
Version 2.1d (September, 1995) 3-1

Chapter 3 Host Adapter Control Block

(HACB)

This chapter describes the SHACB and HACB data structures. The chapter

begins with an overview that describes each structure's role and function

within the NWPA. The SHACB is described first, then the HACB. Each

description includes a prototype of the structure and descriptions of its

fields.

3.1 Overview

The Host Adapter Control Block (HACB) is a data structure, or

information packet, passed between a Custom Device Module (CDM) and a

Host Adapter Module (HAM). The Super Host Adapter Control Block

(SHACB) is a data structure that envelopes a HACB allowing CDM

developers to attach additional CDM state information, if needed. However,

the HAM uses only the information in the HACB to process requests.

CDMs allocate SHACBs via a call to CDI_Allocate_HACB(), and they are

returned via a call to CDI_Return_HACB(). CDMs and HAMs do not

interface directly; therefore, HACBs are not passed directly between them.

The NWPA is the communication channel, and it passes HACBs between

CDMs and HAMs. This flow path is depicted by the diagrams in section

2.2. The NWPA interfaces with each module through the entry points

specified at each module's registration. CDMs interface with the NWPA

through the CDI_ API set, and HAMs interface with the NWPA through the

HAI_ API set. The NWPA, CDM, and HAM are responsible for setting

certain field values in a HACB at different stages of execution. The field

descriptions identify the component responsible for setting a field value.

Note: A SHACB allocated with CDI_Allocate_HACB() is not guaranteed to

be below the 16 megabyte boundary.

3.2 Super Host Adapter Control Block (SHACB)

Each HACB created with CDI_Allocate_HACB() is enveloped in a data

structure called a SHACB. This section defines the SHACB structure and

gives a description of its fields.

3.2.1 Structure Definition

The SHACB definition is as follows:

typedef struct SHACBStruct

{

LONG CDMSpace[8];

struct HACBStruct

HACB;

} SHACB;

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

3-2 Version 2.1d (September, 1995)

3.2.2 Field Descriptions

This section describes each field within a SHACB structure:

CDMSpace

This is an 8-LONG field to be used at the CDM's discretion. This field may

be used to store state information specific to a CDM, but the use of this

field is optional. However, if this field is used, the CDM is responsible for

setting its values.

HACB

This is a field containing the HACB structure defined in section 3.3.

3.3 HACB Structure

The HACB structure is a data packet containing a device control or I/O

command issued by a CDM or the NWPA. This section defines the HACB

structure and gives a description of its fields. Note: Certain fields in the

HACB are pre-initialized by the NWPA at allocation, and their values must

be maintained. Therefore, do not clear or zero out the HACB. In the SFT III

(System Fault Tolerance) environment, only the data in the HACB's data

buffer, error sense buffer, hacbCompletion, and Control_Info fields get

mirrored between the fault tolerant servers.

3.3.1 Structure Definition

The following is the ANSI C definition of the HACBStruct (HACB):

typedef struct HACBStruct

{

LONG hacbPutHandle;

LONG hacbCompletion;

LONG control_Info;

WORD hacbType;

WORD timeoutAmount;

LONG deviceHandle;

LONG dataBufferLength;

void *vDataBufferPtr;

void *pDataBufferPtr;

LONG errorSenseBufferLength;

void *vErrorSenseBufferPtr;

void *pErrorSenseBufferPtr;

LONG reserved1[6];

BYTE hamReserved[64];

union /*Command Block Overlay Area*/

{

struct /*HACB Type 0:Host Adapter Cmd Structure*/

{

LONG function;

LONG parameter0;

LONG parameter1;

LONG parameter2;

BYTE reserved2[12];

} Host;

Host Adapter Control Block (HACB)

Version 2.1d (September, 1995) 3-3

struct /*HACB Type 1:SCSI Adapter Cmd Structure*/

{

BYTE haCommandArea[16];

BYTE reserved3[11];

BYTE haCommandLength;

} SCSI;

struct /*HACB Type 2:IDE\ATA Adapter Cmd Structure*/

{

BYTE numberSectorsRegister;

BYTE sectorRegister;

BYTE lowCylinderRegister;

BYTE highCylinderRegister;

BYTE driveHeadRegister;

BYTE commandRegister;

BYTE reserved4[22];

} IDE\ATA;

struct /*HACB Type 3:CDM Pass-through Cmd Structure*/

{

LONG function;

LONG parameter0;

LONG parameter1;

LONG parameter2;

BYTE reserved5[12];

}CDMPassThrough;

}Command;

}HACB;

3.3.2 Field Descriptions

The subsections that follow describe each field within the HACB structure.

hacbPutHandle

This is a 1-LONG field containing a unique handle identifying the current

SHACB or HACB. When passing HACB requests, CDMs and HAMs use

this handle instead of passing memory pointers.

Note: CDMs and HAMs must not alter this handle. Also, do not confuse

this field with theMsgPutHandle field of the CDMMessageStruct. Their

values and purposes are different. The NWPA uses this handle to track a

HACB through different execution stages. Many of the APIs described in

this manual, such as HAI_Complete_HACB(), need this handle as an

argument. When a SHACB is first allocated using CDI_Allocate_HACB(),

the NWPA initializes this field of the enveloped HACB with a value. When

the HACB is sent for execution (this occurs when a CDM calls either

CDI_Execute_HACB() or CDI_Blocking_Execute_HACB() on the HACB)

the NWPA generates and places a new value in this field handle.

hacbCompletion

This is a 1-LONG field containing the completion status (successful or

unsuccessful) of a HACB request. The NWPA allows for status codes

under the following interfaces: SCSI, IDE/ATA, and Custom. This field is

set by the HAM. The HAM completes a HACB request by calling

HAI_Complete_HACB(), which then informs the CDM layer. The HAM

routine handling HACB completion, however, must post status to this field

prior to calling HAI_Complete_HACB(). The CDM reads the value in this

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

3-4 Version 2.1d (September, 1995)

field during its callback entry point, CDM_Callback(), to determine

whether the HACB completed successfully or not, and to determine the

target device's current queue state. A hierarchy is associated with the status

values placed in this field. The upper WORD (16 bits) indicates the

following:

C The current queue state of the device that processed the HACB request.

The most-significant-bit (MSBit) is the post-completion queue state

indicator. If the MSBit=1 at CDM callback-time, then the CDM knows

that the HAM froze the device queue after processing this HACB,

thereby suspending the processing of all other HACBs positioned after

it. This condition indicates that either an error occurred in processing

the current HACB, or the HAM was told to freeze the queue following

HACB completion by the CDM setting the Freeze_Queue_Flag in the

Control_Info field. If theMSBit=0 at CDM callback-time, then the

HAM did not freeze the queue after processing the current HACB, and

subsequent HACBs are still being processed.

C The general category of the HACB's completion status. The general

category is determined by the value of the remaining 15 bits in the

upper WORD.

The lower WORD gives further resolution by being a qualifier that

indicates additional status information. For some categories, however, the

value in the lower WORD is either not applicable or undefined in the

NWPA. For processor independence reasons, this field needs to be

processed as a LONG. Therefore, HAMs and CDMs must use macros to

encode and decode this field. The HAM must define the following macro

and use it to encode a HACB's completion status:

#define SET_STATUS (UpperWord, LowerWord) ((UpperWord)<<

16) | ((LowerWord) & 0xFFFF))

The CDM must define the following macros and use them in its callback to

decode the completion status of the HACB and the device, respectively:
#define GET_MSW (hacbCompletion)(((hacbCompletion)>>16)&

0xFFFF)

#define GET_LSW (hacbCompletion)((hacbCompletion) & 0xFFFF)

Appendix B lists the HACB completion status values currently defined in

the NWPA along with a detailed set of descriptions for each value.

control_Info

This is a 1-LONG field that is bi-directional. The CDM uses it to pass

control information to the HAM, and the HAM uses it to pass status

information back to the CDM. The remaining description of this field is

divided according to HACB direction.

CDM to HAM

When the HACB direction is from the CDM to the HAM, it generally

Host Adapter Control Block (HACB)

Version 2.1d (September, 1995) 3-5

indicates that the CDM has received an I/O message from an upper layer

for which it will build a HACB I/O request recognized by the HAM. In this

case, this field is to contain a bitmap of operational control flags. These

flags are set by the CDM to indicate operational conditions associated with

a HACB request. The HAM reads these flags to determine the conditions

specified by the CDM. The setting of control flags for a HACB request

reflects the most common use of this field. The CDM control or I/O routine

that is building the HACB has the flexibility to toggle these flags to set the

proper combination needed for the request. Table 3-1 lists the control flag

values currently defined in the NWPA along with their respective

descriptions.

Table 3-1: HACB Control Flag Values

Flag Value Description

0x00000001 Bit 0 (LSB) is the Priority_HACB_Flag. When set, it indicates to the HAM that this request is a

priority request giving it precedence over non-priority requests in the HAM's device process queue.

When cleared (zero), it indicates that this request is a non-priority request. Priority requests are

ordered on a Last-In-First-Out (LIFO) basis.

0x00000002 Bit 1 is the Data_Direction_Flag. When set, data flow is to the device. When cleared, data flow is

from the device.

0x00000004 Bit 2 is the Freeze_Queue_Flag. The CDM can cause single-step execution of HACB requests by

toggling this bit. If the CDM sets this bit in the HACB--and sends the HACB to the HAM for

processing--it indicates to the HAM that it must freeze this device's process queue immediately after

issuing this HACB request to the device. If the CDM clears the bit (zero), it indicates to the HAM

to continue normal operation of the device's process queue even after issuing this HACB to the

device. Bit 9 (No_Freeze_Queue_Flag) and this bit cannot both be set at the same time. If both

bits are set, a Malformed HACB error will result.

0x00000008 Bit 3 is the Timeout_Granularity_Flag. When set, the bit indicates that the value specified in the

TimeoutAmount field is in minutes. When cleared, the bit indicates that the value specified in the

TimeoutAmount field is in seconds.

0x00000010 Bit 4 is the Scatter_Gather_Flag. When set, it indicates the following to the HAM:

C The VDataBufferPtr field contains the starting virtual address of a scatter/gather request list.

C The PDataBufferPtr field contains the starting physical address of the same scatter/gather

request list.

C The DataBufferLength field contains the number of entries in the scatter/gather request list.

The maximum number of scatter/gather entries allowed for a device is specified in the

MaxSGElements field of that device's DeviceInfoStruct.

When cleared, it indicates the following:

C The VDataBufferPtr field contains the starting virtual address of the data buffer.

C The PDataBufferPtr field contains the starting physical address of the same data buffer.

C The DataBufferLength field contains the total data buffer length in bytes.

0x00000020 Currently reserved by NetWare.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

Flag Value Description

3-6 Version 2.1d (September, 1995)

0x00000040 Bit 6 is the Preserve_Order_Flag. When set, the HAM preserves the current request order in the

device queue. When cleared, the requests in the device queue can be ordered as prescribed by the

HAM. This feature is provided so that a CDM supporting sequential devices can control the order

of request execution.

0x00000080 Bit 7 is the No_Disconnect_Flag for use with SCSI. When set, it indicates no disconnect.

0x00000100 Bit 8 is the No_Data_Transfer_Flag. When set, it indicates that the issued request does not

require the transfer of data, and the function of the Data_Direction_Flag is ignored. If the CDM

sets this flag it must also zero out the HACB's DataBufferLength field. Setting this flag does not

affect the HACB's error sense buffer or its length. When cleared, it indicates that the issued request

requires the transfer of data. The direction of transfer is indicated by the Data_Direction_Flag

0x00000200 Bit 9 is the No_Freeze_Queue_Flag. The CDM can prevent the queue from being frozen

regardless of error condition by setting this bit. Bit 2 (Freeze_Queue_Flag) and this bit cannot

both be set at the same time. If both bits are set, a Malformed HACB error will result.

0x00000400 Bits 10 through 31 (MSB) are reserved by NetWare.

to

0x80000000

DEFAULT= Zero is the default value for this field.

0x00000000

HAM to CDM

When the HACB direction is from the HAM to the CDM, it generally

indicates that the device has completed the I/O request, and the HAM is

ready to post completion status and send the HACB back to the CDM.

The HAM only places a value in this field for the following completion

status:

Malformed Error - Data Overrun/Underrun with ActualTransfer Count

Available (0x80030003 / 0x80030004) The HAM is managing an adapter

that can provide an actual-data-transferred-count for buffer

overrun/underrun conditions. In this case, the HAM should post the

appropriate status value to the HACB and place the actual number of bytes

that were transferred into this field.

hacbType

This is a 1-WORD field containing a code that defines the HACB request

type. This field value is set either by the CDM, through one of its control or

I/O routines, or by the NWPA. The CDM or NWPA fills the HACB's

command block overlay area with a command structure appropriate to the

HACB's type. By checking this field, the HAM can determine what

command structure to expect in the HACB. Table 3-2 defines the HACB

Host Adapter Control Block (HACB)

Version 2.1d (September, 1995) 3-7

request types.

Table 3-2: HACB Type Values

HACBType Description

0x0000 HACBType=0 requests contain adapter-specific Host command structures issued by the NWPA

or event notification requests issued by the CDM. These requests ask for information about the

HAM, the host adapter, or attached devices. As explained in Chapter 4, all HAMs must support

HACBType=0 requests.

0x0001 HACBType=1 requests contain SCSI command structures built by a CDM that supports SCSI

devices for a HAM that supports SCSI type adapters.

0x0002 HACBType=2 requests contain IDE\ATA command structures built by a CDM that supports

IDE\ATA devices for a HAM that supports IDE\ATA type adapters.

0x0003 HACBType=3 requests contain CDMPassThrough command structures built by a CDM for a

HAM that supports raw Media Manager requests.

0x0004 to This range of HACBType values is reserved by NetWare.

0x00FF

0x0100 to

0xFFFF

This range of HACBType values is reserved for custom types. These numbers are coordinated

and assigned for vendor use by Novell Labs.

timeoutAmount

This is a 1-WORD field containing the number of seconds or minutes

within which a device must finish processing a HACB; otherwise, the HAM

will time-out the request. The main purpose of this time limit is to provide a

recovery point (see HAM_Timeout() in Chapter 7) from a hung device.

CDMs are required to set a value in this field for all non-zero type HACBs

(HACBType=1,2,3) it issues to the HAM. The time-out countdown begins

when the HAM issues the request to the device. The time spent in the

HAM's device queue is not included in the countdown. However, since the

HAM may not have any control over a request after it is issued, time spent

queued in hardware caches on the adapter (and/or on the device) is included

in the countdown. The CDM sets the value in this field since it has the

device-specific intelligence to know how long a request should take to

complete. However, since a request may spend additional time queued in

caches (particularly a cache on the adapter of which the CDM may not be

aware), the CDM should allow leeway in assigning this value. The general

rule that a CDM should follow is to set an optimal value that will cause a

time-out only if typical process time is grossly exceeded. The CDM

indicates the time-out granularity, whether a value is in seconds or minutes,

by setting the time-out granularity bit in the HACB's Control_Info field.

When the bit is set, the granularity is in minutes. When the bit is not set, the

granularity is in seconds.

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

3-8 Version 2.1d (September, 1995)

Note: The HAM may receive HACBType=0 requests with this field set

to zero. Generally, these requests are asking the HAM to

perform adapter-specific functions for which the NWPA has no

way of knowing how much time it should take to complete. An

example would be a request for the HAM to scan the host bus

for attached devices.

For these HACBType=0 requests, the HAM must make a

reasonable decision as to the amount of time it will allow the

request to process before timing it out. The HAM must ensure

that these requests never hang.

deviceHandle

This is a 1-LONG field containing a HAM-generated handle to the device

that the HACB request will be routed to. This field is set by the CDM I/O

routine that builds the HACB request. The HAM generates this handle and

reports it to the NWPA. The HAM must be able to locate its devices and

their respective queues from this handle. The NWPA then makes this

handle available to the CDM. In order for a CDM to channel requests to a

target device, it must provide the appropriate HAM-generated device

handle in this field of the HACB.

dataBufferLength

This is a 1-LONG field set by the CDM. Its content depends on whether or

not the Scatter_Gather_Flag in the HACB is set. If the flag is set, this field

contains the number of elements in the NWPA-generated scatter/gather

request list. If the flag is not set, this field contains the length, in bytes, of

the request's data buffer. In either case, the field is set by the CDM I/O

routine that builds the HACB. This value is obtained from the BufferLength

field of the corresponding CDMMessage (CDMMessageStruct) associated

with the HACB. The NWPA passed a pointer to this CDMMessage as an

input parameter to the CDM's entry point that received the HACB. Refer to

section 3.4 for a description of the NWPA's scatter/gather format and how

it affects this field.

vDataBufferPtr

This is a 4-byte field of type pointer to void, and its contents will be a

virtual pointer to the HACB's data buffer that either receives or contains

I/O data for read and write operations, respectively. The NWPA provides

this field to support host adapter boards that use programmed I/O. The

CDM I/O or Control routine that builds the HACB places the appropriate

value in this field, which it obtains from the Buffer field of the CDM

Message (CDMMessageStruct) associated with the HACB. The NWPA

passed a pointer to this CDMMessage as an input parameter to the CDM's

entry point that received the HACB. The structure of the buffer it points at

Host Adapter Control Block (HACB)

Version 2.1d (September, 1995) 3-9

depends on whether or not the Scatter_Gather_Flag is set. If the flag is set,

this field contains the virtual starting address of the scatter/gather request

list. The scatter/gather list is either generated by an NWPA filter or a Media

Manager application. If the flag is not set, this field contains the virtual

address of the request's data buffer. Refer to section 3.4 for a description of

the NWPA's scatter/gather format and how it affects this field.

pDataBufferPtr

This is a 4-byte field of type pointer to void. The NWPA calculates the

physical (absolute) address of the buffer pointed at by vDataBufferPtr and

places the address in this field. The NWPA provides the physical address to

support adapters that use DMA or bus-mastering. The structure of the

buffer it points at depends on whether or not the Scatter_Gather_Flag is set.

If the flag is set, this field contains the physical starting address of the

scatter/gather request list. The scatter/gather list is either generated by an

NWPA filter or a Media Manager application. If the flag is not set, this

field contains the physical address of the request's data buffer. In either

case, calculating this field value is not the concern of the CDM at

HACB-build time. However, for safety, the CDM I/O routine building the

HACB should initialize the field to zero. After the CDM I/O routine calls

CDI_Execute_HACB(), the NWPA calculates the physical address and

places it in this field before sending the HACB to the HAM. Refer to

section 3.4 for a description of the NWPA's scatter/gather format and how

it affects this field.

Note: The NWPA guarantees this buffer to be physically contiguous.

errorSenseBufferLength

This is a 1-LONG field set by the CDM I/O or Control routine that builds

the HACB. This field's value specifies the size, in bytes, of the error sense

buffer pointed at by the vErrorSenseBufferPtr and pErrorSenseBufferPtr

fields. Essentially, the value of this field should be the size of the NWPA's

ErrorSenseInfoStruct plus any additional error sense bytes the CDM

chooses to append to this structure. Refer to the ErrorSenseInfoStruct

reference information in Chapter 6 for more details about this concept.

vErrorSenseBufferPtr

This is a 4-byte field of type pointer to void, and its contents will be a

virtual pointer to a memory buffer that will accept auto error sense

information. The NWPA provides this field to support host adapter boards

that do auto error sense under programmed I/O. When the CDM detects

that auto error sense is active for a target device, it allocates an I/O

contiguous buffer (using NPA_Allocate_Memory()) and assigns the buffer's

NetWare logical address to this field. The structure of this buffer is defined

by the NWPA's ErrorSenseInfoStruct plus any additional error sense bytes

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

3-10 Version 2.1d (September, 1995)

the CDM chooses to append to this structure. Refer to the

ErrorSenseInfoStruct reference information in Chapter 6 for more details

about this concept. For adapters with auto error sense turned on, the HAM

must copy auto error sense information into the buffer pointed at by this

field.

pErrorSenseBufferPtr

This is a 4-byte field of type pointer to void. The NWPA calculates the

physical (absolute) address of the buffer pointed at by vDataBufferPtr and

places the address in this field. The NWPA provides the physical address to

support adapters that use DMA or bus-mastering. Calculating this field

value is not the concern of the CDM at HACB-build time. However, for

safety, the CDM I/O routine building the HACB should initialize the field

to zero. After the CDM I/O routine calls CDI_Execute_HACB(), the NWPA

calculates the physical address and places it in this field before sending the

HACB to the HAM.

Note: The NWPA guarantees this buffer to be physically contiguous

.

reserved1

This is a 6-LONG field reserved by NetWare

hamRserved This is a 64 -BYTE field reserved exclusively for private,

HAM-specific use. This field may be used for anything necessary to

complete the HACB request, such as linked list management of the HACB

queue or custom command blocks such as disk structures, card structures,

or control blocks.

Note: As a reminder for the HAM, the HACB is not guaranteed to be

below the 16 megabyte boundary, which may affect how this

field can be used. Additionally, this field is uninitialized.

3.3.2.1 Union: Command Block Overlay Area

This section describes the different structures defined for the HACB's

command overlay area (union). The NWPA defines the following types of

command structures for this area: HOST-specific command structure

(HACBType=0) SCSI-specific command structure (HACBType=1)

IDE\ATA-specific command structure (HACBType=2) CDM

Pass-Through command structure (HACBType=3) The CDM I/O routine

that builds the HACB is responsible for selecting the appropriate structure,

setting the structure's fields, and setting the HACBType field, all of which

are based on the adapter type the CDM is designed to support. The HAM

that receives the HACB can verify that the HACB is compatible with the

Host Adapter Control Block (HACB)

Version 2.1d (September, 1995) 3-11

adapter type it is designed to support by reading the value in the

HACBType field. The following subsections describe each structure and its

fields.

3.3.2.1.1 Host Adapter Command Structure (HACBType=0)The Host

Adapter Command Structure corresponds to HACBType=0 requests. This

structure is used when adapter-specific commands are issued such as

scanning for attached devices or getting adapter-specific information. Its

field descriptions are as follows:

function

This is a 1-LONG field containing a function code, set by the CDM or the

NWPA, that the HAM must map to a HAM function call. Table 3-3 maps

the possible values for this field to their corresponding HAM functions.

Full descriptions of these HAM functions can be found in Chapter 9,

"HACB Type Zero Functions."

Table 3-3: Function Code Mapping of Type Zero HACB's to HAM

Field Value HAM Function

0x0000 HAM_Return_HAM_Info

0x0001 HAM_Scan_For_Devices

0x0002 HAM_Return_Device_Info

0x0003 HAM_Unfreeze_Queue

0x0004 HAM_Set_IDE_Drive_Config

0x0005 HAM_Queue_AEN_HACB

0x0006 HAM_Tag_Queue_Synch/Asynch

0x0007 to

0x00FF

Reserved for future HACBType=0 functions.

parameter0, parameter1, parameter2

These three fields are 1-LONG each (total of 3 LONGs) containing

applicable type zero function parameters. See Chapter 8, "HACB Type

Zero Functions" for a full description. These field values are set by the

CDM or NWPA.

reserved2

This is a 12-BYTE field reserved by the NWPA

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

3-12 Version 2.1d (September, 1995)

3.3.2.1.2 SCSI Adapter Command Structure (HACBType=1) The SCSI

Adapter Command Structure corresponds to HACBType=1 requests. This

structure is used when a command is issued to a device attached to a SCSI

adapter. Its field descriptions are as follows:

haCommandArea This is a 16-BYTE field containing the SCSI command

that the HAM issues to the device. The CDM I/O routine that builds the

HACB has the responsibility to set this field.

reserved3 This is a 11-BYTE field reserved by the NWPA.

haCommandLength This is a 1-BYTE field containing the device command

length of the haCommandArea field. For SCSI, command lengths are either

6, 10, or 12 bytes. The CDM I/O routine that builds the HACB is

responsible to set this field.

3.3.2.1.3 IDE\ATA Adapter Command Structure (HACBType=2) The

IDE\ATA Adapter Command Structure corresponds to HACBType=2

requests. This structure is used when a command is issued to a device

attached to an IDE\ATA adapter. Its field descriptions are as follows:

numberSectorsRegister

This is a 1-BYTE field containing the value to be written to the IDE\ATA

Sector Number Register. The CDM I/O routine that builds the HACB is

responsible to set this field.

sectorRegister

This is a 1-BYTE field containing the value to be written to the IDE\ATA

Sector Count Register. The CDM I/O routine that builds the HACB is

responsible to set this field.

lowCylinderRegister

This is a 1-BYTE field containing the value to be written to the IDE\ATA

Cylinder Low Register. The CDM I/O routine that builds the HACB is

responsible to set this field.

highCylinderRegister

This is a 1-BYTE field containing the value to be written to the IDE\ATA

Cylinder High Register. The CDM I/O routine that builds the HACB is

responsible to set this field.

driveHeadRegister

This is a 1-BYTE field containing the value to be written to the IDE\ATA

Drive/Head Register at command execution. The CDM I/O routine that

builds the HACB is responsible to set this field.

Host Adapter Control Block (HACB)

Version 2.1d (September, 1995) 3-13

commandRegister

This is a 1-BYTE field containing the value to be written to the IDE\ATA

Command Register. The CDM I/O routine that builds the HACB is

responsible to set this field.

reserved4

This is a 22-BYTE field reserved by the NWPA.

3.3.2.1.4 CDM Pass Through Command Structure (HACBType=3)

The CDM Pass-through Command Structure corresponds to HACBType=3

requests. This structure is provided to support host adapters that support

raw Media Manager functions. The HAM then has the responsibility to

translate the HACB request information into the adapter-specific format

and execute the request. The HAM also has the responsibility to translate

the HACB completion status into a Media Manager-specific completion

code and post this value to the HACB's hacbCompletion field instead of

those listed in Appendix B. Essentially, the CDM I/O routine that builds the

HACB copies the data in the CDMMessage (CDMMessageStruct),

field-for-field, into this pass-through structure and then passes it to the

HAM by calling CDI_Execute_HACB(). Since the field data are the same,

refer to îCDMMessageStructï in Chapter 7 for a description of the fields.

3.4 Scatter/Gather List

This section specifies the format of the NWPA's scatter/gather request list.

The term scatter/gather request is defined in the NWPA as a request that is

contiguous on the device, but scattered in system memory. The NWPA will

never issue a request in scatter/gather format unless the HAM supporting

the device indicates that the host adapter to which the device is attached has

scatter/gather capabilities. How the HAM makes this indication is

discussed under the AttributeFlags field of the DeviceInfoStruct referenced

in Chapter 7. The CDM determines whether a request is in scatter/gather

format by masking the upper WORD of the CDMMessage's

(CDMMessageStruct) Function field. If ((UpperWORD & 0x0080) != 0) ,

then the request is in scatter/gather format, and the CDM must set the

Scatter_Gather_Flag in the HACB's Control_Info field before sending it to

the HAM. The HAM determines whether a HACB request is in

scatter/gather format by checking the HACB's Scatter_Gather_Flag upon

receipt of the HACB. The NWPA's scatter/gather list is actually a table that

maps how the request is placed in system memory. In building a HACB for

a scatter/gather request, the CDM simply places the information from the

CDMMessageStruct into the appropriate fields of the HACB as described

in the previous sections of this chapter. The HAM, however, must interpret

the dataBufferLength, vDataBufferPtr, and pDataBufferPtr fields

differently for a scatter/gather request. In the scatter/gather case, the

Length of Scatter/Gather Request buffer in

bytes

Virtual Address of request buffer

Physical Address of request buffer

Scatter/Gather list

dataBufferLength

(Number of Scatter/Gather elements

in list)

VirtualAddress

(Virtual Address of

Scatter/Gather list)

PhysicalAddress

(Physical Address of

Scatter/Gather list)

HACB Fields

4 bytes

Element 1

12 Bytes

.

.

.

4 bytes

4 bytes

NetWare Peripheral Architecture Functional Specification and Developerìs Guide

3-14 Version 2.1d (September, 1995)

dataBufferLength field contains the number of elements in the

scatter/gather request list. The vDataBufferPtr field contains the NetWare

logical address of the scatter/gather list, and the pDataBufferPtr field

contains the absolute, or physical, address of the scatter/gather list. Figure

3-1 illustrates this mapping:

Figure 3-1: NWPA Scatter/Gather List

The following are true for all scatter/gather requests: The minimum size of

a scatter/gather request is 512 bytes. The scatter/gather buffer pointed to in

memory is LONG aligned.

Important: If hardware scatter/gather alignments on the host adapter are

different than what is provided by the NWPA, the HAM

must make the translation.

