
Version 2.1d (September, 1995) 7-1

Chapter 7 Technical Reference for

NWPA Routines

This chapter is a technical reference for the routines that are part of the

NWPA. Technical information is supplied for the routines that are

provided by the NWPA, and functional descriptions are supplied for the

routines that a HAM or CDM is expected to implement.

CDM-Specific

C Custom-Device-Interface routines that are identified in the text by a

CDI_ prefix. These routines are part of the NWPA, and they provide

CDMs with an interface to the NWPA allowing them to register as

CDM modules and build and initiate HACB requests.

C Functional descriptions of the interface routines that a CDM is

required to implement. These routines are identified in the text by a

CDM_ prefix. In general, these routines are expected to succeed with

a return value of zero. However, three of the routines

(CDM_Abort_CDMMessage(), CDM_Unload_Check(), and

CDM_Execute_CDMMessage()) give return values based on certain

conditions. These conditions and their respective return values are

specified.

HAM-Specific

C Host-Adapter-Interface routines that are identified in the text by the

HAI_ prefix. These routines provide HAMs with an interface to the

NWPA allowing them to register as HAM modules and report HACB

request completions.

C Functional descriptions of the interface routines that a HAM is

required to implement. These routines are identified in the text by a

HAM_ prefix. In general, these routines are expected to succeed with

a return value of zero. However, three of the routines,

HAM_Abort_HACB(), HAM_Unload_Check(), and HAM_ISR(), give

return values based on certain conditions. These conditions and their

respective return values are specified.

General NWPA

C General NWPA support routines that are identified in the text by the

NPA_ prefix. These routines provide CDMs and HAMs with a stable

interface to the NetWare OS.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

7-2 Version 2.1d (September, 1995)

The technical reference information is listed in alphabetical order

according to routine names. The following is a list of the routines

referenced in this chapter:

CDI_Abort_HACB . 7-4

CDI_Allocate_HACB . 7-5

CDI_Bind_CDM_To_Object . 7-6

CDI_Blocking_Execute_HACB .. 7-8

CDI_Chain_Message . 7-9

CDI_Complete_Message . 7-11

CDI_Execute_HACB . 7-13

CDI_Non_Blocking_Execute_HACB . 7-14

CDI_Object_Update .. 7-15

CDI_Queue_Message .. 7-18

CDI_Register_CDM .. 7-20

CDI_Register_Object_Attribute . 7-22

CDI_Return_HACB . 7-24

CDI_Rescan_Bus . 7-25

CDI_Unbind_CDM_From_Object .. 7-26

CDI_Unregister_CDM . 7-27

CDM_Abort_CDMMessage . 7-28

CDM_Callback . 7-29

CDM_Check_Option . 7-31

CDM_Execute_CDMMessage . 7-33

CDM_Get_Attribute . 7-34

CDM_Inquiry . 7-35

CDM_Set_Attribute . 7-38

CDM_Load . 7-39

CDM_Unload . 7-40

CDM_Unload_Check . 7-41

HAI_Activate_Bus . 7-42

HAI_Complete_HACB . 7-43

HAI_Deactivate_Bus . 7-44

HAI_PreProcess_HACB_Completion . 7-45

HAM_Abort_HACB . 7-46

HAM_Check_Option . 7-48

HAM_Execute_HACB . 7-50

HAM_ISR . 7-51

HAM_Load . 7-53

HAM_Software_Hot_Replace . 7-54

HAM_Timeout . 7-55

HAM_Unload . 7-57

HAM_Unload_Check . 7-58

Inx . 7-59

InBuffx . 7-60

NPA_Add_Option . 7-62

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-3

NPA_Allocate_Memory . 7-63

NPA_Cancel_Thread . 7-65

NPA_CDM_Passthru . 7-66

NPA_Delay_Thread . 7-68

NPA_Exchange_Message . 7-69

NPA_Get_Version_Number . 7-70

NPA_HACB_Passthru . 7-71

NPA_Interrupt_Control . 7-72

NPA_Micro_Delay .. 7-74

NPA_Parse_Options .. 7-75

NPA_Register_CDM_Module . 7-76

NPA_Register_For_Event_Notification .. 7-78

NPA_Register_HAM_Module . 7-82

NPA_Register_Options . 7-84

NPA_Return_Bus_Type .. 7-85

NPA_Return_Memory . 7-86

NPA_Spawn_Thread . 7-87

NPA_System_Alert . 7-89

NPA_Unload_Module_Check . 7-91

NPA_Unregister_Event_Notification .. 7-92

NPA_Unregister_Module .. 7-93

NPA_Unregister_Options . 7-94

NPAB_Get_Alignment . 7-95

NPAB_Get_Bus_Info .. 7-96

NPAB_Get_Bus_Name . 7-97

NPAB_Get_Bus_Tag . 7-98

NPAB_Get_Bus_Type . 7-99

NPAB_Get_Card_Config_Info . 7-100

NPAB_Get_Unique_Identifier . 7-102

NPAB_Read_Config_Space . 7-104

NPAB_Scan_Bus_Info .. 7-106

NPAB_Search_Adapter . 7-108

NPAB_Write_Config_Space . 7-110

Outx . 7-112

OutBuffx . 7-113

7-4 Version 2.1d (September, 1995)

CDI_Abort_HACB

Purpose: Issues an abort request to a device.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Abort_HACB (
LONG reserved,

LONG hacbPutHandle,

LONG flag);

Parameters:

Inputs:

reserved

hacbPutHandle

flag

Outputs:

The CDM should set this parameter to zero.

Handle to the HACB request being aborted. The value of this parameter is

obtained from the hacbPutHandle field of the original SHACB's member

HACB.

Flag indicating the type of abort the HAM is to perform. Its possible

values are as follows:

0x00000000 This value tells the HAM to unconditionally abort

the HACB even if it has already been sent to the

device.

0x00000001 This value tells the HAM to conditionally abort the

HACB if aborting only entails the unlinking of the

HACB from the device queue. This is referred to as a

clean abort.

0x00000002 This value tells the HAM to check and see if the

HACB can be cleanly aborted, but not to perform an

abort.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Abort_HACB() is used by a CDM to abort a HACB sent to a HAM.

Version 2.1d (September, 1995) 7-5

CDI_Allocate_HACB

Purpose: Allocates SHACBs that are used to communicate with the HAM.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Allocate_HACB(
LONG cdmosHandle,

struct SHACBStruct **SHACB);

Parameters:

Inputs:

cdmosHandle

SHACB

Outputs:

SHACB

The CDM's handle for using the CDI_ APIs. The value of cdmosHandle

was assigned during CDI_Register_CDM(), and it is used in conjunction

with the CDM-generated cdmHandle to uniquely identify a CDM when it

interfaces with the NWPA through the CDI_ API set.

Address of a pointer to a memory storage location of type SHACBStruct.

For a detailed description of the data structure refer to Chapter 6. The

following is the structure's ANSI C definition:
typedef struct SHACBStruct

{

LONG cdmSpace[8];

struct HACBStruct HACB;

} SHACB;

Receives a pointer to the newly allocated SHACBStruct.

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Allocate_HACB() is used by a CDM to allocate a SHACB. It is

during the context of this routine that the SHACB's HACBPutHandle

field is assigned a value by the NWPA. The CDM must not alter the value

in this field. A SHACB allocated with CDI_Allocate_HACB() is not

guaranteed to be below the 16 megabyte boundary. Also, certain fields in

the member HACB are pre-initialized by the NWPA at allocation, and

their values must be maintained. Therefore, do not clear or zero the

HACB. Additionally, to adhere to SFT III (System Fault Tolerance)

requirements, only the information in two of the HACB's fields get

returned to upper system layers. These are the Control_Info and

hacbCompletion fields described in section 3.3.2. The NWPA guarantees

the member HACB's data buffer to be physically contiguous.

7-6 Version 2.1d (September, 1995)

CDI_Bind_CDM_To_Object

Purpose: Binds a CDM to a device and registers with the NWPA the I/O and

control functions that the CDM will support for the device.

Architecture Type: All

Thread Context: Blocking

Syntax: LONG CDI_Bind_CDM_To_Object (
LONG cdmosHandle,

LONG npaDeviceID,

LONG cdmBindHandle,

LONG *cdiBindHandle,

struct UpdateInfoStruct *info,

LONG infoSize);

Parameters:

Inputs:

cdmosHandle

npaDeviceID

cdmBindHandle

cdiBindHandle

info

The CDM's handle for using the CDI_ APIs. The value of cdmosHandle

was assigned during CDI_Register_CDM(), and it is used in conjunction

with the CDM-generated cdmHandle to uniquely identify a CDM when it

interfaces with the NWPA through the CDI_ API set.

The object ID that the NWPA assigned to the target device in its device

database. This value is passed to the CDM through its CDM_Inquiry()

entry point.

A unique handle generated by the CDM to identify the device to which it

intends to bind. Following the bind, this handle will be the token the

NWPA passes to the CDM when routing I/O messages to a device. From

this handle, the CDM must be able to locate the target device's

information including the HAM-generated DeviceHandle and the

NWPA-generated NPABusID.

Address of a local variable of type LONG.

A pointer to an UpdateInfoStruct. This structure contains the information

telling the NWPA what functions the CDM will support for the device.

For a detailed description of this structure, refer to Chapter 6. The

following is the structure's ANSI C definition:

struct UpdateInfoStruct

{

BYTE Name[64];

LONG mediaType;

LONG cartridgeType;

LONG unitSize;

LONG blockSize;

LONG capacity;

LONG preferredUnitsize;

LONG functionMask;

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-7

infoSize

Outputs:

cdiBindHandle

LONG controlMask;

LONG unfunctionMask;

LONG uncontrolMask;

LONG mediaSlot;

BYTE activateFlag;

BYTE removableFlag;

BYTE readOnlyFlag;

BYTE magazineLoadedFlag;

BYTE acceptsMagazinesFlag;

BYTE objectInChangerFlag;

BYTE objectIsLoadableFlag;

BYTE lockFlag;

LONG diskGeometry;

LONG reserved[7];

union

{

struct ChangerInfo

{

 LONG numberOfSlots;

 LONG numberOfExchangeSlots;

 LONG numberOfDevices;

 LONG deviceObjects[n];

} ci;

} u1;

} ;

The size of the UpdateInfoStruct pointed at by info.

Receives an NWPA generated handle for the target device to which the

CDM is binding. This handle is the NWPA's counterpart to the CDM's

cdmBindHandle.

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Bind_CDM_To_Object() is used to bind a device object to a CDM.

This routine is used within the context of CDM_Inquiry().

7-8 Version 2.1d (September, 1995)

CDI_Blocking_Execute_HACB

Purpose: Initiates the execution of a HACB request by issuing it to a HAM.

Architecture Type: All

Thread Context: Blocking

Syntax: LONG CDI_Blocking_Execute_HACB (
LONG npaBusID,

LONG hacbPutHandle);

Parameters:

Inputs:

npaBusID The object ID that the NWPA assigned to the target bus in its object

hacbPutHandle Handle to the HACB request being executed. The value of this parameter

Outputs: None

database. The CDM received this ID through its CDM_Inquiry() entry

point during which it bound to the device.

is obtained from the HACBPutHandle field of the original SHACB's

member HACB.

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Blocking_Execute_HACB() is used if the CDM must issue multiple

HACBs to the HAM to complete a single CDM message request. This

routine must be called from a blocking thread. Typically, a CDM will use

CDI_Blocking_Execute_HACB() within the context of CDM_Inquiry(),

also a blocking thread, to test a device to see if it should bind to the

device. CDI_Blocking_Execute_HACB() causes the OS to treat the current

thread as if it were the current process. This ensures that a request is

carried to completion, and instructions immediately following this call can

expect the request data to be present. Consequently, since

CDI_Blocking_Execute_HACB() runs a HACB request to completion, a

callback is not necessary unlike the requirement for its non-blocking

counterpart, CDI_Execute_HACB().

Version 2.1d (September, 1995) 7-9

CDI_Chain_Message

Purpose: Chains CDM message requests through layers of CDM filters prior to

being received by a translator CDM (also referred to as a base CDM)

where the message is converted to a SHACB. This routine is only used by

filter CDMs.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Chain_Message(
LONG cdiBindHandle,

LONG msgPutHandle,

LONG *cdmMessage,

void (*callback)(),

LONG parameter);

Parameters:

Inputs:

cdiBindHandle

msgPutHandle

cdmMessage

callback

parameter

Outputs:

The NWPA-generated bind handle that was assigned to the calling CDM

when it bound to the target device using CDI_Bind_CDM_To_Object().

Handle to the CDM Message (CDMMessageStruct) being passed

downward. The value of this parameter is obtained from the

MsgPutHandle field of the CDMMessageStruct.

Pointer to the chained CDM Message casted to a pointer to LONG.

Address of the filter CDM's callback routine. The NWPA calls this

routine when the translator (base) CDM completes the CDM message

associated with the request. If the filter CDM does not require a callback,

then this field should be set to zero.

The input parameter of the filter CDM's callback routine. This routine can

be whatever is needed to identify the chained message. If the filter CDM

does not require a callback, then this field should be set to zero.

None.

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Chain_Message() is used by filter CDMs to chain CDM messages

through each layer in a CDM filter chain until the message is received by

a translator (base) CDM. Each filter CDM in the chain has the ability to

alter ("massage") CDM message information before passing the message

to the next filter. The translator CDM is the last link in the chain, meaning

that no more data massaging of the CDM message is performed. Instead,

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

7-10 Version 2.1d (September, 1995)

as the last link in the chain, the translator CDM converts the CDM

message into a SHACB request and initiates its execution.

CDI_Chain_Message() allows the filter CDM to specify a callback routine,

so that it can be notified when the request cycle associated with the

message has been completed. If there are multiple filter CDMs then their

respective callbacks are called in reverse order, thereby, rippling

completion-notification upward through the chain.

Version 2.1d (September, 1995) 7-11

CDI_Complete_Message

Purpose: Informs the NWPA that a message request has been completed.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Complete_Message(
LONG msgPutHandle,

LONG npaCompletionCode,

LONG appReturnCode);

Parameters:

Inputs:

msgPutHandle

npaCompletionCode

Handle to the CDM message (CDMMessageStruct) from which the

SHACB being completed was built. The value of this parameter is

obtained from the MsgPutHandle field of the CDMMessageStruct.

This is zero for no error or non-zero if it should contain an error code.

The NWPA completion codes are listed below:
#define ERROR_NO_ERROR_FOUND 0X00000000

#define ERROR_ABORT_UNCLEAN 0X00000003

#define ERROR_ABORT_CLEAN 0x0000000A

#define ERROR_CORRECTED_MEDIA_ERROR 0x00000010

#define ERROR_MEDIA_ERROR 0x00000011

#define ERROR_DEVICE_ERROR 0x00000012

#define ERROR_ADAPTER_ERROR 0x00000013

#define ERROR_NOT_SUPPORTED_BY_DEVICE 0x00000014

#define ERROR_NOT_SUPPORTED_BY_DRIVER 0x00000015

#define ERROR_PARAMETER_ERROR 0x00000016

#define ERROR_MEDIA_NOT_PRESENT 0x00000017

#define ERROR_MEDIA_CHANGED 0x00000018

#define ERROR_PREVIOUSLY_WRITTEN 0x00000019

#define ERROR_MEDIA_NOT_FORMATTED 0x0000001A

#define ERROR_BLANK_MEDIA 0x0000001B

#define ERROR_END_OF_MEDIA 0x0000001C

#define ERROR_FILE_MARK_DETECTED 0x0000001D

#define ERROR_SET_MARK_DETECTED 0x0000001E

#define ERROR_WRITE_PROTECTED 0x0000001F

#define ERROR_OK_EARLY_WARNING 0x00000020

#define ERROR_BEGINNING_OF_MEDIA 0x00000021

#define ERROR_MEDIA_NOT_FOUND 0x00000022

#define ERROR_MEDIA_NOT_REMOVED 0x00000023

#define ERROR_UNKNOWN_COMPLETION 0x00000024

#define ERROR_IO_ERROR 0x00000028

#define ERROR_CHANGER_SOURCE_EMPTY 0x00000029

#define ERROR_CHANGER_DEST_FULL 0x0000002A

#define ERROR_CHANGER_JAMMED 0x0000002B

#define ERROR_MAGAZINE_NOT_PRESENT 0x0000002D

#define ERROR_MAGAZINE_SOURCE_EMPTY 0x0000002E

#define ERROR_MAGAZINE_DEST_FULL 0x0000002F

#define ERROR_MAGAZINE_JAMMED 0x00000030

#define ERROR_ABORT_CAUSED_PRIOR_ERROR 0x00000031

#define ERROR_CHANGER_ERROR 0x00000032

#define ERROR_MAGAZINE_ERROR 0x00000033

#define ERROR_BLOCKSIZE_MISMATCH 0x00000034

#define ERROR_DECOMPRESSION_ALGORITHM_MISMATCH 0x00000035

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

7-12 Version 2.1d (September, 1995)

appReturnCode Application return code. This parameter passes specific information

Outputs: None

directly from the CDM to a NWPA application.

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Complete_Message() is used by a CDM to notify the NWPA that a

specific HACB request has been completed. CDI_Complete_Message() is

generally called within the context of the CDM's CDM_Callback()

routine, which is the point where the CDM is notified that a HACB

request has been completed. CDM_Callback() is responsible for checking

the value in the HACB's hacbCompletion field to determine the request's

completion status. If the field value is zero, it indicates that the request

completed without error, and CDI_Complete_Message() should be called

with npaCompletionCode = 0x00000000 (NO ERROR). If the field value

is non-zero, it indicates that an error occurred while processing the

request. In the error case, CDM_Callback() can do one of the following:

Option 1: Map the error into one of the NWPA completion codes

applicable to the condition and call

CDI_Complete_Message() with NPACompletionCode

equal to this code.

Option 2: Spawn a blocking, error handling thread using

NPA_Spawn_Thread() and return. The spawned error

handling thread can request sense information and try to

remedy the error. If the error is remedied and the request

can be completed successfully, then

CDI_Complete_Message() should be called within the

context of the error handling routine with

npaCompletionCode = 0x00. However, if the error

cannot be remedied, then the error handling routine

should perform the tasks prescribed in option 1. If the

error is severe enough, the device may need to be

deactivated.

Additionally, CDI_Complete_Message() provides the channel for a CDM

to ripple specific information up to an application. For example, a tape

application may require an I/O request to return the actual number of

blocks read/written from/to a device. The CDM provides this information

via the appReturnCode parameter

Version 2.1d (September, 1995) 7-13

CDI_Execute_HACB

Purpose: Initiates the execution of a SHACB request.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Execute_HACB (
LONG msgPutHandle,

LONG hacbPutHandle,

LONG (*CDM_Callback)());

Parameters:

Inputs:

msgPutHandle

hacbPutHandle

CDM_Callback

Outputs:

Handle to the CDM message (CDMMessageStruct) from which the

SHACB was built. The value of this parameter is obtained from the

MsgPutHandle field of the CDMMessageStruct.

Handle to the HACB request being executed. The value of this parameter

is obtained from the HACBPutHandle field of the original SHACB's

member HACB.

Address of the CDM routine to be called when the HACB request

completes. A callback routine must be specified for each issued request.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Execute_HACB() is used by a CDM to initiate the execution of a

HACB request by routing a HACB to the HAM supporting the target

device. Most HACB requests should be executed using this routine.

7-14 Version 2.1d (September, 1995)

CDI_Non_Blocking_Execute_HACB

Purpose: Allows the CDM to issue AEN HACBs to the HAM.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Non_Blocking_Execute_HACB(
LONG npaBusID,

LONG hacbPutHandle,

LONG (*CDM_Callback)());

Parameters:

Inputs:

npaBusID

hacbPutHandle

CDM_Callback

Outputs:

The object ID that the NWPA assigned to the target bus in its object

database. The CDM received this ID through its CDM_Inquiry() entry

point during which it bound to the device.

Handle to the HACB request being issued. The value of this parameter is

obtained from the HACBPutHandle field of the original SHACB's

member HACB.

Address of the CDM routine to be called when the HACB request

completes. A callback routine must be specified for each issued request.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Non_Blocking_Execute_HACB() is used by a CDM to issue

Asynchronous Event Notification (AEN) HACBs to the HAM. The

CDM indicates which device it wants the AEN to monitor by placing the

appropriate handle in the HACB's DeviceHandle field. For more

information about AEN HACBs, refer to section 4.3.2.

Version 2.1d (September, 1995) 7-15

CDI_Object_Update

Purpose: Allows the CDM to update device object information

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Object_Update (
LONG cdmosHandle,

LONG cdiBindHandle,

struct UpdateInfoStruct *info,

LONG infoSize,

LONG reasonFlag);

Parameters:

Inputs:

cdmosHandle

cdiIBindHandle

info

The CDM's handle for using the CDI_ APIs. The value of cdmosHandle

was assigned during CDI_Register_CDM(), and it is used in conjunction

with the CDM-generated CDMHandle to uniquely identify a CDM when

it interfaces with the NWPA through the CDI_ API set.

The NWPA-generated bind handle that was assigned to the calling CDM

when it bound to the target device using CDI_Bind_CDM_To_Object().

A pointer to an UpdateInfoStruct. This structure contains the information

telling the NWPA what items will be updated for the target device. For a

detailed description of this structure, refer to Chapter 6. The following is

the structure's ANSI C definition:
struct UpdateInfoStruct

{

BYTE name[64];

LONG mediaType;

LONG cartridgeType;

LONG unitSize;

LONG blockSize;

LONG capacity;

LONG preferredUnitsize;

LONG functionMask;

LONG controlMask;

LONG unfunctionMask;

LONG uncontrolMask;

LONG mediaSlot;

BYTE activateFlag;

BYTE removableFlag;

BYTE readOnlyFlag;

BYTE magazineLoadedFlag;

BYTE acceptsMagazinesFlag;

BYTE objectInChangerFlag;

BYTE objectIsLoadableFlag;

BYTE lockFlag;

LONG diskGeometry;

LONG reserved[7];

union

{

struct ChangerInfo

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

7-16 Version 2.1d (September, 1995)

infoSize

reasonFlag

Outputs:

{

LONG numberOfSlots;

LONG numberOfExchangeSlots;

LONG numberOfDevices;

LONG deviceObjects[n];

} ci;

} u1;

} ;

The size of the UpdateInfoStruct pointed at by info.

A NWPA recognized code corresponding to the reason why the update is

being done. The following is a list of valid codes that may be placed in

this field:
ALERT_UNKNOWN 0X00000000

ALERT_DRIVER_UNLOAD 0X00000001

ALERT_DEVICE_FAILURE 0X00000002

ALERT_PROGRAM_CONTROL 0X00000003

ALERT_MEDIA_DISMOUNT 0X00000004

ALERT_MEDIA_EJECT 0X00000005

RESERVED2 0X00000006

RESERVED3 0X00000007

ALERT_MEDIA_LOAD 0X00000008

ALERT_MEDIA_MOUNT 0X00000009

ALERT_DRIVER_LOAD 0X0000000A

RESERVED4 0X0000000B

RESERVED5 0X0000000C

ALERT_MAGAZINE_LOAD 0X0000000D

ALERT_MAGAZINE_UNLOAD 0X0000000E

RESERVED6 0X0000000F

ALERT_CHECK_DEVICE 0X00000010

ALERT_CONFIGURATION_CHANGE 0X00000011

RESERVED7 0X00000012

RESERVED8 0X00000013

ALERT_LOST_HARDWARE_FAULT_TOLERANCE 0X00000014

RESERVED9 0X00000015

RESERVED10 0X00000016

RESERVED11 0X00000017

ALERT_DEVICE_END_OF_MEDIA 0X00000018

ALERT_MEDIA_INSERTED 0X00000019

RESERVED12 0X0000001A

RESERVED13 0X0000001B

RESERVED14 0X0000001C

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Object_Update() is used by a CDM to update device object

information with the NWPA. Typically, object updating is done when the

CDM needs to deactivate a device or put in capacity, unitsize, or

blocksize information for a removable device on a mount. Although it is

not a specific NWPA requirement, it is good practice for a CDM to store

the device object information for each device it supports into a local

structure. Whenever device information is updated, the update

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-17

information should also be mirrored into the local storage structure.

Doing this allows the CDM to know the current operational information

for each device it supports. However, to save the NWPA time and

overhead in performing the update, the CDM should allocate a reusable

UpdateInfoStruct to use exclusively as an input parameter to

CDI_Object_Update(). Then, when an update is necessary, the CDM

should do the following:

1. Set all of the fields of the reusable UpdateInfoStruct to

-1. This is easily accomplished using the OS routine

CSetB().

2. Place the new values in the fields that are to be updated,

thereby, leaving a -1 in all of the fields that are not to be

updated. The -1 indicates a no-change condition to the

NWPA.

Note: Updated field values should be mirrored into the corresponding

fields of device's local storage structure.

3. Call CDI_Object_Update() to update the device object

information with the NWPA.

7-18 Version 2.1d (September, 1995)

CDI_Queue_Message

Purpose: Registers an abort routine with the NWPA for a CDM that internally

queues CDM messages.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Queue_Message(
LONG msgPutHandle,

LONG (*AbortRoutine)(),

LONG abortParameter,

void (*ExecuteRoutine)(),

LONG executeParameter);

Parameters:

Inputs:

msgPutHandle

AbortRoutine

abortParameter

ExecuteRoutine

executeParameter

Outputs:

Handle to the CDM message (CDMMessageStruct) from which the

SHACB was built. The value of this parameter is obtained from the

MsgPutHandle field of the CDMMessageStruct.

Address of the CDM's internal queue abort routine. Since an abort routine

is registered on a per enqueue basis, a CDM can have more than one.

However, within this manual, this routine is generically referred to as

CDM_Abort_CDMMessage().

Input parameter to CDM_Abort_CDMMessage(). This parameter can

contain anything that the CDM needs to complete the abort. Typically,

this parameter is a handle to the original CDM message that initiated the

request. To avoid memory problems, however, this parameter should not

be a memory pointer.

(Optional) A pointer to a CDM entry point where the NWPA can send

postponed requests from the NetWare elevators. This functionality is

mainly applicable to CDM filters, and even then it is limited to a small

audience of developers. If a developer does not understand the

explanation given here, then this is not a feature the developer needs. If

not used, which is the typical case, this parameter should be set to zero.

(Optional) Input parameter to the routine specified in ExecuteRoutine.

Like ExecuteRoutine, this functionality is applicable to a limited

audience. Typically, this parameter should be set to zero.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-19

Description: CDI_Queue_Message() is used by a CDM that does internal queuing of

CDM messages. Generally, a CDM will not need to do internal queuing,

unless the CDM must build multiple HACB requests to accomplish a

single CDM message request issued by the NWPA. A CDM must call

CDI_Queue_Message() each time it queues a message, that is, every time it

does not call either CDI_Execute_HACB() or CDI_Chain_Message() (filter

CDMs only) within the context of CDM_Execute_CDMMessage() for

that message. For each message the CDM queues, CDI_Queue_Message()

registers an abort routine that can be called by the NWPA in case an abort

is issued on that request. CDI_Queue_Message() only implies that a

message is enqueued. The CDM must provide the actual

enqueue/dequeue functionality. Dequeuing is implied when either

CDI_Execute_HACB(), CDI_Blocking_Execute_HACB(), or

CDI_Complete_Message() is called on the message.

LONG

BYTE BYTE WORD

CDM Type Device Type Host Adapter Type LSBMSB

7-20 Version 2.1d (September, 1995)

CDI_Register_CDM

Purpose: Registers a CDM with the NWPA.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Register_CDM(
LONG *cdmHandle,

LONG cdmHandle,

LONG types,

BYTE *name,

LONG npaHandle);

Parameters:

Inputs:

cdmosHandle

cdmHandle

types

Address of a local variable of type LONG.

Handle that the CDM generated for itself. This handle is the CDM's own

unique identifier. It is used in conjunction with the OS-generated

cdmosHandle to uniquely identify a CDM when it interfaces with the

NWPA through the CDI_ API set.

A packed LONG containing information that identifies for the NWPA the

CDM's CDM type (filter, enhancer, or base-translator), and the device

types and host adapter type it supports. The parameter is divided as

follows:

Possible values for CDM types

0x01 Base-Translator

0x02 Enhancer

0x03 Filter

Possible values for device types:

0x00 Direct-access device (magnetic disk)

0x01 Sequential-access device (magnetic tape)

0x02 Printer device

0x03 Processor device

0x04 Write once device (some optical disks)

0x05 CD-ROM device

0x06 Scanner device

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-21

name Length-preceded string containing the CDM's name. Maximum string

npaHandle The CDM's handle for using the NPA_ APIs. Its value was assigned

Outputs:

cdmosHandle Receives a CDM-OS handle used as a communication token between the

0x07 Optical memory device (some optical disks)

0x08 Media changer device (jukebox) or magazine

0x09 Communications device

0x0A-0B Defined by ASC IT8 (Graphic Arts Pre-Press)

0x0C-1E Reserved

0x1F Unknown or no device type

0xFF Call CDM_Inquiry() for every type of device

Possible values for host adapter types:

0x0001 SCSI

0x0002 IDE\ATA

0x0003 Custom

0x0004-00FE Reserved

0xFFFF Any bus type

length is 64 bytes where byte 0 contains the string length and bytes 1

through 63 can contain characters.

during NPA_Register_CDM_Module().

CDM and the NWPA. This handle is used in conjunction with the

CDM-generated CDMHandle to uniquely identify a CDM when it

interfaces with the NWPA through the CDI_ API set.

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Register_CDM() is used to register the module as a CDM and make

its entry points, registered during NPA_Register_CDM_Module(), visible

to the system. This is the last routine called within CDM_Load() prior to

CDM_Load() returning its thread to the OS calling process.

7-22 Version 2.1d (September, 1995)

CDI_Register_Object_Attribute

Purpose: Registers device attributes with the NWPA, which then makes these

attributes visible to the application layer.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Register_Object_Attribute(
LONG npaHandle,

LONG cdmBindHandle,

struct AttributeInfo *info,

LONG (*GetRoutine),

LONG (*SetRoutine));

Parameters:

Inputs:

npaHandle

cdmBindHandle

info

GetRoutine

The CDM's handle for using the NPA_ APIs. Its value was assigned

during NPA_Register_CDM_Module().

Handle generated by the CDM to uniquely identify the device. This is the

handle the CDM passed to CDI_Bind_CDM_To_Object() when it bound

to the device.

A pointer to an AttributeInfoStruct structure. This structure contains

specific information about an attribute. For a detailed description of this

structure, refer to Chapter 6. The following is the ANSI C definition of

the structure:

struct AttributeInfoStruct

{

LONG attributeID;

LONG attributeType;

LONG attributeLength;

BYTE attributeName[64];

};

Pointer to a local CDM entry point (CDM_Get_Attribute()) responsible

for returning attribute information. The following is the ANSI C

prototype of this entry point:

LONG CDM_Get_Attribute (

LONG cdmBindHandle,

void *infoBuffer,

LONG infoBufferLength,

LONG attributeID);

For a given attribute, the CDM indicates the expected data type of the

InfoBuffer input parameter by the value it places in the AttributeType

field of the attribute's AttributeInfoStruct at registration. A pointer to this

structure is passed to the attribute registration routine,

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-23

SetRoutine If the attribute is not settable, this field is set to zero. If the attribute is

Outputs:

CDM_Get_Attribute() places the return attribute information in the

location pointed at by the InfoBuffer input parameter and the byte-length

of the return information in the location pointed at by the

infoBufferLength input parameter.

settable, this field contains a pointer to a local CDM entry point

(CDM_Set_Attribute()) responsible for setting attribute information. The

following is the ANSI C prototype of this entry point:

LONG CDM_Set_Attribute (

LONG cdmBindHandle,

void *infoBuffer,

LONG infoBufferLength,

LONG attributeID);

CDM_Set_Attribute() sets the attribute to the information contained in the

infoBuffer input parameter. The length of this buffer is specified in the

infoBufferLength input parameter. If the attribute change affects any of

the information that the CDM originally reported to the NWPA during its

bind to the device, it must update these changes to the NWPA by filling

out the appropriate fields of an UpdateInfoStruct and calling

CDI_Object_Update(). The context of the set routine is blocking;

therefore, the CDM can issue any necessary commands to set the mode of

the device.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Register_Object_Attribute() allows a CDM to present attribute

information about a device it manages to the application layer. To present

the information, a CDM must register a get-routine

(CDM_Get_Attribute()) that returns attribute information into a buffer

provided by the calling process. If a device attribute can be changed by an

application, then the CDM must register a set-routine

(CDM_Set_Attribute()).

7-24 Version 2.1d (September, 1995)

CDI_Return_HACB

Purpose: Returns memory allocated for a SHACB back to the system memory pool.

Architecture Type: All

Thread Context: Non-Blocking

Syntax: LONG CDI_Return_HACB (
LONG cdmosHandle,

LONG hacbPutHandle);

Parameters:

Inputs:

cdmosHandle

hacbPutHandle

Outputs:

The CDM's handle for using the CDI_ APIs. The value of cdmosHandle

was assigned during CDI_Register_CDM(), and it is used in conjunction

with the CDM-generated CDMHandle to uniquely identify a CDM when

it interfaces with the NWPA through the CDI_ API set.

Handle to the HACB being deallocated. The value of this parameter is

obtained from the hacbPutHandle field of the original SHACB's member

HACB.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Return_HACB() is used by a CDM to return the memory allocated

for a SHACB to the system memory pool. Typically,

CDI_Return_HACB() is called when a SHACB structure becomes

corrupted and cannot be reused for building subsequent requests or when

the CDM is ready to unload.

Version 2.1d (September, 1995) 7-25

CDI_Rescan_Bus

Purpose: This API is used by the CDM to update the NWPA's device object

database anytime the CDM changes the private/public status of a device it

controls.

Architecture Type: All

Thread Context: Blocking

Syntax: LONG CDI_Rescan_Bus (LONG npaBusID):

Parameters:

Inputs:

npaBusID

Outputs:

The object ID that the NWPA assigned to the target bus in its object

database. The CDM received this target ID as an input parameter to its

CDM_Inquiry() entry point.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: The primary use of this API is to place devices that were originally

detected by the CDM via the Case 2 scan (see HAM_Scan_For_Devices)

back into the object database maintained by the Media Manager so that

they can be available to other applications.

7-26 Version 2.1d (September, 1995)

CDI_Unbind_CDM_From_Object

Purpose: Unbinds a CDM from a device object.

Architecture Type: All

Thread Context: Blocking

Syntax: LONG CDI_Unbind_CDM_From_Object (
LONG cdmosHandle,

LONG cdiBindHandle);

Parameters:

Inputs:

cdmosHandle

cdiBindHandle

Outputs:

The CDM's handle for using the CDI_ APIs. The value of cdmosHandle

was assigned during CDI_Register_CDM(), and it is used in conjunction

with the CDM-generated CDMHandle to uniquely identify a CDM when

it interfaces with the NWPA through the CDI_ API set.

The NWPA-generated bind handle that was assigned to the calling CDM

when it bound to the target device using CDI_Bind_CDM_To_Object().

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Unbind_CDM_From_Object() is used by the CDM to unbind itself

from a device. When a CDM is unbound, it no longer has to handle

requests for that device. Typically, the CDM calls this routine at unload

time within the context of CDM_Unload(). However, if somehow the

CDM determines that it should no longer support a device, it can call

CDI_Unbind_CDM_From_Object(), and it will no longer have to handle

requests for that device.

Version 2.1d (September, 1995) 7-27

CDI_Unregister_CDM

Purpose: Unregisters a CDM and its entry points from the NWPA.

Architecture Type: All

Thread Context: Blocking

Syntax: LONG CDI_Unregister_CDM (
LONG cdmosHandle,

LONG cdmHandle);

Parameters:

Inputs:

cdmosHandle

cdmHandle

Outputs:

The CDM's handle for using the CDI_ APIs. The value of cdmosHandle

was assigned during CDI_Register_CDM(), and it is used in conjunction

with the CDM-generated CDMHandle to uniquely identify a CDM when

it interfaces with the NWPA through the CDI_ API set.

Handle that the CDM generated for itself. This handle is the CDM's own

unique identifier. It is used in conjunction with the OS-generated

cdmosHandle to uniquely identify a CDM when it interfaces with the

NWPA through the CDI_ API set. Also, the CDM must be able to access

its device list through this handle.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDI_Unregister_CDM() is used to unregister the CDM from the NWPA

prior to being unloaded. It is called within the context of CDM_Unload()

to flush pending I/O before being the CDM is unloaded.

7-28 Version 2.1d (September, 1995)

CDM_Abort_CDMMessage

Purpose: The CDM's entry for receiving aborts on messages it has queued.

Thread Context: Non-Blocking

Syntax: LONG CDM_Abort_CDMMessage (LONG parameter);

Parameters:

Inputs:

parameter

Outputs:

The NWPA passes the value of this parameter, which is the parameter

specified as an input argument to CDI_Queue_Message(). The CDM

decides the value of this parameter, which can be anything it needs to

complete the abort. Typically, this parameter is a handle to the original

CDM message that initiated the request. To avoid memory problems, this

parameter should not be a memory pointer.

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDM_Abort_CDMMessage() is the CDM's entry point for receiving

requests to abort messages in its process queue. This routine, and its input

parameter, become visible to the NWPA during CDI_Queue_Message().

The CDM is required to provide CDM_Abort_CDMMessage() only if it

will provide its own internal request queue. CDMs that support devices,

such as tape devices, that require multiple HACB requests to execute a

command fall into this category. For such devices,

CDM_Abort_CDMMessage() must provide the means to not only remove

pending HACB requests from a queue, it must be able to abort HACB

requests already sent to the HAM by calling CDI_Abort_HACB()

Version 2.1d (September, 1995) 7-29

CDM_Callback

Purpose: The CDM's entry point for being notified of the completion of a

non-blocking HACB request.

Thread Context: Non-Blocking

Syntax: LONG CDM_Callback(
struct SHACBStruct *SHACB,

LONG npaCompletionCode);

Parameters:

Inputs:

SHACB

npaCompletionCode

Outputs:

The NWPA passes the value of this parameter, which is a pointer to the

SHACBStruct encapsulating the HACBStruct that contains the data of the

request just completed. For a detailed description of this structure and its

member HACBStruct, refer to Chapter 3. The following is the structure's

ANSI C definition:

 typedef struct SHACBStruct
{

LONG cdmSpace[8];

struct hacbStruct HACB;

} SHACB;

The NWPA generates and passes the value of this parameter, which is a

completion code for an internal NWPA process. If the value of this

parameter is zero, it means that the value in the HACB's hacbCompletion

field is valid; therefore, normal callback processing should be performed.

If the value of this parameter is non-zero, it means that an internal

messaging error has occurred. In this case, CDM_Callback() should

simply complete the request by calling CDI_Complete_Message() passing

it the value of NPACompletionCode as the API's NPACompletionCode

input parameter.

None

Return Value: 0 to succeed

Description: CDM_Callback() is the CDM's entry point for being notified of HACB

completion. Within the context of CDM_Callback(), the CDM can check

a HACB's completion status (provided NPACompletionCode == 0) and

determine a course of action. Depending on a HACB's completion status,

contained in the HACB's hacbCompletion field, the CDM can do one of

the following:

Option 1: If the HACB completion status is successful

(hacbCompletion=0x0000), complete the HACB

by calling CDI_Complete_Message() with a value

of zero in the NPACode input parameter.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

7-30 Version 2.1d (September, 1995)

Option 2: If the HACB completion status indicates an error

(hacbCompletion=0x0001 to 0x0008), translate

the error into an appropriate NWPA error code,

and complete the HACB by calling

CDI_Complete_Message() with the NWPA error

code as the value in the NPACode input

parameter.

Option 3: If the HACB completion status indicates an

error, spawn a blocking, error handling thread to

try and remedy the error. In this situation, the

CDM must provide some error handling routines.

If the error handling routine can remedy the

error, then within its context it should complete

the HACB as described in option 1. If the error

could not be remedied, then the error handling

routine should complete the HACB as described

in option 2.

CDM_Callback() becomes visible to the NWPA when the CDM executes

a HACB request by calling CDI_Execute_HACB(). Along with a pointer

to the HACB to be executed, the CDM supplies the address of the

CDM_Callback() as an input parameter to CDI_Execute_HACB(). The

CDM must supply these parameters for each HACB request it executes.

The NWPA associates the specified HACB request with the specified

callback routine, and makes the callback after the HACB request

completes. Since a callback routine is specified for each call to

CDI_Execute_HACB(), the CDM can provide either one all-inclusive

callback routine or a set of callback routines where each provides specific

functionality specially designed for a certain type of HACB request. In

this manual, however, the term CDM_Callback() is used to generically

refer to either case.

Important: CDM_Callback() should not hold the current thread for any lengthy amount of

time, and it must not make any calls to blocking processes. If blocking threads

such as error handling threads are necessary, then CDM_Callback() should

spawn them using NPA_Spawn_Thread(), and then relinquish control by

returning to the calling process.

Version 2.1d (September, 1995) 7-31

CDM_Check_Option

Purpose: The CDM's entry point for accepting and verifying the command line

options parsed by NPA_Parse_Options() are valid for the CDM.

Thread Context: Non-Blocking

Syntax: LONG CDM_Check_Option(
struct NPAOptionStruct *option,

LONG instance,

LONG flag);

Parameters:

Inputs:

option

instance

flag

Outputs:

The NWPA passes the value of this parameter, which is a pointer to the

NPAOptionStruct associated with this instance of the CDM module. The

following is the structure's ANSI C definition:

struct NPAOptionStruct

{

BYTE name[32];

LONG parameter0;

LONG parameter1;

LONG parameter2;

WORD type;

WORD flags;

BYTE string[n];

};

The NWPA passes the value of this parameter, which is a

CDM-generated number identifying a device instance. The NWPA will

use this number to associate different groups of options with a particular

device being managed by the CDM.

The NWPA passes the value of this parameter, which indicates the

process that called CDM_Check_Option(). This parameter is defined as

follows;

0x00000000 Called by NPA_Parse_Options().

0x00000001 Called by NPA_Register_Options().

None

Return Value: 0 if successful.

Non-zero if unsuccessful.

Description: CDM_Check_Option() is registered with the NWPA during

NPA_Register_CDM_Module(), and it is called by the NWPA during two

different phases of CDM initialization. CDM_Check_Option() is called

by NPA_Parse_Options() during the command-line parsing phase and

again by NPA_Register_Options() during the options registration phase.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

7-32 Version 2.1d (September, 1995)

When called under the context of NPA_Parse_Options(), the CDM should

only determine if the current option is acceptable. Under this context, the

NWPA has not physically associated the options with a device instance in

its database.

When called under the context of NPA_Register_Options(), the NWPA

has already placed the options in its database, and the CDM can set its

operational states accordingly.

Since CDMs do not directly interface with the hardware, they should not

attempt to register for hardware options such as interrupts, DMA

channels, ports, etc. CDM command-line options should only set

software, operational modes for the CDM.

If the CDM determines that an error occurred in registering its options, it

will need the to unregister these options using NPA_Unregister_Options()

passing Instance as an input parameter.

Version 2.1d (September, 1995) 7-33

CDM_Execute_CDMMessage

Purpose: The CDM's entry point for receiving a CDM message which routes them

to the proper CDM control or I/O routine to build a SHACB request.

Thread Context: Non-Blocking

Syntax: LONG CDM_Execute_CDMMessage(
LONG cdmBindHandle,

struct CDMMessageStruct *msg);

Parameters:

Inputs:

cdmBindHandle

msg

Outputs:

The NWPA passes the value of this parameter, which is a handle to the

device being targeted by the CDM Message request

(CDMMessageStruct). The CDM generated the value of cdmBindHandle

during the context of CDM_Inquiry() when it bound to the device. The

CDM bound to the device by calling CDI_Bind_CDM_To_Object(). From

this handle, the CDM locates the target device's information including the

HAM-generated DeviceHandle and the NWPA-generated NPABusID.

The NWPA passes the value of this parameter, which is a pointer to the

CDMMessageStruct containing the data from which a CDM control or I/O

routine will build a SHACB. For a detailed description of this structure

refer to Chapter 6. The following is the ANSI C definition:

struct CDMMessageStruct

{

LONG msgPutHandle;

LONG function;

LONG parameter0;

LONG parameter1;

LONG parameter2;

LONG bufferLength;

void* buffer;

LONG cdmReserved[2]; } ;

None

Return Value: Returns the return value of the internal CDM routine called to service the

request:

0 if the CDM routine executed successfully.

Non-zero if the specified function is not supported by the CDM.

Description: CDM_Execute_CDMMessage() is the CDM's entry point for receiving

and routing a CDM message to the proper CDM routine that will convert

the message into a SHACB.

7-34 Version 2.1d (September, 1995)

CDM_Get_Attribute

Purpose: The CDM entry point from which applications may retrieve attribute

information for a specific attribute.

Thread Context: Non-Blocking

Syntax: LONG CDM_Get_Attribute(
LONG cdmBindHandle,

void *infoBuffer,

LONG infoBufferLength,

LONG attributeID);

Parameters:

Inputs:

cdmBindHandle

infoBuffer

infoBufferLength

attributeID

Outputs:

The NWPA passes the value of this parameter, which is a handle to the

device being targeted by the CDM Message request

(CDMMessageStruct). The CDM generated the value of cdmBindHandle

during the context of CDM_Inquiry() when it bound to the device. The

CDM bound to the device by calling CDI_Bind_CDM_To_Object(). From

this handle, the CDM locates the target device's information including the

HAM-generated DeviceHandle and the NWPA-generated NPABusID.

This points to where the information associated with the attribute being

retrieved will be stored by CDM_Get_Attribute().

Size of the infoBuffer in bytes.

The ID of the attribute selected. This is the ID that was registed by the

CDM for this attribute during CDI_Register_Object_Attribute().

None

Return Value: 0 to succeed.

Description: CDM_Get_Attribute() is the entry point from which the NWPA can

retrieve registered device attribute information for an application. This

entry point gets registered with the NWPA when the CDM registers the

attribute by calling CDI_Register_Object_Attribute().

Note: The CDM registers a get-attribute routine with each call to

CDI_Register_Object_Attribute(). Therefore, the CDM can implement either one routine

to handle all get-attribute calls, or distribute the calls through multiple routines. This

developer’s guide uses CDM_Get_Attribute() to generically refer to either case.

Version 2.1d (September, 1995) 7-35

CDM_Inquiry

Purpose: The CDM's entry point for inquiring online devices and determining

whether or not it will bind to the device.

Thread Context: Blocking

Syntax: LONG CDM_Inquiry(
LONG npaDeviceID,

LONG npaBusID,

struct DeviceInfoStruct *deviceInfo,

LONG flag,

LONG cdmHandle);

Parameters:

Inputs:

npaDeviceID

npaBusID

deviceInfo

The NWPA passes the value of this parameter, which is the object ID that

the NWPA assigned to the target device in its device database.

The NWPA passes the value of this parameter, which is the object ID that

the NWPA assigned to the target bus in its object database. If Flag is set

to 0x00000003 or 0x00000004, this is the only valid parameter for this

API. All other parameters will be set to 0.

The NWPA passes the value of this parameter, which is a pointer to a

DeviceInfoStruct. The HAM supporting the target device fills in this

structure with all the pertinent device information that the CDM may need

to send I/O to the device and determine if it should bind to the device.

Additionally, this structure has an InquiryInfoStruct as a data member

that contains bus-specific inquiry information. For a detailed description

of this structure, refer to Chapter 6. The following is the structure's ANSI

C definition:

typedef struct DeviceInfoStruct

{

LONG deviceHandle;

BYTE deviceType;

BYTE unitNumber;

BYTE busID;

BYTE cardNo;

LONG attributeFlags;

LONG haxDataPerTransfer;

LONG haxLengthSGElement;

BYTE haxSGElements;

BYTE reserved1[2];

BYTE elevatorThreshold;

LONG maxUnitsPerTransfer;

WORD haType;

union /* Device Specific Information */

{

struct /* SCSI Synchronous Information */

{

BYTE transferPeriodFactor;

BYTE offset;

} SCSI;

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

7-36 Version 2.1d (September, 1995)

flag

struct /* Other Device Information */

{

BYTE reserved2[2];

} OTHER;

} INFO;

struct InquiryInfoStruct InquiryInfo;

}deviceInfoDef;

The NWPA passes the value of this parameter, which indicates the type of

inquiry to perform. This parameter can have one of the following values:

0x00000000 Indicates a new device and the CDM should check it and

bind to it if the device meets the CDM's bind conditions.

0x00000001 (Applies only to filter CDMs) Indicates that the CDM is

already bound to the specified device, but device

information has changed. Therefore, the CDM may need

to bind again or issue an object update. To base-translator

and enhancer CDMs, this constitutes a no-op.

0x00000002 Indicates to the CDM that the specified device is no

longer valid; therefore, the CDM should remove the

device from its list and free any local structures

associated with the device.

0x00000003 Indicates to the CDM that an End of Bus condition has

occurred during a Scan For New Devices. This means

that there are no more public devices on this bus. The

CDM may then scan for specific devices not found

during the normal scan. The specific devices can become

public or private devices depending on the Scan function

case used. For more details, refer to Chapter 8 HACB

Type Zero Functions under Function 1-

HAM_Scan_For_Devices If this flag is set, NPABusID is

the only valid parameter for this API. All other

parameters will be set to 0.

0x00000004 Indicates to the CDM that an End of Bus condition

occurred when the bus is being deactivated (i.e. when the

HAM associated with the bus is being unloaded). The

CDM must remove any private devices on this bus and

all of the local structures associated with these devices

from its list. This is done by using Scan case 3 of

HAM_Scan_For_Devices If this flag is set, NPABusID is

the only valid parameter for this API. All other

parameters will be set to 0.

Technical Reference for NWPA Routines

Version 2.1d (September, 1995) 7-37

cdmHandle The NWPA passes the value of this parameter, which is the identifier the

Outputs: None

CDM generated for itself and registered with the NWPA during

CDI_Register_CDM().

Return Value: 0 to succeed.

Description: CDM_Inquiry() is the CDM's entry point for logically binding to a device.

A logical bind means that the CDM will field message requests for the

device, and indicates this to the NWPA by calling

CDI_Bind_CDM_To_Object() and returning zero from this routine. This

entry point gets registered with the NWPA during

NPA_Register_CDM_Module(). Immediately after CDM registration, the

NWPA calls CDM_Inquiry() for each device matching the device type

that the CDM registered for with CDI_Register_CDM(). It receives

subsequent calls each time a new device with that device type comes

online. The CDM registers the device types it will support--along with the

host adapter interface it will support--by placing the appropriate values in

the Types input parameter of CDI_Register_CDM().

CDM_Inquiry() is responsible for building and maintaining a CDM's

device list. It does this by binding to devices matching the device type the

CDM is designed to support. To bind to a device, a CDM must generate a

CDMBindHandle from which the CDM can identify the device and

access essential device information, such as the device's handle and the

handle of the HAM supporting the device. Next, it must create an

instance of an UpdateInfoStruct for the device, fill in its fields with the

appropriate information, and pass both the CDMBindHandle and a

pointer to the UpdateInfoStruct to CDI_Bind_CDM_To_Object(). This is

all done within the context of CDM_Inquiry(). CDM_Inquiry() is a

blocking process, and part of its purpose is to allow a CDM the

opportunity to issue non-intrusive commands (such as a mode sense) to

determine if it should bind to the device. These commands should be

issued using CDI_Blocking_Execute_HACB(). The CDM should not issue

any command that may change the state of the device during the context

of CDM_Inquiry().

Note: If the CDM decides not to logically bind to a device, CDM_Inquiry() must return a

non-zero return code.

