. This field is set to zero for requests that do not require the

movement of data.

buffer This is a 4 byte field of type pointer to void. Typically, the pointer

points to the CDM Message's data buffer. However, the structure of the

buffer it points at depends on whether or not the request is in scatter/gather

format. If it is in scatter/gather format, this field contains the virtual starting

address of the scatter/gather request list. The scatter/gather list is generated

by the NWPA or a Media Manager application. If the request is not in

scatter/gather request, this field contains the virtual address to the data

buffer, in which case if the operation is a read, this buffer is where the data

is read to. If the operation is a write, this buffer is where the data is read

from. This field is set to zero for requests that do not require the movement

of data.

Note: For information about the format of a scatter/gather list, refer to

section 3.4 of Chapter 3.

cdmReserved This is a 2-LONG field for the private use of the CDM that

queues the current CDMMessage using CDI_Queue_Message(). The

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

6-6 Version 2.1d (September, 1995)

intended use of this field is to allow the CDM to create links between the

queued, current message and other CDM messages or HACBs. If the CDM

did not explicitly queue the message, it cannot expect the value it placed in

this field to persist.

Version 2.1d (September, 1995) 6-7

DeviceInfoStruct

Used by: CDM and HAM

Description: This structure contains specific information about a device attached to a

host adapter bus. The HAM maintains an instance of this structure for each

device it supports and is responsible for filling in field information when it

receives a "Scan for New Devices" command issued from the command

line. The HAM determines information for some of the fields by probing

the hardware (such as unitNumber, busID, etc.). The information for the

remaining fields (such as deviceHandle) is generated by the HAM. The

HAM uses the information in this structure to report a device and set its

attributes. The CDM uses this structure to obtain device information to

determine if it will bind to the device. When a device comes online that is of

the type for which a CDM has registered, the Media Manager calls that

CDM's CDM_Inquiry() passing it a pointer to this structure. It is from this

structure that a CDM can determine a device's type and obtain its handle for

routing I/O.

Syntax: typedef struct DeviceInfoStruct

{

LONG deviceHandle;

BYTE deviceType;

BYTE initNumber;

BYTE busID;

BYTE cardNo;

LONG attributeFlags;

LONG maxDataPerTransfer;

LONG maxLengthSGElement;

BYTE maxSGElements;

BYTE reserved1[2];

BYTE elevatorThreshold;

LONG maxUnitsPerTransfer;

WORD haType;

union /* Device specific information */

{

struct /*SCSI Synchronous Information */

{

BYTE transferPeriodFactor;

BYTE offset;

} SCSI;

struct /* Other Device Information */

{

BYTE reserved2[2];

} OTHER;

} INFO;

struct InquiryInfoStruct InquiryInfo;

}deviceInfoDef;

Parameters: DeviceHandle This is a 1-LONG field containing a handle to a device. The

HAM generates this handle during HAM_Scan_For_Devices(). This device

handle is the token that HAM uses to identify and route I/O to a device. The

CDM must provide this handle in the HACB in order to issue I/O to a

target device. Without this handle, the HAM rejects the HACB because it

cannot identify the target device.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

6-8 Version 2.1d (September, 1995)

deviceType This is a 1-BYTE field containing a value representing the type

of device that the inquiry data will describe. The NWPA uses the same

codes for device types as SCSI. The following is the NWPA list of device

types:

00 - Direct access device (hard disk)

01 - Sequential access device (tape)

02 - Printer device

03 - Processor device

04 - Write once device (worm)

05 - CD-ROM device

06 - Scanner device

07 - Optical memory device (MO)

08 - Media changer device

09 - Communication device

-1 - Undefined type of device

unitNumber This is a 1-BYTE field. For SCSI, this field contains the

logical unit number (LUN) of the device. For IDE\ATA, this field indicates

the number (0x00 = Master or 0x01 = Slave) of the device.

Note: The NWPA treats the value in this field as a BYTE value.

busID This is a 1-BYTE field. For SCSI, this field contains the device's

SCSI ID. For IDE\ATA, this field contains a HAM-generated index that

associates the IDE\ATA-controller channel (primary, secondary, tertiary, or

quaternary) to the device.

cardNo This is a 1-BYTE field containing the host adapter card number

generated by the HAM.

attributeFlags This is a 1-LONG field indicating the attributes associated

with a device and the adapter to which it is attached. The following table

describes each attribute and shows the bit that enables it:

Technical Reference for NWPA Data Structures

Version 2.1d (September, 1995) 6-9

Flag Bit Description

(MSB) b31... (LSB) b0

0x00000001 Bit 0 is theMax_Data_Per_Transfer_Flag.

When set, it indicates that the adapter has a

maximum number of bytes it can transfer per I/O

request. The value for this maximum is found in

theMaxDataPerTransfer field.

When cleared, it indicates that the adapter can

handle any transfer size the bus protocol can

support.

0x00000002 Bit 1 is the Elevator_Off_Flag. When set, it

disables automatic sorting of requests in the

NWPA's elevator filter. This task is then left

either for the HAM/adapter, or it does not happen

at all.

Note: If the HAM chooses to turn off the elevator

by setting this flag, chances for scatter/gather will

be almost nil. The NWPA's scatter/gather filter

groups requests while they are in the elevator.

Disabling the NWPA's elevator will drastically

decrease performance.

0x0000004 Bit 2 is the Scatter_Gather_Flag. When set, it

indicates that the HAM/adapter supports

scatter/gather requests. Then, if the

Elevator_Off_Flag is cleared, the NWPA

scatter/gather filter will seek opportunities to

build scatter/gather requests.

When cleared it indicates that the HAM/adapter

does not support scatter/gather, and the NWPA

will guarantee that the associated device's

CDM-HAM I/O channel will not receive any

scatter/gather requests.

0x00000008 Bit 3 is the Boot_Device_Flag. When set, it

indicates that this device is the boot device. If the

HAM can determine the boot device, it has the

option to set this bit. If the HAM cannot make the

determination, this flag should be cleared. This

flag only applies to RISC architectures and is

machine specific. Even then, it only applies in

cases where knowing the boot device is

necessary.

Flag Bit Description

(MSB) b31... (LSB) b0

6-10 Version 2.1d (September, 1995)

0x00000010 Bit 4 is the Below_16MB_Flag. When set, it

indicates that the adapter is limited to only 16MB

of address space.

When cleared, it indicates that the adapter is not

limited to16MB of address space.

0x00000020 Bit 5 is the Scatter_Gather_Granularity_Flag.

When set, it indicates that the adapter's transfer

granularity per scatter/gather element is at byte

resolution.

When cleared it indicates that the adapter's

transfer granularity per scatter/gather element is at

sector resolution.

0x00000040 Bit 6 is the Auto_Error_Sense_Flag. When set,

it indicates that auto error sense is active for the

corresponding device.

When cleared, it indicates that auto error sense is

inactive.

0x00000080 Bit 7 is the Private_Public_Flag. When set, it

indicates the corresponding device is private.

When cleared, it indicates the corresponding

device is public.

0x00000100 Bit 8 is the Hardware_Verify_Flag. When set, it

indicates that the corresponding device can do

hardware verifies on write commands.

When cleared, it indicates that the corresponding

device does not support hardware verifies on

write commands.

Note: The setting of this bit is the responsibility of

the CDM.

0x00000200 Bit 9 is theMax_Units_Per_Transfer_Flag.

When set, it indicates that the adapter has a

maximum number of units it can transfer per I/O

request. The value for this maximum is found in

theMaxUnitsPerTransfer field.

When cleared, it indicates that the adapter can

handle any unit transfer amount the bus protocol

can support.

0x00000400 Bit 10 is the Elevator_Threshold_Flag. When

set, it indicates that the ElevatorThreshold field

is valid. When cleared, it indicates that the

ElevatorThreshold field is not valid.

b11 ... b31 Bits 11 through 31 (MSB) are reserved.

Technical Reference for NWPA Data Structures

Flag Bit Description

(MSB) b31... (LSB) b0

Version 2.1d (September, 1995) 6-11

DEFAULT=0x00000000 Zero is the default value for this field.

maxDataPerTransfer This is a 1-LONG field indicating the maximum

number of bytes that the adapter can transfer per I/O request. If a transfer

size limit exists for the adapter, the HAM must place the byte limit in this

field and set theMax_Data_Per_Transfer_Flag. If the adapter can handle

any transfer size the bus protocol supports, the HAM should set this field to

zero and clear theMax_Data_Per_Transfer_Flag.

maxLengthSGElement This is a 1-LONG field where the HAM indicates

the maximum size, in bytes, of a single scatter gather element supported by

the adapter for the target device.

maxSGElements This is a 1-BYTE field containing a value corresponding

to the maximum number of scatter/gather elements the adapter can handle

per request for the target device.

reserved1 This is a 2-BYTE field reserved by the NWPA.

elevatorThreshold This is a 1-BYTE field that indicates the minimum

number of requests the HAM prefers to be processing at a given time. The

Elevator_Threshold_Flag must be set to indicate the validity of this field. If

the Elevator_Threshold_Flag is cleared, any value in this field should be

ignored.

maxUnitsPerTransfer This is a 1-LONG field indicating the maximum

number of units (i.e. sectors) that the adapter can transfer per I/O request. If

a unit transfer limit exists for the adapter, the HAM must place the unit

limit in this field and set theMax_Units_Per_Transfer_Flag. If the adapter

can handle any unit transfer amount the bus protocol supports, the HAM

should set this field to zero and clear theMax_Units_Per_Transfer_Flag.

haType A 1-WORD field to contain a value representing the adapter

type this HAM supports. The following is a list of possible values:

Field Value Description

1 HAM supports SCSI adapters.

2 HAM supports IDE\ATA adapters

3 HAM supports custom adapters.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

6-12 Version 2.1d (September, 1995)

INFO.SCSI.transferPeriodFactor This is a 1 BYTE field that reports

the synchronous transfer period, which is the minimum time allowed

between leading edges of successive REQ pulses and of successive ACK

pulses. (This field applies to SCSI devices only and is not used for other

device types.)

INFO.SCSI.offset This is a 1 BYTE field that is the maximum number of

REQ pulses allowed to be outstanding before the leading edge or its

corresponding ACK pulse is received at the target. Defined values for this

field are:

00h = Asynchronous transfer

FFh = Infinite (No limit to the number of outstanding pulses,

which means that memory is fast enough to keep up

with synchronous transfer).

(This field applies to SCSI devices only and is not used for other device

types.)

INFO.OTHER.reserved2 This is a 2 BYTE field that is reserved by the

NWPA. (This field applies to all non SCSI devices.)

inquiryInfo This is a 36 byte (SCSI) / 512 byte (IDE\ATA) field containing

an InquiryInfoStruct with identifying information about the device. For

SCSI, the information in the InquiryInfoStruct is identical to the

information returned by the standard INQUIRY command. For IDE\ATA,

the information in the InquiryInfoStruct is identical to the information

returned by the IDENTIFY command. For other interface types, the

InquiryInfoStructmust be defined to contain information identical to the

data returned by interface's equivalent INQUIRY command.

Version 2.1d (September, 1995) 6-13

ErrorSenseInfoStruct

Used by: CDM and HAM

Description: This structure defines the data format of the HACB's auto error sense

buffer.

The CDM allocates and fills in one of these buffers for each HACB request

targeted to a device attached to an adapter using auto error sense. The CDM

links one of these buffers to a HACB by assigning the buffer's NetWare

logical (virtual) address to the HACB's vErrorSenseBufferPtr field. The

CDM may want to create a reusable pool of these buffers for the sake of

performance. Additionally, the buffer must be allocated as I/O contiguous

memory, and as explained under the structure's ErrorSenseData field

presented below, the CDM can vary the size of this buffer according to the

number of sense bytes it wants returned. The CDM specifies this number in

the numberBytesRequested field.

The HAM copies the auto error sense data into the ErrorSenseData field of

this buffer. Also, the HAM returns to the numberBytesReturned field, the

lesser of the value in the numberBytesRequested field or the actual number

of sense bytes the device will provide.

If the number of sense bytes returned by the device is less than what the

CDM requested (numberBytesReturned < numberBytesRequested), the

CDM should use the value in the numberBytesReturned field as the index

for the ErrorSenseData array.

Syntax: struct ErrorSenseInfoStruct

{

LONG numberBytesRequested;

LONG numberBytesReturned;

LONG reserved[2];

BYTE errorSenseData[1];

};

Parameters: numberBytesRequested This is a 1-LONG field to contain the number of

error sense bytes the CDM issuing the HACB would like to receive when an

error with a check condition occurs. When auto error sense is active for a

target device, the CDM assigns the desired value in this field prior to

executing the HACB request.

Note: For SCSI, the minimum value a CDM can place in this field is 8.

Otherwise, no error sense information will be returned.

numberBytesReturned This is a 1-LONG field to contain the number of

error sense bytes that the device actually returned, if the number is less than

the number the CDM requested. The HAM sets this value when a HACB

6-14 Version 2.1d (September, 1995)

request results in an error with a check condition and the target host adapter

has auto error sense turned on. The HAM should set this field according to

the following formula:

numberBytesReturned = min(numberBytesRequested, bytesReturnedByDevice);

The following assumptions apply to the above formula:

C The CDM must be informed when the length of the sense information

returned by the device is less than what the CDM requests.

C The CDM is not concerned with any additional sense information

beyond the amount it requested.

reserved This is a field of 2-LONGs reserved by the NWPA.

errorSenseData This field is declared as a BYTE array with one element.

The NWPA, however, takes advantage of the fact that the C programming

language does not bounds check the array. Therefore, the array's base

address (&ErrorSenseData[0]) is used as the starting address where the

HAM is to place the target device's auto error sense data.

The CDM decides the actual size of this BYTE array, at run-time, when it

allocates the auto error sense buffer during the building of the HACB. To

get an auto error sense buffer of suitable size, the CDM allocates a buffer

the size of the ErrorSenseInfoStruct plus however many BYTES of auto

error sense data it wants returned. This amount is the value that the CDM

assigns to the numberBytesRequested field; thus, this field specifies the

array's total number of elements.

Note: In building a HACB for a target device with auto error sense

active, the CDM assigns the total byte length (sizeof(struct

ErrorSenseInfoStruct) + numberBytesRequested) of the auto error sense

buffer to the HACB's errorSenseBufferLength field.

The CDM and HAM should go through a pointer to an

ErrorSenseInfoStruct to access information in the auto error sense buffer.

This pointer implies an ErrorSenseInfoStruct format on the buffer's data,

allowing the CDM or HAM to correctly dereference its fields. The HAM

knows the full size of the buffer from the value the CDM places in the

numberBytesRequested field and adding the 17 header BYTES. The CDM

knows exactly how much return data to read by the value the HAM places

in the numberBytesReturned field.

Version 2.1d (September, 1995) 6-15

HACBStruct

Used by: CDM, HAM and NWPA

Description: The Host Adapter Control Block (HACB or HACBStruct) is a data

structure, or message packet, packing I/O requests into a protocol-specific

command block (such as SCSI or IDE\ATA). This structure is passed

between a Custom Device Module (CDM) and a Host Adapter Module

(HAM) via the NWPA. These modules interface with the NWPA through

the CDI and HAI interfaces, respectively.

The HACB is encapsulated in the Super Host Adapter Control Block

(SuperHACB or SuperHACBStruct), which is a data structure providing

additional space for CDM developers to attach additional CDM state

information. The CDM uses a SuperHACB to build a device-specific I/O

request from a CDM message (CDMMessageStruct) it receives from the

NWPA. As a data member of the SuperHACB, the CDM places device

specific commands in the HACB and initiates its execution by sending it to

the HAM via the NWPA. The HAM passes the information in the HACB to

the target device for processing.

Syntax: typedef struct HACBStruct

{ LONG hacbPutHandle;

LONG hacbCompletion;

LONG control_Info;

WORD hacbType;

WORD timeoutAmount;

LONG deviceHandle;

LONG dataBufferLength;

void *vDataBufferPtr;

void *pDataBufferPtr;

LONG errorSenseBufferLength;

void *vErrorSenseBufferPtr;

void *pErrorSenseBufferPtr;

LONG reserved1[6];

BYTE hamReserved[64];

union /* - - - Command Block Overlay Area - - - */

{

struct /* HACB Type 0:Host Adapter Command Structure*/

{

LONG function;

LONG parameter0;

LONG parameter1;

LONG parameter2;

BYTE reserved2[12];

} Host;

struct /* HACB Type 1: SCSI Adapter Command Structure*/

{

BYTE haCommandArea[16];

BYTE reserved3[11];

BYTE haCommandLength;

} SCSI;

struct /* HACB Type 2: IDE\ATA Adapter Command

Structure*/

{

BYTE numberSectorsRegister;

BYTE sectorRegister;

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

6-16 Version 2.1d (September, 1995)

BYTE lowCylinderRegister;

BYTE highCylinderRegister;

BYTE driveHeadRegister;

BYTE commandRegister;

BYTE reserved4[22];

} IDE\ATA;

struct /*HACB Type 3:CDM Pass-through Cmd Structure*/

{

LONG function;

LONG parameter0;

LONG parameter1;

LONG parameter2;

BYTE reserved5[12];

} CDMPassThrough;

} Command;

} HACB;

Parameters: A full description of the HACBStruct parameters is not given here due to its

length and detail. Refer to Chapter 3 for a full description.

Version 2.1d (September, 1995) 6-17

HAMInfoStruct

Used by: HAM

Description: This structure is used by a HAM to supply information about the HAM

itself to the Media Manager upon request. The HAM needs to maintain an

instance of this structure for each bus it supports.

Syntax: struct HAMInfoStruct

{

LONG deviceInfoStructureLength;

WORD haType;

BYTE busNo;

BYTE cardNo;

LONG vendorID;

BYTE name[64];

LONG supportedTargetIDs;

LONG supportedUnitNumbers;

LONG cardTargetID;

LONG reserved[10];

};

Parameters: deviceInfoStructureLength A 1-LONG field to contain the length of the

device information data. For SCSI devices, this value is the length of the

header (32 bytes) plus the SCSI Inquiry Data (36 bytes). For IDE\ATA

devices, this value is the length of the header (32 bytes) plus the IDE\ATA

Information (512 bytes). For custom CDMs and HAMs, this value is the

length of the header (8 bytes) plus the length of the custom information.

haType A 1 WORD field to contain a value representing the adapter

type this HAM supports. The following is a list of possible values:

Field Value Description

1 HAM supports SCSI adapters.

2 HAM supports IDE\ATA adapters

3 HAM can translate raw Media Manager messages into

custom command blocks for the adapter it supports.

busNo A 1 byte field to contain the numerical identifier used by the HAM

to indicate the appropriate bus on which to process a HACB. This identifier

accommodates those adapters that have more than one bus on which to

attach devices. This number is set by the HAM.

cardNo A 1 byte field to contain the number that will be displayed for this

adapter and used to identify the adapter in other commands. This number is

decided by the HAM.

vendorID A 4 byte field to contain a number used to keep track of all

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

6-18 Version 2.1d (September, 1995)

modules. This number is given to a driver vendor from Novell Labs and

should be hard-coded in the module. This number is used in registering a

module and in hot replacement.

name[64] A 64 byte field to contain the name of the adapter or the HAM.

The name is a string where byte 0 contains the string length and bytes 1

through 63 contain the characters that constitute the actual name.

supportedTargetIDs A 1 LONG field to contain the number of Target IDs

supported by this HAM. This corresponds to ID numbers in the case of

SCSI, and Channel numbers in the case of IDE/ATA.

supportedUnitNumbers A 1 LONG field to contain the number of Unit

Numbers supported by this HAM. This corresponds to LUNs in the case

of SCSI.

cardTargetID A 1 LONG field to contain the specific card ID that this

HAM will support, if known by the HAM. If this parameter is not used, it

must be set to -1.

reserved These 10 LONGs are reserved by NWPA.

Version 2.1d (September, 1995) 6-19

InquiryInfoStruct

Used by: CDM and HAM

Description: This structure contains identifying information that the CDM and HAM can

use to know what type of device is being described. For SCSI,

InquiryInfoStruct is identical to the SCSI Inquiry structure returned by the

SCSI Inquiry Command. For IDE\ATA, InquiryInfoStruct is identical to

the IDE\ATA Identify structure returned by the IDE\ATA Identify

Command. For other interface types, InquiryInfoStruct must be identical to

the data structure specific to that interface type.

6-20 Version 2.1d (September, 1995)

NPAOptionStruct

Used by: HAM (CDM usage is optional)

Description: The NPAOptionStruct contains the HAM's command line option data on a

per option basis. Using this structure, the HAM can select the command

line options that it wants the Media Manager to prompt the system operator

for. The HAM must fill out one of these structures and call

NPA_Add_Option() for each option it supports. With each successive call

to NPA_Add_Option(), the Media Manager adds the current option to a

select list. After the HAM has added all of its command line options, it calls

NPA_Parse_Options(), which parses the command line to determine which

options in the select list were actually chosen. Within the context of

NPA_Parse_Options(), the Media Manager iteratively calls the HAM's

HAM_Check_Option() routine for each option that was actually selected

from the command line. HAM_Check_Option() can direct the Media

Manager to either accept the option by returning zero or reject the option by

returning non-zero. If the option is accepted, the Media Manager places it in

a use list. The HAM then calls NPA_Register_Options() to direct the Media

Manager to physcially register the options in its use list for the HAM.

The Media Manager will not place multiple options of the same type, such

as multiple interrupts, in its use list for a single parse of the command line.

Therefore, if the host adapter supports multiple options of the same type

and the HAM wants to exploit them, then the HAM must do the following:

1. Call NPA_Add_Option() to add the first option.

2. Call NPA_Parse_Options() and have HAM_Check_Option() accept the

option so that it is placed in the use list.

3. Call NPA_Add_Option() to add the next option of the same type.

4. Call NPA_Parse_Options() and have HAM_Check_Option() accept this

option so that it is also placed in the use list.

5. Repeat steps 3 and 4 until all of the options of the same type are in the

use list.

6. Call NPA_Register_Options() to have the Media Manager physically

register the options.

Syntax: struct NPAOptionStruct{

BYTE name[32];

LONG parameter0;

LONG parameter1;

LONG parameter2;

WORD type;

WORD flags;

BYTE string[n];

} ;

Parameters: name This is a 32 byte field to contain a length-preceded and null-

terminated string. The HAM places the name of the desired option, as it

Technical Reference for NWPA Data Structures

Version 2.1d (September, 1995) 6-21

will appear on the command line, in this field.

Note: NWPA will add an equals sign after Name when it is displayed

on the command line.

parameter0 This is a 4 byte field to contain the value associated with an

option.

For the interrupt option, this field would contain the IRQ level.

For the memory decode option where an adapter card has onboard memory

that must be mapped into NetWare's logical address table, this field would

contain the shared memory absolute address used by the adapter.

parameter1 This is a 4 byte field to contain the length or range associated

with this option. Typically, this field is used in specifying memory decode

ranges and port lengths.

If the Interrupt Option is set under Type, this field represents the following

flags:

0x01 - Put at end of ISR chain (Default is front of ISR chain.)

0x02- Adjust RealModeInterrupt mask. This enables real mode

(DOS) Interrupts.

0x04- Level triggered Interrupt (Default setting is edge-triggered.)

For the Product ID option, this parameter contains a pointer to an array of

bytes that contain a bus architecture-dependant parameter that uniquely

identifies an adapter board/peripheral/system option. As an example, in the

case of an EISA bus, the EISA product ID is defined in the EISA

Specification document. The following illustration shows the various

formats for product ID values (as applicable).

Byte 1 Byte 0

MCA Bus

POS

Register 1

POS

Register 0

32-bit encoded EISA ID (LOHI byte order)

EISA Bus

Byte 2Byte 3

Byte 1

Byte 0

PC Card Bus (PCMCIA)

Byte 2Byte 3

16-bit Manufacturer ID

(TPLMID-MANF field of the

CISTPL-MANFID tuple)

(LOHI byte order)

16-bit Manufacturer Info

(TPLMID-CARD field of the

CISTPL-MANFID tuple)

(LOHI byte order)

Byte 1

PCI Bus

Byte 2Byte 3

16-bit Device ID
(LOHI byte order)

16-bit Vendor ID

(LOHI byte order)

Byte 0

Byte 1 Byte 0

32-bit encoded EISA ID (LOHI byte order)

PnP ISA Bus

Byte 2Byte 3

Byte 1 Byte 0

6-22 Version 2.1d (September, 1995)

Note: LOHI byte order refers to a little-endian byte order.

parameter2 This is a 4 byte field that can be either an input or an output

parameter. In the shared memory case mentioned previously, this field

receives the logical address of the mapped memory. For Interrupt, Port,

Technical Reference for NWPA Data Structures

Version 2.1d (September, 1995) 6-23

Memory, Slot, and DMA options, this parameter is the busTag as defined

for NBI that is returned by NPAB_Get_Bus_Tag(). For the Product ID

option, this field is the size of the array pointed to by Parameter1.

Note: Return values to this parameter are only valid after

NPA_Register_Options() has been called.

type This is a 2 byte field to contain a code indicating the option type.

The following is a list of possible values for this field:

0x0000 HAM-defined option (such as debug)

0x0001 Interrupt option

0x0002 Port option

0x0003 DMA option

0x0004 Memory decode option

0x0005 Slot option

0x0006 Card option

0x0007 Reserved by NetWare

0x0008 Product ID option

0x0009

to Reserved by NetWare

0x00FF

0x0100

to For Vendor use as needed.

0xFFFF

flags This is a 2 byte field to contain a bitmap indicating the status of the

option. The following is a list of the flags defined for this field.

0x0001 Option required -- If not specified on command line, then

prompt the user.

0x0002 Use this option -- Use this option whether or not it is specified

on the command line.

0x0004 Value required -- Places name = on the command line where

name is the string contained in the Name field and the user is

expected to enter a value.

0x0008 Specific value required -- Places name = and a set of specific

values on the command line from which the user is expected to

choose one. Each value in the set is contained in parameter0

of the option's corresponding NPAOptionStruct.

0x0010 Default value -- Contained in parameter0

0x0020 Shareable option -- Such as shared interrupts

All other bits in this field are reserved by NetWare.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

6-24 Version 2.1d (September, 1995)

string This is a n-byte field that can be used to pass and\or receive

information to/from the command line. If the Specific Value Required flag

is set, this field will contain a length-preceded and NULL terminated string

where n is an arbitrary integer (determined by the HAM developer) that is a

multiple of 4 (LONG aligned). This field contains the ASCII code for the

value specified in parameter0. In this case where a matching option was not

specified on the command line, this value appears at the console as a choice

for the user. After a user makes a selection, the selected value is placed

back into this field.

If the developer desires to use this field to return information back from the

command line, (Value Required flag is set) this field must contain n-2,

where n is the maximum length of String plus the length count byte and the

NULL terminator byte. In this case, when the information is returned back,

the length byte will be updated to indicate the actual size of the string being

returned.

Version 2.1d (September, 1995) 6-25

SuperHACBStruct

Used by: CDM

Description: The Super Host Adapter Control Block (SuperHACB or

SuperHACBStruct) is a data structure, or message packet, packing I/O

requests into a protocol-specific command block (such as SCSI or

IDE\ATA). It provides additional space for CDM developers to attach

additional CDM state information, and it encapsulates a Host Adapter

Control Block (HACB or HACBStruct) which is the structure passed

between a Custom Device Module (CDM) and a Host Adapter Module

(HAM) via the Media Manager. The CDM uses a SuperHACB to build a

device-specific I/O request from a CDM message (CDMMessageStruct) it

receives from the Media Manager. As a data member of the SuperHACB,

the CDM places device specific commands in the HACB and initiates its

execution by sending it to the HAM via the Media Manager. The HAM

passes the information in the HACB to the target device for processing.

Syntax: typedef struct SHACBStruct

{

LONG cdmSpace[8];

struct HACBStruct HACB;

} SHACB;

Parameters: cdmSpace This is a 32 -byte field to be used at the CDM's discretion. This

field may be used to store state information specific to a CDM, but the use

of this field is optional. However, if this field is used, the CDM is

responsible for setting its values.

HACBStruct HACB This is a field containing a HACB structure defined in

section 3.3. A SuperHACB structure pointer is what the Media Manager

APIs pass to and from a CDM. The HAM only receives and acts on the

information contained in the HACB structure.

6-26 Version 2.1d (September, 1995)

UpdateInfoStruct

Used by: CDM

Description: This structure is used by a CDM when binding to a device or when

updating device information. Most importantly, the CDM uses this

structure to register the control and I/O functions it will support for a device

with the Media Manager.

Syntax: struct UpdateInfoStruct

{

BYTE name[64];

LONG mediaType;

LONG cartridgeType;

LONG unitSize;

LONG blockSize;

LONG capacity;

LONG preferredUnitsize;

LONG functionMask;

LONG controlMask;

LONG unfunctionMask;

LONG uncontrolMask;

LONG mediaSlot;

BYTE activateFlag;

BYTE removableFlag;

BYTE readOnlyFlag;

BYTE magazineLoadedFlag;

BYTE acceptsMagazinesFlag;

BYTE objectInChangerFlag;

BYTE objectIsLoadableFlag;

BYTE lockFlag;

LONG diskGeometry;

LONG reserved[7];

union

{

struct ChangerInfo

{

LONG numberOfSlots;

LONG numberOfExchangeSlots;

LONG numberOfDevices;

LONG deviceObjects[n];

} ci;

} u1;

} ;

Parameters: name This field is a length-preceded string to contain the manufacturer's

name and model number of the device.

mediaType This is the type of media being used.

disk 0x00000000

tape 0x00000001

printer 0x00000002

WORM 0x00000004

CDROM 0x00000005

magneto optical 0x00000007

Technical Reference for NWPA Data Structures

Version 2.1d (September, 1995) 6-27

cartridgeType The type of any cartridge if the device supports one

fixed media 0x00000000

5.25 floppy 0x00000001

3.5 floppy 0x00000002

5.25 optical 0x00000003

3.5 optical 0x00000004

.5 tape 0x00000005

.25 tape 0x00000006

8 mm tape 0x00000007

4 mm tape 0x00000008

Bernoulli disk 0x00000009

unitSize The current transfer unitsize (bytes per sector) setting of the

device. This is the transfer unitsize in which the base-translator CDM will

receive requests.

For Disk, CD-ROM, and MO devices, this field should contain the unitsize

native to the media in the device. This is the unitsize that either optimizes

device performance or is physically imposed on the device by the media, as

in the case of CD-ROM. If the value in this field is anything other than 512

(NetWare's native unitsize), the NWPA's sector translation filter gets turned

on to ensure that the CDM will receive requests in the unitsize specified by

this field.

For Tape devices, the CDM should never change the value in this field

unless an application tells it to physically change the device's unitsize

through its CDM_Set_Attribute() routine. Then, and only then, will the

CDM place the new unitsize value in this field and update the object using

CDI_Object_Update(). It is the responsibility of the application using the

tape device to issue requests in the unitsize specified by this field.

blockSize Indicates the maximum number of transfer units that can be

specified in a single command (i.e. sectors per request). The NWPA uses

this value to make sure that the CDM does not receive blocks that are too

big for it to handle. The CDM should set the blocksize to the smaller of

either the maximum number of transfer units the CDM can handle per

request or the maximum blocksize imposed by the adapter. The CDM is

informed that an adapter blocksize limitation exists if either the

Max_Data_Per_Transfer_Flag (0x00000001) or the

Max_Units_Per_Transfer_Flag (0x00000200) is set in the attributeFlags

field of the device's DeviceInfoStruct. The CDM receives a pointer to the

device's DeviceInfoStruct as an input parameter to its CDM_Inquiry()

routine.

The adapter imposed blocksize is determined by the following criteria: 1.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

6-28 Version 2.1d (September, 1995)

If theMax_Data_Per_Transfer_Flag is set and the

Max_Units_Per_Transfer_Flag is cleared, then the CDM calculates the

adapter imposed blocksize by dividing the value in the

MaxDataPerTransfer field of the device's DeviceInfoStruct by the value

in the Unitsize field of this structure (the device's UpdateInfoStruct).

2. If theMax_Units_Per_Transfer_Flag is set and the

Max_Data_Per_Transfer_Flag is cleared, then the CDM uses the

value in theMaxUnitsPerTransfer field of the device's

DeviceInfoStruct as the adapter imposed blocksize.

3. If both flags are set, then the CDM uses the smaller of 1 or 2 above

as the adapter imposed blocksize.

capacity The capacity of the media in the device in terms of transfer units

(i.e. total number of sectors). For those types of media, such as tape, where

capacity of the media is not readily available, it is preferrable that the CDM

approximate the capacity. However, if approximating the capacity is too

difficult, the CDM should set this field to -2, which indicates capacity

unknown.

preferredUnitsize The transfer unitsize (bytes per sector) in which the

base-translator CDM would prefer to receive requests. For Disk, CD-ROM,

and MO devices, the value in this field should be equal to the value

specified in the Unitsize field. This way, the NWPA's sector translation

filter ensures that the base-translator CDM receives requests in the unitsize

it specified in the Unitsize field. For Tape devices, the value in this field is a

hint to tape applications of the preferred transfer unitsize. Applications can

choose to use this hint or ignore it.

functionMask A 32-bit mask indicating the I/O functions the CDM will

support for this device. The CDM may update this field as needed.

#define RANDOM_READ 0x00000001

#define RANDOM_WRITE 0x00000002

#define RANDOM_WRITE_ONCE 0x00000004

#define SEQUENTIAL_READ 0x00000008

#define SEQUENTIAL_WRITE 0x00000010

#define RESET_END_OF_MEDIA 0x00000020

#define SINGLE_FILE_MARKS 0x00000040

#define MULTIPLE_FILE_MARKS 0x00000080

#define SINGLE_SET_MARKS 0x00000100

#define MULTIPLE_SET_MARKS 0x00000200

#define SPACE_DATA_BLOCKS 0x00000400

#define LOCATE_DATA_BLOCKS 0x00000800

#define PARTITION_SUPPORT 0x00001000

#define SEQUENTIAL_SUPPORT 0x00002000

#define MO_ERASE 0x00004000

#define VENDOR_UNIQUE_IO 0x40000000

controlMask A 32-bit mask indicating the control functions the CDM will

support for this device. The CDM may update this field as needed.

Technical Reference for NWPA Data Structures

Version 2.1d (September, 1995) 6-29

#define FORMAT_MEDIA 0x00000001

#define TAPE_CONTROL 0x00000002

#define ACTIVATE_DEACTIVATE_MASK 0x00000008

#define MOUNT_DISMOUNT_MASK 0x00000010

#define SELECT_DESELECT_MASK 0x00000020

#define LOAD_UNLOAD_MASK 0x00000040

#define LOCK_UNLOCK_MASK 0x00000080

#define MOVE_MEDIA_MASK 0x00000100

#define LOAD_MAGAZINE_MASK 0x00002000

#define CHANGER_INVENTORY_MASK 0x00004000

#define RAW_INSERT_MASK 0x08000000

#define RAW_CHANGER_MASK 0x10000000

#define RAW_MAGAZINE_MASK 0x20000000

#define VENDOR_UNIQUE_CONTROL 0x40000000

unfunctionMask This field is used by filter CDMs. Its value is a 32-bit

mask that has bits set for each function that is to be removed from the

current function mask.

uncontrolMask This field is used by filter CDMs. Its value is a 32-bit mask

that has bits set for each control function that is to be removed from the

current control mask

mediaSlot This field is reserved by the NWPA.

activateFlag Set to 1 if the device is active or 0 if the device is inactive.

removableFlag Set to 1 if the device holds removable media. Set to 0 if the

device holds non-removable media (i.e. fixed disks).

readOnlyFlag Set to 1 if the media in the device is read-only or

write-protected media. Set to 0 if the media in the device is readable and

writable.

magazineLoadedFlag Set to 1 if the device has a magazine currently

loaded. Set to 0 if the device does not have a magazine currently loaded. Set

to -1 if the device does not support magazines.

acceptsMagazinesFlag Set to 1 if the device supports magazines. Set to -1

if the device does not support magazines.

objectInChangerFlag Set to 1 if this device is located inside a changer. Set

to 0 if the device is not inside a changer.

objectIsLoadableFlag Should be set if the object can be loaded.

lockFlag Set to 1 if the device has locked the removable media in its drive

slot. Set to 0 if the removable media is not locked. Set to -1 if the device

does not support Prevent/Allow Medium Removal commands.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

6-30 Version 2.1d (September, 1995)

diskGeometry Indicates the disk geometry if the device is a hard disk that

does not support logical block addressing (LBA). If the device does support

LBA, then set this field to -1. The value in this field is treated as a LONG

(32-bits). The value in bits (LSB) 0 - 7 indicates the sectors per track. The

value in bits 8 - 15 indicates the number of heads. The value in bits 16 - 31

(MSB) indicates the number of cylinders.

reserved Reserved by NetWare.

changerInfo

numberOfSlots Used to set the number of slots in an autochanger.

numberOfExchangeSlots Used to set the number of mailboxes in an

autochanger.

numberOfDevices Used to set the number of devices in an autochanger.

deviceObjects A list of the device. n is an arbitrary integer chosen by

the CDM developer.

