
Version 2.1d (September, 1995) 8-1

Chapter 8 HACB Type Zero Functions

This chapter gives descriptions of HACB Type Zero functions. HACB

type zero functions are called for HACB requests where the HACBType

field has a value of zero. The NWPA requires a HAM to implement as

many of these functions as are applicable to its adapter type.

HACBType=0 requests ask for information about the HAM, the host

adapter, attached devices, sets a device's queue state, or monitors

asynchronous hardware events. The HAM receives requests of this type

through the union to Host command block of the HACB. Currently, there

are seven HACB type zero functions that HAMs are required to

implement; however, Novell has reserved up to 256 of these functions for

the future. For HAMs to determine which of the functions to execute

along with any applicable input parameters, the Host command block of

the HACB provides the following information:

C The desired function's number.

C Any applicable input parameters.

All data transfers must be handled as any other HACB request. This

means that data is either placed/retrieved in/from the data buffer fields of

the HACB (VirtualAddress or PhysicalAddress). Also, the buffer's size (in

bytes) is specified in the HACB's DataBufferLength field by the process

placing the data. The functional descriptions in the following sections

detail how the above information should be interpreted by the HAM in

order to complete the HACBType=0 request. The functions are listed in

the order of their respective function numbers.

HAM_Return_HAM_Info (Function 0)

HAM_Return_HAM_Info is responsible for supplying the NWPA with

information about the HAM. The structure of the return information is

defined by the HAMInfoStruct. HAM_Return_HAM_Info can be

identified when the following information is in the fields of the HACB's

host command block:

Function = 0

parameter0 = 0

parameter1 = 0

parameter2 = 0

As part of this function, the HAM should copy the HAM information into

the buffer pointed at by the HACB's VirtualAddress field.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

The command “scan for new devices” is a NetWare command that can be issued from any .NCF file or at the command line by the user. The
1

purpose of “scan for new devices” is to make storage devices attached to the server visible to the NetWare OS.

8-2 Version 2.1d (September, 1995)

HAM_Scan_For_Devices (Function 1)

This function tells the HAM to scan (probe) for devices attached to a

specified bus and build a list of detected devices on that bus. For each

device in its list, the HAM is expected to fill out an instance of a

DeviceInfoStruct, which includes a HAM-generated, unique access handle

(DeviceHandle) to the device. The HAM will receive one scan request for

each bus instance it registers using HAI_Activate_Bus().

Note: The HACB indicating this function is received on a non-blocking thread. Since a bus scan could

take milliseconds or even seconds to complete, the HAM should spawn (schedule) a separate,

blocking thread to perform the physical scan. Blocking threads can be created using

NPA_Spawn_Thread().

HAM_Scan_For_Devices must handle four different scan cases according

to the parameters given in the HACB's host command block. The NWPA

classifies each scan case as either Case 0, Case 1, Case 2, or Case 3

corresponding to the value received in the parameter2 field of the host

command block. Case 0 scans are issued by the OS, and Cases 1 - 3 scans

are issued by a CDM.

These scan cases also tell the HAM whether to declare a device public or

private. The next subsection, “Public Vs. Private Devices”, defines this

concept in detail.

The objectives of each scan case are as follows:

Case 0: This scan case tells the HAM to perform a typical “scan for new

devices” by probing all public target locations. These locations1

include LUN 0 (and any other LUNs as specified under Case 2)

of all target IDs on the specified bus. This scan case is issued by

the OS, and an object for each device is created and added to the

Media Manager's device database.

Case 1: This scan case tells the HAM to probe a particular LUN on a

particular target ID of the bus. If a device is detected, it is

declared private, and information about the device is returned as

defined by the NWPA's DeviceInfoStruct. A device object is not

created for the Media Manager's device database. This scan case

is issued by a CDM allowing it to probe LUNs other than zero of

the specified target ID to detect additional devices that enhance

HACB Type 0 Functions

Version 2.1d (September, 1995) 8-3

the functionality of the LUN 0 device. An example would be a

magazine, addressed at LUN 1, attached to a tape drive at LUN 0.

Case 2: This scan case has the same function and purpose as the Case 1

scan except that the target device is declared public, and a device

object is created and added to the Media Manager's device

database.

Case 3: This scan tells the HAM to discard the device object, associated

with the specified LUN and target ID, from its device list. This

scan case is issued by a CDM.

The remaining subsections provide more details by describing the

following:

C Public versus private devices

C Scan Case Definitions and Descriptions

C Scan completion codes.

Public vs. Private Devices

The HAM does not decide the public/private attribute of a device. This

decision is made either by the OS (Case 0) or a CDM (Cases 1 and 2)

according to the scan case issued. The HAM declares a device public by

clearing the Private_Public_Flag in the AttributeFlags field of the device's

DeviceInfoStruct. To declare a device private, the HAM sets the

Private_Public_Flag. All devices detected by Case 0 and Case 2 scans

should be declared public. All devices detected by a Case 1 scan should

be declared private.

Following a Case 0 or Case 2 scan, the HAM's

HAM_Return_Device_Info function gets called on the target bus, which

reports the bus's device list to the NWPA. For all public devices in the

list, the NWPA creates a corresponding device object and adds it into the

Media Manager's device database. The Media Manager then makes these

devices visible to the application layer. This is the criteria that defines a

public device.

The criteria that defines a private device is that the device's

Private_Public_Flag is set, and there is no corresponding object added to

the Media Manager's device database. Thus, the device is not visible to

the application layer. The NWPA makes private devices visible only to

the CDM layer.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

8-4 Version 2.1d (September, 1995)

Scan Case Definitions and Descriptions

This subsection defines the HACB's host command block parameters

associated with each scan case along with a paradigm description of the

how the HAM should handle each case.

Case 0: Probe all LUN 0's and Make Detected Devices Public

INPUTS from HACB:

Field Values in Host Command Block:

Function = 1

parameter0 = Unit Number Mask

parameter1 = Target ID Mask (-1 will scan all target IDs)

parameter2 = 0

OUTPUTS to HACB:

hacbCompletion = Appropriate scan completion code.

A Case 0 scan request is issued by the NetWare OS following a “scan for

new devices” command issued either in a .NCF file or at the command

line by a user.

When the HAM receives a Case 0 scan request, it is expected to do the

following:

1. Probe LUN 0 of all target IDs (and any other target IDs and LUNs

specified under Case 2) on the target bus to detect devices.

2. For each device detected, create an object describing the device,

including information defined by the NWPA's DeviceInfoStruct, and

place it in a device list for that bus.

Note: An essential data member of the DeviceInfoStruct is the unique DeviceHandle the HAM assigns

to the device. This DeviceHandle is the token that the NWPA and CDMs will use to route HACB

I/O requests, through the HAM, to a device.

3. Make the device public by clearing the Private_Public_Flag in the

AttributeFlag field of the device's DeviceInfoStruct.

4. After finishing the scan on the target bus, set the HACB's

hacbCompletion field to Successful_Completion (0x00000000),

complete the HACB using HAI_Complete_HACB(), and then return.

HACB Type 0 Functions

Version 2.1d (September, 1995) 8-5

Case 1: Probe Specified Target ID and LUN, Return Info and

Make Detected Device Private

INPUTS from HACB:

Field Values in Host Command Block:

Function = 1

parameter0 = Unit Number

parameter1 = Target ID

parameter2 = 1

Field Values in Main HACB:

DeviceHandle = -1 indicating a request for a first-time peek at

the target ID and LUN. The calling CDM

does not have ownership of the private

device; therefore, execution restrictions

apply to this request.

= A handle that maps to a device already existing in the

HAM's device list. The HAM returned this device

handle to the calling CDM in a previous Case 1 scan

request, thereby giving the CDM exclusive

ownership of the private device. Due to device

ownership, no execution restrictions apply to this

request.

OUTPUTS to HACB:

Control_Info = Sizeof(struct DeviceInfoStruct)

VirtualAddress = Pointer to the buffer where the HAM will

copy the device's DeviceInfoStruct

information.

hacbCompletion = Appropriate scan completion code.

A Case 1 scan request is issued by a CDM allowing it to inquire about the

existence of a device on a specific target ID and LUN (other than LUN 0).

The purpose of this scan case is to grant a CDM private access to a device

attached to the target ID and LUN by providing the CDM with a

DeviceHandle.

When the HAM receives a Case 1 scan request it is expected to do the

following:

1. Probe the specified target ID (parameter1) and LUN (parameter0):

A. If the HAM detects a device at this location and there is no

corresponding object for this device already existing in the

HAM's device list:

1. Create an object describing the device, including information

defined by the NWPA's DeviceInfoStruct, and place it in a

device list for that bus.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

8-6 Version 2.1d (September, 1995)

Note: An essential data member of the DeviceInfoStruct is the unique DeviceHandle the HAM assigns

to the device. This DeviceHandle is the token that the CDM will use to route HACB I/O

requests, through the HAM, to a device.

2. Make the device private by setting the Private_Public_Flag in

the AttributeFlag field of the device's DeviceInfoStruct.

3. Copy the device's DeviceInfoStruct information into the

buffer pointed at by the HACB's VirtualAddress field.

4. Place the size, in bytes, of the return buffer in step 3 in the

HACB's Control_Info field.

5. Set the HACB's hacbCompletion field to

Successful_Completion (0x00000000).

6. Complete the HACB using HAI_Complete_HACB().

B. If the HAM detects a device at this location and a corresponding

object for this device already exists in the HAM's device list:

1. If the value in the HACB's DeviceHandle field is equal to -1,

set the HACB's hacbCompletion field to Target_In_Use

(0x000A0003).

2. If the value in the HACB's DeviceHandle field matches a

device handle assigned to an object in the HAM's device list,

do steps 2 through 5 in part A above.

3. Complete the HACB using HAI_Complete_HACB().

C. If the HAM does not detect a device at this location:

1. Set the HACB's hacbCompletion field to Device_Not_Found

(0x000A0001).

2. If a device object exists in the HAM's device list, meaning

that at one time a device did exist at the target ID and LUN

but has now gone away, the HAM should remove the object

from the list and free the memory using

NPA_Return_Memory().

3. Complete the HACB using HAI_Complete_HACB().

2. Return 0.

HACB Type 0 Functions

Version 2.1d (September, 1995) 8-7

Case 2: Probe Specified Target ID and LUN, Return Info, and

Make Detected Device Public

INPUTS from HACB:

Field Values in Host Command Block:

Function = 1

parameter0 = LUN

parameter1 = Target ID

parameter2 = 2

Field Values in Main HACB:

DeviceHandle = -1 indicating a request for a first-time peek at

the target ID and LUN. The calling CDM

does not have ownership of the device if it is

private; therefore, execution restrictions

apply to this request.

= A handle that maps to a private device

already existing in the HAM's device list.

The HAM returned this device handle to the

calling CDM in a previous Case 1 scan

request, thereby giving the CDM exclusive

ownership of the private device. Due to

device ownership, no execution restrictions

apply to this request.

OUTPUTS to HACB:

Control_Info = Sizeof(struct DeviceInfoStruct)

VirtualAddress = Pointer to the buffer where the HAM will

copy the device's DeviceInfoStruct

information.

hacbCompletion = Appropriate scan completion code.

A Case 2 scan request is issued by a CDM allowing it to inquire about the

existence of a device on a specific target ID and LUN (other than LUN 0)

and make the device public.

Note: Any device object added to the device list through a Case 2 scan should also be probed and

updated in any subsequent Case 0 scans.

When the HAM receives a Case 2 scan request it is expected to do the

following:

1. Probe the specified target ID (parameter1) and LUN (parameter0):

A. If the HAM detects a device at this location and there is no

corresponding object for this device already existing in the

HAM's device list:

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

8-8 Version 2.1d (September, 1995)

1. Create an object describing the device, including information

defined by the NWPA's DeviceInfoStruct, and place it in a

device list for that bus.

Note: An essential data member of the DeviceInfoStruct is the unique DeviceHandle the HAM assigns

to the device. This DeviceHandle is the token that the CDM will use to route HACB I/O requests,

through the HAM, to a device.

2. Make the device public by clearing the Private_Public_Flag

in the AttributeFlag field of the device's DeviceInfoStruct.

3. Copy the device's DeviceInfoStruct information into the

buffer pointed at by the HACB's VirtualAddress field.

4. Place the size, in bytes, of the return buffer in step 3 in the

HACB's Control_Info field.

5. Set the HACB's hacbCompletion field to

Successful_Completion (0x00000000).

6. Complete the HACB using HAI_Complete_HACB().

B. If the HAM detects a device at this location and a corresponding

object for this device already exists in the HAM's device list:

1. If the value in the HACB's DeviceHandle field is equal to -1,

set the HACB's hacbCompletion field to Target_In_Use

(0x000A0003).

2. If the value in the HACB's DeviceHandle field matches a

device handle assigned to an object in the HAM's device list,

do steps 2 through 5 in part A above.

3. Complete the HACB using HAI_Complete_HACB().

C. If the HAM does not detect a device at this location:

1. Set the HACB's hacbCompletion field to Device_Not_Found

(0x000A0001).

2. If a device object exists in the HAM's device list, meaning

that at one time a device did exist at the target ID and LUN

but has now gone away, the HAM should remove the object

from the list and free the memory using

NPA_Return_Memory().

HACB Type 0 Functions

Version 2.1d (September, 1995) 8-9

3. Complete the HACB using HAI_Complete_HACB().

2. Return 0.

Case 3: Remove Device Object from Device List

Field Values in Host Command Block:

Function = 1

parameter0 = LUN

parameter1 = Target ID

parameter2 = 3

Field Values in Main HACB:

DeviceHandle = -1 indicating a request for a first-time peek at the

target ID and LUN. The calling CDM does not

have ownership of the device if it is private;

therefore, execution restrictions apply to this

request.

= A handle that maps to a private device already

existing in the HAM's device list. The HAM

returned this device handle to the calling CDM

in a previous Case 1 or Case 2 scan request,

thereby giving the CDM exclusive ownership of

the private device. Due to device ownership, no

execution restrictions apply to this request.

OUTPUTS to HACB:

hacbCompletion = Appropriate scan completion code.

A Case 3 scan request is issued by a CDM after it determines that a

device object (found from a previous Case 1 or Case 2 scan request) is a

phantom, or in other words, a reflection of the device at LUN 0. Its main

purpose is to have the HAM remove the target object from its device list.

When the HAM receives a Case 3 scan request, it is expected to do the

following:

1. If the target object does not exist, meaning a previous Case 1 or Case

2 scan request was never received for the target ID and LUN, set the

HACB's hacbCompletion field to Object_Not_Found

(0x000A0004).

2. If the target object exists, but the value in the HACB's DeviceHandle

field is equal to -1, set the HACB's hacbCompletion field to

Target_In_Use (0x000A0003).

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

8-10 Version 2.1d (September, 1995)

3. If the target object exists and the value in the HACB's DeviceHandle

field matches the target object's device handle:

A. Remove the device object associated with the specified target ID

(parameter1) and LUN (parameter0) from the device list and free

the memory using NPA_Return_Memory().

B. Set the HACB's hacbCompletion field to Successful_Completion

(0x00000000).

4. Complete the HACB using HAI_Complete_HACB().

5. Return 0.

HACB Type 0 Functions

Version 2.1d (September, 1995) 8-11

Scan Completion Codes

The following table summarizes the scan completion codes described in

the specific cases above. The table also includes additional

error-completion codes common to all scan cases. These completion

codes get posted to the HACB's hacbCompletion field:

Upper Lower

WORD WORD Description

(16 bits) (16 bits)

0x0000 0x0000 Successful Completion: The current scan operation completed

successfully.This completion code applies to all scan cases.For

Case 1 and Case 2 scans, this completion code indicates that a

device responded atthe specified Target ID and LUN, and the

information returned in the HACB's data bufferis valid.

0x000A 0x0000 General Failure: Default scan-error category. The cause of the

error is unknown, andany information contained in the HACB's

data buffer is invalid.This completion code applies to all scan

cases.

0x0001 Device Not Found: No device responded at the specified Target

ID and LUN. Anyinformation contained in the HACB's data

buffer is invalid.This completion code applies to Case 1 and

Case 2 scans

0x0002 Bad Target ID/LUN: The Target ID and/or LUN specified in

the HACB's host adaptercommand block was/were invalid. Any

information contained in the HACB's data bufferis invalid.This

completion code applies to all scan cases.

0x0003 Target In Use: The target object is owned by another CDM.

Therefore, the current scanrequest could not be executed.This

completion code applies to Case 1, Case 2, and Case 3 scans.

0x0004 Object Not Found: A CDM issued a Case 3 scan to remove a

device object from theHAM's device list that does not exist. The

object does not exist because no previous Case1 or Case 2 scan

was issued on the specified Target ID and LUN to create it.

Anyinformation contained in the HACB's data buffer is

invalid.This completion code applies to Case 3 scans.

Novell reserves the right to add additional completion codes.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

One key piece of information the HAM places in the buffer is the DeviceHandle. The HAM generated this DeviceHandle during the host bus
2

scan, and now through HAM_Return_Device_Info(), the NWPA will pass it to the CDM. The CDM will then use this DeviceHandle to

indicate a target device to the HAM for all subsequent device I/O.

8-12 Version 2.1d (September, 1995)

HAM_Return_Device_Info (Function 2)

This routine must return a DeviceInfoStruct that gives information about a

single device and how it works. This routine is identified by the following

information in the HACB's command area:

Function = 2

parameter0 = -1 to begin find-first-find-next sequence or the

handle into the HAM's device list from the last

iteration of the sequence

parameter1 = Not used

parameter2 = Not used

If parameter0 = -1, it means that a new find-first-find-next sequence is to

be started, and the HAM must return information about the first device in

its list. The structure of the return information is defined by the

DeviceInfoStruct, which the HAM copies into the buffer pointed at by the

HACB's VirtualAddress field. The HAM must perpetuate the sequence2

until information about all of its devices are returned.

The HAM perpetuates the sequence by doing the following:

1. Copy the device information of the first device in the HAM's device

list into the return buffer.

2. Place 0x00000000 into the HACB's hacbCompletion field.

3. Complete the HACB by calling HAI_Complete_HACB().

The sequence continues with the HAM receiving another

HAM_Return_Device_Info request, this time, with parameter0 equal to

the device handle the HAM placed in the return buffer of the previous

iteration of the sequence. The HAM then keys off this previous device

handle to locate the next device in the list and returns its information. The

HAM follows this paradigm until it returns information about all the

devices in its list

After the HAM returns information about the last device in its list, it will

receive one more HAM_Return_Device_Info request. The HAM ends the

find-first-find-next sequence by placing a non-zero value in this last

HACB's hacbCompletion field and completing it by calling

HAI_Complete_HACB().

HACB Type 0 Functions

Version 2.1d (September, 1995) 8-13

HAM_Unfreeze_Queue (Function 3)

This function unfreezes the selected device queue and initiates execution

of the next request in the queue. This function is identified by the

following information in the HACB's command area:

Function = 3

parameter0 = none

parameter1 = none

parameter2 = none

This function must unfreeze the HAM's device queue if it is in the frozen

state, but it should not affect the queue if the queue is in the normal,

operational state.

HAM_Set_IDE_Device_Config (Function 4)

Although this function is a HACBType=0 function, implementing it is

optional. This function sets the IDE\ATA device configuration with the

HAM allowing the CDM to use special commands as they appear in the

IDE\ATA specification. If this function is never used to change the drive

configuration, the default is used. The calling process is required to pass a

pointer to the data structure containing the desired configuration

information. This routine is identified by the following information in the

HACB's command area:

Function = 4

parameter0 = not used

parameter1 = none

parameter2 = none

HAM_Queue_AEN_HACB (Function 5)

HAM_Queue_AEN_HACB directs the HAM to monitor asynchronous

hardware events such as a bus or device reset. This function is identified

by the following information in the HACB's command area

Function = 5

parameter0 = Bitmap indicating the type of events for which the

CDM wants to be notified. Currently, the NWPA

recognizes the following:
0x00000001 Bus reset

0x00000002 Device reset

0x00000004 Device attention

0x00000008 Adapter reset

0x00000010

to Reserved

 0x80000000

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

8-14 Version 2.1d (September, 1995)

parameter1 = 0

parameter2 = 0

These requests must be issued on a per device basis, meaning that the

CDM will provide the correct device handle for the device it wants

monitored. The device handle is placed in the AEN HACB's

DeviceHandle field.

The CDM builds the bitmap indicating the events it wants to be informed

of, places the bitmap value in the parameter0 field of the AEN HACB,

and executes the request by calling CDI_Non_Blocking_Execute_HACB().

This API requires the CDM to provide a pointer to a callback routine as

an input parameter.

The HAM receives the AEN HACB through its

HAM_Queue_AEN_HACB HAM function and maintains it in a local

holding area associated with the target device until an event occurs. These

AEN HACBs should not be placed in the device queue since they do not

represent I/O requests that need device processing.

After an AEN event occurs, the HAM will check to see if the value in

parameter0 represents an event that a CDM wants to be notified of. If so,

the HAM will freeze the device queue, set a bitmap value in the HACB's

Control_Info field to indicate which event(s) occurred, place the AEN

code (0x80080000) in the HACB's hacbCompletion field, and complete

the AEN HACB by calling HAI_Complete_HACB(). The bit definitions

for the return bitmap value are the same as those defined for the

parameter0 field.

Note: If no CDM has registered for a specific AEN event that

occurs, the queue state will not change.

The HAM must be ready to accept multiples of these requests per device.

When an event occurs, the HAM should complete all AEN HACBs

registered for that event for the target device.

HAM_Tag_Queue_Synch/Asynch (Function 6)

HAM_Tag_Queue_Synch/Asynch directs the HAM to turn on either tag

queuing or SCSI synchronous/asynchronous device negotiation. This

function is identified by the following information in the HACB's

command area:

Function = 6

parameter0 = Sub-function:

HACB Type 0 Functions

Version 2.1d (September, 1995) 8-15

0x00000000 Tag Queuing

0x00000001 SCSI-II Synchronous/Asynchronous

Negotiation

parameter1 = 0 Tag Queuing/SCSI-II Negotiation off (default)

1 Tag Queuing/SCSI-II Negotiation on

parameter2 = 0

These requests must be issued on a per device basis, meaning that the

CDM will provide the correct device handle for the target device. The

device handle is placed in the HACB's DeviceHandle field.

Device negotiation must adhere to that described in the SCSI-II Standard,

X3.131-199x.

HAM_Recovery_Reset (Function 7)

HAM_Recovery_Reset directs the HAM to perform the reset specified

function. This function is identified by the following information in the

HACB's command area:

Function = 7

parameter0 = Sub-function:

0 = Adapter reset

1 = Bus reset

2 = Device reset

parameter1 = 0

parameter2 = 0

A CDM may issue this HAM function in an attempt to recover from a

hung device. This function is called on a non-blocking thread, so the

HAM should spawn a thread to perform the actual reset. In the case of an

adapter or bus reset, the HAM should schedule this thread with about a

half-second delay to let any current I/O on other devices have a chance to

complete.

HAM_Deactivation_Notification (Function 8)

HAM_Deactivation_Notification allows the CDM to inform the HAM of

a device it has deactivated. This function is identified by the following

information in the HACB's command area:

Function = 8

parameter0 = 0

parameter1 = 0

parameter2 = 0

