
Version 2.1d (September, 1995) A-1

Appendix A Creating NetWare

Loadable Modules

Device drivers must be converted from source modules into NetWare

Loadable Modules before they can be loaded and installed in the NetWare

v3.1x or v4.x Operating Systems. Novell Labs can provide a list of

compilers which may be used to create object modules from driver source

modules. The object modules must be processed by a NetWare linker, either

NLMLINKP (which makes use of extended memory) or NLMLINKR

(which uses only regular memory.) Both linkers require a developer-created

definition file (.DEF) that provides configuration information needed to

produce the NLM, including the NetWare internal variables and routines

the driver will access once loaded. The NLMLINKP(R) command syntax is

as follows:

nlmlinkp drivername<Enter>

Where drivername is the name of the definition file for the desired driver (It

is not necessary to enter the .DEF extension in this command).

NLMLINKP(R) will find all the required information and directives in the

definition file, including the names of all object modules which must be

linked to form the driver (see Figure A-1 for a sample definition file).

NLMLINKP(R) will produce an output file (with a .HAM or .CDM

extension) which is the NLM form of the driver module, ready to load into

an active NetWare environment. Figure A-1 shows a sample definition file

which will direct NLMLINKP(R) to find sample.obj, link it, and produce

the output file sample.ham.

Required Header Files

There are four header files that Novell has created to provide the necessary

definition statements for HAMs and CDMs. These are:

C NPA.H - Required for HAMs and CDMs. This must be included first.

C NBI.H - Required for NBI aware HAMs. If used, this must be included

before NPA_HAM.H. Also, for NBI aware HAMs, a Novell assigned

compiler environment variable for the target platform must be declared.

Currently, IAPX386 (for Intel platforms) is the only defined

environment variable. NBI.H has an imbedded include statement that

is associated with a platfom specific .H file based on this environment

variable. This file contains all of the pragmas associated with the

target platform for the specific compiler. Contact Novell Labs for a

current list of supported platforms and their associated environment

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

A-2 Version 2.1d (September, 1995)

variables and .H files. For IAPX386, the file NBIEXP.H must be

located in your include path.

C NPA_HAM.H - Required for HAMs

C NPA_CDM.H - Required for CDMs

Please include these files in your modules and in the include path defined

for your compiler.

Appendix A- Creating NetWare Loadable Modules (NLMs)

Version 2.1d (September, 1995) A-3

.description "Novell Sample HAM"

output $[f,"",$@,]

input $(OBJS)

type 8

start HamMain

check CheckHAM

exit RemoveHAM

map

debug

reentrant

copyright (Copyright information goes here)

version xx, yy, z (see keyword description for details)

import

CCmpB

CMovB

CSetB

CStrLen

DisableAndRetFlags

Enable

HAI_Activate_Bus

HAI_Complete_HACB

HAI_Deactivate_Bus

HAI_preProcess_HACB_Completion

HAI_Abort_HACB

InvertLong

NPA_Add_Option

NPA_Allocate_Memory

NPA_Cancel_Thread

NPA_Delay_Thread

NPA_Exchange_Message

NPA_Interrupt_Control

NPA_Micro_Delay

NPA_Parse_Options

NPA_Register_HAM_Module

NPA_Register_Options

NPA_Return_Bus_Type

NPA_Return_Memory

NPA_Spawn_Thread

NPA_System_Alert

NPA_Unload_Module_Check

NPA_Unregister_Module

NPA_Unregister_Options

NPAB_Get_Card_Config_Info

OutputToScreen

MapDataOffsetToAbsoluteAddress

QueueSystemAlert

SetFlags

#export

HamISR,

HamExecuteHacb,

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

A-4 Version 2.1d (September, 1995)

HamAbortHacb,

Figure A-1 Sample Definition File

Appendix A- Creating NetWare Loadable Modules (NLMs)

Version 2.1d (September, 1995) A-5

Definition File Keywords

The .DEF file keywords can occur in any order, and the required keywords are indicated. The

following keywords are defined for use in the definition file to direct NLMLINKP(R) in creating

NetWare v3.1x & v4.0 Loadable Module device drivers:

Type (Required) Specifies the type of loadable module as indicated below, and implicitly determines

the extension to append on the output file.

1 = Lan Driver (.LAN)

2 = Disk driver (.DSK)

3 = Name space module (.NAM)

4 = Utility (.NLM)

8 = HAM

9 = CDM

Description (Required) Specifies a string that describes the loadable module to be created. The

console command "MODULES" will output this string to describe this module. The description can

be 1-127 bytes long, must be enclosed in double quotes and may not include a null, double quote,

carriage return, or new-line. The description should contain the indicated fields in the following order

format: "company or product name, description"

Output(Required) Specifies the name of the output file (the extension will be added by the linker as

specified above).

Input(Required) Specifies the name of the input .OBJ file(s).

Start(Required) Specifies the name of the loadable module's initialization procedure. When the file

server supervisor uses the "LOAD" console command to load the module, NetWare calls this

procedure.

Exit(Required) Specifies the name of the loadable module's exit procedure. This procedure is called

when the file server supervisor enters the "UNLOAD" console command.

Check(Required) Specifies the name of the loadable module's check procedure. The console

command "UNLOAD" calls an NLM's check procedure (if it exists) before unloading the module.

The check procedure is required for disk drivers since it must indicate to the OS if any disks are

locked (module may not be safely unloaded).

Copyright(Required) Inserts the Novell default copyright or the copyright for a third-party developer.

Usage: COPYRIGHT " " Novell default; COPYRIGHT "company" third party copyright message.

Version (Required) Usage: VERSION XX,YY,Z XX - Major Version number, YY - Minor

Version number, Z - Revision number

Reentrant(Optional) Specifies that the loadable module is reentrant (i.e., two or more processes may

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

A-6 Version 2.1d (September, 1995)

use the code at the same time). This keyword is mutually exclusive (both cannot be specified) with

the keyword MULTIPLE.

Multiple(Optional) Specifies that more than one code image of the loadable module may be loaded

into file server memory. This keyword is mutually exclusive (both cannot be specified) with the

keyword REENTRANT.

Custom(Optional) Specifies that a custom data file is to be appended to the output file. This keyword

should be followed by the file name of the custom data file.

Map(Optional) Directs the linker to create a map file.

Import(Required) Specifies that a list following the keyword will contain variable and procedure

names that are external to the object files. These variables and procedures are case sensitive NWPA

and/or NetWare v4.xx Operating System variables and procedures (or variables and procedures from

other loadable modules which must have been previously loaded) which will be linked to the module

after it has been loaded and before it begins initialization.

Export(Optional) Specifies that a list following the keyword will contains case sensitive variables

and procedure names resident in the loadable module to be made available to other loadable modules.

Module(Optional) Specifies loadable modules that must be loaded before the current loadable

module is loaded. The loader will attempt to find and load any modules not already in the server

memory. If it cannot, the current module will not be loaded.

Debug(Optional) Specifies that the linker will include debug information in the output file.

@ operator(Optional) "@" is an operator that can be used with the Input, Import, and Export

directives. The @ operator indicates that the list is to be read from a file, and can be nested. The file

specifier, including path, must immediately follow the @ operator. Syntax: IMPORT @file.txt

