
Version 2.1d (September, 1995) 4-1

Chapter 4 Host Adapter Module

(HAM)

The Host Adapter Module (HAM) is the driver component that provides

the software interface to the host adapter hardware, and it is implemented

as a NetWare Loadable Module (NLM). Additionally, the HAM's access

to the adapter is exclusive. This chapter describes a HAM's function, and

it is organized into the following sections:

C Architecture

This section prototypes and describes the entry points, functions, and

routines that make up the HAM's architecture and its interface with

the NWPA.

C Operational Overview

This section overviews the HAM's functionality by outlining the main

flow of events of its procedures.

C Special Topics

This section discusses special topics relevant to a HAM.

4.1 HAM Architecture: Entry Points, Functions, and Routines

This section provides prototypes for the entry points, functions, and

routines required in a HAM by the NWPA. A developer may use these

prototypes to plumb the shell of a HAM. Detailed descriptions of the data

structures and entry points can be found in the technical reference

chapters of this developer's guide. To fit properly in the architecture, a

HAM is required to provide the following:

C NLM Load/Unload-time Entry Points

C NWPA I/O Entry-Points

C Timeout Routine

C HACB Type Zero Functions (also referred to as HAM Functions)

C Host Adapter Interface Routines

Host adapter interface routines are mentioned here because they are

crucial to the HAM architecture. However, this developer's guide does not

attempt any specifications on these routines, since they are manufacturer

specific. Prototypes and definitions of these routines are the responsibility

of HAM developers. Complete functional specifications of the entry

points can be found in Chapter 7, and descriptions of the HAM Type Zero

functions can be found in Chapter 8. The main flow of each entry point is

discussed in the operational overview of this chapter. The names of these

entry points are left to the discretion of the HAM developer; however,

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

4-2 Version 2.1d (September, 1995)

each entry point must provide the respective functionality described in

this guide. For consistency in referring to these entry points and HAM

functions within the text and in code examples, this guide gives each a

generic name having a HAM_ prefix. Whenever an entry point or function

with this prefix is encountered, it indicates that the routine is HAM

specific. The italic typeface indicates that the name is arbitrary.

4.1.1 NLM Load/Unload-Time Entry Points

A HAM must provide three standard NLM entry points for the OS. These

entry points are made visible to the OS through a definition (.DEF) file

that is processed by the NLMLINK utility. A sample definition file is

provided in Appendix A. The prototypes of these entry points, along with

their generic names, are as follows:

LONG HAM_Load (
LONG loadHandle,
LONG screenID,
BYTE *commandLine
);

HAM_Load() is the HAM's load-time entry point called when the systems

operator issues a LOAD command on the HAM from the console.

HAM_Load() is called on a blocking thread. Through this entry point, a

HAM receives its OS-generated resource handle (LoadHandle), an ID to

the LOAD console screen, and a pointer to the LOAD command line

string which contains the hardware resource options specified by the

systems operator. These hardware options include resources such as

interrupts, DMA channels, memory decoding for memory-mapped I/O,

ports, and even custom command-line options. HAM_Load() is

responsible for allocating any resources needed to make the HAM

operational, for configuring the HAM based on the hardware options

specified on the LOAD command line, and for registering the HAM and

its I/O entry points with the NWPA.

LONG HAM_Unload_Check (LONG screenID);

HAM_Unload_Check() is the HAM's initial unload-time entry point. The

entry point gets called when the systems operator issues an UNLOAD

command on the HAM from the console. HAM_Unload_Check() is called

on a blocking thread. HAM_Unload_Check() is responsible for checking

to see if any of the HAM's devices are currently being used by an

application and return use-status. To do this, HAM_Unload_Check()

returns the use-status returned by NPA_Unload_Module_Check(). For

example:
LONG HAM_Unload_Check (LONG screenID)

 {
 return (NPA_Unload_Module_Check(...));
 }

Host Adapter Module (HAM)

Version 2.1d (September, 1995) 4-3

From this return value, the OS can determine if any of the devices

managed by the HAM are locked. If any devices are locked, the OS

displays a message at the console listing the devices that will be

deactivated and the corresponding NetWare volumes that will be

dismounted if the action is continued. The user then has the option to

either continue or abort the unload.

void HAM_Unload (void);

HAM_Unload() is the HAM's final unload-time entry point, meaning that

the unload thread already called HAM_Unload_Check() and the systems

operator chose to continue. Thus, the unload thread was allowed to

continue and make a call to HAM_Unload(). HAM_Unload() unregisters

the HAM from the NWPA and returns allocated resources back to the

system. Once the HAM is unloaded, all devices attached to the bus(es) it

was managing are inaccessible.

4.1.2 NWPA I/O Entry Points

A HAM must provide additional entry points that allow the NWPA to

route I/O requests to the module and to retrieve the resultant data. These

entry points are made visible to the system when the HAM registers itself

with the NWPA using NPA_Register_HAM_Module() . Additionally, all

of these entry points have non-blocking context, meaning that they must

perform their respective functions quickly and return control back to their

respective calling processes. The prototypes of these entry points, along

with their generic names, are as follows:

LONG HAM_Execute_HACB(
LONG hamBusHandle,
struct HACBStruct *HACB);

HAM_Execute_HACB() is the HAM's entry point for receiving HACB

I/O requests and routing them to their respective devices through the host

adapter. As long as the host can accept a request, HAM_Execute_HACB()

should issue it to the adapter and then return to the calling process. If the

host is temporarily unable to accept a request, HAM_Execute_HACB()

should place the request on an internal queue for the target device and

return to the calling process. The fundamental rule for this entry point

regarding a HACB I/O request is to "do it or queue it."

LONG HAM_Abort_HACB(
LONG hamBusHandle,
struct HACBStruct *HACB,
LONG flag);

HAM_Abort_HACB() is the HAM's entry point for receiving aborts on

HACB requests. HAM_Abort_HACB() locates the target HACB, posts an

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

4-4 Version 2.1d (September, 1995)

abort code, and returns the HACB to the CDM layer by calling

HAI_Complete_HACB().

LONG HAM_Check_Option
(
struct NPAOptionStruct *Option,
 LONG instance
 LONG flag
);

HAM_Check_Option() is the HAM's entry point for receiving and

verifying command line options. The entry point is called during two

separate NWPA processes: once during the command line parsing phase

of HAM initialization and again during the actual registration of hardware

options. The HAM invokes these two NWPA processes at different points

in its load-time entry point, HAM_Load().

LONG HAM_Software_Hot_Replace(
LONG messageLength,
 void *message
);

Note: This entry point is optional. The HAM only needs to

implement HAM_Software_Hot_Replace() if it plans to

support hot replacement.

HAM_Software_Hot_Replace() is the HAM's entry point for dynamically

performing version updates. This entry point allows a later-version HAM

driver to exchange configuration information with an earlier-version that

is currently loaded and operating on the server. The information exchange

is in preparation for a dynamic swap of the modules without dismounting

any volumes or disrupting the I/O channel for a lengthy period of time. At

Novell, this process is called software hot replacement. For more details

on how to implement this feature, see section 4.3.4.

LONG HAM_ISR (LONG irqLevel);

HAM_ISR() is the HAM's interrupt-time entry point, or interrupt service

routine (ISR). The NetWare OS fields the actual hardware interrupt

generated by the adapter board and routes its handling to the routine that

registered for the interrupt. The HAM registers its ISR during its

initialization entry point, HAM_Load(), using

NPA_Register_HAM_Module(). The HAM registers the IRQ level it will

service using NPA_Register_Options() during the hardware options

registration phase of HAM_Load(). HAM_ISR() must provide logic to

service completion of all I/O requests, provide the strategy for

determining what device completed the request, post appropriate HACB

Host Adapter Module (HAM)

Version 2.1d (September, 1995) 4-5

completion codes, and initiate the next request on the device's process

queue.

Note: If the HAM intends to support software-hot-replacement, it

may only have a single ISR.

4.1.3 Timeout Routine

The HAM must provide a routine that times out HACB requests grossly

exceeding expected device-process time. The purpose is to provide a

mechanism to return process control back to the OS from a hung-device

condition. The HAM's timeout routine runs as a periodic, background

process, and it gets initially scheduled for triggering at load-time during

HAM_Load(). The prototype of this routine, along with its generic name,

is as follows:

void HAM_Timeout (LONG parameter);

HAM_Timeout() is an asynchronous countdown-timer routine set up by

calling NPA_Spawn_Thread(). HAM_Timeout() is triggered after the time

interval specified as an input parameter to NPA_Spawn_Thread() elapses.

NPA_Spawn_Thread() is a one-shot API, meaning that it will only

schedule the triggering of HAM_Timeout() once per call made to it.

Therefore, after HAM_Timeout() triggers and performs its task, it should

reschedule itself by calling NPA_Spawn_Thread() again in order to

continue its periodic triggering.

HAM_Timeout() allows the HAM to time out an I/O request when the

time interval specified in the timeoutAmount field of the HACB has

expired. The timeout countdown begins when the HAM issues the request

to the host. For more details about the countdown, refer to the description

of the HACB's timeoutAmount field in Chapter 3.

4.1.4 HACB Type Zero Functions

HAMs must allow different types of HACB requests to be processed. The

HACB's type is the value in its HACBType field which is set either by the

CDM I/O routine building the HACB or by the NWPA. The CDM, or

NWPA, then fills the HACB's command area overlay with a command

structure appropriate to the HACB's type. HACBType=0 requests contain

adapter-specific Host command structures. The NWPA requires a HAM

to implement functions that handle as many HACBType=0 requests as are

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

4-6 Version 2.1d (September, 1995)

applicable to the adapter the HAM will manage. Some of the HACBType=0

requests ask for information about the HAM, the host adapter, or attached

devices. The HAM receives requests of this type through the union to

Host command block of the HACB. The following is a list of the HACB

type zero functions and their generic names. Prototypes are not given

because requests to perform these functions are received by the HAM in

the form of HACB messages received through the HAM's

HAM_Execute_HACB() entry point. The HAM determines which

function to perform based on the parameters contained in the union to

Host command block of the HACB. Refer to Chapter 8, HACB Type

Zero Functions for more detailed descriptions.

Note: HACB Type Zero functions are also known as HAM

functions, and they are static functions that can generally be

completed immediately within the context of

HAM_Execute_HACB().

HAM_Return_HAM_Info (mandatory)

HAM_Return_HAM_Info is responsible for supplying the NWPA with

information about the HAM. The NWPA initiates this request soon after

the HAM is loaded, and the information is in a form defined by the

HAMInfoStruct.

HAM_Scan_For_Devices (mandatory)

HAM_Scan_For_Devices is responsible for scheduling a blocking process

to scan for all devices attached to the selected adapter. This function may

schedule the scan and return to the calling process since the calling

process has non-blocking context. The HAM schedules the scan process

using NPA_Spawn_Thread(). The HAM should schedule the process to

trigger immediately. It is during the context of the scan process that the

HAM builds a device list and generates a unique handle for each device.

The NWPA makes these HAM-generated device handles available to the

CDM layer. CDMs will use these handles to route HACBs to a particular

device by placing the handle value in the HACB's DeviceHandle field. A

request for this function is initiated by the systems operator at the console

and can be called at any time. Additionally, for each time the HAM

receives this request, the HAM must respond with a physical scan of the

host bus, not just with a scan of an existing device list. If during the

physical scan, the HAM discovers new devices or it discovers that some

devices have gone away, it should refresh its device list.

HAM_Return_Device_Info (mandatory)

HAM_Return_Device_Info is responsible for supplying the NWPA with

information about a device attached to the HAM's adapter. Following the

completion of a HAM_Scan_For_Devices request, the NWPA initiates a

Host Adapter Module (HAM)

Version 2.1d (September, 1995) 4-7

find-first-find-next sequence of these requests until information about

each device is returned. The return information for each request is in a

form defined by the DeviceInfoStruct.

HAM_Unfreeze_Queue (mandatory)

HAM_Unfreeze_Queue is responsible for unfreezing the HAM's HACB

request queue for the selected device. The HAM needs to maintain a

process queue for each device it services.

HAM_Queue_AEN_HACB (mandatory)

HAM_Queue_AEN_HACB is issued by a CDM, and it directs the HAM

to monitor asynchronous hardware events such as a bus reset, a device

reset, or a device attention. If this event occurs, the HAM sets a bit mask

in the HACB indicating the event and completes the HACB with the

AEN status code. Completing the HACB informs the CDM of the event.

HAM_Set_IDE_Device_Config (implement if applicable)

HAM_Set_IDE_Drive_Config is only applicable to IDE\ATA drives, and

even then, implementing it is optional. This routine is responsible for

changing the transfer block size per IDE\ATA interrupt, thus allowing a

CDM to use special commands as they appear in the IDE\ATA

specification.

HAM_Tag_Queue_Synch/Asynch (implement if applicable)

HAM_Tag_Queue_Synch/Asynch is issued by a CDM to tell the HAM if

a device supports either tag queuing or SCSI synchronous/asynchronous

device negotiation.

HAM_Recovery_Reset (mandatory)

HAM_Recovery_Reset is issued by a CDM to tell the HAM to perform a

reset of the adapter, bus, or device. The CDM will issue this HAM

function when trying to recover from a dead device.

HAM_Deactivation_Notification (optional)

HAM_Deactivation_Notification is issued by a CDM to notify the HAM

that it has deactivated a device.

4.1.5 Host Adapter Interface Routines

The HAM is expected to implement routines that use HACB information

to construct appropriate command blocks in the adapter-specific protocol

and issue them to the host. A HAM is only required to support HACB

requests with a type suitable to the adapter it supports. The following is

the current NWPA definitions for HACB request types: HACBType=1

requests have an I/O command structure conforming to SCSI protocol.

The HAM receives requests of this type through the union to SCSI

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

4-8 Version 2.1d (September, 1995)

command block of the HACB. HACBType=2 requests have an I/O

command structure conforming to IDE/ATA protocol. The HAM receives

requests of this type through the union to IDE\ATA command block of

the HACB. HACBType=3 requests have an I/O command structure that

conforms to raw Media Manager messages. The HAM receives requests

of this type through the union to CDMPassThrough command block of

the HACB. For whatever adapter type the HAM supports, it must provide

the adapter-interface-specific routines that implement the respective

commands.

4.2 Operational Overview

The information in this section builds on the declarations and prototypes

given in the previous section by describing a HAM's major functional

procedures and their main flow of events. The information provided here

should help to add functionality to a HAM program shell. Detailed

definitions of data structures and functional descriptions mentioned in this

overview are not included to avoid frequent detours that may detract from

main-flow concepts. However, these details are provided in the technical

reference chapters of this developer's guide. The following list gives a

breakdown of the information in these chapters: Definitions of data

structures can be found in Chapter 6, "Technical Reference for NWPA

Data Structures." Functional descriptions of HAM entry points and HAI /

NWPA support routines can be found in Chapter 7, "Technical Reference

for NWPA Routines." Functional descriptions of HACB type zero

functions can be found in Chapter 8, "HACB Type Zero Functions."

Functional descriptions of NetWare OS support routines can be found in

Chapter 10, "OS Support Routines."

Host Adapter Module (HAM)

Version 2.1d (September, 1995) 4-9

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

4-10 Version 2.1d (September, 1995)

Figure 4-1: HAM Initialization

Host Adapter Module (HAM)

HAM_Software_Hot_Replace() is an optional entry to be used only if the HAM is going to support hot replacement. For more information
1

about hot replacement, refer to Section 4.3, Special Topics.

Version 2.1d (September, 1995) 4-11

4.2.1 Load-time Initialization and Registration

Loading of the HAM can be initiated in multiple ways: by the systems

operator at the server console, by a startup file, or by INSTALL. Figure

4-1 and the following steps show the sequence of events for initializing

and registering a HAM at load-time. Note: Figure 4-1 is being updated to

describe the NBI initialization process and to correctly describe HAM

initialization. The next release of this specification will contain this

updated flowchar. The following paragraphs do include the NBI

paradigm, however.

1. When a HAM is loaded, the OS calls the HAM's HAM_Load() entry

point passing it loadHandle, screenID, and commandLine as input

parameters. HAM_Load() is responsible to perform the following:

A. Register the HAM module. The HAM registers its module by calling

NPA_Register_HAM_Module(). This API sets up the general

environment necessary for the HAM to become operational and

makes it possible for the HAM to allocate and register any resources

it may need.

It is within the context of NPA_Register_HAM_Module() that the

HAM's NPAHandle is assigned a value, and that the following HAM

entry points get registered with the NWPA:

HAM_Check_Option()

HAM_Software_Hot_Replace() 1

HAM_ISR()

HAM_Execute_HACB()

HAM_Abort_HACB()

Note: If the HAM will support multiple adapters, it should call

NPA_Register_HAM_Module() for each instance it will

support. This API accepts a HAM-generated instance number

as an input parameter. This instance number should correspond

to the adapter card instance being supported by the HAM. A

separate instance number is necessary to register different

hardware options for each adapter.

B. Verify bus compatibility.

The HAM can check the host bus type by calling

NPA_Return_Bus_Type(). The HAM can then verify that the bus type

is compatible with the type it supports.. If the HAM is NBI aware

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

For more information about NWDIAG, see Section 4.3.5.
2

4-12 Version 2.1d (September, 1995)

and is supporting an adapter designed for a bus architecture that

provides configuration information on a per-slot basis, (e.g. EISA,

MCA, PCI), then do the following:

1. Build the Product_ID option structure. (For details refer to the

NPAOptionStruct definition in Chapter 6.)

Option Name = a length preceded & null terminated name of the

option (PRODUCT ID)

Option Type =Product_ID_Option

Parameter0= BusType

Parameter1=Pointer to an array of bytes that contains the

architecture specific Product ID information

Parameter2=The size of the array pointed to by Parameter1.

OptionFlag= USE_THIS_OPTION

String = Null

2. Add the option using NPA_Add_Option() with Instance = 0

3. Parse the option using NPA_Parse_Option().

During the context of NPA_Parse_Option(), the HAM’s

HAM_Check_Option() routine is repeatedly called passing it the

option struction with output parameters as follows:

Parameter0=BusTag

Parameter1=Slot

Parameter2=Unique ID

For each adapter instance found, the HAM_Check_Option()

routine should store the return information in a configuration

table for use later.

4. If the HAM supports the “SLOT=” option, do the following:

a. Build a Slot Option structure.

b. Add the Slot Option using NPA_Add_Option()

c. Parse the option using NPA_Parse_Option().

If a “SLOT=” option matching one of the elements in the

HAM’s configuration table is present on the command line,

the HAM calls NPA_Get_Card_Config_Info() passing it the

bus tag and unique ID given during the parse of the Product

ID option. This routine returns the bus specific configuration

information associated with the target adapter.

C. Create a select-list of desired options.

Options are command line keywords that set operational states such

as NWDIAG , or specify hardware resources such as interrupts,2

DMA channels, ports, memory decoding, and custom parameters.

Host Adapter Module (HAM)

Version 2.1d (September, 1995) 4-13

For each of these applicable resources, the HAM creates an options

list by filling out an instance of an NPAOptionStruct with Flags set to

USE_THIS_OPTION and Parameter2 = BusTag (if NBI aware) and

calling NPA_Add_Option(). During the context of

NPA_Add_Option(), the NPA copies the option information and

constructs a "select-list" of valid options for the HAM and adapter.

To completely build the option list, the HAM should iteratively fill

out the NPAOptionStruct instance and call NPA_Add_Option() for

each option type it desires. Since the NWPA maintains its own copy

of option information in constructing the select-list, the HAM can

reuse the same NPAOptionStruct instance for each call to

NPA_Add_Option().

Note: For hardware resource options, if NPA_Add_Option() returns a

non-zero value, it indicates that the option is already reserved.

Also, the NWPA will not add the option to the HAM's

select-list.

D. Parse the load command line for specified options.

The HAM calls NPA_Parse_Options() to cause the NWPA to match

options specified on the command line with those in the HAM's

select-list. In turn, NPA_Parse_Options() iteratively calls the HAM's

HAM_Check_Option() entry point for each match it finds.

HAM_Check_Option() either accepts or rejects the selected option.

Each time HAM_Check_Option() accepts an option, the NWPA

places it on a "use-list."

If there is an option on the command line that does not match

anything in the HAM's select-list, it is ignored. However, if after

parsing the command line the NWPA finds residual options in the

HAM's select-list, it either prompts the user for the options or

discards them depending on the bits set in the Flags field of each

option's NPAOptionStruct.

Warning: Hardware options are not physically registered during the

context of NPA_Parse_Options(). Therefore, the HAM

should not try to physically access a resource when its

HAM_Check_Option() entry point is called during this

context.

E. Register the options in the HAM's use-list.

The HAM registers the parsed options (options specified in its

use-list) by calling NPA_Register_Options(). This API accepts the

instance number introduced in the note of step 1.A.

NPA_Register_Options() uses this number to associate the group of

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

4-14 Version 2.1d (September, 1995)

options being registered with a particular instance of an adapter

managed by the HAM.

NPA_Register_Options() physically registers the hardware resources

in the use-list making them available to the HAM. Also, similar to the

parse phase in step 1.D, NPA_Register_Options() iteratively calls the

HAM's HAM_Check_Option() entry point for each registered option,

this time allowing the HAM to physically verify the resource or set

internal flags to set an operational mode. An example of setting an

internal flag to determine an operational mode is the NWDIAG

option introduced in section 4.3.5.

Another reason why HAM_Check_Option() gets called during option

registration is to provide the HAM with return information pertinent

to the option. For example, the memory decode option that pages in

memory-mapped I/O space to the system returns a logical address to

the HAM. This type of return information is given to the HAM

through HAM_Check_Option() when it is called under the context of

NPA_Register_Options(). The actual information is found in the

Parameter2 field of the NPAOptionStruct pointed at by the entry

point's Option input parameter.

Note: Steps 1.C - 1.E describe the general paradigm for registering

hardware and configuration options. For more detailed

information and actual registration examples, refer to the

NPAOptionStruct in Chapter 6.

F. Allocate memory resources.

The HAM allocates any memory buffers it may need by calling

NPA_Allocate_Memory().

G. Schedule the HAM's timeout routine.

The HAM schedules its timeout routine, HAM_Timeout(), by calling

NPA_Spawn_Thread(). The HAM will use this routine to recover

from a hung-device condition. HAM_Timeout() monitors the elapsed

time of a HACB request as specified in the HACB's TimeoutAmount

field.

Note: NPA_Spawn_Thread() is a one-shot API.

H. Reset and make the adapter ready.

The HAM must ensure that is operational and ready to accept HACB

requests before going to step I.

I. Activate the host bus.

Host Adapter Module (HAM)

Version 2.1d (September, 1995) 4-15

The HAM calls HAI_Activate_Bus() to activate an instance of a host

bus. This API requires an exchange of handles that identify the bus

instance. The HAM passes a unique handle (HAMBusHandle) it

generates to identify the bus instance as an input parameter. Then, the

NWPA returns its own unique handle (NPABusHandle) it will use to

identify the bus instance as an output parameter. The HAM must call

HAI_Activate_Bus() for each bus instance it will manage.

J. Return load status.

If the HAM loaded successfully, HAM_Load() should return zero. If

the load was unsuccessful, it should do the following:

1. Cancel HAM_Timeout() by calling NPA_Cancel_Thread() passing

it the exact same arguments used in setting up the timeout

routine.

2. Return all allocated memory by calling NPA_Return_Memory().

 3. Unregister all hardware options by calling

NPA_Unregister_Options().

4. Unregister the module if the HAM is to be unloaded by calling

NPA_Unregister_Module().

Warning: NPA_Unregister_Module() should not be called if the

HAM is only erroring out of the registration of a single

instance of itself, but it intends to continue supporting

other instances. If it is called, all pending I/O for this

HAM will be aborted.

5. Return -1.

If at any time during initialization and registration an uncorrectable error

occurs, the HAM must return its resources and back out from the point it

reached. For example, if the bus type returned in 1.B is not compatible

with what the HAM supports, the HAM only needs to call

NPA_Unregister_Module() to error out. If the HAM progressed as far as

1.F in the sequence, then the HAM would need to return memory,

unregister options, and then unregister the module.

After the HAM is loaded and registered with the OS, it must be ready to

receive the following sequence of HACBType=0 requests:

1. HAM_Return_HAM_Info()

2. HAM_Scan_For_Devices()

3. HAM_Return_Device_Info()

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

4-16 Version 2.1d (September, 1995)

The first request, HAM_Return_HAM_Info(), is initiated by the NWPA so

that it can get HAM-specific information and add the HAM to its object

database. The second request, HAM_Scan_For_Devices(), is either

initiated from a command-line directive in a startup file or by the systems

operator at the console. This HAM function spawns a blocking thread,

using NPA_Spawn_Thread(), that performs a host bus scan for attached

devices. The spawned thread builds the HAM's device list, creates a

unique DeviceHandle for each device, and fills out an instance of a

DeviceInfoStruct for each device. The third request,

HAM_Return_Device_Info(), is initiated by the NWPA so that it can get

device-specific information and add an object for each device to its

database. The NWPA initiates a find-first-find-next sequence of these

requests until information about each device is returned. The return

information for each request is in a form defined by the DeviceInfoStruct.

Note: The HAM will receive the above sequence of requests for each

bus instance it registered at load-time using

HAI_Activate_Bus().

4.2.2 Processing HACB I/O Requests

HAM_Execute_HACB() is the HAM's entry point for receiving and

executing HACB I/O requests, and it has non-blocking context. This entry

point is registered with the NWPA during NPA_Register_HAM_Module().

The following steps show the sequence of events for processing a HACB

I/O request:

1. The NWPA calls HAM_Execute_HACB() passing it

HAMBusHandle and a pointer to a HACB as input parameters.

HAM_Execute_HACB() does the following:

A. Identify the host bus instance.

The HAM identifies the target bus instance based on the

value contained in the HAMBusHandle input parameter. The

HAM originally generated this HAMBusHandle value and

registered it for the bus instance using HAI_Activate_Bus() at

load-time. If the HAM is managing only one host bus, the

value in the HAMBusHandle input parameter will be the

same for all requests. If the HAM is managing multiple buses

(when the adapter supports more than one bus or the HAM is

managing multiple buses spanned over multiple adapters), the

HAMBusHandle value is unique to each bus instance.

 B. Identify the target device.

Host Adapter Module (HAM)

Version 2.1d (September, 1995) 4-17

The HAM identifies the target device based on the value

contained in the DeviceHandle field of the HACBStruct

instance pointed at by the HACB input parameter. The HAM

originally generated this DeviceHandle value during the scan

thread scheduled by HAM_Scan_For_Devices() and reported

it to the NWPA during HAM_Return_Device_Info().

C. Execute or queue the request.

If the adapter can immediately accept the request, the HAM

should translate the HACB request information into a

protocol-specific command block, issue the request to the

adapter, and then return to the calling process. If the adapter

cannot immediately accept the request, the HAM should

place it in an internally managed queue for the target device

and return to the calling process.

 Note: The NWPA expects the HAM to provide a queue for each

device it manages. If a request cannot be immediately issued to

the adapter during the context of HAM_Execute_HACB(), the

HAM must place the request in the target device's queue and

return to the calling process. The HAM must pull requests

from the queue and execute them at another time during

another thread. For a detailed specification on device queue

behavior and how it affects HAM_Execute_HACB(), see

section 4.3.1.3.

2. The target device services the request and at completion, the

adapter generates a hardware interrupt. The NetWare OS fields

the interrupt and routes servicing to the HAM's ISR entry point,

HAM_ISR(), passing it IRQLevel as an input parameter.

HAM_ISR() has non-blocking context and does the following:

A. Determines which device to service.

The HAM must provide the logic to determine which adapter

its managing caused the interrupt.

B. Ensures that data is transferred correctly.

If the HAM's adapter does DMA or bus-mastering, the ISR is

not concerned with physical data transfer because the transfer

buffer was specified when the request was issued to the

adapter. However, for host buses that rely on programmed

I/O, the ISR needs to perform the transfer. The HACB

provides both the virtual (logical) and physical (absolute)

addresses of the request's I/O buffer. These addresses are

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

4-18 Version 2.1d (September, 1995)

found in the HACB's virtualAddress and physicalAddress

fields, respectively.

C. Posts completion status to the HACB.

Once the request is complete, HAM_ISR() must post the

HACB's completion status to its hacbCompletion field. Valid

completion status values are listed in Chapter 3 under the

description of the hacbCompletion field. These status codes

can reflect successful completion of the request, or they can

reflect HACB and/or device errors. For

processor-independence reasons, this field must be processed

as a LONG and manipulation of its contents should be done

arithmetically using macros. The HAM should post HACB

completion using the following macro:

 #define SET_STATUS (UpperWord, LowerWord)((UpperWord)<< 16)
| ((LowerWord)& 0xFFFF))

D. Completes the HACB.

A HACB request has two possible completion paths

depending on whether or not the NWDIAG option was

specified on the command line at load-time.

1. If NWDIAG was not specified, HAM_ISR() performs one

of the tasks outlined in steps a through c below.

2. If NWDIAG was specified, then HAM_ISR() calls the

diagnostic API, HAI_PreProcess_HACB_Completion().

This API has non-blocking context, and it gives a

diagnostic NLM a hook for snooping on

post-device-processed HACB information prior to it

being completed and passed to the CDM layer. The

diagnostic NLM can alter a HACB's completion status

(hacbCompletion); thereby, introducing false errors to test

system behavior. After

HAI_PreProcess_HACB_Completion() returns,

HAM_ISR() performs one of the tasks outlined in steps a

through c below.

 a. If the request completes successfully and the

Freeze_Queue_Flag in the HACB's Control_Info field

is cleared (zero), HAM_ISR() completes the HACB

by calling HAI_Complete_HACB(), initiates the

execution of the next HACB in the device's queue,

and returns to the calling process.

Host Adapter Module (HAM)

Version 2.1d (September, 1995) 4-19

b. If the request completes successfully and the

Freeze_Queue_Flag in the HACB's Control_Info field

is set (one), HAM_ISR() completes the HACB by

calling HAI_Complete_HACB() , freezes the device

queue, sets the most-significant-bit in the HACB's

hacbCompletion field so that the callback CDM can

know the device's post-completion queue state, and

returns to the calling process. The device's queue

must remain frozen until either the HAM receives a

HAM_Unfreeze_Queue for that device, or it receives

a priority HACB request for that device.

c. If there is an error, HAM_ISR() completes the HACB

by calling HAI_Complete_HACB(), freezes the

device queue, sets the most-significant-bit in the

HACB's hacbCompletion field so that the callback

CDM can know the device's post-completion queue

state, and returns to the calling process.

The device's queue must remain frozen until either the HAM

receives a HAM_Unfreeze_Queue for that device, or it

receives a priority HACB request for that device.

Additionally, the low-order 31 bits of the hacbCompletion

field must remain intact to the value set in step 2.C above.

This value indicates the type of error that occurred.

Note: HAM_ISR() has other responsibilities regarding the device

queue. For a detailed specification on device queue behavior

and how it affects HAM_ISR(), see section 4.3.1.3.

4.2.3 Aborting a HACB Request

HAM_Abort_HACB() is the HAM's entry point for aborting I/O requests,

and it has non-blocking context. This entry point is registered with the

NWPA during NPA_Register_HAM_Module(). The following shows the

sequence of events for aborting a HACB request:

The NWPA calls HAM_Abort_HACB() passing it HAMBusHandle, a

pointer to a HACB, and Flag as input parameters. HAM_Abort_HACB()

does the following:

A. Identify the host bus instance.

The HAM identifies the target bus instance based on the value

contained in the HAMBusHandle input parameter. The HAM

originally generated this HAMBusHandle value and registered it

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

4-20 Version 2.1d (September, 1995)

for the bus instance using HAI_Activate_Bus() at load-time. From

this HAMBusHandle, the HAM should be able to access its

device list for the target bus instance.

B. Locate the HACB to be aborted. The NWPA passes a pointer to

the HACB that is to be aborted, which the HAM uses to locate

the associated request.

C. Determine the appropriate abort action.

HAM_Abort_HACB() has three possible actions depending

on the value of the Flag input parameter passed by the

NWPA.

1. If Flag = 0 (unconditional abort case), then

HAM_Abort_HACB() does ONE of the following:

a. If the HACB is still in the device queue (clean abort

case):

1. Unlinks the HACB from the device queue.

2. Places the ABORT code (0x0004) in the upper

WORD of the HACB's hacbCompletion field and

0x0000 in the lower WORD using the following

macro:
#define SET_STATUS (UpperWord,LowerWord) ((UpperWord)<<

16) | ((LowerWord) & 0xFFFF))

3. Completes the HACB by calling

HAI_Complete_HACB() passing it the HACB's

HACBPutHandle as an input parameter.

4. Returns 0 to notify the NWPA that this was a clean

abort, meaning that the HACB was aborted prior to

being physically processed by the device.

 b. If the HACB is currently being processed by the device

(dirty abort case):

1. Tags the HACB for abortion at a later time by

placing the ABORT code (0x0004) in the upper

WORD of the HACB's hacbCompletion field and

0x0000 in the lower WORD using the following

macro:

#define SET_STATUS (UpperWord, LowerWord) ((UpperWord)<<
16) | ((LowerWord) & 0xFFFF))

Under the dirty abort case, HAM_Abort_HACB()

must not complete the HACB. The HAM will

complete the HACB at a later time during its ISR.

Host Adapter Module (HAM)

Version 2.1d (September, 1995) 4-21

2. Returns -1 to notify the NWPA that the HACB could

not be cleanly aborted.

3. HAM_ISR() must intercept the aborting HACB and

do the following:

a. Place the ABORT code (0x0004) in the upper

WORD of the HACB's hacbCompletion field and

0x0000 in the lower WORD using the following

macro:

#define SET_STATUS (UpperWord, LowerWord) ((UpperWord)<<
16) | ((LowerWord) & 0xFFFF))

b. Complete the HACB by calling

HAI_Complete_HACB() passing it the HACB's

HACBPutHandle as an input parameter.

2. If Flag = 1 (conditional abort case), then

HAM_Abort_HACB() does one of the following:

a. If the HACB is still in the device queue (clean abort):

1. Unlinks the HACB from the device queue.

2. Places the ABORT code (0x0004) in the upper

WORD of the HACB's hacbCompletion field and

0x0000 in the lower WORD using the following

macro:

#define SET_STATUS (UpperWord, LowerWord) ((UpperWord)<<
16) | ((LowerWord) & 0xFFFF))

3. Completes the HACB by calling

HAI_Complete_HACB() passing it the HACB's

HACBPutHandle as an input parameter.

4. Returns 0 to notify the NWPA that this was a clean

abort, meaning that the HACB was aborted prior to

being physically processed by the device.

b. If the HACB has already been sent to the device, returns

-1 to notify the NWPA that the HACB could not be

cleanly aborted. The device queue continues to operate

normally.

3. If Flag = 2 (check for clean abort case), then

HAM_Abort_HACB() does one of the following:

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

4-22 Version 2.1d (September, 1995)

a. If the HACB is still in the device queue (clean abort),

returns 0 to notify the NWPA that the indicated HACB

can be cleanly aborted. The device queue continues to

operate normally.

b. If the HACB has already been sent to the device, returns

-1 to notify the NWPA that the indicated HACB cannot

be cleanly aborted. The device queue continues to

operate normally.

D. If the HAM cannot find the HACB that is to be aborted in any of

its lists, it has lost the HACB, which is a BAD condition. The

HAM should then return -2 to notify the NWPA of this condition.

Note: The results of step D will Abend the server. The HAM must

keep track of HACB requests it receives.

4.2.4 Unload-time Deregistration

Unloading of the HAM is initiated by the systems operator at the server

console. The following steps show the sequence of events at unload-time.

1. When a HAM is unloaded, the OS first calls the HAM's

HAM_Unload_Check() entry point passing it ScreenID as an input

parameter. HAM_Unload_Check() has blocking context, and it does

the following:

A. Determines if any applications are using any of the devices

managed by the HAM.

HAM_Unload_Check() calls NPA_Unload_Module_Check(),

which checks the NWPA's database and returns the status of each

device attached to the adapter. HAM_Unload_Check() returns the

use-status from NPA_Unload_Module_Check().

NPA_Unload_Module_Check() issues a warning message to the

console for each device that is locked. Current I/O to these

devices will halt if the HAM is unloaded, and the devices will be

deactivated.

B. Returns the composite device status to the calling process.

A return value of zero indicates that none of the HAM's devices

are in use. A return value greater than zero indicates that one or

more of the HAM's devices are in use.

2. If HAM_Unload_Check() returns zero, the OS calls the HAMs

HAM_Unload() entry point. If HAM_Unload_Check() returns

Host Adapter Module (HAM)

Version 2.1d (September, 1995) 4-23

non-zero, the OS issues a message to the console giving the operator a

chance to either cancel or continue the unload. Only if the operator

chooses to continue the unload will the OS call the HAM's

HAM_Unload() entry point.

The OS calls the HAM's HAM_Unload() entry point with blocking

context, and it does the following:

A. Causes the NWPA to terminate I/O to the HAM.

HAM_Unload() terminates I/O to the HAM by calling

HAI_Deactivate_Bus() immediately upon entry. It is during the

context of this API that the application is notified that its link to

the device is about to be severed. Therefore, the HAM must

remain operational and process requests until

HAI_Deactivate_Bus() returns control. Once this happens, the

HAM is guaranteed not to receive any more HACB requests for

that bus instance. HAM_Unload() must call

HAI_Deactivate_Bus() for each bus instance being managed by

the HAM.

B. Returns resources back to the system.

1. Ensure that all outstanding HACB's, if any exist, are

cancelled with the appropriate HAM UNLOAD completion

code described in Appendix B. This action is really a

preventative measure. Theoretically, all of these outstanding

HACBs should have been aborted during the context of

HAI_Deactivate_Bus().

2. Cancel all asynchronous events, such as timeout handlers,

timers, etc., by calling NPA_Cancel_Thread() on each event.

3. Return memory to the system pool by calling

NPA_Return_Memory().

4. Unregister all hardware options using

NPA_Unregister_Options().

5. Unregister the module using NPA_Unregister_Module().

C. Return 0 if successful, or return -1 if unsuccessful.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

4-24 Version 2.1d (September, 1995)

4.3 Special Topics

This section discusses special topics relevant to the HAM.

4.3.1 HAM Device Queues

A HAM is required to implement and manage a HACB request queue for

each device attached to the adapter it supports. Queue management

routines are to be provided by the HAM, and they must implement the

behavior outlined in this subsection.

Note: If a HAM supports an adapter that does hardware queuing, it

needs to implement whatever measures are necessary to ensure

that the queue state protocol discussed in this section is

followed.

4.3.1.1 Request Hierarchy

HACBType=0 requests have highest priority and should be executed

immediately in the order they are received. HACBType=0 requests really

do not have to be queued since they map to HAM-specific functions that

do not require processing by a device. An example would be the request

corresponding to HAM_Return_HAM_Info(). This function merely

returns information about the HAM and can be completed immediately.

HACBType=0 requests can happen at any time, and if they need to

queued, they should probably be placed in a separate queue explicitly for

HAM functions rather than in a device queue. Other HACBType requests

do map to specific devices, so they do need to be queued if they cannot be

executed immediately . These types of requests can be processed as

priority HACBs or has normal HACBs depending on whether the

Priority_Flag is set in the HACB's Control_Info field. The following list

shows the execution order of HACB requests in a device queue:

1. Priority HACB requests (Priority_Flag is set) have the highest

priority in the device queue. Immediately upon receipt of a

priority HACB, the HAM should place the HACB at the head of

the device queue and issue it to the device.

Priority HACB requests are generally used by the CDM and

Media Manager for diagnostics and error recovery. By setting

both the Priority_Flag and the Freeze_Queue_Flag, the CDM or

Media Manager can execute HACB requests in lock-step fashion.

If multiple priority requests are placed in the queue due to a

device busy condition, they are executed on a LIFO basis.

Host Adapter Module (HAM)

Version 2.1d (September, 1995) 4-25

2. Normal HACB requests (Priority_Flag is cleared) have the lowest

priority. These requests are the most frequent and should be

placed at the end of the queue.

Note: Unless the queue contains a HACB request with the

Preserve_Order_Flag set (this condition is described in the

next subsection), the HAM can reorder normal requests in a

device queue to optimize performance. However, the routines

that handle the reordering must implement fairness so that any

one, normal HACB request gets executed in a timely fashion

instead of always being pushed to the back of the queue.

4.3.1.2 Preserve-Execution-Order Requests

To support sequential devices where preserving the execution-order of

requests is critical, the NWPA defines a Preserve_Order_Flag for the

HACB. This flag also resides in the HACB's Control_Info field. HACB's

with this flag set are a special-case of normal HACB requests. When the

HAM receives a HACB with the Preserve_Order_Flag set, it must always

place the request at the back of the device queue.

The Preserve_Order_Flag indicates that all requests currently positioned

in front must be executed before the preserve-order request, and any new

requests that get placed in the queue must be executed after the

preserve-order request. If multiple preserve-order requests are in the

queue, this paradigm must be extended to maintain the prescribed

behavior.

Priority HACB requests, as explained in the previous subsection, are the

one exception to the preserve-order rule. Priority HACB requests always

get placed at the front of the queue even if preserve-order requests are

present.

4.3.1.3 Queue State

This subsection defines the state conditions of a device queue. A device

queue has two states: frozen or unfrozen. A frozen state means that the

issuing of requests in the queue to the adapter/device is halted; however,

queue management does not stop. If the HAM receives any new requests

for a frozen queue, it still must accept them and place them in their proper

sequence in the queue. An unfrozen state means that requests continue to

be issued to the adapter/device.

In the event of an error, the HAM is expected to freeze the queue of the

device that caused the error, post the appropriate completion status as

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

4-26 Version 2.1d (September, 1995)

prescribed in the description of the HACB's hacbCompletion field in

Chapter 3, and complete the HACB using HAI_Complete_HACB().

If the HAM is managing multiple devices, freezing one device queue does

no affect the state of any of the others. Also, the HAM must keep the

queue frozen until that device either receives a HAM_Unfreeze_Queue()

request or a priority request. After receiving one of these requests, the

queue starts up again.

During normal I/O operations, the HAM controls the queue state from

two different time points: the HACB receive-time point and the HACB

completion-time point. The receive-time point is the HAM's entry point

that receives HACB requests prior to sending them to the adapter/device

(HAM_Execute_HACB()). The completion-time point is the HAM's entry

point that completes the HACB after it has been processed by the device

(HAM_ISR()). Table 4-1 summarizes queue state management.

Host Adapter Module (HAM)

Version 2.1d (September, 1995) 4-27

Table 4-1: Device Queue States

At HACB Receive Time At HACB Completion Time

HAM_Execute_HACB() HAM_ISR()

if (Priority_Flag set) if (error occurred)

{ {

Place at head of queue; Determine device queue state (frozen/unfrozen)

Issue to adapter/device; and error code according to Appendix B;

if (Freeze_Queue_Flag set)

Freeze device queue; Set hacbCompletion code from current device

return; queue status and current error code;

}

/* For any other HACB at head of queue */

else

{

if ((queue is empty) && (adapter/device

notBUSY))

{

Issue to adapter/device;

if (Freeze_Queue_Flag set)

Freeze device queue;

 return; /* No error occurred, check for the implicit

 }

 else

 Place at back of queue;

return;

}

Complete HACB back to the NWPA;

if (device queue is unfrozen)

Issue next request in queue to

adapter/device;

return;

}

 Set the current error code to Successful_Completion;

UNFREEZE_QUEUE within HACB */

if ((Priority_Flag == set) && (Freeze_Queue_Flag

== clear))

UNFREEZE the queue for the current device;

else

Do NOT modify current queue state status for

this device;

Set hacbCompletion code from current device queue

status and current error code;

Complete HACB back to the NWPA;

if (device queue is unfrozen)

Issue next request in queue to adapter/device;

return;

if (HAM's HAM_Unfreeze_Queue() function is called)

{

 Unfreeze target device queue;

 Issue next request in queue to adapter/device;

return;

}

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

In order for a HAM to detect a device attention, the CDM must first issue commands that will program the device to issue the alert.
3

4-28 Version 2.1d (September, 1995)

Note: The HAM should never freeze a device queue on a request that

was dirty aborted. If during its ISR, the HAM detects a HACB

request that was dirty aborted, the HAM should complete the

HACB with the abort completion code, even if the request

generated an error.

4.3.2 Asynchronous Event Notification

The NWPA provides a mechanism for CDMs to request that HAMs

notify them of asynchronous events. These include hardware events such

as a bus reset, device reset, or a device attention. The CDM requests for

asynchronous event notification (AEN) by issuing a HACBType=0 request

to the HAM. HACBType=0 means that the HACB's union command area

is defined by the host adapter command structure.

Note: A HACB request for asynchronous event notification is also

referred to as an AEN HACB.

To register for asynchronous event notification, the CDM must issue an

AEN HACB with the following information in the HACB's host adapter

command block:

Function = 5

Parameter0 = Bitmap indicating the type of events for which the

CDM wants to be notified. Currently, the NWPA

recognizes the following:

0x00000001 Bus reset

0x00000002 Device reset

0x00000004 Device attention 3

0x00000008 Adapter reset

0x00000010 Reserved

 to

0x80000000

Parameter1 = 0

Parameter2 = 0

These requests must be issued on a per device basis, meaning that the

CDM will provide the correct device handle for the device it wants

monitored. The device handle is placed in the AEN HACB's

DeviceHandle field.

The CDM builds the bitmap indicating the events it wants to be informed

of, places the bitmap value in the Parameter0 field of the AEN HACB,

Host Adapter Module (HAM)

Version 2.1d (September, 1995) 4-29

and executes the request by calling the NWPA routine

CDI_Non_Blocking_Execute_HACB(). This API requires the CDM to

provide a pointer to a callback routine as an input parameter.

The HAM receives the AEN HACB through its

HAM_Queue_AEN_HACB() HAM function and maintains it in a local

holding area associated with the target device until an event occurs. These

AEN HACBs should not be placed in the device queue since they do not

represent I/O requests that need device processing.

After an AEN event occurs, the HAM will check to see if the value in

Parameter0 represents an event that a CDM wants to be notified of. If so,

the HAM will freeze the device queue, set a bitmap value in the HACB's

Control_Info field to indicate which event(s) occurred, place the AEN

code (0x80080000) in the HACB's hacbCompletion field, and complete

the AEN HACB by calling HAI_Complete_HACB(). The bit definitions

for the return bitmap value are the same as those defined for the

Parameter0 field.

Note: If no CDM has registered for a specific AEN event that occurs,

the queue state will not change.

The HAM must be ready to accept multiples of these requests per device.

When an event occurs, the HAM should complete all AEN HACBs

registered for that event for the target device.

4.3.3 Reentrance

To support multiple adapter cards compatible with a HAM's type, a HAM

may be declared reentrant in the definition (.DEF) file. Doing so allows

the HAM to maintain multiple instances of itself; however, only one code

image is maintained in the file server's memory. Each subsequent LOAD

command for this same HAM calls HAM_Load() creating a new instance

of itself. For each instance, the HAM receives a pointer to the command

line so that it can establish a unique I/O configuration for that instance.

The HAM must maintain an internal counter to track its instance number;

and, when the time comes for the HAM to be unloaded, it must deactivate

each bus instance managed by the HAM by calling HAI_Deactivate_Bus()

and free all allocated resources.

4.3.4 Hot Software Replacement

Hot software replacement is an NWPA feature that provides for dynamic

replacement of one version of a HAM driver with an updated version.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

4-30 Version 2.1d (September, 1995)

Replacement is dynamic because the swap can be done without having to

dismount any volumes or disrupt the I/O channel for a lengthy period of

time.

Hot software replacement only applies to HAMs from the same

manufacturer, which means that the HAM being replaced (old HAM) and

the new HAM must have the same vendor ID (NovellAssignedModuleID).

The vendor ID is assigned to a manufacturer by Novell Labs.

Presently, NWPA does not require HAMs to implement hot software

replacement. However, due to market reaction when the feature was

demonstrated, this requirement may change. Therefore, it is highly

recommended that HAMs implement this feature, as it will be a

tremendous value-add to customers.

4.3.4.1 Overview

The objective in hot software replacement is to establish an I/O channel in

the new HAM that looks logically identical to the one in the old HAM,

from the perspective of NWPA. Logically identical means that the new

HAM must show all the same devices, adapters, hardware resources, and

handles that were used in the old HAM. Details on the I/O channel are

discussed later in this section.

The method used to get configuration information is for the new HAM to

pass a series of vendor-specific-messages to the old HAM and the old

HAM responding to each message by returning the appropriate

configuration information in a buffer provided in each message. The

structure of these messages is not defined in NWPA. Their structure and

meaning are defined by the manufacturer of the HAMs.

The new HAM sends a vendor-specific message by calling

NPA_Exchange_Message(). This routine routes the message to the old

HAM by calling its HAM_Software_Hot_Replace() routine. The old

HAM must provide this entry point for hot replace to work. The old

HAM keys off of some field (or fields) in the message to determine what

information is being asked for, and then copies it into the message buffer.

All of this message exchanging is done during the context of the new

HAM's HAM_Load() (initialization) routine. After the new HAM

successfully gets all the channel information it needs to be operational, it

succeeds its HAM_Load() routine by giving a return value of zero. At

that point, NWPA routes I/O through the new HAM.

To understand the general details of hot software replacement, it is

necessary to review the elements that constitute an I/O channel in the

perspective of NWPA.

Host Adapter Module (HAM)

Version 2.1d (September, 1995) 4-31

NWPA routes I/O by identifying the target device and the bus to which

the target device is attached. The identification is done through a series

of handles, some generated by the NWPA module and some generated by

the HAM. The following is a list of these handles as discussed in this

specification:

NWPA Generated HAM Generated
NPABusHandle HamBusHandle

DeviceHandle

The NPABusHandle and the HamBusHandle are the handles used to

identify a target bus. There are two handles given to guarantee

uniqueness, and they are exchanged during HAI_Activate_Bus(). As

indicated above, the HAM generates one of the handles and the NWPA

generates the other. When the NWPA passes HACBs to any of the

HAM's entry points, it will pass the HAM-generated handle to identify the

target bus. In the reverse direction, when the HAM indicates a target bus

to any of the NWPA routines, it passes the NWPA-generated handle.

The third handle in the I/O channel is the HAM-generated DeviceHandle.

This is the HAM's unique identifier for a particular device on a given bus.

The DeviceHandle only needs to be unique within the devices attached to

its bus. All HACBs targeted for specific devices will supply the

corresponding HAM-generated DeviceHandle.

For hot software replacement to work, the new HAM must use all the

same handle values that the old HAM used so that NWPA's perspective of

the channel does not change. Otherwise, the channel will be disrupted to

the point where NetWare volumes associated with the channel will

dismount. This is an extremely important point. Since all handle values

must be maintained between the swapping modules, and since the two

modules are exchanging configuration information across separate,

protected memory domains, these handles cannot be implemented as

memory pointers.

In addition to these handles, hardware resources such as ports, IRQs, and

DMA channels are components to the NWPA-HAM I/O channel. When

a HAM registers for a hardware resource using NPA_Register_Options(),

NWPA registers the resources in behalf of the HAM. As far as NetWare

is concerned, NWPA owns the resources and merely lends them to the

HAM. This facilitates hot software replacement, because neither HAM

has to worry about unregistering or registering hardware resources during

the swap. Doing so would dissolve the I/O channel from the OS's

perspective, and dismount any volumes associated with the channel. The

new HAM only needs to find out what resources the old HAM was

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

4-32 Version 2.1d (September, 1995)

operating with and configure itself the same way. Once the hot swap is

finished, NWPA redirects the use of those hardware resources to the new

HAM. As far as the OS is concerned, nothing has changed.

4.3.4.2 Flow of Events

This section steps through the flow of events in the hot software replace

paradigm, describing fundamental concepts on how to implement it. For

an example of one specific implementation method, refer to the sample

source code for SCSIPS2.HAM in the driver development kit. This kit is

on compact disc distributed by Novell Labs.

To see how SCSIPS2.HAM initializes itself for hot replace, look at the

DriverStart procedure in the file HAMSCSI.386. To see how

SCSIPS2.HAM, acting as a new HAM, requests configuration

information, look at the DoHotReplace procedure in the file

HAMHOT.386. To see how SCSIPS2.HAM, acting as an old HAM,

gives configuration information, look at the ExchgPipe procedure in the

file HAMHOT.386.

1. The HAM is loaded invoking its HAM_Load() routine. At the

beginning of this routine, the HAM calls

NPA_Register_HAM_Module(). All of the remaining steps occur

during the context of the new HAM's HAM_Load() routine.

2. NWPA checks its list of existing modules to determine if this is a new

load of a module or a reentrant load. A new load means that the

module's LoadHandle does not match the LoadHandle of any other

module in the list.

3. If this is a new load, then NWPA checks for a possible hot replace

candidate. A hot replace candidate is an existing module that has the

same NovellAssignedModuleID as the module being loaded:

(newModule->LoadHandle!=candidateModule->LoadHandle)&&
(newModule->NovellAssignedModuleID==candidateModule->NovellAssignedModuleID)

Important: The NetWare NLM loader assigns the HAM's LoadHandle, and it uses

the name of the module to calculate it. In order for hot replace to work,

the new HAM cannot have the same name as the old HAM.

Otherwise, the LoadHandles will not be unique, and the load of the

new HAM will be mistakenly taken as a reentrant load of the existing

HAM. As a suggestion for LoadHandle uniqueness, include a revision

number in the module name.

Host Adapter Module (HAM)

Version 2.1d (September, 1995) 4-33

4. If a candidate is found, NPA_Register_HAM_Module() returns a value

of 1.

5. The new HAM then determines if it will do hot replace or fail its load

leaving the existing HAM in the I/O channel. If the HAM decides to

do hot replace, it should check the command line for any possible

options, such as NWDIAG, and then start requesting configuration

information using its vendor-specific messaging scheme. The new

HAM sends these messages to the existing HAM by calling

NPA_Exchange_Message(). Each message should include a buffer

space sufficient to receive the requested information.

6. The existing (or old) HAM receives these messages through its

HAM_Sofware_Hot_Replace() entry point. The old HAM determines

what information is being asked for and copies it into the message

buffer.

In the SCSIPS2.HAM example, there are fields at the beginning of

the message indicating operations to perform. SCSIPS2.HAM, when

it acts as a new HAM initiating hot replace, first asks for all the

adapters being supported on a find-first-find-next basis. Refer to

HAMHOT.386, procedures DoHotReplace and ExchgPipe, for more

details.

7. The new HAM continues passing messages until it gets all the

information it needs to be operational. The new HAM needs to make

sure that it is using all the handle values that the old HAM used and

the same hardware resources. The new HAM does not need to

register for these resources, NWPA automatically redirects them to

the new HAM. When the new HAM is ready to take over function

of the old HAM, the new HAM must make a call to

NPA_Register_Options() to actually perform the module switch.

8. After the new HAM is in place, it succeeds its HAM_Load() routine

by returning zero. At that point, the new HAM is in the I/O channel

handling HACB requests. The old HAM is dormant and can be

unloaded by a user. It is important that the old HAM does not try to

unregister its hardware resources (NPA_Unregister_Options()) during

its HAM_Unload() routine. NWPA will manage and direct them

appropriately.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

4-34 Version 2.1d (September, 1995)

4.3.5 Diagnostics

For certification purposes through Novell Labs, a HAM is expected to

support a diagnostics command line option. The command line keyword

that turns this option on is NWDIAG. The HAM must do the following to

setup this option:

1. Build an NPAOptionStruct with the following information in its

fields (refer to Chapter 7):

Name ="0x6NWDIAG0x0" /* Length preceded string that is also

zero terminated */

Parameter0 = 0

Parameter1 = 0

Parameter2 = 0

Type = 0

Flags = 0

String = "NWDIAG" /* ASCII string */

2. Call NPA_Add_Option() with a pointer to the NPAOptionStruct

above as an input parameter.

3. Call NPA_Parse_Options() which in turn calls

HAM_Check_Option() if NWDIAG was found on the command

line.

4. Within the context of HAM_Check_Option(), check the Name

and String fields of the NPAOptionStruct input parameter to

verify the found option.

5. Sets an internal flag to turn on the HAM's diagnostic mode.

When the diagnostic flag is set, it directs the HAM to detour its normal

HACB completion path. Typically, the HAM, within the context of

HAM_ISR(), performs the following:

1. Transfers device information from a custom control block (CCB)

to the appropriate fields in a HACB including HACB completion

(status) information.

2. Determines if the device queue needs to be frozen (freeze queue

if an error occurred during request processing).

3. Completes the HACB by calling HAI_Complete_HACB().

However, if diagnostics is turned on, the HAM is required to

shim a call to HAI_PreProcess_HACB_Completion() between

Host Adapter Module (HAM)

Version 2.1d (September, 1995) 4-35

steps 1 and 2 above. This API allows a diagnostics NLM the

opportunity to snoop or alter HACB information after being

processed by a device.

4.3.6 Error Handling and Auto Error Sense

Auto Error Sense is a generic phrase describing the way in which error

sense information is automatically returned with an I/O request for a

given bus protocol. As an example, for SCSI this phrase refers to auto

REQUEST SENSE. Some adapter boards support this feature and others

do not. The HAM, during its load-time initialization, is responsible for

determining whether or not the feature is to be used. There are three

fields in the HACB structure (HACBStruct) and one in the

DeviceInfoStruct that provide NWPA support for auto error sense. The

following is a list of these fields:

Fields in the HACBStruct:
LONG ErrorSenseBufferLength;
void *VErrorSenseBufferPtr;
void *PErrorSenseBufferPtr;

Field in the DeviceInfoStruct:
LONG AttributeFlags;

If auto error sense is going to be used, then the HAM needs to indicate

this by setting the Auto_Error_Sense_Flag (0x00000040) in the

AttributeFlags field of the DeviceInfoStruct associated with each device

attached to the adapter. The HAM reports the DeviceInfoStruct

information to the NWPA during HAM_Return_Device_Info(). For a

device error under the auto error sense case, the HAM must ensure that

the sense information gets placed properly into the HACB's error sense

buffer. The error sense buffer is defined by the NWPA's

ErrorSenseInfoStruct, and its length is run-time variable according to the

CDM that allocated it. The following is the structure's ANSI C definition:
struct ErrorSenseInfoStruct
{

LONG NumberBytesRequested;
LONG NumberBytesReturned;
LONG Reserved[2];
BYTE ErrorSenseData[1];

 } ;

For a description of its fields and its run-time length variability, refer to

the structure's reference information in Chapter 7. Also, the NWPA

provides the HAM with both virtual and physical (absolute) addresses of

the auto error sense buffer, and the buffer is guaranteed to be physically

contiguous in memory. These factors should accommodate any transport

protocol. The HAM needs to make some special considerations in

addition to the method of error handling this specification already

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

These methods refer to queue state behavior, posting of the appropriate HACB completion code, etc.
4

There are three reasons why the OS limits its initial scan to LUN 0: 1. Most SCSI devices come hard-addressed for LUN 0. 2. Some LUN 0
5

devices reflect themseves on the other LUNs of the target ID. To the HAM, these reflections appear as valid devices even though they are just

phantoms. 3. Some devices, such as hard disks, will typically hang if any LUN beyond LUN 0 is probed on the target ID.

Note: Under the NWPA, the HAM is not expected to differentiate between “real” and “phantom” devices. This responsibility belongs to the CDM.

4-36 Version 2.1d (September, 1995)

prescribes . These considerations must be dealt with prior to completing4

the HACB that caused a device error. They are as follows:

C The HAM determines how many bytes of sense data the issuing CDM

desires by reading the value in the NumberBytesRequested field of the

auto error sense buffer. The HAM then builds its adapter-specific

command block accordingly, and issues it to the device.

C If less than what the CDM requested, the HAM places the number of

error sense bytes that the device actually returned in the

NumberBytesReturned field. The following formula shows this

concept:

NumberBytesReturned = min(NumberBytesRequested,
BytesReturnedByDevice);

The following assumptions apply to the above formula:

C The CDM must be informed when the length of the sense information

returned by the device is less than what the CDM requests.

C The CDM is not concerned with any additional sense information

beyond the amount it requested.

4.3.7 Scanning Specific Target IDs and LUNs (Public and Private Devices)

The HAM is responsible for detecting devices attached to the adapters it

manages and reporting these devices to the NWPA. The NWPA invokes

these tasks through the following HAM functions:

C HAM_Scan_For_Devices()

C HAM_Return_Device_Info()

In order for devices to be initially detected and recognized by the

NetWare OS, an initial "scan for new devices" command must be issued

either at the command line or in a .NCF file. When the OS receives this

command, it causes the NWPA to issue a scan message to all HAMs

loaded on the server. For SCSI, the initial scan message tells each HAM

to scan LUN 0, and only LUN 0, of all its target IDs (SCSI IDs) .5

Host Adapter Module (HAM)

Version 2.1d (September, 1995) 4-37

To make it possible for devices at LUNs other than zero to be detected

and recognized, the NWPA provides its own set of scan messages that the

CDM can issue to the HAM. CDMs are given the responsibility of

initiating these additional scan messages since they have specific

knowledge about the devices. Therefore, they know the conditions when

to suspect a companion device on another LUN.

The CDM issues these scan messages as HACBType=0 requests.

HACBType=0 indicates to the HAM that the HACB's union command

area is defined by the host adapter command structure. The CDM then

sets values in the HACB according to the scan case (or action) it wants

the HAM to perform. The NWPA defines four scan cases. These cases are

referred to numerically as either Case 0, Case 1, Case 2, or Case 3

corresponding to the value the CDM sets in the Parameter2 field of the

HACB's host command block. Case 0 scans are issued by the the OS, and

Cases 1 - 3 scans are issued by a CDM.

Through these scan cases, a CDM can also tell the HAM whether to

declare a detected device public or private. A public device is one that has

its Private_Public_Flag (0x80) cleared in the AttributeFlags field of its

corresponding DeviceInfoStruct object. A public device is visible to any

CDM that is interested in that device's device type. The NWPA gives all

of these CDMs a chance to look at the device and an opportunity to bind

to it. When one of these CDMs decides to bind to the device, it receives

the HAM-generated DeviceHandle, which is the token necessary for the

CDM to issue I/O to the HAM's device.

A private device is one that has its Private_Public_Flag set in the

AttributeFlags field of its corresponding DeviceInfoStruct object. A

private device is visible only to the CDM that detected it through a

specific scan. During the specific scan, the HAM passes the device's

DeviceHandle directly to the CDM. By privately owning this token, the

CDM has exclusive access to the HAM's device.

Note: For specifics on how to implement these scan cases and for

respective paradigm descriptions, refer to

HAM_Scan_For_Devices() in Chapter 8. This chapter also

gives more details regarding private and public devices.

NetWare Peripheral Architecture Functional Specification and Developer’s Guide

4-38 Version 2.1d (September, 1995)

4.3.8 Automatic Hardware Detection and Driver Configuration

Note: This section introduces a feature that HAMs may be required

to implement in the future. The ramifications of this feature are

still under investigation; therefore, the real purpose of this

section is to introduce the concept so that HAM developers

will be aware of this feature and perhaps be able to lay

important groundwork in their current code that will make

future incorporation of the feature smoother.

Automatic hardware detection and driver configuration, also known as

auto-detect/auto-config, is a feature where the HAM automatically

"detects" its host adapter hardware, if it exists on the server. If the HAM

does not detect its adapter, it fails to load. If the HAM detects its adapter

(or adapters), it tries to "configure" the adapter and register the correct

options such as ports/slots, interrupts, DMA channels, etc. Once the

adapter is configured properly, the HAM will be told to scan its buses for

attached devices and return information on those devices. The OS will

then build a list of these devices and try to match them with appropriate

CDMs via information given in their respective information (.DDI) files.

A future version of this specification will layout the guidelines associated

with auto-detect/auto-config and define a paradigm for implementing the

feature.

4.3.9 Elevator Queuing

The purpose of the elevator queues in the NWPA is to order the requests

for each device in such a way that the total request throughput is

increased while assuring that all requests are executed within a reasonable

time frame. This is accomplished by a filter internal to NWPA which can

bind to all hard disks, CDROM devices, magneto-optical disks, and

WORM devices, but not to tape devices. This filter also combines

requests into scatter-gather requests.

The elevator filter can be enabled or disabled on a per-device basis using

the attribute flags within the DeviceInfoStruct. When the

Elevator_Off_Flag is set, the elevator is disabled. When cleared (default

setting except for tape devices) the elevator filter is enabled.

The filter can be adjusted for each HAM by using the ElevatorThreshold

byte in the DeviceInfoStruct. At this point, the requests may be single

requests, or scatter-gather requests. The elevator threshold is the number

of requests the HAM would like to process at any given time. The default

value of this threshold is 2 requests, which allows a request at the device

and a request waiting in the queue. The filter will not “elevator” any

Host Adapter Module (HAM)

Version 2.1d (September, 1995) 4-39

requests until the HAM has at least its threshold number of requests.

Once the HAM has the threshold number of requests, the elevator filter

will then accept, organize, and check requests for scatter-gather

possibilities. Whenever the number of requests at the HAM falls below

the elevator threshold, the filter will send a set of requests to the HAM.

This set may contain as many as 15 requests. The filter will then continue

to “elevator” the requests until the number of requests at the HAM again

falls below the elevator threshold.

The threshold can be increased to allow more requests at the HAM. This

may be necessary in some HAMs to prevent “starving” the device or

adapter. It is important, however, to not set the threshold too high or the

filter will not have the opportunity to optimize the request order or look

for scatter-gather opportunities. If the HAM or adapter already performs

its own elevator queuing, the elevator filter should be turned off. This will

allow the HAM to receive all requests in the order they are sent.

4.3.10 Vendor-Pass Through API for HAMs

This API (NPA_HACB_Passthru()) provides applications the ability to

communicate directly with an adapter. This provides a vendor with a

communications channel to allow for vendor-specific commands/data to

be sent to/from the adapter. HAMs must be able to handle all messages

sent to it using this API, although the HAM may return an “unsupported

function” error if necessary. It is important to understand that if a request

is sent down which causes an error and/or queue freeze, the application

must clear up the problem and unfreeze the queue if necessary so that the

HAM can process commands normally. See the NPA_HACB_Passthru()

API in Chapter 7 for more details.

