
Version 2.1d (September, 1995) 10-1

Chapter 10 OS Support Routines

This chapter is a technical reference for auxiliary OS support routines that

may be used by a CDM or HAM. These routines are not front-ended by

the NWPA so their interfaces are subject to change as the OS changes.

Generally, these OS support routines provide APIs that facilitate

initialization of memory blocks, movement of memory blocks, and

mapping of logical addresses to absolute addresses (and vice-versa) for

initializing DMA channels. These routines also include APIs essential to

making BIOS calls on EISA buses. The technical reference information is

listed in alphabetical order according to routine names. The following is a

list of the routines referenced in this chapter:

AllocateResourceTag . 10-2

CCmpB . 10-4

CCmpD . 10-5

CFindB . 10-6

CFindD . 10-7

CFindW . 10-8

CMovB . 10-9

CMovD . 10-10

CMovW . 10-11

CPSemaphore . 10-12

CSetB . 10-13

CSetD . 10-14

CSetW . 10-15

CVSemaphore . 10-16

DisableAndRetFlags .. 10-17

DoRealModeInterrupt . 10-18

DoRealModeInterrupt32 . 10-20

EnterDebugger . 10-22

GetCurrentTime . 10-23

GetHighResolutionTimer . 10-24

GetReadAfterWriteVerifyStatus .. 10-25

GetRealModeWorkSpace . 10-26

GetSectorsPerCacheBuffer . 10-28

GetSuperHighResolutionTimer . 10-29

InvertLong . 10-30

MapDataOffsetToAbsoluteAddress . 10-31

OutputToScreen . 10-32

SetFlags . 10-33

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

10-2 Version 2.1d (September, 1995)

AllocateResourceTag

Purpose: Allocates OS resource tags for specific resource types.

Architecture Type: All

Thread Context: Blocking

Requirements: Must be called only from a blocking process level.

Syntax: LONG AllocateResourceTag(
LONG nlmHandle,

void *resourceDescString,

LONG resourceSignature);

Parameters:

Inputs:

nlmHandle The module handle (LoadHandle) passed to the driver when its NLM load

resourceDescString Pointer to a null-terminated text string describing the resource, with a maximum

resourceSignature A value used to identify a specific resource type. The signatures the driver must

Outputs:

routine was called.

total length of 16 bytes, including the null terminator. For example:

"NDCB Driver"

pass (indicates to the OS the kind of resource tag to allocate, consequently do

not change the following definitions or the OS will fail the driver's request to

allocate a resource tag) to identify each resource tag type requested are defined

as follows:

#define AESProcessSignature 0x50534541

#define AllocSignature 0x54524C41

#define CacheBelow16MegMemorySignature 0x36314243

#define EventSignature 0x544E5645

#define DiskDriverSignature 0x4B534444

#define InterruptSignature 0x50544E49

#define IORegistrationSignature 0x53524F49

#define SemiPermMemorySignature 0x454D5053 *

#define TimerSignature 0x524D4954

*v3.12 only

None

Return Value: Returns a resource tag identifying specified entry type.

0 if the call failed.

Description: Acquires a tracking identifier required by certain OS calls to track system

resources (and recover them from NLM or driver failure). Typically, a driver or

OS Support Routines

Version 2.1d (September, 1995) 10-3

NLM must acquire a tag for each different type of resource it wants to allocate.

However, under the NWPA driver architecture, the NWPA takes care of

resource tags in behalf of CDMs and HAMs. The NWPA tracks allocated

resources through each module's NPAHandle. The one exception to this rule is

registration for event notification. Usuallly, CDMs and HAMs will not need to

use this routine unless they intend to use

NPA_Register_For_Event_Notification() to be aware of system events. Then, at

load-time initialization, they must use this routine to allocate a resource tag

using the EventSignature listed under the ResourceSignature parameter

above.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

10-4 Version 2.1d (September, 1995)

CCmpB

Purpose: Performs a block comparison of two memory areas (BYTES).

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG CCmpB (
BYTE *address1,

BYTE *address2,

LONG count)

Parameters:

Inputs:

address1

address2

count

Outputs:

Address of the first block of memory to be compared.

Address of the second block of memory to be compared.

Number of BYTES to be compared.

None

Return Value: -1 if the specified number of blocks match, or

Index of the first unmatched block pair.

Description: CCmpB() compares two memory blocks BYTE per BYTE. It returns either a

-1 to indicate that the two blocks are identical or the block-index showing the

position where the blocks first differ.

OS Support Routines

Version 2.1d (September, 1995) 10-5

CCmpD

Purpose: Performs a block comparison of two memory areas (LONGS).

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG CCmpD (
LONG *address1,

LONG *address2,

LONG count)

Parameters:

Inputs:

address1

address2

count

Outputs:

Address of the first block of memory to be compared.

Address of the second block of memory to be compared.

Number of LONGS to be compared.

None

Return Value: -1 if the specified number of blocks match, or

Index of the first unmatched block pair.

Description: CCmpD() compares two memory blocks LONG per LONG. It returns either a

-1 to indicate that the two blocks are identical or the block-index showing the

position where the blocks first differ.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

10-6 Version 2.1d (September, 1995)

CFindB

Purpose: Scans an array of BYTES for a particular value.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG CFindB(
BYTE value,

BYTE *address,

LONG count);

Parameters:

Inputs:

value

address

count

Outputs:

Target value being searched for.

Pointer to the starting address of the array.

Maximum number of BYTES to scan.

None

Return Value: -1 if the target value is not found, or

Index from address where the target value was found in the array.

Description: CFindB() scans the array of BYTES pointed at by address either until value is

found or the maximum number of BYTES specified in count are scanned.

OS Support Routines

Version 2.1d (September, 1995) 10-7

CFindD

Purpose: Scans an array of LONGS for a particular value.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG CFindD(
LONG value,

LONG *address,

LONG count);

Parameters:

Inputs:

value

address

count

Outputs:

Target value being searched for.

Pointer to the starting address of the array.

Maximum number of LONGS to scan.

None

Return Value: -1 if the target value is not found, or

Index from address where the target value was found in the array.

Description: CFindD() scans the array of LONGS pointed at by address either until value is

found or the maximum number of LONGS specified in count are scanned.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

10-8 Version 2.1d (September, 1995)

CFindW

Purpose: Scans an array of WORDS for a particular value.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG CFindW(
WORD value,

WORD *address,

LONG count);

Parameters:

Inputs:

value

address

count

Outputs:

Target value being searched for.

Pointer to the starting address of the array.

Maximum number of WORDS to scan.

None

Return Value: -1 if the target value is not found, or

Index from address where the target value was found in the array.

Description: CFindW() scans the array of WORDS pointed at by address either until value

is found or the maximum number of WORDS specified in count are scanned.

OS Support Routines

Version 2.1d (September, 1995) 10-9

CMovB

Purpose: Copies BYTES from one area to another.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: VOID CMovB(
BYTE *source

BYTE *destination,

LONG count);

Parameters:

Inputs:

source

destination

count

Outputs:

Pointer to the starting BYTE of the block being copied.

Pointer to the starting BYTE where the block is being copied.

Number of BYTES to copy.

None.

Return Value: None.

Description: CMovB() copies data from the source area to the destination area.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

10-10 Version 2.1d (September, 1995)

CMovD

Purpose: Copies LONGS from one area to another.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: VOID CMovD(
LONG *source

LONG *destination,

LONG count);

Parameters:

Inputs:

source

destination

count

Outputs:

Pointer to the starting LONG of the block being copied.

Pointer to the starting LONG where the block is being copied.

Number of LONGS to copy.

None.

Return Value: None.

Description: CMovD() copies data from the source area to the destination area.

OS Support Routines

Version 2.1d (September, 1995) 10-11

CMovW

Purpose: Copies WORDS from one area to another.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: VOID CMovW(
WORD *source

WORD *destination,

LONG count);

Parameters:

Inputs:

source

destination

count

Outputs:

Pointer to the starting WORD of the block being copied.

Pointer to the starting WORD where the block is being copied.

Number of WORDS to move.

None.

Return Value: None.

Description: CMovW() copies data from the source area to the destination area.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

10-12 Version 2.1d (September, 1995)

CPSemaphore

Purpose: Locks real mode workspace access.

Architecture Type: Intel

Thread Context: Blocking

Requirements: None.

Syntax: VOID CPSemaphore(LONG workSpaceSemaphore);

Parameters:

Inputs:

workSpaceSemaphore

Outputs:

Handle to the workspace semaphore.

None.

Return Value: None.

Description: CPSemaphore() is used to lock the real mode workspacer when making a

BIOS call. This routine is called with interrupts disabled

(NPA_Interrupt_Control()), and interrupts remain disabled.

Warning: Do not use this call to handle critical sections local to the driver.

OS Support Routines

Version 2.1d (September, 1995) 10-13

CSetB

Purpose: Initializes an area of memory to a value.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: void CSetB(
BYTE value

void *address,

LONG count);

Parameters:

Inputs:

value

address

count

Outputs:

Value to which the memory area is being set.

Pointer to the starting address of the memory area.

Number of BYTES in the memory area to be initialized to value.

None.

Return Value: None.

Description: CSetB() initializes the number of BYTES specified in count of the memory area

pointed at by Address to the value specified in value.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

10-14 Version 2.1d (September, 1995)

CSetD

Purpose: Initializes an area of memory to a value.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: The storage locations in the memory area must be on LONG boundaries.

Syntax: void CSetD(
LONG value

void *address,

LONG count);

Parameters:

Inputs:

value

address

count

Outputs:

Value to which the memory area is being set.

Pointer to the starting address of the memory area.

Number of LONGS in the memory area to be initialized to value.

None.

Return Value: None.

Description: CSetD() initializes the number of LONGS specified in count of the memory

area pointed at by address to the value specified in value.

OS Support Routines

Version 2.1d (September, 1995) 10-15

CSetW

Purpose: Initializes an area of memory to a value.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: The storage locations in the memory area must be on LONG boundaries.

Syntax: void CSetW(
WORD value

void *address,

LONG count);

Parameters:

Inputs:

value

address

count

Outputs:

Value to which the memory area is being set.

Pointer to the starting address of the memory area.

Number of WORDS in the memory area to be initialized to value.

None.

Return Value: None.

Description: CSetW() initializes the number of WORDS specified in count of the memory

area pointed at by address to the value specified in value.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

10-16 Version 2.1d (September, 1995)

CVSemaphore

Purpose: Unlocks real mode workspace access.

Architecture Type: Intel

Thread Context: Blocking

Requirements: None.

Syntax: VOID CVSemaphore(LONG workSpaceSemaphore);

Parameters:

Inputs:

workSpaceSemaphore

Outputs:

Handle to the workspace semaphore.

None.

Return Value: None.

Description: CVSemaphore() is used to clear the semaphore that was set with

CPSemaphore(). Normally, CVSemaphore() is used when the driver has

finished making an EISA BIOS call so that other processes can be allowed to

use the workspace. CVSemaphore() returns with interuupts enabled.

OS Support Routines

Version 2.1d (September, 1995) 10-17

DisableAndRetFlags

Purpose: Saves the current state of the hardware’s interrupt mask and disables all

interrupts.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None

Syntax: LONG DisableAndRetFlags(void);

Parameters: None.

Return Value: Value of the saved interrupt mask.

Description: DisableAndRetFlags() saves the current state of the hardware's interrupt mask

and then disables all interrupts. It returns the value of the saved interrupt mask.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

10-18 Version 2.1d (September, 1995)

DoRealModeInterrupt

Purpose: Does real mode interrupt during initialization.

Architecture Type: Intel

Thread Context: Blocking

Requirements: The input parameter structure (InputParamStruct) must already be initialized.

Syntax: LONG DoRealModeInterrupt(
struct InputParamStruct *inputParameters,

struct *OutputParamStruct *outputParameters);

Parameters:

Inputs:

inputParameters

Outputs:

outputParameters

Pointer to an initialized input parameter structure as defined below:
struct InputParamStruct

{

WORD IAXRegister;

WORD IBXRegister;

WORD ICXRegister;

WORD IDXRegister;

WORD IBPRegister;

WORD ISIRegister;

WORD IDIRegister;

WORD IDSRegister;

WORD IESRegister;

WORD IIntNumber;

};

Pointer to a filled in output parameter structure as defined below:
struct OutputParamStruct

{

WORD OAXRegister;

WORD OBXRegister;

WORD OCXRegister;

WORD ODXRegister;

WORD OBPRegister;

WORD OSIRegister;

WORD ODIRegister;

WORD ODSRegister;

WORD OESRegister;

WORD OFlags;

};

Return Value: 0 if successful. The zero flag is set if the interrupt vector is called.

1 if unsuccessful. The zero flag is cleared if the interrupt vector is no longer

available because DOS has been removed.

Description: DoRealModeInterrupt() is used to perform real mode interrupts, such as BIOS

and DOS interrupts. This routine can only be called at process time, and it may

enable interrupts and put the calling process to sleep. EISA boards will need to

OS Support Routines

Version 2.1d (September, 1995) 10-19

use DoRealModeInterrupt() to perform the INT 15h BIOS call that returns the

board configuration.

Note: For descriptions of the input/output parameter structures and

information about making real mode BIOS calls on EISA boards,

refer to the EISA specification.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

10-20 Version 2.1d (September, 1995)

DoRealModeInterrupt32

Purpose: Does 32 bit real mode interrupt during initialization.

Architecture Type: Intel

Thread Context: Blocking

Requirements: The input parameter structure (InputParamStruct32) must already be initialized.

Syntax: LONG DoRealModeInterrupt32(
struct InputParamStruct32 *inputParameters,

struct *OutputParamStruct32 *outputParameters);

Parameters:

Inputs:

inputParameters

Outputs:

outputParameters

Pointer to an initialized input parameter structure as defined below:
struct InputParamStruct32

{

LONG IEAXRegister;

LONG IEBXRegister;

LONG IECXRegister;

LONG IEDXRegister;

LONG IEBPRegister;

LONG IESIRegister;

LONG IEDIRegister;

WORD IDSRegister;

WORD IESRegister;

WORD IEFSRegister;

WORD IEGSRegister

BYTE IIntNumber;

 BYTE IDummy32[3];

};

Pointer to a filled in output parameter structure as defined below:
struct OutputParamStruct32

{

LONG OEAXRegister;

LONG OEAXRegister;

LONG OECXRegister;

LONG OEDXRegister;

LONG OEBPRegister;

LONG OESIRegister;

LONG OEDIRegister;

WORD ODSRegister;

WORD OESRegister;

WORD OFSRegister;

WORD OGSRegister;

LONG OFlags32;

};

OS Support Routines

Version 2.1d (September, 1995) 10-21

Return Value: 0 if successful. The zero flag is set if the interrupt vector is called.

1 if unsuccessful. The zero flag is cleared if the interrupt vector is no longer

available because DOS has been removed.

Description: See Purpose.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

10-22 Version 2.1d (September, 1995)

EnterDebugger

Purpose: Switches to the Novell internal debugger.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: This is for code development and debug purposes only. No EnterDebugger()

calls are allowed in shipping code.

Syntax: VOID EnterDebugger(void);

Parameters:

Inputs:

Outputs:

None

None

Return Value: None.

Description: EnterDebugger() stops execution of the NetWare OS and enters the internal

assembly language-oriented debugger.

OS Support Routines

Version 2.1d (September, 1995) 10-23

GetCurrentTime

Purpose: Returns the current time in clock ticks since the server was loaded.

Architecture Type: Intel

Thread Context: Non-Blocking

Requirements: None

Syntax: LONG GetCurrentTime(void);

Parameters:

Inputs:

Outputs:

None.

None.

Return Value: The number of clock ticks (1/18th second) since the server was last loaded and

began execution.

Description: This call is useful to determine the current relative time in order to determine

the elapsed time between events. The current time value less the value returned

at the beginning of an event is the elapsed time since the event occurred in

1/18th second clock ticks. It requires more than 2,761 days (over 7.5 years) of

continuous server operation before this timer will roll over.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

10-24 Version 2.1d (September, 1995)

GetHighResolutionTimer

Purpose: Returns the current time in 100 microsecond increments.

Architecture Type: Intel

Thread Context: Non-Blocking

Requirements: Do not use this call within an interrupt service routine.

Syntax: LONG GetHighResolutionTimer(void);

Parameters:

Inputs:

Outputs:

None

None

Return Value: Time in approximately 100 microseconds per count.

Description: This timer combines the Current Time with the timer register to create a return

value that has a resolution of approximately 100 microseconds per count.

Note: This call will enable interrupts. Do not make this call in a code path that requires interrupts to be

disabled. Do not make this call within an interrupt service routine.

OS Support Routines

Version 2.1d (September, 1995) 10-25

GetReadAfterWriteVerifyStatus

Purpose: Returns global Read-After-Write (RAW) verify status.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG GetReadAfterWriteVerifyStatus (void);

Parameters: None.

Return Value: 0 if RAW verification is off.

1 if RAW verification is on.

Description: GetReadAfterWriteVerifyStatus() is used to determine the current RAW

verification status (on or off). This is an information call only. The driver cannot

change the RAW status.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

10-26 Version 2.1d (September, 1995)

GetRealModeWorkSpace

Purpose: Used in conjunction with DoRealModeInterrupt() to allow the HAM access to

memory in real mode.

Architecture Type: Intel

Thread Context: Non-Blocking

Requirements: None.

Syntax: void GetRealModeWorkSpace(
LONG *workSpaceSemaphore,

LONG *protectedModeAddress,

WORD *realModeSegment,

WORD *realModeOffset,

LONG *workSpaceSize);

Parameters:

Inputs:

workSpaceSemaphore

protectedModeAddress

realModeSegment

realModeOffset

workSpaceSize

Outputs:

workSpaceSemaphore

protectedModeAddress

realModeSegment

realModeOffset

workSpaceSize

Address of a local variable of type LONG.

Address of a local variable of type LONG.

Address of a local variable of type WORD.

Address of a local variable of type WORD.

Address of a local variable of type LONG.

Receives a handle to the OS semaphore structure.

Receives a 32-bit logical address of the workspace block from the OS.

Receives the real mode segment of the workspace from the OS.

Receives the real mode offset into the workspace segment from the OS.

Receives the size of the workspace in BYTES from the OS.

Return Value: None.

OS Support Routines

Version 2.1d (September, 1995) 10-27

Description: GetRealModeWorkSpace() is used to provide a HAM with a real mode

workspace. Used in conjunction with DoRealModeInterrupt(), the HAM has

access to memory in real mode. Be aware that the HAM must provide the storage

locations for the outputs it receives during this call.

Note: Since NetWare v4.x runs in protected mode, it does not allow direct access to BIOS information.

DoRealModeInterrupt() allows the HAM to access the BIOS and get data from it.

DoRealModeInterrupt() turns on the system interrupts and executes in a critical section;

therefore, calls to CPSemaphore() and CVSemaphore() are necessary to keep other processes

out of the workspace.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

10-28 Version 2.1d (September, 1995)

GetSectorsPerCacheBuffer

Purpose: Returns the number of sectors in server cache buffers.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG GetSectorsPerCacheBuffer(void);

Parameters: None.

Return Value: An integer (8, 16, or 32) indicating the number of sectors in a system cache

buffer.

Description: GetSectorsPerCacheBuffer() returns to the caller the number of sectors in a

server cache buffer. This value may allow drivers that allocate buffers in SRAM

to allocate the optimal buffer size, thus providing better performance.

OS Support Routines

Version 2.1d (September, 1995) 10-29

GetSuperHighResolutionTimer

Purpose: Returns the curent time in 838 nanosecond increments.

Architecture Type: Intel

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG GetSuperHighResolutionTimer (void);

Parameters:

Inputs:

Outputs:

None

None

Return Value: Time in approximately 838 nanoseconds per count.

Description: This is a high resolution timer that combines the lowest WORD of Current

Time with the timer register to give a timer resolution of approximately 838

nanoseconds per count. This call does not allow for possible tick count rollover,

so the programmer must take into consideration a “negative” time count. This

rollover will occur approximately every hour.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

10-30 Version 2.1d (September, 1995)

InvertLong

Purpose: Reverses the byte order of a LONG.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG InvertLong (LONG longValue);

Parameters:

Inputs:

longValue

Outputs:

The LONG that is to be inverted.

None.

Return Value: Inverted LONG. See description.

Description: InvertLong() takes the input LONG value and reverses (inverts) the byte order

as follows:

If the input longValue is WWXXYYZZ. the Return value will be ZZYYXXWW.

OS Support Routines

Version 2.1d (September, 1995) 10-31

MapDataOffsetToAbsoluteAddress

Purpose: Converts a logical memory address to an absolute address.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: LONG MapDataOffsetToAbsoluteAddress(LONG dataOffset);

Parameters:

Inputs:

dataOffset

Outputs:

Logical NetWare 32-bit memory address.

None.

Return Value: Real 32-bit absolute hardware memory address.

Description: MapDataOffsetToAbsoluteAddress() converts a logical NetWare address to

an absolute hardware memory address. The absolute addresss can be used to

initialize DMA channels and to validate hardware options.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

10-32 Version 2.1d (September, 1995)

OutputToScreen

Purpose: This routine outputs a message to a selected screen.

Architecture Type: All

Thread Context: Non-Blocking

Requirements:

Syntax: VOID OutputToScreen(
LONG screenHandle,

BYTE *controlString,

args...);

Parameters:

Inputs:

screenHandle

controlString

args

Outputs:

Handle of the screen where the message is to be displayed.

Pointer to a null-terminated, ASCII control string similar to that used with the C

sprintf() function, including embedded returns, line feeds, tabs, bells, and %

specifiers (except floating point specifiers).

Arguments as indicated by controlString.

None.

Return Value: None

Description: See Purpose.

OS Support Routines

Version 2.1d (September, 1995) 10-33

SetFlags

Purpose: Sets the interrupt flags to the specified value.

Architecture Type: All

Thread Context: Non-Blocking

Requirements: None.

Syntax: VOID SetFlags(LONG flags);

Parameters:

Inputs:

flags

Outputs:

Value of the hardware’s interrupt mask upon completion of this routine.

None.

Return Value: None.

Description: SetFlags() sets the interrupt mask to the value specified in flags. Flags contains

a value previously obtained from a call to a critical-code function.

