
Version 2.1d (September, 1995) 5-1

Chapter 5 Custom Device Module

(CDM)

The Custom Device Module (CDM) is the driver component that

understands a specific device (or family of devices) and the commands that

control it. The CDM is implemented as a NetWare Loadable Module

(NLM). This chapter describes a CDM's function, and it is organized into

the following sections:

C Architecture

This section prototypes and describes the entry points and routines

that make up the CDM's architecture and its interface with the

NWPA.

C Operational Overview

This section overviews the CDM's functionality by outlining the

main flow of events of its procedures.

C Special Topics

This section discusses special topics relevant to a CDM.

5.1 CDM Architecture: Entry Points and Routines

This section provides prototypes for the entry points and routines required

in a CDM by the NetWare Peripheral Architecture (NWPA). A developer

may use these prototypes to plumb the shell of a CDM. Detailed

descriptions of the data structures and entry points can be found in the

technical reference chapters of this developer's guide.

To fit properly in the architecture, a CDM is required to provide the

following:

C NLM Load/Unload-time Entry Points

C CDM Entry-Points

C Device Control and I/O Routines

Device control and I/O routines are mentioned here because they are crucial

to the CDM architecture. However, this developer's guide does not attempt

any specifications on these routines, since they are manufacturer specific.

Prototypes and definitions of these routines are the responsibility of CDM

developers.

Complete functional specifications of the entry points can be found in

Chapter 7, and descriptions of the CDM Messages can be found in Chapter

9. The main flow of each entry point is discussed in the operational

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

5-2 Version 2.1d (September, 1995)

overview of this chapter. The names of these entry points are left to the

discretion of the CDM developer; however, each entry point must provide

the respective functionality described in this guide.

For consistency in referring to these entry points and routines within the

text and in code examples, this guide gives each a generic name having a

CDM_ prefix. Whenever an entry point or function with this prefix is

encountered, it indicates that the routine is CDM specific. The italic

typeface indicates that the name is arbitrary.

5.1.1 NLM Load/Unload-Time Entry Points

A CDMmust provide three standard NLM entry points for the OS. These

entry points are made visible to the OS through a definition (.DEF) file that

is processed by a NetWare compatible linker utility. The prototypes of

these entry points, along with their generic names, are as follows:

LONG CDM_Load (

LONG loadHandle,

LONG screenID,

BYTE *commandLine

);

CDM_Load() is the CDM's load-time entry point. CDM_Load() is called

on a blocking thread. Through this entry point, a CDM receives its

OS-generated resource handle (LoadHandle), an ID to the LOAD console

screen, and a pointer to the LOAD command line string which contains load

options associated with the module. For a CDM, these options set the

operational states of the program module. They do not apply to hardware

resources.

CDM_Load() is responsible for allocating any resources needed to make

the CDM operational, for configuring the CDM based on the load options

specified on the LOAD command line, and for registering the CDM and its

I/O entry points with the NWPA.

LONG CDM_Unload_Check (LONG ScreenID);

CDM_Unload_Check() is the CDM's initial unload-time entry point. The

entry point gets called when an UNLOAD command is issued on the CDM.

CDM_Unload_Check() is called on a blocking thread.

CDM_Unload_Check() is responsible for checking to see if any of the

CDM's devices are currently being used by an application and return

use-status. To do this, CDM_Unload_Check() returns the use-status

returned by NPA_Unload_Module_Check(). From this return value, the OS

can determine if any of the devices managed by the CDM are in use. If any

devices are in use, the OS displays a message at the console listing the

devices that will be deactivated and the corresponding NetWare volumes

Custom Device Module (CDM)

Version 2.1d (September, 1995) 5-3

that will be dismounted if the action is continued. The user then has the

option to either continue or abort the unload.

void CDM_Unload (void);

CDM_Unload() is the CDM's final unload-time entry point, meaning that

the unload thread already called CDM_Unload_Check() and the systems

operator chose to continue. Thus, the unload thread was allowed to continue

and make a call to CDM_Unload(). CDM_Unload() unregisters the CDM

from the NWPA and returns allocated resources back to the system. Once

the CDM is unloaded, all devices it was managing are inaccessible.

5.1.2 CDM Entry Points

A CDMmust provide additional entry points for the NWPA. The

prototypes of these entry points, along with their generic names, are as

follows:

LONG CDM_Abort_CDMMessage (LONG parameter);

CDM_Abort_CDMMessage() is an entry point that the CDM must provide

if it internally queues CDM Messages. Each time a CDM queues a message

as opposed to immediately building a HACB and initiating its execution,

the CDM must call CDI_Queue_Message(). For each message it queues, the

CDM must pass the address of an abort routine as an input argument to

CDI_Queue_Message(). This is the routine that the NWPA calls if an abort

is issued on its corresponding message.

As in the case of CDM_Callback(), the CDM can define multiple abort

routines. The term CDM_Abort_CDMMessage() is used to generically

refer to one or multiple CDM abort routines.

LONG CDM_Callback (

struct SHACBStruct *SHACB,

LONG npaCompletionCode

);

CDM_Callback() is a callback entry point so the NWPA can inform the

CDM of the completion of a non-blocking execution cycle. A non-blocking

execution cycle of a HACB is initiated when the CDM calls

CDI_Execute_HACB(). The address of the callback routine is an input

parameter to CDI_Execute_HACB(); thus, a callback is registered with the

NWPA for each call of CDI_Execute_HACB(). Since the callback link is on

a per execution basis, the CDM can either have one global callback, or it

can define multiple callback routines, and link the one appropriate to the

HACB request being executed. In this manual, the term CDM_Callback()

generically refers to either of these cases.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

5-4 Version 2.1d (September, 1995)

LONG CDM_Check_Option (

struct NPAOptionStruct *Option,

LONG instance

LONG flag);

Note: This entry point is optional. The only reason a CDM would need

to provide this routine is if it supports load options and intends

to parse the LOAD command line for these options.

CDM_Check_Option() is the CDM's entry point for receiving and verifying

command line options. The entry point is called during two separate NWPA

processes: once during the command line parsing phase of CDM

initialization and again during the actual registration of options. The CDM

invokes these two NWPA processes at different points in its load-time entry

point, CDM_Load(). This entry point is made visible to the system when

the CDM registers itself with the NWPA using

NPA_Register_CDM_Module().

LONG CDM_Execute_CDMMessage (

LONG CDMBindHandle,

struct CDMMessageStruct *Msg

);

CDM_Execute_CDMMessage() is the CDM's entry point for fielding CDM

message requests. This routine uses a jump table (or some other form of

routing) so that the CDM can route the message to the local control or I/O

routine designed to field the current message type. The local routine is

required to build the appropriate SHACB to accomplish the request. This

entry point is made visible to the system when the CDM registers with the

NWPA using NPA_Register_CDM_Module().

LONG CDM_Get_Attribute (

LONG cdmBindHandle,

void *infoBuffer,

LONG infoBufferLength,

LONG attributeID);

CDM_Get_Attribute() is the entry point from which the NWPA can

retrieve registered device attribute information for an application. This

entry point gets registered with the NWPA when the CDM registers the

attribute by calling CDI_Register_Object_Attribute().

Custom Device Module (CDM)

Version 2.1d (September, 1995) 5-5

Note: The CDM registers a get-attribute routine with each call to

CDI_Register_Object_Attribute(). Therefore, the CDM can

implement either one routine to handle all get-attribute calls, or

distribute the calls through multiple routines. This developer's

guide uses CDM_Get_Attribute() to generically refer to either

case.

LONG CDM_Inquiry (

LONG npaDeviceID,

LONG npaBusID,

struct DeviceInfoStruct *DeviceInfo,

LONG flags,

LONG cdmHandle

);

CDM_Inquiry() is the entry point where the NWPA passes the CDM

information about either an existing device or a device that just came online

with a type that matches the device type for which the CDM registered.

This entry point is registered with the system when the CDM registers itself

with the NWPA using NPA_Register_CDM_Module(). It is during the

context of this entry point that the CDM can issue passive requests (see

note below) to the device to determine if it wants to field I/O requests for

the device. If the CDM decides to field requests for the device, it informs

the NWPA by binding to the device. Note: During the context of this entry

point the CDM must not issue any commands that will change the state or

mode of the device. Passive requests are those such as the SCSI MODE

SENSE command.

LONG CDM_Set_Attribute (

LONG cdmBindHandle,

void *infoBuffer,

LONG infoBufferLength,

LONG attributeID

);

CDM_Set_Attribute() is the entry point by which the NWPA can set a

registered device attribute for an application. This entry point gets

registered with the NWPA when the CDM registers the attribute by calling

CDI_Register_Object_Attribute().

Note: The CDM registers a set-attribute routine with each call to

CDI_Register_Object_Attribute(). Therefore, the CDM can

implement either one routine to handle all set-attribute calls, or

distribute the calls through multiple routines. This developer's

guide uses CDM_Set_Attribute() to generically refer to either

case.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

5-6 Version 2.1d (September, 1995)

5.1.3 Device Control and I/O Routines

A CDMmust provide routines that translate CDMMessages containing

NWPA functions into HACB requests. Some of these NWPA functions

deal with device control, and some deal with I/O. Control functions

typically modify the state of devices or media objects such as activating a

device or formatting media. I/O functions typically handle the movement of

data to and from media such as reads and writes. The appropriate CDM

routine to field an incoming CDM Message gets called through the routing

mechanism the CDM implements in CDM_Execute_CDMMessage().

Custom Device Module (CDM)

Version 2.1d (September, 1995) 5-7

5.2 Operational Overview

The information in this section builds on the declarations and prototypes

given in the previous section by describing a CDM's major functional

procedures and their main flow of events. The information provided here

should help to add functionality to a CDM program shell. Detailed

definitions of data structures and functional descriptions mentioned in this

overview are not included to avoid frequent detours that may detract from

main-flow concepts. However, these details are provided in the technical

reference chapters of this developer's guide. The following list gives a

breakdown of the information in these chapters:

C Definitions of data structures can be found in Chapter 6, îTechnical

Reference for NWPA Data Structures.ï

C Functional descriptions of CDM entry points and CDI / NWPA support

routines can be found in Chapter 7, îTechnical Reference for NWPA

Routines.ï

C Functional descriptions of NetWare OS support routines can be found

in Chapter 10, îOS Support Routines.ï

5.2.1 Load-time Initialization and Registration

Loading of the CDM can be initiated in multiple ways: by the systems

operator at the server console, by a startup file, or by INSTALL. The

following steps show the sequence of events for initializing and registering

a CDM at load-time.

1. When a CDM is loaded, the OS calls the CDM's CDM_Load() entry

point passing it LoadHandle, ScreenID, and CommandLine as input

parameters. CDM_Load() is responsible to perform the following:

A. Register the CDM module.

The CDM registers its module by calling

NPA_Register_CDM_Module(). This API sets up the general

environment necessary for the CDM to become operational and

makes it possible for the CDM to allocate and register any

resources it may need. It is within the context of

NPA_Register_CDM_Module() that the CDM's NPAHandle is

assigned a value, and that the following CDM entry points get

registered with the NWPA:

CDM_Check_Option() (Optional)

CDM_Execute_CDMMessage()

CDM_Inquiry()

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

5-8 Version 2.1d (September, 1995)

Note: If a reentrant CDM will support a device under different

operational states according to options specified on the

command line, it should call NPA_Register_CDM_Module() for

each load-instance of itself.

NPA_Register_CDM_Module() accepts a CDM-generated

instance number as an input parameter. The CDM should use

this instance number to associate a group of command-line

options with its corresponding load-instance. This way the CDM

can distinguish which operational states go with which

load-instance.

B. (Optional: Implement if applicable) Create a select-list of

desired command line options to be used with the NWPA's

command line parser.

Note: If the CDM does not support command line options or it plans

to do its own command line parsing, it should ignore this step.

Options are command line keywords that set operational states for the

CDM.

The CDM creates an options list by filling out an instance of an

NPAOptionStruct and calling NPA_Add_Option(). During the context

of NPA_Add_Option(), the NWPA copies the option information and

constructs a "select-list" of valid options for the CDM. To completely

build the option list, the CDM should iteratively fill out the

NPAOptionStruct instance and call NPA_Add_Option() for each option

type it desires. Since the NWPA maintains its own copy of option

information in constructing the select-list, the CDM can reuse the same

NPAOptionStruct instance for each call to NPA_Add_Option().

Note: Since the CDM does not interface directly with the hardware, it

should not try to reserve hardware options such as interrupts,

ports, DMA channels, etc. CDM command line options should

only set operational states for the program module.

C. (Optional: Implement if applicable) Parse the load command line

for specified options.

The CDM can either do its own parsing or use the NWPA's parser.

The NWPA's parser is invoked by calling NPA_Parse_Options().

This support routine causes the NWPA to match options specified

on the command line with those in the CDM's select-list. In turn,

Custom Device Module (CDM)

Version 2.1d (September, 1995) 5-9

NPA_Parse_Options() iteratively calls the CDM's

CDM_Check_Option() entry point for each match it finds.

CDM_Check_Option() either accepts or rejects the selected option.

Each time CDM_Check_Option() accepts an option, the NWPA

places it in a "use-list." If there is an option on the command line

that does not match anything in the CDM's select-list, it is ignored.

However, if after parsing the command line the NWPA finds

residual options in the CDM's select-list, it either prompts the user

for the options or discards them depending on the bits set in the

Flags field of each option's NPAOptionStruct.

Note: Steps 1.B - 1.C describe the general paradigm for registering

configuration options. For more detailed information and actual

registration examples, refer to the NPAOptionStruct in Chapter

6.

D. Allocate memory resources.

The CDM allocates any memory buffers it may need by calling

NPA_Allocate_Memory().

E. Prepare the CDM to accept I/O.

The CDM must ensure that is operational and ready to accept

CDMMessages before going to step F.

F. Activate the CDM.

The CDM calls CDI_Register_CDM() to activate itself. This API

requires an exchange of handles that identify the CDM. The CDM

passes a unique handle (CDMHandle) it generates to identify itself

as an input parameter. Then, the NWPA returns its own unique

handle (CDMOSHandle) it will use to identify the CDM as an

output parameter.

G. Return load status.

If the CDM loaded successfully, CDM_Load() should return zero.

If the load was unsuccessful, it should do the following:

1. Return all allocated memory by calling

NPA_Return_Memory().

2. Unregister all command line options by calling

NPA_Unregister_Options().

3. Unregister the module by calling NPA_Unregister_Module() if

the CDM failed its initial load instance.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

5-10 Version 2.1d (September, 1995)

Warning: NPA_Unregister_Module() should not be called if the CDM

is only erroring out of the registration of a single instance of

itself, but it intends to continue supporting other instances.

If it is called, all pending I/O for this CDM will be aborted.

4. Return -1.

If at any time during initialization and registration an uncorrectable error

occurs, the CDM must return its resources and back out from the point it

reached. For example, if the CDM progressed as far as 1.D in the sequence,

then the CDM would need to return memory, unregister options if

implemented, and then unregister the module.

5.2.2 Inquiring and Binding to a Device

Once the CDM is initialized and registered, the NWPA calls

CDM_Inquiry(). This routine is blocking, and it is registered with the

NWPA during NPA_Register_CDM_Module(). The NWPA passes four

arguments to CDM_Inquiry(): NPADeviceID, NPABusID, a pointer to a

DeviceInfoStruct instance, and Flag.

NPADeviceID and NPABusID are the object IDs of the device and bus as

entered in the NWPA's object database. DeviceInfoStruct is a pointer to an

interface-specific structure that describes the device in enough detail so that

the CDM can determine the device type. The HAM is responsible for

supplying this information to the NWPA.

Flag is an indicator telling the CDM the type of operation to perform

during CDM_Inquiry(). It is within the context of this routine that a CDM

"binds" to a device. Binding is where the CDM tells the NWPA to route I/O

for a particular device through it, and the CDM also registers the control

and I/O functions that it will support for the device.

CDM_Inquiry() is responsible to perform the following:

1. Build and maintain a linked list of device objects to which the

CDM is bound.

2. Generate a unique handle (CDMBindHandle) of type LONG for

each object to which the CDM is bound.

3. Check the DeviceInfoStruct for the device information and/or

perform any necessary device tests for more information necessary

to determine if the CDM should bind to the device.

Custom Device Module (CDM)

Version 2.1d (September, 1995) 5-11

a. If the CDM decides to bind to the device, create an instance of

an UpdateInfoStruct structure, fill in its fields with the

appropriate information found from DeviceInfoStruct, and call

CDI_Bind_CDM_To_Object() passing the appropriate

arguments. Add the device along with its UpdateInfoStruct

structure to the CDM's object list, and return zero.

CDMBindHandle is used by the CDM to identify device

objects in the list and to map to the object's device information.

CDMBindHandle is a necessary argument in

CDI_Bind_CDM_To_Object().

At the minimum, the following fields of a device object's

UpdateInfoStruct structure must be filled in so that the NWPA

has enough information to be able to use the device:

ñ functionmask

ñ controlmask

ñ unitsize

ñ blocksize

ñ capacity

ñ preferredunitsize

ñ activateflag

A description of each of these fields can be found in Chapter 6 under

UpdateInfoStruct.

b. If the CDM decides not to bind to the device, it does not call

CDI_Bind_CDM_To_Object(), does not add the device to the

linked list, and returns -1.

CDI_Bind_CDM_To_Object() updates device object information and

registers the functions the CDM will support for the device with the

NWPA. Besides being called at CDM load time, CDM_Inquiry() can

be called again if any of the following events occur: (For details, see

the description of CDM_Inquiry() in Chapter 7)

C A HAM registers a new device with the NWPA that matches the

Host Adapter Type and Device Type reported by the CDM in the

Types parameter of CDI_Register_CDM().

C (For Filter CDMs) A base CDM updates information about a

device to which a filter CDM is also bound.

C A device is no longer valid, and the CDM must remove the device

and all of the local structures associated with this device from its

list.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

5-12 Version 2.1d (September, 1995)

C An End of Bus condition occurred during a scan for new devices.

This means there are no more public devices on this bus. The

CDM may then scan for specific devices not found during the

normal scan. The specific devices can become public or private

devices depending on the Scan function case used. For details, refer

to Chapter 8 HACB Type Zero Functions under Function 1-

HAM_Scan_For_Devices

C An End of Bus condition occurred when the bus is being

deactivated (i.e. when the HAM associated with the bus is being

unloaded). The CDM must remove any private devices on this bus

and all of the local structures associated with these devices from its

list.

5.2.2.1 Updating Device Object Information

A CDM can update device information, such as the functions it will support

for a device, by doing the following:

1. Instantiate a new UpdateInfoStruct structure initialized with -1 in

each field.

2. Change the appropriate UpdateInfoStruct fields to the new values.

3. Call CDI_Object_Update() including the structure address and

CDIBindHandle as arguments.

Note: A -1 indicates that the field does not get updated, thereby

maintaining its previous state from either the last update event

or when the CDM originally bound to the device.

Custom Device Module (CDM)

Version 2.1d (September, 1995) 5-13

5.2.2.2 Function Masking

As previously mentioned, a CDM must register the functions it will support

for a given device with the NWPA. This section describes how this is done.

Applications assume a certain functionality set, and the NWPA

encompasses these by providing a general set of I/O and control messages

that it can issue for devices. The CDM is expected to implement routines

that translate these messages into actual commands recognized by a device.

The way in which the NWPA recognizes the I/O and control routines that a

CDM will support for a device are through the respective values set in the

functionmask and controlmask fields of the device object's

UpdateInfoStruct. Each field is 32 bits wide, and each bit position within a

field corresponds to an NWPA function. When bits within a field are set, it

indicates to the NWPA that the CDM supports that function. Inversely, a

CDM can remove supported I/O or control functions by clearing the

appropriate bits within these fields and updating the device object

information. Refer to Chapter 6 for more information about the

UpdateInfoStruct and its fields.

5.2.3 Processing CDM Messages

When the NWPA receives an application I/O request, it converts the

request into a CDMMessageStruct (CDM message) data structure. The

fields in this structure contain all the necessary information that a CDM

needs to build a device command. The NWPA routes a CDM message to

the CDM that has

1. Bound to the device the NWPA wants to access.

2. Registered the desired support function that the NWPA wants to

call.

Once a CDM receives a CDM message, it generally performs one of the

following actions:

ñ Creates a SuperHACB request and executes it.

ñ Places the CDM message in a process queue.

ñ Chains the CDM message down to another CDM. This action only

applies to filter CDMs.

The following subsections address each of these actions.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

5-14 Version 2.1d (September, 1995)

5.2.3.1 Creating and Executing a SuperHACB Request

Since most application requests to the NWPA are either control or I/O

requests, creating and executing SuperHACB requests is the most frequent

action. The following is a list of the phases involved:

ñ Receiving the request and mapping to a CDM function

ñ Building and Executing a SuperHACB request

5.2.3.1.1 Receiving a Request and Function Mapping As described in

Chapter 7, "CDMMessage", a NWPA control or I/O request is first

packaged into a CDMMessageStruct and then passed to a CDM.

CDM_Execute_CDMMessage() is the CDM's entry point for receiving a

CDMMessageStruct. The main purpose of CDM_Execute_CDMMessage()

is to map a general NWPA control or I/O request (in the form of a

CDMMessage) into a specific CDM function call. The NWPA calls this

function passing it CDMBindHandle and a pointer to a CDMMessage

structure. CDMBindHandle identifies the desired device and its specific

information. The CDMMessage structure contains the information

describing the request.

NWPA control and I/O requests are equated to unique hexadecimal

function codes (0x0000 - 0x0047). When the NWPA makes a request, it

places the appropriate function code in the Function field of the

CDMMessageStruct. The CDM uses this code to determine what function it

is to perform. A list of NWPA request codes can be found in Chapter 9,

"CDMMessage Types".

5.2.3.1.2 Building and Executing a SuperHACB Request Once a NWPA

request is mapped to a CDM function, the CDM function has the

responsibility to build a SuperHACB and execute it. The control and I/O

routines discussed in section 5.1.2.3 are the functions that do the building

and executing. Each function accepts a CDMBindHandle and a pointer to a

CDMMessageStruct as arguments.

The Control and I/O routines are responsible to perform the following:

1. Allocate a SHACBStruct using CDI_Allocate_HACB(). For

optimal performance, a CDM should maintain a re-usable pool of

these structures. The control and I/O routines can then recycle the

SuperHACBs from this pool in executing and completing requests.

Doing this saves the overhead of memory allocation/deallocation.

Conditionalize the control and I/O routines to call

CDI_Allocate_HACB() only if the SuperHACB pool is depleted

during the context of that particular control or I/O routine.

2. Fill in the SuperHACB fields with the appropriate information relative

Custom Device Module (CDM)

Version 2.1d (September, 1995) 5-15

to the request. Refer to Chapter 3, "Host Adapter Control Block" for

details on what is expected to be placed in the SuperHACB structure.

3. Call CDI_Execute_HACB() passing the appropriate arguments. One

argument that is necessary is a pointer to CDM_Callback(). By passing

this address, the NWPA ensures that the CDM is notified of the request

completion by calling CDM_Callback().

5.2.4 Error Handling

This section describes the CDM's general error handling paradigm and how

this paradigm is affected by Auto Error Sense.

Auto Error Sense is a generic phrase describing the way in which error

sense information is automatically returned with an I/O request for a given

bus protocol. As an example, for SCSI this phrase refers to auto REQUEST

SENSE.

Some adapter boards support this feature and others do not. The HAM,

during its load-time initialization, is responsible for determining whether or

not the adapter supports the feature and whether or not it is to be used. The

CDM, on the other hand, must be ready to support either case. There are

three fields in the HACB structure (HACBStruct) and one in the

DeviceInfoStruct that provide NWPA support for auto error sense. The

following is a list of these fields:

Fields in the HACBStruct:
LONG ErrorSenseBufferLength;

void *VErrorSenseBufferPtr;

void *PErrorSenseBufferPtr;

Field in the DeviceInfoStruct:
LONG AttributeFlags;

The CDM finds out if a device is set up for auto error sense by checking the

Auto_Error_Sense_Flag (0x00000040) in the AttributeFlags field of the

device's DeviceInfoStruct. If the flag is set, the device does auto error sense.

If the flag is not set, the device does not do auto error sense. The CDM

receives a pointer to this structure as an input parameter to its

CDM_Inquiry() routine. Thus, at bind-time the CDM knows the error sense

mode of the device.

The following subsections describe the CDM's error handling paradigm,

first without auto error sense, and then with auto error sense, respectively.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

For SCSI, a device error generates a check condition, and the appropriate completion code is 0x80010002. For IDE\ATA, a device error sets the
1

error bit of the IDE/ATA Status register, and the appropriate completion code is 0x80010001. Refer to Appendix B for more information.

5-16 Version 2.1d (September, 1995)

5.2.4.1 Without Auto Error Sense

Error handling without auto error sense is probably the simplest case for

CDMs. The paradigm is as follows:

C When a device error occurs, the HAM freezes that device's queue, posts

the appropriate completion code to the HACB and then completes the
1

HACB.

C The CDM receives the HACB through its callback routine, checks the

completion code and realizes that the I/O request generated a device

error.

C The CDM then spawns a blocking, error-recovery thread that issues

another HACB request for error sense information. The CDM can

request as much error sense information as the device and transport

protocol can provide. The error sense data is retrieved under the normal

HACB I/O channel, meaning that the CDM and HAM use the HACB's

data buffer.

C The CDM keys off the error sense information to determine what it will

attempt to do to recover from the error condition.

C When the error condition is remedied, the CDM completes the I/O

request's corresponding CDM message with a successful completion

code and allows normal I/O to the device to continue. If the CDM

determines that the error condition cannot be remedied, it completes the

corresponding CDM message with an appropriate error code.

Important: For the no-auto-error-sense case, the CDM should zero out

the errorSenseBufferLength and vErrorSenseBufferPtr

fields of the HACB.

5.2.4.2 With Auto Error Sense

Note: The information presented in this subsection is tightly coupled

to the reference information for the ErrorSenseInfoStruct found

in Chapter 6.

For the auto error sense case, the CDM is expected to do these additional

steps in building the HACB I/O request:

Custom Device Module (CDM)

Version 2.1d (September, 1995) 5-17

C Allocate an I/O contiguous, auto error sense buffer and assign its

address to the HACB's vErrorSenseBufferPtr field.

This buffer is where the return sense information is to be placed, and its

structure is defined by the NWPA's ErrorSenseInfoStruct. The size of

this buffer is the size of the NWPA's ErrorSenseInfoStruct plus

however many BYTES of auto error sense data the CDM wants

returned. For more details refer to the ErrorSenseInfoStruct reference

information in Chapter 6.

Note: Since the CDM may need a number of these error sense buffers,

a suggestion would be to allocate a pool and reuse them as

needed. Also, the CDM should not be concerned with assigning

anything to the HACB's pErrorSenseBufferPtr field. The

NWPA will calculate the sense buffer's physical address and

place it in this field at execute-time.

C Place a value in the auto error sense buffer's numberBytesRequested

field to indicate the desired number of sense BYTES it would like the

device to return.

C Place a value in the HACB's errorSenseBufferLength field indicating

the byte-size of the HACB's auto error sense buffer.

At callback time (CDM_Callback()), if the CDM detects a device error on

the HACB request, the CDM attempts error recovery as prescribed in the

previous subsection. However, instead of issuing another HACB to request

error sense, it looks in the HACB's sense buffer to get the error information.

However, prior to reading the error information, the CDM should check the

value in the numberBytesReturned field of the buffer. This field indicates

the actual number of sense BYTES the device provided.

5.2.5 Registering Device Attributes

Attributes are parameters associated with a device such as unitsize,

blocksize, capacity, preferred unitsize, tape read/write formats, etc. Device

attributes should be registered during the context of CDM_Inquiry() after

the CDM has had a chance to query the device and bind to it. The CDM

informs an application of a device's attributes by registering them with the

NWPA. Also, if the device supports it, a CDM can allow an application to

set attributes. The following steps outline the procedure for registering

device attributes.

1. The CDM fills out an instance of an AttributeInfoStruct for each

attribute it intends to register.

2. The CDM then calls CDI_Register_Object_Attribute() for each

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

5-18 Version 2.1d (September, 1995)

attribute in step 1. CDI_Register_Object_Attribute() accepts a

pointer to the AttributeInfoStruct instance associated with the

attribute and pointers to the attribute's CDM_Get_Attribute() and

CDM_Set_Attribute() routines as input parameters.

Note: If the attribute is not settable, then the input parameter

corresponding to CDM_Set_Attribute() should be set to zero.

The NWPA informs an application of the data type associated with

the infoBuffer parameter of these routines by the value the CDM

specified in the attributeType field of the attribute's

AttributeInfoStruct.

3. Through a set of NWPA APIs, the application can then get and set

attributes. The following code example shows how to register a

minimum blocksize attribute:

/*- Prototypes of get and set routines for this attribute -*/

LONG CDM_Get_Attribute(

LONG cdmBindHandle,

LONG *infoBuffer,

LONG infoBufferLength,

LONG attributeID);

LONG CDM_Set_Attribute(

LONG cdmBindHandle,

LONG *infoBuffer,

LONG infoBufferLength

LONG attributeID);

/*- Data type, AttributeID, Buffer Length definitions -*/

#define MM_BYTE 0x02

#define MM_LONG 0x04

#define MIN_BLOCKSIZE 0x4E494D12

#define MM_BUFFERLEN 0x04

/*- Attribute Information -*/

struct AttributeInfoStruct MinimumBlocksize = {

MIN_BLOCKSIZE,

MM_LONG,

MM_BUFFERLEN,

"\x17MINIMUM_BLOCKSIZE"};

/*- Register Attribute -*/

cCode = CDI_Register_Object_Attribute(

NWPAHandle,

CDMBindHandle,

&MinimumBlocksize,

CDM_Get_Attribute,

CDM_Set_Attribute);

Custom Device Module (CDM)

Version 2.1d (September, 1995) 5-19

5.2.6 Unload-time Deregistration

Unloading of the CDM is initiated by the systems operator at the server

console. The following steps show the sequence of events at unload-time.

1. When a CDM is unloaded, the OS first calls the CDM's

CDM_Unload_Check() entry point passing it ScreenID as an input

parameter. CDM_Unload_Check() has blocking context, and it does

the following:

A. Determines if any applications are using any of the devices

managed by the CDM.

CDM_Unload_Check() calls NPA_Unload_Module_Check(),

which checks the NWPA's database and returns the status of each

device attached to the adapter. CDM_Unload_Check() returns the

use-status returned by NPA_Unload_Module_Check().

NPA_Unload_Module_Check() issues a warning message to the

console for each device that is locked. Current I/O to these devices

will halt if the CDM is unloaded, and the devices will be

deactivated.

B. Returns the composite device status to the calling process. A return

value of zero indicates that none of the CDM's devices are in use.

A return value greater than zero indicates that one or more of the

CDM's devices are in use.

2. If CDM_Unload_Check() returns zero, the OS calls the CDMs

CDM_Unload() entry point. If CDM_Unload_Check() returns

non-zero, the OS issues a message to the console giving the operator a

chance to either cancel or continue the unload. Only if the operator

chooses to continue the unload will the OS call the CDM's

CDM_Unload() entry point. The OS calls the CDM's CDM_Unload()

entry point with blocking context, and it does the following:

A. Causes the NWPA to terminate I/O to the CDM.

CDM_Unload() terminates I/O to the CDM by calling

CDI_Unregister_CDM() immediately upon entry. It is during the

context of this API that the application is notified that its link to

the device is about to be severed. Therefore, the CDM must

remain operational and process requests until

CDI_Unregister_CDM() returns control. Once

CDI_Unregister_CDM() returns control to CDM_Unload(), the

CDM is guaranteed not to receive any more I/O requests for that

device.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

5-20 Version 2.1d (September, 1995)

B. Returns resources back to the system.

1. Abort all outstanding AEN HACBs using

CDI_Abort_HACB().

2. If the CDM is controlling any private devices, they must either

be made public using Case 2 of the Scan function, or be

removed using Case 3 of the Scan function. For more details,

refer to Chapter 8 HACB Type 0 Functions -

HAM_Scan_For_Devices. (Function 1)

3. Cancel all asynchronous events, such as timeout handlers,

timers, etc., by calling NPA_Cancel_Thread().

4. Return memory to the system pool by calling

NPA_Return_Memory().

5. Unregister the module using NPA_Unregister_Module().

C. Return 0

Custom Device Module (CDM)

See footnote 5 in Chapter 4 for the explanation of this limitation.
2

Version 2.1d (September, 1995) 5-21

5.3 Special Topics

This section discusses special topics related to the CDM.

5.3.1 Device Queue Behavior

Refer to Section 4.3.1.3 for details on the queue behavior a CDM can

expect for a device.

5.3.2 Scanning Specific Target IDs and LUNs

Note: The procedure discussed in this subsection only applies to SCSI.

In order for devices to be initially detected and recognized by the NetWare

OS, an initial "scan for new devices" command must be issued either at the

command line or in a .NCF file. When the OS receives this command, it

causes the NWPA to issue a scan message to all HAMs loaded on the

server. For SCSI, the initial scan message tells each HAM to scan LUN 0,

and only LUN 0, of all its target IDs .
2

During the "scan for new devices" thread, the NWPA iteratively calls the

CDM's CDM_Inquiry() routine for each device found on the SCSI bus that

matches the device type the CDM registered for. As mentioned in section

5.2.2, CDM_Inquiry() is the entry point where the CDM gets a chance to

look at a device and determine if it will field I/O requests for the device by

binding to it. However, given the OS's initial scan paradigm, the CDM will

only see devices attached to LUN 0 of any given target ID.

To make it possible for devices at LUNs other than zero to be detected and

recognized, the NWPA provides its own set of scan messages that the CDM

can issue to the HAM.

These scan messages are in the form of HACBType=0 requests.

HACBType=0 indicates to the HAM that the HACB's union command area

is defined by the host adapter command structure. The CDM then sets

values in the HACB (particularly the fields of the host adapter command

block) according to the scan case (or action) it wants the HAM to perform.

The NWPA defines three scan cases. These cases are referred to

numerically as either Case 1, Case 2, or Case 3 corresponding to the value

the CDM sets in the parameter2 field of the host command block.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

5-22 Version 2.1d (September, 1995)

The remaining subsections provide more details, and they are presented as

follows:

5.3.2.1 Public vs. Private Devices

5.3.2.2 Scan Case Parameters and Descriptions

5.3.2.3 Scan Completion Codes

5.3.2.1 Public vs. Private Devices

A public device is one that is visible to any CDM that registers with a

matching device type. The NWPA makes a public device visible to these

CDMs by calling their respective CDM_Inquiry() entry points, thus giving

any one of them the opportunity to bind to the device. A public device has a

corresponding object in the NWPA's device database, and the

Private_Public_Flag in the attributeFlags field of the device's

DeviceInfoStruct is cleared. Because a corresponding object exists in the

NWPA's device database, a public device is also visible to applications.

Any application can reserve a public device and issue control and I/O

messages to it.

Note: All LUN 0 devices detected in the initial "scan for new devices"

command are public.

A private device is one that is visible only to the CDM that detected it

through a specific target ID and LUN scan. This CDM has exclusive

ownership of the device.

A private device does not have a corresponding object in the NWPA's

device database, and the Private_Public_Flag in the attributeFlags field of

the device's DeviceInfoStruct is set. Because a corresponding object does

not exist in the NWPA's device database, a private device is invisible to

applications.

The purpose of the private-device-feature is to allow a CDM to present a

group of devices that enhance each other's functionality as a single device to

the NWPA. This prevents a competing CDM from stealing one of the

devices from the group. A scenario where this feature might be useful is a

magazine device, addressed at LUN 1, attached to a public tape drive at

LUN 0. The CDM can present these devices as one device with both tape

and magazine functionality.

Custom Device Module (CDM)

The Target ID is equivalent to the value in the BusID field of the DeviceInfoStruct associated with the current device. The current device is the
3

one on which the current iteration of CDM_Inquiry() is being called, and the DeviceInfo parameter points to the deviceìs corresponding

DeviceInfoStruct.

Version 2.1d (September, 1995) 5-23

5.3.2.2 Scan Case Parameters and Descriptions

This subsection describes the three different scan cases (Case 1, Case 2,

and Case 3) that a CDM can issue to the HAM. Included are specifications

of the HACB input parameters associated with each scan case and also their

respective outputs. The CDM provides the input values prior to issuing the

scan request. After the request completes, the CDM reads the applicable

outputs to interpret results. The value in the HACB's hacbCompletion field

is the key for determining if any additional outputs are valid.

A table listing possible scan completion codes is provided in the next

subsection.

Case 1: Probe Specified Target ID and LUN, Return Info and Make

Detected Device Private

INPUTS to HACB:

Field Values in Host Command Block:

Function = 1

Parameter0 = LUN

Parameter1 = Target ID
3

Parameter2 = 1

Field Values in Main HACB:

DeviceHandle = -1 indicating a request to probe a specific

target ID and LUN to detect a device that is

new to the CDM.

OR

= DeviceHandle of a device already owned by

the CDM. The CDM received this handle

either from a previous Case 1 scan request (if

the device is private) or at bind-time (if the

device is public).

VirtualAddress = Address of I/O contiguous memory location

where the device's DeviceInfoStruct

information is to be returned. This buffer

should be allocated using

NPA_Allocate_Memory()

OUTPUTS from HACB:

hacbCompletion = Appropriate scan completion code.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

The inquiry information in specific to the bus interface. For SCSI, this information is identical to that returned by the standard INQUIRY
4

command. For IDE\ATA, this information is identical to that returned by the IDENTIFY command.

5-24 Version 2.1d (September, 1995)

If hacbCompletion == Successful_Completion:

Control_Info = Sizeof(struct DeviceInfoStruct)

VirtualAddress = Pointer to the buffer where the HAM will

copy the device's DeviceInfoStruct

information. This structure contains the

DeviceHandle that gives the CDM access to

the device.

A Case 1 scan allows the CDM to do the following:

If (DeviceHandle = -1):

ñ Detect a new device at the specified target ID and LUN, and if one

exists, make it private.

If (DeviceHandle = Existing handle to a device owned by the CDM):

ñ Verify that the device still exists at the specified target ID and LUN

and, if the device's current status is public, change it to private.

DeviceHandle == -1

The CDM issues this instance of a Case 1 scan during its CDM_Inquiry()

routine when it knows that the LUN 0 device on which the inquiry is being

called supports additional devices at other LUNs. In addition, a Case 1 scan

indicates that the CDM wants to control these additional devices privately

and present the group as a single device with extended functionality to the

NWPA. Since CDM_Inquiry() is called on a blocking thread, the CDM can

issue the request using CDI_Blocking_Execute_HACB().

If a device responds at the specified target ID and LUN, it is declared

private and information about the device is returned in the HACB's data

buffer. The structure of the return information is defined by the NWPA's

DeviceInfoStruct. This structure includes a DeviceHandle that allows access

to the device, and the bus-specific inquiry information about the device .
4

The CDM uses this return information to determine if the device is real or a

phantom, and, if the device is real, to decide whether or not it wants to field

I/O requests for the device. As a part to making this decision, the CDM can

use the DeviceHandle to issue non-destructive HACB requests to get

additional information about the device. A non-destructive request is one

that does not alter the current state of the device, such as a SCSI MODE

SENSE command.

If the device is real and the CDM wants to field requests for the device, it

remembers the device's DeviceHandle. This is a private DeviceHandle

giving the CDM exclusive access to the device. No other CDM can have

Custom Device Module (CDM)

Version 2.1d (September, 1995) 5-25

access to this device until the owner CDM relinquishes control by either

issuing a Case 3 scan or by declaring the device public.

Note: In order for a CDM to really have access to a private device, it

must first be bound to a public, companion device on that same

target ID. Otherwise, the NWPA will not route I/O to the private

device.

The CDM should bind to the public device on which its

CDM_Inquiry() routine was called, which is also the thread in

which the CDM scanned and detected the private device.

If the CDM determines it does not want to field requests for the device or

that the device is a phantom, it should issue a Case 3 scan to remove the

device object from the HAM's device list.

DeviceHandle == Existing Handle

The CDM can issue this instance of a Case 1 scan whenever it deems

appropriate, as long as the CDM owns the target device through either a

previous Case 1 scan (private case) or through a previous bind to the device

(public case). A valid DeviceHandle to the target device is what constitutes

ownership. If the target device responds at the specified target ID and LUN,

the same information generated from the scan request that first detected the

device is returned in the HACB's data buffer. Additionally, if the device's

status was originally public, it is changed to private.

Since the scan invokes an actual probe of the bus, the CDM should spawn a

blocking thread (NPA_Spawn_Thread()) to execute this instance of a Case

1 scan.

Note: Whenever, the CDM issues a scan request that changes a

device's status (public to private or private to public), it must

follow up the scan with a call to CDI_Rescan_Bus(). This call

updates the NWPA's device database.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

5-26 Version 2.1d (September, 1995)

Case 2: Probe Specified Target ID and LUN, Return Info, and Make

Detected Device Public

INPUTS to HACB:

Field Values in Host Command Block:

Function = 1

Parameter0 = LUN

Parameter1 = Target ID

Parameter2 = 2

Field Values in Main HACB:

DeviceHandle = -1 indicating a request to probe a specific

target ID and LUN to detect a device that is

new to the CDM.

OR

= DeviceHandle of a device already owned by

the CDM. The CDM received this handle

either from a previous Case 1 scan request (if

the device is private) or at bind-time (if the

device is public).

VirtualAddress = Address of I/O contiguous memory location

where the device's DeviceInfoStruct

information is to be returned. This buffer

should be allocated using

NPA_Allocate_Memory().

OUTPUTS from HACB:

hacbCompletion = Appropriate scan completion code.

If Successful_Completion:

Control_Info = Sizeof(struct DeviceInfoStruct)

VirtualAddress = Pointer to the buffer where the HAM will

copy the device's DeviceInfoStruct

information. This structure contains the

DeviceHandle that gives the CDM access to

the device.

A Case 2 scan allows the CDM to do the following:

If (DeviceHandle == -1):

ñ Detect a new device at the specified target ID and LUN, and if one

exists, make it public.

If (DeviceHandle == Existing handle to a device owned by the CDM):

ñ Verify that the device still exists at the specified target ID and LUN

and, if the device's current status is private, change it to public.

DeviceHandle == -1

Custom Device Module (CDM)

See previous footnote.
5

Version 2.1d (September, 1995) 5-27

The CDM issues this instance of a Case 2 scan during its CDM_Inquiry()

routine when it knows that the LUN 0 device on which the inquiry is being

called supports additional devices at other LUNs. In addition, a Case 2

scan indicates that the CDM wants to present these additional devices,

singly, as public objects so that they can be controlled by an application.

Since CDM_Inquiry() is called on a blocking thread, the CDM can issue

the request using CDI_Blocking_Execute_HACB().

If a device responds at the specified target ID and LUN, it is declared

private and information about the device is returned in the HACB's data

buffer. The structure of the return information is defined by the NWPA's

DeviceInfoStruct. This structure includes a DeviceHandle that allows access

to the device, and the bus-specific inquiry information about the device .
5

The CDM uses this return information to determine if the device is real or a

phantom, and, if the device is real, to decide whether or not it wants to field

I/O requests for the device. As a part to making this decision, the CDM can

use the DeviceHandle to issue non-destructive HACB requests to get

additional information about the device. A non-destructive request is one

that does not alter the current state of the device, such as a SCSI MODE

SENSE command.

If the device is real and the CDM wants to field requests for the device, it

will conclude the current iteration of its CDM_Inquiry() routine with a call

to CDI_Rescan_Bus(). This call causes the NWPA to create an object for

the device and place the object in its device database, which is critical to

making the device public.

Unlike the private device paradigm (Case 1 scan), the CDM must not take

control of a public device during the same CDM_Inquiry() thread in which

it detected (via a Case 2 scan) the device. Instead, the CDM must wait until

its CDM_Inquiry() routine gets called again, for that device, and officially

bind to it using CDI_Bind_CDM_To_Object(). At that time, the CDM sets

up the I/O channel by remembering the device's DeviceHandle. Adherence

to this public-device-paradigm is essential, and it is a requirement for CDM

certification.

Note: For the CDM's CDM_Inquiry() routine to be called on the new

public device, the CDM must have registered for that device's

device type.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

5-28 Version 2.1d (September, 1995)

If the CDM determines it does not want to field requests for the device or

that the device is a phantom, it should issue a Case 3 scan to remove the

device object from the HAM's device list.

DeviceHandle == Existing Handle

The CDM can issue this instance of a Case 2 scan whenever it deems

appropriate, as long as the CDM owns the target device through either a

previous Case 1 scan (private case) or through a previous bind to the device

(public case). A valid DeviceHandle to the target device is what constitutes

ownership. If the target device responds at the specified target ID and LUN,

the same information generated from the scan request that first detected the

device is returned in the HACB's data buffer. Additionally, if the device's

status was originally private, it is changed to public. Since the scan invokes

an actual probe of the bus, the CDM should spawn a blocking thread

(NPA_Spawn_Thread()) to execute this instance of a Case 2 scan.

Note: Whenever, the CDM issues a scan request that changes a

device's status (public to private or private to public), it must

follow up the scan with a call to CDI_Rescan_Bus(). This call

updates the NWPA's device database.

Case 3: Remove Device Object from Device List

INPUTS from HACB:

Field Values in Host Command Block:

Function = 1

Parameter0 = LUN

Parameter1 = Target ID

Parameter2 = 3

Field Values in Main HACB:

DeviceHandle = Valid DeviceHandle of the target device. This

DeviceHandle proves that the invoking CDM has

ownership of the device; therefore, the CDM has

the right to discard the device's object.

OUTPUTS to HACB:

hacbCompletion = Appropriate scan completion code.

A Case 3 scan request allows the CDM to remove the target device from the

HAM's device list, and it causes the HAM to free any objects associated

with the device. The purpose of a Case 3 scan is twofold: It allows the

CDM to delete phantom devices from the HAM's device list; and, at

unload-time, it allows a CDM to relinquish private devices under the

CDM's control.

Custom Device Module (CDM)

Version 2.1d (September, 1995) 5-29

5.3.2.3 Scan Completion Codes

Table 5-1 summarizes the scan completion codes described in the specific

cases above. The table also includes additional error-completion codes

common to all scan cases. These completion codes get posted to the

HACB's hacbCompletion field:

Table 5-1 Scan Completion Codes

Upper Lower Description

WORD (16 WORD

bits) (16 bits)

0x0000 0x0000 Successful Completion: The current scan operation completed successfully.This

completion code applies to all scan cases.For Case 1 and Case 2 scans, this

completion code indicates that a device responded at the specified Target ID and

LUN, and the information returned in the HACB's data buffer is valid.

0x000A 0x0000 General Failure: Default scan-error category. The cause of the error is unknown,

and any information contained in the HACB's data buffer is invalid.This completion

code applies to all scan cases.

0x0001 . Device Not Found: No device responded at the specified Target ID and LUN.

Anyinformation contained in the HACB's data buffer is invalid.This completion

code applies to Case 1 and Case 2 scans

0x0002 Bad Target ID/LUN: The Target ID and/or LUN specified in the HACB's host

adaptercommand block was/were invalid. Any information contained in the HACB's

data bufferis invalid.This completion code applies to all scan cases.

0x0003 Target In Use: The target object is owned by another CDM. Therefore, the current

scanrequest could not be executed.This completion code applies to Case 1, Case 2,

and Case 3 scans.

0x0004 Object Not Found: A CDM issued a Case 3 scan to remove a device object from

theHAM's device list that does not exist. The object does not exist because no

previous Case1 or Case 2 scan was issued on the specified Target ID and LUN to

create it. Anyinformation contained in the HACB's data buffer is invalid.This

completion code applies to Case 3 scans.

Novell reserves the right to add additional completion codes.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

5-30 Version 2.1d (September, 1995)

5.3.3 Removable Media Support

The NWPA provides a specific set of control functions to support

removable-media devices. The NWPA packages these control functions in

CDMMessages. Table 5-2 contains a list of these functions including their

respective NWPA function numbers, ControlMask (UpdateInfoStruct)

enabling bits, and support requirements.

Table 5-2: NWPA's Removable Media Control Functions

Description Function Number ControlMask Bit Support

Activate / Deactivate 0x00000003 0x00000008 Mandatory

Mount / Dismount 0x00000004 0x00000010 Mandatory

Lock / Unlock 0x00000007 0x00000080 Optional

Insert / Remove 0x0000001B 0x08000000 Optional

Detailed descriptions of these message functions can be found in Chapter 9,

and the NWPA expects all CDMs managing removable-media devices to

support the functions marked Mandatory. The remaining subsections

describe the use of these control functions.

5.3.3.1 Mount, Lock, and Activate Messages

The key difference between CDMs supporting fixed-media devices and

CDMs supporting removable-media devices is that the CDM_Inquiry()

routine of a removable-media CDM may get called at a time when there is

no media in the device. As mentioned in section 5.2.2 "Inquiring and

Binding to a Device," CDM_Inquiry() is the entry point where the CDM

queries the device and decides whether or not it will "bind"

(CDI_Bind_CDM_To_Object()) to the device. Part of the bind process

requires the CDM to fill out an instance of an UpdateInfoStruct for the

device and its media. Since a piece of media may not be loaded at

bind-time, it is impossible for the CDM to know all of the information

necessary to fill out the UpdateInfoStruct and make the device active.

The purpose of the Mount function is to give a CDM a second opportunity

(other than at bind-time) to get the additional information it needs to

complete the UpdateInfoStruct after a piece of media gets loaded into the

device. The Activate function follows the Mount, and its purpose is to allow

the CDM to handshake with the NWPA to indicate that the device is active

and ready to receive I/O. The following is an outline of the binding and

activating paradigm for removable-media devices

Custom Device Module (CDM)

Version 2.1d (September, 1995) 5-31

1. The CDM's CDM_Inquiry() routine (the bind-time entry point) is

called and no media is loaded in the device.

2. The CDM decides it wants to bind to the removable-media device.

A. The CDM fills out an instance of an UpdateInfoStruct for the

device providing as much information as it can determine at the

time. The removableFlag field should be set to 0x0001, the

activateFlag field should be set to 0x0000, and the controlMask

field should have the appropriate bits set indicating that the CDM

supports the removable-media functions introduced in Table 5-1.

At the very least, the bits corresponding to the mandatory functions

should be set, and the CDM must provide a routine (or routines)

that implement these control functions.

B. The CDM completes the bind by calling

CDI_Bind_CDM_To_Object() passing it a pointer to the device's

UpdateInfoStruct as an input parameter. Without media in the

device, the device remains inactive until a user physically loads

media into it and indicates the load to the system by issuing a

console command.

3. At some later time when a piece of media is inserted into the device, the

NWPA informs the CDM by issuing aMount message. During the

context of theMount, the CDM issues HACB requests to confirm the

existence of the media, get the additional device/media information it

needs to complete the device's UpdateInfoStruct, and prepare the media

for I/O. The CDM concludes the Mount by reporting the updated

information to the NWPA by calling CDI_Object_Update().

4. If the appropriate bit is set in the controlMask field of the device's

UpdateInfoStruct, the CDM may (see the following note) receive a

Lock message following theMount. If the CDM receives this message,

it should lock the media in the device.

Note: The Lock function only applies to stand-alone, removable-

media devices, not to changer or magazine type devices. The

Lock function is issued at the discretion of the controlling

application.

5. To confirm that the device is ready to receive I/O, the NWPA issues an

Activate message. During the context of the Activate function, the

CDM should make sure that the media is capable of being activated, set

the activateFlag field of the device's UpdateInfoStruct to 0x0001, and

report the object update to the NWPA by calling CDI_Object_Update().

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

5-32 Version 2.1d (September, 1995)

Upon completion of the Activate, the CDM must be ready to accept

I/O requests for the device.

5.3.3.2 Dismount and Deactivate Messages

The CDM may receive a media Dismount or device Deactivate message at

any time. When the CDM receives either one of these messages, it should

set the activateFlag of the device's UpdateInfoStruct to 0x0000 and update

the object by calling CDI_Object_Update(). In the case of a Dismount, the

CDM should reset (set to -1) the other fields of the device's

UpdateInfoStruct prior to updating the object

5.3.3.3 Insert and Remove Messages

If the CDM indicates that it supports Insert and Remove functions for a

device, the CDM should issue an insert media command, if an Insert

message is received, or an eject media command, if a Remove message is

received, to the device.

5.3.4 Magazine Support

The NWPA also supports magazine devices, and it allows upper layers to

control the magazine and the media associated with the device. Before

listing the NWPA specific control functions that provide magazine support,

it is essential to discuss the NWPA's concept of a magazine device:

C A magazine is considered to be a static set of media and slots that can

be associated with a single device. That is, only one magazine can be

associated with one device at one time . A device that goes beyond this

concept fits the autochanger paradigm discussed in the next section.

C Magazine devices also fall into the removable-media device category;

therefore, CDMs managing magazines must support the

removable-media control functions listed in Table 5-1 as well as the

control functions discussed in this section (listed in Table 5-3).

Table 5-3 lists the additional NWPA functions required for magazine

support. Since these control functions only apply to magazines, the NWPA

groups them into one CDMMessage category calledMagazine Functions.

This is the reason why a CDM can indicate support of these functions by

setting a single bit in the device's ControlMask. The NWPA assigns

0x0000001D as the NWPA group-function number for the message

category, and an individual member in the group is referenced by an NWPA

sub-function number. Refer to Chapter 9 for more details on NWPA

Custom Device Module (CDM)

Version 2.1d (September, 1995) 5-33

numbering of this group and for detailed descriptions of each function in

the group.

Table 5-3: Additional NWPA Control Functions for Magazine Support

ControlMask: 0x20000000

NWPA Group Function Number: 0x0000001D

Description Sub-Function Number Support

Return Magazine Info 0x00000000 Mandatory

Return Magazine Media Mapping 0x00000002 Mandatory

Magazine Select Media 0x00000003 Mandatory

Magazine Deselect Media 0x00000004 Mandatory

Magazine Load 0x00000005 Mandatory

Magazine Unload 0x00000006 Mandatory

Magazine Eject 0x00000007 Mandatory

A CDM supporting a magazine binds to a device using the removable

device paradigm described in the previous section. However, before the

CDM calls CDI_Bind_CDM_To_Object(), it should set the

acceptsMagazinesFlag field of the device's UpdateInfoStruct to 0x0001,

and also the magazineLoadedFlag field if a magazine is currently loaded.

Again, all this is done at bind-time during the context of the CDM's

CDM_Inquiry() routine.

If at bind-time the CDM indicated that a magazine was not loaded in the

device, the magazine device will remain inactive until one gets loaded.

Then, at some later time when a magazine is placed in the device, the

NWPA informs the CDM by issuing aMagazine Load message. This

message function directs the CDM to verify the existence of a magazine and

prepare it for use.

After the CDM confirms that the magazine is loaded, or if at bind-time the

CDM indicated that a magazine was already loaded in the device, the

NWPA issues a Return Magazine Info message to the CDM. This

message function directs the CDM to return the number of storage slots in

the currently loaded magazine.

After the CDM completes the Return Magazine Info message, the NWPA

issues a Return Magazine Media Mapping message. This message

function directs the CDM to inventory the magazine and the device to

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

5-34 Version 2.1d (September, 1995)

which the magazine is attached. The CDM then returns a byte-map

indicating whether or not media is loaded in the device and

which slots in the magazine have media. As an example, suppose the

following:

C The magazine is attached to a tape drive.

C The number of storage slots returned by the Return Magazine Info

function equaled 4.

C Media is not currently loaded in the tape drive.

C Magazine storage slots î1ï and î2ï contain media.

C Magazine storage slots î3ï and î4ï are empty.

The return byte-map would contain the following information:

Slot / Byte Index Byte-Map Value Comment

[0] 0x00 Indicates that the tape drive, slot[0],

is empty.

[1] 0x01 Indicates that magazine storage

slot[1] has media.

[2] 0x01 Indicates that magazine storage

slot[2] has media.

[3] 0x00 Indicates that magazine storage

slot[3] is empty.

[4] 0x00 Indicates that magazine storage

slot[4] is empty.

The slot indexes shown above have particular significance. The NWPA will

use these indexes as slot indicators in subsequent magazine control

functions. Index 0 will always indicate the device, and indexes 1 to n

indicate the respective storage slots of the magazine, where n is the total

number of storage slots.

Successful completion of the Return Magazine Media Mapping message

concludes magazine initialization. At this point, an application can select a

piece of media and prepare it to receive I/O. The application selects a piece

of media by issuing aMagazine Select Media message. When the CDM

receives this message, it should move the piece of media indicated by the

storage slot index number (specified in one of the message's input

Custom Device Module (CDM)

Version 2.1d (September, 1995) 5-35

parameters) into the device. After the media is in the device, theMount and

Activate sequence described in the removable-media section begins. After

the device is activated, the CDM will receive I/O requests for the device.

After an application is done with the media, it can remove the media from

the device by issuing aMagazine Deselect Media message. When the

CDM receives this message, it should remove the media currently in the

device and return it to the storage slot indicated by the slot index number

given in the message.

When the CDM receives aMagazine Unload message, it should unload the

magazine, clear the magazineLoadedFlag field of the device's

UpdateInfoStruct, and update the device object by calling

CDI_Object_Update().

A CDM supporting devices with magazines must support theMagazine

Eject function. However, for some magazine devices, ejects happen as part

of the deselect process. In this case, when the CDM receives this message,

it should just successfully complete the message without performing any

action. For those magazine devices that require an explicit eject, the CDM

should issue a magazine eject to the device.

5.3.5 Changer Support

AutoChanger support has also been added to NetWare 4.X platforms. The

NWPA creates an object for the autochanger and has device, media, and

slot objects associated with the autochanger. The concept of a autochanger

to the NWPA is a non-static set of media or magazines (media can be

changed via the mailbox) associated with one or more devices and also a

mailslot where new media can be added or taken out of the changer.

The NWPA support of an autochanger is very similar to the earlier

NetWare 4.0 support provided through the DDFS. The CDM messages that

are specific to an autochanger are:

1. ReturnChangerMediaMapping

2. ChangerCommand

Along with the above CDM messages, magazine CDM messages may also

be supported. Novell has found it useful to treat changers as changers full

of magazines since most changers contain double sided media. This

paradigm requires the changer to emulate magazine behavior. This can be

done by registering an Enhancer CDM as part of the changer CDM. This

Enhancer CDM binds to the devices associated with the changer. It is the

responsibility of the CDM to figure out which devices belong to the

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

5-36 Version 2.1d (September, 1995)

changer. SCSI provides for the changer to give Target ID's of the devices

associated with it. The Enhancer part of the changer CDM can then

intercept magazine control functions bound for the device and have them

executed by the changer.

Step by Step

In the CDM inquiry, the CDM will need to bind to the changer and most of

the information that needs to be filled out in the UpdateInfoStruct will be

available. The fields that should be filled in at binding time are:

1. controlmask - The changer functions above.

2. numberofslots - slots in changer.

3. numberofmailboxes - number of exchange slots.(mailboxes)

4. numberofdevices - number of devices in the changer

5. deviceobjects[1] - This field is variable length.

The NWPA object ids for each device in the order they will be addressed in

the future i.e. deviceobjects[3] is device #4 in a changer command.

The NWPA object ID's for the devices may not be available at the time of

the CDM inquiry, in which case that field should not be changed and the

device should not be activated. The device ID's for the changer's devices can

be found in a number of ways. The above mentioned registering an

enhancer for devices of the right type and checking the SCSI target ID's of

the devices against those in the changer is one way. Another might be to use

the NWPA APIs to walk the object tree and compare those SCSI target IDs.

However it is done, once the object id's for the device are found they should

be filled in and updated using CDI_Object_Update().

The ReturnChangerMediaMapping CDM message passes a buffer that is a

byte map to be filled in by the CDM for the devices, slots and mailboxes of

the changer, in that order. This buffer should be filled in with the locations

of the media in the devices, slots, and mailboxes. After this, the changer

objects will be built in the NWPA and an Activate CDM message will be

sent. The changer should be activated by the CDM using

CDI_Object_Update(). Once the changer has been activated, applications

can send changer commands to the CDM.

The CDM will receive Changer Commands from an application for moves

of media from a destination to a source. The numbers of the destination and

source are the order given in the byte map of the

Custom Device Module (CDM)

In order for a HAM to detect a device attention, the CDM must first issue commands that will program the device to issue the alert.
6

Version 2.1d (September, 1995) 5-37

ReturnChangerMediaMapping buffer. The preload command will be sent

to the CDM just before a move from a mailbox is done to allow the CDM

to do any needed preparation for the insert of the media.

After the preload the user will be prompted at the console to insert media

into the mailbox after the user has acknowledged the insert of media the

CDM will receive the move command with the mailbox as the source. The

changer eject command will be received by the CDM after a move where

the mailbox is the destination this allows for the CDM to do a rotate out on

the changer if it is needed

5.3.6 Asynchronous Hardware Event Notification

CDMs can request that HAMs notify them of any hardware events, such as

a bus reset, device reset, or a device attention, that may occur. To do this,

the CDM must issue a HACBType=0 HACB request placing the following

information in the HACB's union to Host command block:

Function = 5

Parameter0 = Bitmap indicating the type of events for which the CDM

wants to be notified. Currently, the NWPA recognizes the

following:

0x00000001 Bus reset

0x00000002 Device reset

0x00000004 Device attention
6

0x00000008 Adapter reset

0x00000010 Reserved

to

0x80000000

Parameter1 = 0

Parameter2 = 0

These requests must be issued on a per device basis, meaning that the CDM

must provide the correct device handle for the device it wants monitored.

The device handle is placed in the HACB's DeviceHandle field.

The CDM builds the bitmap indicating the events it wants to be informed

of, places the bitmap value in the Parameter0 field of the HACB, and

executes the request by calling CDI_Non_Blocking_Execute_HACB().

The HAM receives the HACB and maintains it in a local holding area

associated with the target device until an event occurs. These HACBs

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

5-38 Version 2.1d (September, 1995)

should not be placed in the device queue since they do not represent I/O

requests that need device processing.

After an AEN event occurs, the HAM will check to see if the value in

parameter0 represents an event that a CDM wants to be notified of. If so,

the HAM will freeze the device queue, set a bitmap value in the HACB's

control_Info field to indicate which event(s) occurred, place the AEN code

(0x80080000) in the HACB's hacbCompletion field, and complete the AEN

HACB by calling HAI_Complete_HACB(). The bit definitions for the

return bitmap value are the same as those defined for the parameter0 field.

Note: If no CDM has registered for a specific AEN event that occurs,

the queue state will not change.

The CDM receives notification of the event when it gets the HACB through

CDM_Callback(). CDM_Callback() is required to check the

hacbCompletion field on every HACB it receives. At callback time when

the CDM receives a HACB having an AEN completion code, it decodes the

bitmap value in the control_Info field to determine which event occurred,

and takes appropriate action. If desired, the CDM can re-issue the AEN

HACB. To minimize a possible "notification-not-available" window, the

CDM should re-issue the AEN HACB.

5.3.7 Avoiding Buffer Mismatches

The CDM must have a check similar to the pseudo-code below to

accommodate applications that allocate oversized buffers when using tape

devices running in fixed-block mode.

If (!Variable_Block_Mode)

{

if ((unitsize * unitcount) <= CDMMsg->BufferLength)

hacb->DataBufferLength = unitsize*unitcount;

else

hacb->DataBufferLength = CDMMsg->BufferLength;

}

Custom Device Module (CDM)

Version 2.1d (September, 1995) 5-39

5.3.8 Vendor-Pass Through API for CDMs

This API (NPA_CDM_Passthru()) provides applications the ability to

communicate directly with a device. This provides a vendor with a

communications channel to allow for vendor-specific commands/data to be

sent to/from the device. For example, vendor-specific device diagnostic

information could be sent to an application using this API. CDMs must

register for the specific functions that it will process. See the

NPA_CDM_Passthru() API in Chapter 7 for more details.

