
NetWare Driver Support Routines

Chapter 7: NetWare Driver Support
Routines

This chapter describes the following NetWare v3.1x and v4.xx support routines that are
available to file server device drivers. The routines marked as 'NetWare v3.1x Only' are
emmulated in NetWare v4.xx but will be eliminated in succeeding versions. The routines
marked as 'NetWare v4.xx Only' are not available in NetWare versions 3.1x.

• AddDiskDevice
• AddDiskSystem
• AlertDevice
• Alloc

• AllocateResourceTag
• AllocBufferBelow16Meg

* • AllocSemiPermMemory
• CAdjustRealModeInterruptMask
•
CancelNoSleepAESProcessEvent
• CancelSleepAESProcessEvent
• CCheckHardwareInterrupt
• CDisableHardwareInterrupt
• CDoEndOfInterrupt
• CEnableHardwareInterrupt
• CheckDiskCard

* • CheckDiskDevice
• ClearHardwareInterrupt
• CPSemaphore

* • CRescheduleLast
•
CUnAdjustRealModeInterruptMask
• CVSemaphore

** • CYieldIfNeeded
** • CYieldWithDelay

• DelayMyself
• DeleteDiskDevice
• DeleteDiskSystem
• DeRegisterHardwareOptions
• DoRealModeInterrupt
• EnterDebugger
• Free
• FreeBufferBelow16Meg

* • FreeSemiPermMemory

• GetCurrentTime
• GetHardwareBusType
• GetIOCTL
• GetReadAfterWriteVerifyStatus
• GetRealModeWorkSpace
• GetRequest
• GetSectorsPerCacheBuffer
• MapAbsoluteAddressToCodeOffset
• MapAbsoluteAddressToDataOffset
• MapCodeOffsetToAbsoluteAddress
• MapDataOffsetToAbsoluteAddress

** • NetWareAlert
• OutputToScreen
• ParseDriverParameters
• PutIOCTL
• PutRequest

* • QueueSystemAlert
** • ReadPhysicalMemory

• RegisterForEventNotification
• RegisterHardwareOptions
• RemoveDiskDevice
• ScheduleNoSleepAESProcessEvent
• ScheduleSleepAESProcessEvent
• SetHardwareInterrupt
• UnRegisterEventNotification

* NetWare v3.1x Only
** NetWare v4.xx Only

Revision 2.4 09/25/95
1

Device Driver Developers' Guide

Definitions:

The following API descriptions contain important terms that must be understood to design
a driver to work properly with NetWare. Please note the following descriptive terms:

Blocking - Indicates the routine may cause the current thread of execution
(NetWare process) to be suspended or "blocked" until the requested function is
completed (or calls other blocking system routines). At no time can a driver Interrupt
Service Routine (ISR) make a call to a blocking routine.

Non-blocking - Indicates the routine will return immediately, without causing
the current thread or process to be suspended.

Interrupts Disabled - Indicates that interrupts must be disabled before calling the
routine. This means that no processor interrupts excepting Non-maskable interrupts
can occur. This state is often required to maintain system and driver integrity.

Process Level - Indicates the level of execution of NetWare v3.1x/v4.xx
processes or scheduled tasks. NLMs normally execute at process level. Also, the loader
and command processor execute at process level.

Interrupt Level - Indicates execution caused by a processor interrupt, in which
case the current OS process is unknown. The ISR executes as the current process, and
must never make blocking calls, etc.

Please note the following guidelines:

̇E All routines shown as "blocking" may only be called from blocking process level.

̇E All routines shown as "non-blocking" may be called from both blocking and non-
blocking levels (see chapter 1).

̇E Other required calling environments are indicated in the Requirements: entry for
each routine.

̇E The v3.1x, v3.1x & v4.xx or v4.xx designation indicates the Netware version in
which the API is supported.

Revision 2.4 09/25/95
2

NetWare Driver Support Routines

AddDiskDevice (Blocking) v3.1x &
v4.xx

Allocates DiskStructure and registers device with OS

Syntax: DiskStruct *AddDiskDevice(
BYTE *DeviceName,
void (*IOPollRoutine)(

DiskStruct *DiskHandle, IORequestStruct *IORequest),
LONG TotalSize,
LONG DriveSizes,
LONG DriveParameters,
LONG DriveID,
CardStruct *CardHandle,
LONG DiskStructureSize);

Return Value: Returns a handle to a DiskStructure, or 0 if unsuccessful

Requirements: Must be called from blocking process level only.

Parameters: DeviceName Pointer to a 32-byte ASCII string; byte 0 = length,
bytes 1-31 = name of device which describes the physical device. (Exclude the length byte
and the NULL character from the string length count.)

IOPollRoutine Pointer to the driver's IOPoll routine for the device.
The device driver must be able to receive a call to the IOPoll routine at any
time upon exit from the AddDiskDevice routine.

TotalSize The useable sector capacity of the physical device or
media in the device. (The sector size is as reported in the SectorSize field.)
For writeable media this value should be rounded down to a cylinder
boundary (using the device geometry as reported below), since all partitions
must begin and end on cylinder boundaries. For read-only media (CDROM)
this value should be reported with no modifications. For sequencial access
devices, if the capacity is unknown, this field should be set to a -2.

DriveSizes Information about the drive size. It includes the
following bytes:

 dbAccessFlags (lsb)
 dbDriveType
 dbBlockSize
 dbSectorSize (msb)

Revision 2.4 09/25/95
3

Device Driver Developers' Guide

AddDiskDevice (continued)

AccessFlags indicates special device or access
characteristics to be used with the device:

 RemovableDevice 01h
 ReadOnlyDevice 02h
 WriteSequential 04h
 ChangerDevice 10h *
 MagazineDevice 20h *

* v3.12 & v4.xx only

RemovableDevice indicates that device media may be
removed and replaced with other media. Device
characteristics may be changed by insertion of new
media, such as BlockSize, SectorCount, HeadCount, and
CylinderCount, as well as other AccessFlags. The
RemovableDevice access flag may not be changed after a
device has been registered with the OS.

ReadOnlyDevice indicates to the OS that write
operations should not be issued to the device. A valid
Netware volume may be written, dismounted, registered
as write-protected, then mounted again.

Write Sequential indicates to the OS that I/O requests to
the device should be sent in sequential order.

The ChangerDevice access flag indicates that a
Read/Write device associated with an autochanger is
being added to the system. If this flag is set, the NetWare
4.xx or 3.12 OS will subsequently issue the appropriate
IOCTLs in order to obtain the autochanger configuration.

The MagazineDevice access flag indicates that a
Read/Write device associated with a magazine is being
added to the system. If this flag is set, the NetWare 4.xx
or 3.12 OS will subsequently issue the appropriate IOCTLs
in order to obtain the magazine configuration.

Revision 2.4 09/25/95
4

NetWare Driver Support Routines

AddDiskDevice (continued)

The DriveType is defined as follows:

0 Hard Disk
1 CD-ROM Device *
2 WORM Device *
3 Tape Device *
4 Magneto-Optical (MO) Device

* NetWare volumes are not currently supported on
these device types. The types are provided to allow
application software means to identify these devices and
exploit their function.

BlockSize is the driver maximum I/O request size:

 0 - 1 sector 4 - 16 sectors
 1 - 2 sectors 5 - 32 sectors
 2 - 4 sectors 6 - 64 sectors
 3 - 8 sectors 7 - 128 sectors

SectorSize: The value inserted for SectorSize is
actually a shift factor. The shift factor is used as the
exponent in the following formula:

512 * 2(sectorSize) = Actual Sector Size

where SectorSize >= 0. There must be a value declared
for SectorSize. Currently, this must be a value of 0 which
calculates to a sector size of 512. The NetWare File
System only supports a sector size of 512 bytes. All
requests generated by the NetWare File System will be in
sectors of that size. Drivers that support devices with
native sector sizes other than 512 are required to
translate these requests into the proper format.

Revision 2.4 09/25/95
5

Device Driver Developers' Guide

AddDiskDevice (continued)

DriveParameters Includes the following drive parameter fields (ignored
for devices indicated as removable):

 dbSectorCount (lsb)
 dbHeadCount
 dw CylinderCount (msw)

SectorCount is the number of sectors per track on the
device. HeadCount is the number of heads on the
device.
CylinderCount is the number of cylinders on the device.
For writeable media the SectorCount and HeadCount
parameters are used by the partition editor to determine
the partition boundaries and are required to match the
geometry of other partitions on the drive. For read-only
media, if the device capacity does not fall on a cylinder
boundary, the count should incremented to include the
partial cylinder. (See TotalSize.)

DriveID Drive identification. It includes the following fields:

 dbControllerNumber (lsb)
 dbDriveNumber
 dbCardNumber
 dbDriverID (msb)

ControllerNumber is the device target address (SCSI id.)
or equivalent.
DriveNumber is the device Logical Unit Number (LUN) or
equivalent. If the ControllerNumber and DriveNumber
reference the same object (i.e. SCSI devices with
integrated drive electronics) this number is zero.
CardNumber is the host adapter card number. This
number is optionally assigned by the system
administrator and is passed to the driver at load time
though a command line parameter (CARD=xx).
DriverID is the Novell-assigned driver number (obtained
through Novell Labs IMSP.)

CardHandle The card handle AddDiskSystem returned for the adapter
on which the device resides.

DiskStructureSize Size of the required device structure AddDiskDevice
will allocate and zero fill. AddDiskDevice returns a pointer to this structure.
This structure must be allocated even if the size is specified as 0 bytes, as
the pointer is required for many calls.

Revision 2.4 09/25/95
6

NetWare Driver Support Routines

AddDiskDevice (continued)

Example:

Description: AddDiskDevice creates a system device structure to provide NetWare
information for the device specified. AddDiskDevice is called by the driver to register each un-
registered device found during the driver's ScanForDevices procedure (devices which support
removable media must be registered by the driver even if no media is currently present, as
the device thus defined will not be active when it fails a subsequent mount request. The
device may be activated later when media is present).

AddDiskDevice allocates and returns a pointer to a DiskStructure for driver use
(driver determined size). The pointer serves both as a device handle for calls to
AlertDevice, RemoveDiskDevice, DeleteDiskDevice, GetRequest, and PutRequest
routines, and as a pointer to reference the DiskStructure.

See Also: AlertDevice, DeleteDiskDevice, RemoveDiskDevice, ScanForDevices,
ReturnDeviceStatus IOCTL, I/O Function Codes

Revision 2.4 09/25/95
7

push SIZE DiskStruct ;allocate a disk structure
push CardHandle ;card handle
push DriveId ;
push DriveParameters ;
push DriveSizes ;
push TotalSize ;
push OFFSET IOPollRoutine ;IOPoll entry point
push OFFSET DeviceName ;description text for device
call AddDiskDevice ;register with the OS
lea esp, [esp + (8*4)] ;adjust stack ptr

Device Driver Developers' Guide

AddDiskSystem (Blocking) v3.1x
& v4.xx

Allocates Card Structure and registers adapter with OS

Syntax: CardStruct *AddDiskSystem(
LONG NLMHandle,
IOConfigStruct *IOConfig,
void (*IOCTLPollRoutine)(

CardStruct *CardHandle, IOCTLRequestStruct *IOCTLRequest),
void (*ScanForDevices)(CardStruct *CardHandle),
void (DeleteDevice)(DiskStruct *DiskHandle),
LONG NovellNumber,
LONG DriverResourceTag,
LONG CardStructureSize);

Return Value: Returns a pointer to a Card structure, or 0 if unsuccessful

Requirements: Must be called from blocking process level only.

Parameters: NLMHandle The handle NetWare passed on the stack to the driver
initialization routine.

IOConfig The corresponding adapter board's IOConfiguration
structure pointer.

IOCTLPollRoutine The driver's IOCTL Poll routine entry point. The device
driver must be able to receive a call to the IOCTLPoll routine at any time upon
exit from the AddDiskDevice routine.

ScanForDevices The driver's ScanForDevices routine entry point. The
device driver must be able to receive a call to the ScanForDevices routine at
any time upon exit from the AddDiskDevice routine.

DeleteDevice v3.11 only - The entry point to the driver's
DeleteDevice routine. For all other versions (v3.12 and v4.xx), this
parameter should be initialized to a NULL (0).

NovellNumber The number assigned for this driver by Novell.

DriverResourceTag Resource tag allocated by driver with the "Driver
Signature".

CardStructureSize Driver-defined Card structure size, to be allocated by
AddDiskSystem (zero not used by driver).

Revision 2.4 09/25/95
8

NetWare Driver Support Routines

AddDiskSystem (continued)

Example:

Description: A device driver's Initialization routine calls this routine to register an adapter
board with NetWare. AddDiskSystem creates a structure inside the NetWare Operating System
to retain information about the specified adapter board. AddDiskSystem also allocates
memory for a driver-defined local Card structure and passes a pointer back to the driver.

The pointer value serves two purposes. First, the driver uses the pointer as a
card handle when calling CheckDiskCard, GetIOCTL, and PutIOCTL,
AddDiskDevice, and DeleteDiskSystem. Second, the pointer is used to reference
the card structure, which AddDiskSystem created, where the driver may store
data for the corresponding adapter card.

See Also: DriverInitialization, DriverCheck, DriverUnload, DeleteDiskSystem,
CheckDiskCard, DeleteDevice, ScanForDevices, ReturnDeviceStatus IOCTL

Revision 2.4 09/25/95
9

push SIZE CardStruct ;structure size to allocate
push DriverResourceTag ;identify owner of this resource
push NovellNumber ;Novell assigned driver number
push 0 ;Reserved0
push OFFSET ScanForDevices ;driver scan/add routine
push OFFSET IOCTLPollRoutine ;driver's IOCTL entry point
push OFFSET IOConfig ;handle to IOConfiguration structure
push NLMHandle ;passed at driver initialization.
call AddDiskSystem ;register card with OS
lea esp, [esp + (8*4)] ;adjust stack pointer

Device Driver Developers' Guide

AlertDevice (Non-blocking) v3.1x &
v4.xx

Notifies Operating System of a device condition change

Syntax: void AlertDevice(
DiskStruct *DiskHandle,
LONG MessageBit);

Return Value: None

Requirements: Interrupts disabled.

Parameters: DiskHandle Handle returned by AddDiskDevice for device.

MessageBit A single bit value indicating the device condition or cause of
the AlertDevice call, defined as follows:

hex binary
01 0000 0001 Device Failed - a device has failed and is
no longer active. The OS will deactivate the device, clear all
pending I/O requests it owns and issue a deactivate IOCTL
call.

08 0000 1000 Media Ejected - media not present in
the device (for removables). The OS will deactivate the
device, clear all pending I/O requests it owns and issue a
deactivate IOCTL call.

20 0010 0000 Media Inserted - informs the OS that
media has been inserted in the device. The OS will send a
message to all applications that have locked the device.

* 40 0100 0000 Delete Device - requests the device be
deleted. The OS will deactivate the device, clear all pending I/O
requests it owns and calls the card's DeleteDevice routine.

* v3.1x only

Revision 2.4 09/25/95
10

NetWare Driver Support Routines

AlertDevice (continued)

Example:

Description: This call notifies the OS of a status change or problem with a device. In the
cases when the OS responds by deactivating the device, the driver is required to post
completion for any outstanding requests for the device. All requests acquired with a
GetRequest call must be returned to the OS with a Device Not Active completion code.

See Also: DeleteDiskDevice, RemoveDiskDevice

Revision 2.4 09/25/95
11

push 00000001b ;indicate device failure
push DiskHandle ;device handle from AddDiskDevice call
call AlertDevice ;tell system about device status change
lea esp, [esp + (2*4)];adjust stack pointer

Device Driver Developers' Guide

Alloc (Non-blocking) v3.1x &
v4.xx

Allocates block of returnable memory for driver use

Syntax: void *Alloc(
LONG NumberOfBytes,
LONG MemRTag);

Return Value: Pointer to the allocated memory in EAX, or 0 if unsuccessful.

Requirements: Interrupts disabled.

Parameters: NumberOfBytes Passes in the amount of memory in bytes to be
allocated.

MemRTag Resource tag acquired by driver for memory allocation
using an "AllocSignature" resource signature.

Example:

Description: Alloc is used to allocate memory for any driver requirements such as
IOConfiguration structures or special buffers. Alloc is passed the amount of memory to
allocate and returns a pointer to the allocated memory in the EAX register. This routine is
available to drivers for Initialize Driver, Mass Storage Control Interface, IOPoll, and IOCTLPoll
routines. It may also be called from within an interrupt environment (ISR); however, the
availability of memory will be diminished. The memory allocated is not initialized by the
allocation routine, and must be initialized by the driver. The repeated allocation and
deallocation of relatively small blocks of memory will tend to cause memory fragmentation.
For increased system efficiency, a large block of memory can be initially allocated and
maintained as a pool of smaller blocks. Memory is always allocated on a paragraph (16
byte) boundary.

See Also: Free, AllocateResourceTag

Revision 2.4 09/25/95
12

push MemRTag ;identify type of resource
push NumberOfBytes ;indicate amount of memory required
call Alloc ;returns pointer to memory in eax
lea esp, [esp + (2*4)] ;adjust stack pointer
mov ebp, eax ;need for use and to return

NetWare Driver Support Routines

AllocateResourceTag (Blocking) v3.1x
& v4.xx

Allocates OS resource tags for specific resource types

Syntax: LONG AllocateResourceTag(
LONG NLMHandle,
void *ResourceDescString,
LONG ResourceSignature);

Return Value: Resource tag identifying specified entry type (0 if error).

Requirements: Must be called from blocking process level only.

Parameters: DriverHandle The module handle passed to the driver (NLM)
when its initialization routine was called.

ResourceDescString Pointer to a null-terminated text string describing the
resource, with a maximum total length of 16 bytes, including null terminator.

Example: db 'NDCB Driver',0

ResourceSignature A value used to identify a specific resource type. The
signatures the driver must pass (indicates to the OS the kind of resource tag
to allocate, consequently do not change the following equates or the OS will
fail the drivers request to allocate a resource tag) to identify each resource
tag type requested are defined as follows:

AESProcessSignature equ 50534541h
AllocSignature equ 54524C41h
CacheBelow16MegMemorySignature equ 36314243h
EventSignature equ 544E5645h
DiskDriverSignature equ 4B534444h
InterruptSignature equ 50544E49h
IORegistrationSignature equ 53524F49h

* SemiPermMemorySignature equ 454D5053h
TimerSignature equ 524D4954h

* v3.1x only

Revision 2.4 09/25/95
13

Device Driver Developers' Guide

AllocateResourceTag (continued)

Example:

Description: Acquires a tracking identifier required by certain OS calls to track system
resources (and recover them from NLM or Driver failure). The driver must acquire a tag for
each different type of resource to be allocated.

See Also: Driver Initialization, Driver Unload

Revision 2.4 09/25/95
14

cmp LoadedOnceGoodFlag, 0 ;already allocated tags ?
jne GotTags ;yes - skip
push DriverSignature ;identifies Driver resource type
push OFFSET rTagString ;resource tag descriptive string
push NLMHandle ;driver module id
call AllocateResourceTag ;returns a tag id in EAX
lea esp, [esp + (3*4)] ;adjust stack pointer
mov DrvrRTag, eax ;save our driver resource tag
push IOSignature ;identifies I/O device resource type
push OFFSET IORTagString ;resource tag descriptive string
push NLMHandle ;driver module id
call AllocateResourceTag ;returns a tag id in EAX
lea esp, [esp + (3*4)] ;adjust stack pointer
mov IORtag, eax ;save for RegisterHardwareOptions use
push IntSignature ;identifies Interrupt resource type
push OFFSET IntRTagString ;resource tag descriptive string
push NLMHandle ;driver module id
call AllocateResourceTag ;returns a tag id in EAX
lea esp, [esp + (3*4)] ;adjust stack pointer
mov IntRTag, eax ;save for SetHardwareInterrupt use
push MemSignature ;identifies Memory resource type
push OFFSET MemRTagString ;resource tag descriptive string
push NLMHandle ;driver module id
call AllocateResourceTag ;returns a tag id in EAX
lea esp, [esp + (3*4)] ;adjust stack pointer
mov MemRTag, eax ;save for Alloc use
push MemoryBelow16MegSignature ;identifies special memory resource tag
push OFFSET MemBelow16RTag ;resource tag descriptive string
push NLMHandle ;driver module id
call AllocateResourceTag ;returns a tag id in EAX
lea esp, [esp + (3*4)] ;adjust stack pointer
mov MemBL16RTag, eax ;save resource tag for allocate and free calls
push AESSignature ;identifies AES timer resource type
push OFFSET AESRTagString ;resource tag descriptive string
push NLMHandle ;driver module id
call AllocateResourceTag ;returns a tag id in EAX
lea esp, [esp + (3*4)] ;adjust stack pointer
mov AESRTag, eax ;save for later references
push TmrSignature ;identifies timer resource type
push OFFSET TmrRTagString ;resource tag descriptive string
push moduleHandle ;driver module id
call AllocateResourceTag ;returns a tag id in EAX
lea esp, [esp + (3*4)] ;adjust stack pointer
mov TmrTag, eax ;save for later reference
mov LoadedOnceGoodFlag,1 ;indicate done once

GotTags:

NetWare Driver Support Routines

AllocBufferBelow16Meg (Blocking) v3.1x
& v4.xx

Allocates block of returnable memory below the 16 megabyte boundary for driver use.

Syntax: void *AllocBufferBelow16Meg(
LONG RequestedSize
LONG *ActualSize,
LONG MemBelow16RTag);

Return Value: Pointer to the allocated memory in EAX, or 0 if unsuccessful.

Requirements: Interrupts disabled.

Parameters:

RequestedSize Number or contiguous bytes requested

ActualSize Receives the actual number of bytes allocated in the
location pointed to by this parameter

MemBelow16RTag Resource tag acquired by driver for memory allocation
(with a "CacheBelow16MegMemorySignature")

Example:

Description: Use AllocBufferBelow16Meg only to allocate memory for drivers supporting
16-bit host adapters in machines with more than 16 megabytes of memory to allow the
driver to do I/O operations to or from intermediate buffers below 16 megabytes, moving the
data to or from the actual request buffer when above the 16 megabyte boundary. The
memory returned will be one or more contiguous cache buffers. The pointer to the buffer
allocated is returned in EAX (zero if none allocated). Drivers must call Alloc for all other
memory allocation requirements. Memory is not initialized to zero. See Appendix G for
implementation details. The repeated allocation and deallocation of relatively small blocks of
memory will tend to cause memory fragmentation. For increased system efficiency, a large
block of memory can be initially allocated and maintained as a pool of smaller blocks.
Memory is always allocated on a paragraph (16 byte) boundary.

See Also: FreeBufferBelow16Meg, AllocateResourceTag

Revision 2.4 09/25/95
15

push MemBelow16RTag ;identifies type of resource
push OFFSET ActualSize ;amount of memory acquired returned here
push RequestedSize ;number of bytes required supplied here
call AllocBufferBelow16Meg ;returns pointer to memory in eax
lea esp, [esp + (3*4)] ;adjust stack pointer
mov ebp, eax ;need for use and to return

Device Driver Developers' Guide

AllocSemiPermMemory (Non-blocking)
v3.1x

Allocates block of returnable memory for driver use

Syntax: void *AllocSemiPermMemory(
LONG NumberOfBytes,
LONG MemRTag);

Return Value: Pointer to the allocated memory in EAX, or 0 if unsuccessful.

Requirements: Interrupts disabled. May not be called from interrupt level.

Parameters: NumberOfBytes Passes in the amount of memory in bytes to be
allocated.

MemRTag Resource tag acquired by driver for memory allocation
using an "SemiPermMemorySignature" resource signature.

Example:

Description: AllocSemiPermMemory is used to allocate memory for any driver
requirements such as IOConfiguration structures or special buffers. AllocSemiPermMemory is
passed the amount of memory to allocate and returns a pointer to the allocated memory in
the EAX register. This routine is available to drivers for Initialize Driver, Mass Storage Control
Interface, IOPoll, and IOCTLPoll routines, but may not be called from interrupt-level. The
memory allocated is not initialized by the allocation routine, and must be initialized by the
driver. This API will not be supported in future products and is only emulated in NetWare 4.xx.
It should be replaced with the "Alloc" API. The repeated allocation and deallocation of
relatively small blocks of memory will tend to cause memory fragmentation. For increased
system efficiency, a large block of memory can be initially allocated and maintained as a pool
of smaller blocks. Memory is always allocated on a paragraph (16 byte) boundary.

See Also: Alloc, Free, FreeSemiPermMemory, AllocateResourceTag

Revision 2.4 09/25/95
16

push MemRTag ;identify type of resource
push NumberOfBytes ;indicate amount of memory required
call AllocSemiPermMemory ;returns pointer to memory in eax
lea esp, [esp + (2*4)] ;adjust stack pointer
mov ebp, eax ;need for use and to return

NetWare Driver Support Routines

CAdjustRealModeInterruptMask (Non-blocking) v3.1x
& v4.xx

Adjusts Real Mode interrupt mask for calls to DOS driver

Syntax: void CAdjustRealModeInterruptMask(
LONG IRQNumber);

Return Value: None

Requirements: Interrupts disabled.

Parameters: IRQNumber Interrupt (IRQ) Number utilized by the associated card.

Example:

Description: This call clears the corresponding bit in the RealModeInterruptMask. (The bit
was set by a SetHardwareInterrupt call.) This mask is written to the priority interrupt
controllers (PICs) when a NetWare call is made to return the processor to real mode (in order
to make DOS calls.) This has the effect of unmasking the interrupt for use in real mode.
Drivers that support adapter/devices also supported by DOS in conjunction with DOS drivers
should make this call immediately after the SetHardwareInterrupt call. (Note: The loader uses
DOS drivers to load NLMs and drivers from DOS partitions).

See Also: SetHardwareInterrupt, ClearHardwareInterrupt,
CUnAdjustRealModeInterruptMask

Revision 2.4 09/25/95
17

push IRQNumber ;tell OS which interrupt bit to unmask
call CAdjustRealModeInterruptMask;w/DOS for Real mode switch
lea esp, [esp + 4] ;adjust stack

Device Driver Developers' Guide

CancelNoSleepAESProcessEvent (Non-blocking) v3.1x
& v4.xx

Cancels No-Sleep AES timer event

Syntax: void CancelNoSleepAESProcessEvent(
AESEventStruct *AESEvent);

Return Value: None

Requirements: Interrupts disabled.

Parameters: AESEvent Passes a pointer to an AES structure.

Example:

Description: CancelNoSleepAESProcessEvent cancels the AES event indicated by the AES
structure pointer it is passed. A Remove Driver procedure must make this call for every AES
No-Sleep timer the driver has used.

See Also: Driver Initialization, Driver Unload, AESEventStructure,
ScheduleNoSleepAESProcessEvent

Revision 2.4 09/25/95
18

push OFFSET AESEvent ;address of AES structure
call CancelNoSleepAESProcessEvent ;no further event callbacks
lea esp, [esp + 4] ;adjust stack pointer

NetWare Driver Support Routines

CancelSleepAESProcessEvent (Non-blocking) v3.1x
& v4.xx

Cancels Sleep AES timer event

Syntax: void CancelSleepAESProcessEvent(
AESEventStruct *AESEvent);

Return Value: None

Requirements: Interrupts disabled.

Parameters: AESEvent Passes a pointer to an AES structure.

Example:

Description: CancelSleepAESProcessEvent cancels the AES event indicated by the AES
structure pointer it is passed. A Remove Driver procedure must make this call for every AES
Sleep timer the driver has used.

See Also: Driver Initialization, Driver Unload, AESEventStructure,
ScheduleSleepAESProcessEvent

Revision 2.4 09/25/95
19

push OFFSET AESEvent ;address of AES structure
call CancelSleepAESProcessEvent ;no further event callbacks
lea esp, [esp + 4] ;adjust stack pointer

Device Driver Developers' Guide

CCheckHardwareInterrupt (Non-blocking) v3.1x &
v4.xx

Returns indication of interrupt requested for specified interrupt

Syntax: LONG CCheckHardwareInterrupt(
LONG IRQNumber);

Return Value: zero No interrupt request active for IRQ Number
non-zero Interrupt requested for IRQ Number

Requirements: Interrupts disabled.

Parameters: IRQNumber Interrupt to be checked for pending request.

Example:

Description: CCheckHardwareInterrupt determines if an interrupt request is currently
being made to the priority interrupt controller (PIC) assigned to the indicated interrupt
number. The PIC should normally have this IRQ masked off while this call is made. (The
interrupt will not be recorded by the PIC). A return value of zero indicates that the PIC has no
interrupt request being made to it.

See Also: CDisableHardwareInterrupt, CEnableHardwareInterrupt, CDoEndOfInterrupt

Revision 2.4 09/25/95
20

push IRQNumber ;interrupt number (0-15)
call CCheckHardwareInterrupt ;determine if active request
lea esp, [esp + 4] ;adjust stack pointer

NetWare Driver Support Routines

CDisableHardwareInterrupt (Non-blocking) v3.1x
& v4.xx

Masks off indicated IRQ in associated interrupt controller

Syntax: void CDisableHardwareInterrupt(
LONG IRQNumber);

Return Value: None

Requirements: Interrupts disabled.

Parameters: IRQNumber Specifies interrupt to be masked off.

Example:

Description: CDisableHardwareInterrupt causes the corresponding interrupt in the
Programmable Interrupt Controller (PIC) to be masked off so that no further interrupts are
allowed or recorded by the PIC.

See Also: CEnableHardwareInterrupts, CCheckHardwareInterrupt, CDoEndOfInterrupt

Revision 2.4 09/25/95
21

push IRQNumber ;desired interrupt (0-15)
call CDisableHardwareInterrupts ;no interrupts allowed (or recorded) from level
lea esp, [esp + 4] ;adjust stack pointer

Device Driver Developers' Guide

CDoEndOfInterrupt (Non-blocking) v3.1x &
v4.xx

Issues required EOIs for the specified interrupt

Syntax: void CDoEndOfInterrupt(
LONG IRQNumber);

Return Value: None

Requirements: Interrupts disabled.

Parameters: IRQNumber Indicates interrupt for which EOIs are to be issued.

Example:

Description: Issues End of Interrupt (EOI) command to the associated interrupt controller
for the IRQ indicated. If the IRQ is assigned to a secondary PIC, an EOI will be issued to the
secondary PIC, followed by a short delay for the bus, then to the primary PIC. If the IRQ is
assigned to a primary PIC, an EOI will be issued to the primary PIC only.

See Also: CCheckHardwareInterrupt, CDisableHardwareInterrupt,
CEnableHardwareInterrupt

Revision 2.4 09/25/95
22

push IRQNumber ;desired interrupt (0 - 15)
call CDoEndOfInterrupt ;issue required EOIs
lea esp, [esp + 4] ;adjust stack pointer

NetWare Driver Support Routines

CEnableHardwareInterrupt (Non-blocking) v3.1x
& v4.xx

Enables specified IRQ in associated interrupt controller

Syntax: void CEnableHardwareInterrupt(
LONG IRQNumber);

Return Value: None

Requirements: Interrupts disabled.

Parameters: IRQNumber Indicates desired hardware interrupt

Example:

Description: CEnableHardwareInterrupt un-masks (enables) the indicated interrupt in the
associated programmable Interrupt Controller (PIC). This allows further interrupts to be
recorded or to occur.

See Also: CDisableHardwareInterrupt, CCheckHardwareInterrupt, CDoEndOfInterrupt

Revision 2.4 09/25/95
23

push IRQNumber ;hardware interrupt to be enabled
call CEnableHardwareInterrupt ;unmask (enable) interrupt level
lea esp, [esp + 4] ;adjust stack pointer

Device Driver Developers' Guide

CheckDiskCard (Blocking) v3.1x &
v4.xx

Returns composite lock status of all devices on adapter card.

Syntax: LONG CheckDiskCard(
CardStruct *CardHandle,
LONG ScreenHandle);

Return Value: Composite (logically OR'ed) status of all card devices, as follows:

0 no devices are locked
1 at least one device is locked but has a mirror associated with a
separate driver
2 at least one device is locked and doesn't have a mirror associated with
a separate driver
3 same as 2 (logical 'or' of 1 and 2)

Requirements: Must be called from blocking process level only.

Parameters: CardHandle The handle (pointer to the card structure) of the
desired adapter board returned by the AddDiskSystem API.

ScreenHandle The screen handle passed to the driver's Check Driver
routine.

Example:

Description: CheckDiskCard returns in the EAX register the combined status of the
registered devices attached to adapter corresponding to the card handle (passed as a
parameter to CheckDiskCard.) It also uses the screen handle to display the status of the
devices that are locked. It is the responsibility of the driver's Check Driver routine to
determine the status of all registered devices on each adapter card and return the combined
(OR'ed) status.

Several NetWare commands call the driver's Check Driver routine as a
precautionary measure to determine if any of the driver's registered devices are
locked. For example, the console command UNLOAD calls a driver's Check Driver
before unloading the driver.

See Also: CheckDriver, UnloadDriver

Revision 2.4 09/25/95
24

push ScreenHandle ;allow console messages
push CardHandle ;identify CardStructure
call CheckDiskCard ;see if any card devices locked
lea esp, [esp + (2*4)];adjust stack pointer
or ccode, eax ;combine results for driver check

NetWare Driver Support Routines

CheckDiskDevice (Blocking)
v3.1x

Returns the lock status of the storage device.

Syntax: LONG CheckDiskCard(
CardStruct *DiskHandle,
LONG ScreenHandle);

Return Value: Returns one of the following codes indicating the device status:

0 device is not locked
1 device is locked but has a mirror associated with a separate driver
2 device is locked and doesn't have a mirror associated with a separate
driver

Requirements: Must be called from blocking process level only.

Parameters: DiskHandle Handle returned by AddDiskDevice for this device.

ScreenHandle The screen handle passed to the Check Driver routine.

Example:

Description: CheckDiskDevice returns in the EAX register the status of the registered
device corresponding to the device handle (passed as a parameter to CheckDiskDevice.) It
also uses the screen handle to display the status of the devices that are locked. It is the
responsibility of the driver's Check Driver routine to determine the status of all registered
devices on each adapter card and return the combined (OR'ed) status. This API will not be
supported in future products and is only emulated in NetWare 4.xx. It should be replaced with
the "CheckDiskCard" API.

Several NetWare commands call the driver's Check Driver routine as a
precautionary measure to determine if any of the driver's registered devices are
locked. For example, the console command UNLOAD calls a driver's Check Driver
before unloading the driver.

See Also: CheckDriver, UnloadDriver

Revision 2.4 09/25/95
25

push ScreenHandle ;allow console messages
push DiskHandle ;identify DiskStructure
call CheckDiskDevice ;see if device locked
lea esp, [esp + (2*4)];adjust stack pointer
or ccode, eax ;combine results for driver check

Device Driver Developers' Guide

ClearHardwareInterrupt (Non-blocking) v3.1x &
v4.xx

Deallocates adapter card interrupt

Syntax: void ClearHardwareInterrupt(
LONG IRQNumber,
void (*InterruptService)()); or LONG (*InterruptService)());

Return Value: None

Requirements: Interrupts disabled. May not be called from interrupt level.

Parameters: IRQNumber Passes the IRQ number of the hardware interrupt.

InterruptService Pointer to the interrupt service routine (ISR) that was
assigned to the specified interrupt. The service routine returns a value in a shared interrupt
configuration.

Example:

Description: ClearHardwareInterrupt releases a processor hardware interrupt previously
allocated by SetHardwareInterrupt for an adapter board. It also masks off the interrupt at the
priority interrupt controllers (PICs) and clears the corresponding bit in the
RealModeInterruptMask. In the case of shared interrupts, the masking process is performed
only if the specified ISR is the only one remaining in the chain. (The other ISRs have been
cleared previously.) This call must be made by a driver's Remove Driver routine for each card
for which a SetHardwareInterrupt call was made previously.

See Also: SetHardwareInterrupts, CAdjustHardwareInterruptMask,
CUnAjustHardwareInterruptMask, Driver ISR

Revision 2.4 09/25/95
26

push InterruptService ;ISR address for this card
push IRQNumber ;interrupt number
call ClearHardwareInterrupt
lea esp, [esp + (2*4)] ;adjust stack pointer

NetWare Driver Support Routines

CPSemaphore (Blocking) v3.1x
& v4.xx

Set a Semaphore

Syntax: void CPSemaphore(LONG WorkSpaceSemaphore);

Return Value: None

Requirements: Must be called from blocking process level only.

Parameters: WorkSpaceSemaphore handle to the semaphore

Example:

Description: CPSemaphore is used to lock the real mode workspace when making a BIOS
call. This routine is called with interrupts disabled, and interrupts remain disabled.

For more information on how to use the BIOS call, refer to Appendix F.

Do not use this call to handle critical sections local to the driver.

See Also: CVSemaphore, GetRealModeWorkSpace, Appendix F

Revision 2.4 09/25/95
27

push WorkSpaceSemaphore ;load semaphore
call CPSemaphore ;lock workspace for our use
add esp, (1 * 4) ;restore stack

Device Driver Developers' Guide

CRescheduleLast (Blocking)
v3.1x

Places the current process last in active queue (delays)

Syntax: void CRescheduleLast(void);

Return Value: None

Requirements: Must be called from blocking process level only.

Parameters: None

Example:

Description: This routine places the current task last on the list of active tasks to be
executed. This allows other tasks to be scheduled first, keeping OS processes functioning.

See Also: CYieldIfNeeded, CYieldWithDelay, DelayMyself, AllocateResourceTag

Revision 2.4 09/25/95
28

call CRescheduleLast
; will regain control undefined time later

NetWare Driver Support Routines

CUnAdjustRealModeInterruptMask (Non-blocking) v3.1x
& v4.xx

Readjusts Real Mode Interrupt mask

Syntax: void CUnAdjustRealModeInterruptMask(
LONG IRQNumber);

Return Value: None

Requirements: Interrupts disabled,

Parameters: IRQNumber Interrupt Number utilized by the associated card.

Example:

Description: This call sets the corresponding bit in the RealModeInterruptMask. This mask
is written to the priority interrupt controllers (PICs) when a NetWare call is made to return the
processor to real mode (in order to make DOS calls.) This has the effect of masking the
interrupt in real mode.

See Also: SetHardwareInterrupt, ClearHardwareInterrupt,
CAdjustRealModeInterruptMask

Revision 2.4 09/25/95
29

push InterruptNumber ;tell OS sharing interrupt
call CUnAdjustRealModeInterruptMask ;w/DOS for Real mode switch
lea esp, [esp + 4] ;adjust stack

Device Driver Developers' Guide

CVSemaphore (Non-Blocking) v3.1x &
v4.xx

Clear a Semaphore

Syntax: void CVSemaphore(LONG WorkSpaceSemaphore);

Return Value: None

Requirements: None

Parameters: WorkSpaceSemaphore handle to the semaphore

Example:

Description: CVSemaphore clears a semaphore that was set with CPSemaphore. This
routine returns with interrupts enabled.

Normally, CVSemaphore is used when the driver has finished making an EISA
BIOS call so that other processes can be allowed to use the workspace (Refer to
Appendix G).

See Also: CPSemaphore, Appendix F

Revision 2.4 09/25/95
30

push WorkSpaceSemaphore ;pass semaphore
call CVSemaphore ;unlock workspace
add esp, (1 * 4) ;restore stack

NetWare Driver Support Routines

CYieldIfNeeded (Blocking)
v4.xx

Places the current process last in the run queue if other work is pending

Syntax: void CYieldIfNeeded(void);

Return Value: None

Requirements: Must be called from blocking process level only.

Parameters: None

Example:

Description: This routine places the current task last on the list of active tasks to be
executed only if other non-low priority tasks require run time. This increases system efficiency
by not disrupting the current process until actually necessary; however, low priority threads
are disabled until the process runs to completion or releases control using the
CYieldWithDelay API.

See Also: CYieldWithDelay, CRescheduleLast, DelayMyself, AllocateResourceTag

Revision 2.4 09/25/95
31

call CYieldIfNeeded ; will regain control undefined time later if other processes require run time.
Otherwise continue processing.

Device Driver Developers' Guide

CYieldWithDelay (Blocking)
v4.xx

Places the current process last in the run queue (delays)

Syntax: void CYieldWithDelay(void);

Return Value: None

Requirements: Must be called from blocking process level only.

Parameters: None

Example:

Description: This routine places the current task last on the list of active tasks to be
executed. This allows other tasks to be scheduled, keeping OS processes fuctioning.

See Also: CYieldIfNeeded, CRescheduleLast, DelayMyself, AllocateResourceTag

Revision 2.4 09/25/95
32

call CYieldWithDelay ; will regain control undefined time later

NetWare Driver Support Routines

DelayMyself (Blocking) v3.1x &
v4.xx

Delays current process for clock ticks specified

Syntax: void DelayMyself(
LONG ClockTicks,
LONG TimerResourceTag);

Return Value: None

Requirements: Must be called from blocking process-level only.

Parameters: ClockTicks Value indicating number of 1/18th second clock ticks
to put this process to sleep (minimum time before return).

TimerResourceTag Timer resource tag given to timer category when
driver allocated resource tags during initialization.

Example:

Description: Puts current running process (caller) to sleep for the designated time. Return
is made following expiration of the specified number of ticks. This routine is called to prevent
a process from dominating process resources and preventing other vital processes from
running. It also provides a specific minimum delay before the process is re-awakened, which
may be helpful for tasks where some function will not complete for at least a specified period.

See Also: CRescheduleLast, AllocateResourceTag

Revision 2.4 09/25/95
33

push TimerResourceTag ;identify this driver
push ClockTicks ;time to sleep
call DelayMyself ;delay # ticks indicated
lea esp, [esp + (2*4)];adjust stack pointer

Device Driver Developers' Guide

DeleteDiskDevice (Blocking)
v3.1x & v4.xx

Removes a device structure (DiskStructure) from OS

Syntax: void DeleteDiskDevice(
DiskStruct *DiskHandle);

Return Value: None

Requirements: Must be called from blocking process level only.

Parameters: DiskHandle Passes a handle for the target device. This is the same
value returned by AddDiskDevice.

Example:

Description: DeleteDiskDevice completes the removal of a device. This routine must be
called after RemoveDiskDevice. DeleteDiskDevice returns to NetWare the memory allocated
for a device handle structure (DiskStructure) by passing the handle of the device to be
deleted.

See Also: RemoveDiskDevice

Revision 2.4 09/25/95
34

push eax ;push device handle on stack
call DeleteDiskDevice ;remove the structure
lea esp, [esp + 4] ;adjust stack pointer

NetWare Driver Support Routines

DeleteDiskSystem (Blocking) v3.1x
& v4.xx

Removes a Card Structure from the OS

Syntax: void DeleteDiskSystem(
CardStruct *CardHandle,
LONG Status);

Return Value: None

Requirements: Must be called from blocking process level only.

Parameters: CardHandle Passes a handle for the card structure for the
associated adapter board. AddDiskSystem returned this handle for the driver.

Status This parameter is included in the NetWare 3.1x and 4.xx
versions for capatibility reasons only. It should be initialized to a two (2).

Example:

Description: DeleteDiskSystem deletes a mass storage adapter board from NetWare. A
driver calls this routine. DeleteDiskSystem destroys the Card Structure that AddDiskSystem
created to correspond to the specified adapter board. Once DeleteDiskSystem returns,
NetWare no longer knows about the specified adapter board. After DeleteDiskSystem returns,
do not reference the memory once allocated for the AddDiskSystem call.

See Also: AddDiskSystem

Revision 2.4 09/25/95
35

push 2
push eax ;push CardHandle on stack
call DeleteDiskSystem
lea esp, [esp + (2*4)] ;adjust stack pointer

Device Driver Developers' Guide

DeRegisterHardwareOptions (Blocking)
v3.1x & v4.xx

Releases hardware options reserved previously

Syntax: void DeRegisterHardwareOptions(
IOConfigStruct *IOConfig);

Return Value: None

Requirements: Interrupts disabled. Must be called from blocking process level only.

Parameters: IOConfig Passes a pointer to the adapter board's corresponding
IOConfiguration structure.

Example:

Description: DeRegisterHardwareOptions removes previously reserved hardware options
for a particular adapter board. A driver's Remove Driver routine calls this routine.
DeRegisterHardwareOptions removes the hardware options specified in a adapter board's I/O
Configuration structure.

See Also: RegisterHardwareOptions, ParseDriverParameters

Revision 2.4 09/25/95
36

push eax ;pass IOConfig structure ptr
call DeRegisterHardwareOptions
lea esp, [esp + 4] ;adjust stack pointer

NetWare Driver Support Routines

DoRealModeInterrupt (Blocking) v3.1x
& v4.xx

Perform a Dos Interrupt call

Syntax: LONG DoRealModeInterrupt(
InputParamStruct *InputParameters,
OutputParamStruct *OutputParameters);

Return Value: EAX contains:

0 Successful; sets the zero flag if the interrupt vector is called
1 Fail; clears the zero flag if the interrupt vector is no longer available

because DOS has been removed

Requirements: The input parameter structure must already be initialized. Must be
called from blocking process level only.

Parameters: InputParameters pointer to a filled in InputParameterStructure that is
defined below

OutputParameters pointer to a filled in OutputParameterStructure that is
defined below
Example:

Revision 2.4 09/25/95
37

push OFFSET OutputParameters
push OFFSET InputParameters
call DoRealModeInterrupt

add esp, 2 * 4
cmp eax, 0
jne IntNotValidErrorExit

Device Driver Developers' Guide

DoRealModeInterrupt (continued)

Description: DoRealModeInterrupt is used to perform real mode interrupts, such as BIOS
and DOS interrupts. This routine can only be called at process time, and it may enable
interrupts and put the calling process to sleep.

EISA boards will need to use DoRealModeInterrupt to perform the INT 15h
BIOS call that returns the board configuration (Refer to Appendix F). The
parameter structures are defined below:

InputParameters
InputParamStruct struc

IAXRegister dw ?
IBXRegister dw ?
ICXRegister dw ?
IDXRegister dw ?
IBPRegister dw ?
ISIRegister dw ?
IDIRegister dw ?
IDSRegister dw ?
IESRegister dw ?
IIntNumber dw ?

InputParamStruct ends

OutputParameters
OutputParamStruct struc

OAXRegister dw ?
OBXRegister dw ?
OCXRegister dw ?
ODXRegister dw ?
OBPRegister dw ?
OSIRegister dw ?
ODIRegister dw ?
ODSRegister dw ?
OESRegister dw ?
OFlags dw ?

OutputParamStruct ends

typedef struct InputParameterStructure {
 WORD IAXRegister;
 WORD IBXRegister;
 WORD ICXRegister;
 WORD IDXRegister;
 WORD IBPRegister;
 WORD ISIRegister;
 WORD IDIRegister;
 WORD IDSRegister;
 WORD IESRegister;
 WORD IIntNumber;
 } InputParamStruct;

typedef struct OutputParameterStructure {
 WORD OAXRegister;
 WORD OBXRegister;
 WORD OCXRegister;
 WORD ODXRegister;
 WORD OBPRegister;
 WORD OSIRegister;
 WORD ODIRegister;
 WORD ODSRegister;
 WORD OESRegister;
 WORD OFlags;
 } OutputParamStruct;

See Also: GetRealModeWorkSpace, Appendix F

Revision 2.4 09/25/95
38

NetWare Driver Support Routines

EnterDebugger (Non-blocking) v3.1x &
v4.xx

Enter the Debugger

Syntax: void EnterDebugger(void);

Return Value: None

Requirements: None

Parameters: None

Example:

Description: EnterDebugger stops execution of the NetWare OS and enters the internal
assembly language-oriented debugger.

See Also: Appendix B

Revision 2.4 09/25/95
39

call EnterDebugger ;C call

-OR-

int 3 ;assembly code equivalent

Device Driver Developers' Guide

Free (Non-blocking) v3.1x &
v4.xx

Returns previously allocated memory to OS

Syntax: void Free(void *MemoryAddress);

Return Value: None

Requirements: Interrupts disabled.

Parameters: MemoryAddress Passes a pointer to memory to be returned to NetWare
(must have been acquired previously by a call to Alloc).

Example:

Description: Free returns memory allocated by the driver for any purpose (typically for
Read-After-Write Verify buffers or to read in custom data from the custom data file). Drivers
are expected to make this call as needed. Returning memory to NetWare is an essential part
of cleaning up before exiting.

See Also: Alloc

Revision 2.4 09/25/95
40

push eax ;ptr to memory allocated
call Free ;return to system
lea esp, [esp + 4] ;adjust stack pointer

NetWare Driver Support Routines

FreeBufferBelow16Meg (Non-blocking) v3.1x &
v4.xx

Returns previously allocated special buffer to OS

Syntax: void FreeBufferBelow16Meg(
void *MemoryAddress);

Return Value: None

Requirements: Interrupts disabled.

Parameters: MemoryAddress Passes a pointer to memory to be returned to NetWare
(which must have been acquired previously by a call to AllocBufferBelow16Meg).

Example:

Description: FreeBufferBelow16Meg returns memory allocated by the driver for Bus Master
or DMA I/O which was required to be below 16 Megabytes (This memory must have been
acquired by a call to AllocBufferBelow16Meg). Returning memory to NetWare is an essential
part of cleaning up before exiting. See Appendix G for additional details.

See Also: AllocBufferBelow16Meg, Appendix G

Revision 2.4 09/25/95
41

push eax ;ptr to memory previously allocated
call FreeBufferBelow16Meg ;return to system
lea esp, [esp + 4] ;adjust stack pointer

Device Driver Developers' Guide

FreeSemiPermMemory (Non-blocking)
v3.1x

Returns previously allocated memory to OS

Syntax: void FreeSemiPermMemory(void *MemoryAddress);

Return Value: None

Requirements: Interrupts disabled. May not be called from interrupt level.

Parameters: MemoryAddress Passes a pointer to memory to be returned to NetWare
(must have been acquired previously by a call to AllocSemiPermMemory).

Example:

Description: FreeSemiPermMemory returns memory allocated by the driver for any
purpose (typically for Read-After-Write Verify buffers or to read in custom data from the
custom data file). Drivers are expected to make this call as needed. Returning memory to
NetWare is an essential part of cleaning up before exiting.

See Also: AllocSemiPermMemory

Revision 2.4 09/25/95
42

push eax ;ptr to memory allocated
call FreeSemiPermMemory;return to system
lea esp, [esp + 4] ;adjust stack pointer

NetWare Driver Support Routines

GetCurrentTime (Non-blocking) v3.1x &
v4.xx

Returns current time in clock ticks since loading server

Syntax: LONG GetCurrentTime(void);

Return Value: LONG number of clock ticks (1/18th second) since the server was last
loaded and began execution.

Requirements: None

Parameters: None

Example:

Description: This call is useful to determine the current relative time in order to determine
the elapsed time for some driver-related activities, etc. The current time value less the value
returned at the start of an operation is the elapsed time in 1/18th second clock ticks. It
requires more than 7 years for this timer to roll over, allowing it to be used for elapsed time
comparisons.

See Also: Driver Initialization, Operation time-out

Revision 2.4 09/25/95
43

call GetCurrentTime ;get time in ticks
mov CurrentTimeSave, eax ;save for driver

Device Driver Developers' Guide

GetHardwareBusType (Non-blocking) v3.1x &
v4.xx

Returns I/O bus type and bios support indicators, etc.

Syntax: LONG GetHardwareBusType(void);

Return Value: 0 - I/O bus is ISA (Industry Standard Architecture)
1 - I/O bus is MCA (Micro-Channel Architecture)
2 - I/O bus is EISA (Extended Industry Standard Architecture)

Requirements: None

Parameters: None

Example:

Description: This routine returns an value indicating the processor bus type, for use by the
driver. Typical application would allow a driver to support two different board types, which,
once initialized, appear identical to the driver.

See Also: Driver Initialization

Revision 2.4 09/25/95
44

call GetHardwareBusType
mov IOBusType, eax ;save bus type

NetWare Driver Support Routines

GetIOCTL (Non-blocking) v3.1x &
v4.xx

Returns specified or next IOCTL request handle

Syntax: IOCTLRequestStruct *GetIOCTL (
CardStruct *CardHandle,
IOCTLRequestStruct *IOCTLRequest);

Return Value: Pointer to an IOCTL request structure, or zero if unsuccessful.

Requirements: Interrupts disabled.

Parameters: CardHandle Passes a handle for the card structure for the
associated adapter. AddDiskCard returned this handle to the driver.

IOCTLRequest Passes a pointer to an IOCTL request structure.
GetIOCTL returns this same value unless the value is zero, in which case,
GetIOCTL returns a pointer to the next available IOCTL request.

Example:

Description: A driver's IOCTL notification routine or DriverISR routine calls GetIOCTL to
obtain an IOCTL request from NetWare. GetIOCTL identifies the IOCTL request by passing a
card handle and a pointer to the request structure. NetWare keeps the IOCTL requests on an
IOCTL queue (one per card) in the order received, until the driver requests them.

In the event that the driver is busy when it receives an IOCTL request, the
request will remain on the queue until the driver retrieves it with GetIOCTL. The
driver may obtain the next IOCTL request issued for a card by passing a request
handle of zero, or may request a specific IOCTL request by passing the desired
request handle in the call.

Drivers must notify the Operating System of completion of the IOCTL request by
making a call to PutIOCTL. See Chapter 5 for complete details on IOCTL function
codes, IOCTL return status, and IOCTL processing.

Revision 2.4 09/25/95
45

push eax ;get specific IOCTL Request
push edx ;contains card handle
call GetIOCTL
lea esp, [esp + (2*4)] ;adjust stack pointer
or eax, eax ;got one ?
jnz DoIOCTLRequest ;got IOCTL request
..
; no request was pending!!
..

DoIOCTLRequest:
mov esi, eax ;save request pointer

Device Driver Developers' Guide

See Also: PutIOCTL, GetRequest, PutRequest, Chapter 5

GetIOCTL (continued)

Function Sub-Function

0 0 Activate Device
1 Deactivate Device
2 Format
3 Device Verify Mode
4 Identify Device
5 Return Bad-Block Info
6 Return Device Status
7 Logical Device Mount
8 Logical Device Dismount
9 Lock Device Media
10 Unlock Device Media
11 Eject Media

1 0 ReturnDeviceInfo (see old v3.11 func.0, subfunc.17)
1 ReturnMediaInfo (see old v3.11 func.0, subfunc.18)
2 SetDeviceParameters (see old v3.11 func.0, subfunc.19)
3 ReturnTapeDeviceInfo

2 0 ReturnMagazineInfo
1 (not assigned)
2 ReturnMagazineMediaMapping
3 MagazineSelectCommand
4 MagazineDeselectCommand
5 MagazineLoad
6 MagazineUnload
7 MagazineEject

3 0 ReturnChangerInfo
1 ReturnChangerDeviceMapping
2 ReturnChangerMediaMapping
3 ChangerCommand

4-63 Reserved by Novell
64-255 IOCTLs for third party use. Assigned by Novell

IOCTL Functions deleted from the new specification

0 12 Return Changer Element count
13 Return Changer Element Info
14 Changer command
15 Select Media
16 Unselect Media

Figure 7-1 v3.1x/v4.xx IOCTL (I/O Control) Routine Assignments

Revision 2.4 09/25/95
46

NetWare Driver Support Routines

GetIOCTL (continued)

Function Sub-Function

0 0 Activate Device
1 Deactivate Device
2 Format
3 Device Verify Mode
4 Identify Device
5 Return Bad-Block Info
6 Return Device Status
7 Logical Device Mount
8 Logical Device Dismount
9 Lock Device Media
10 Unlock Device Media
11 Eject Media
12 Return Changer Element count *
13 Return Changer Element Info *
14 Changer command *
15 Select Media *
16 Unselect Media *
17 ReturnDeviceInfo (see 3.1x/v4.xx func.1, subfunc.0) *
18 ReturnMediaInfo (see 3.1x/v4.xx func.1, subfunc.1) *
19 SetDeviceParameters (see 3.1x/v4.xx func.1, subfunc.2) *

1-63 Reserved by Novell
64-255 IOCTLs for third party use. Assigned by Novell

* These IOCTLs are defined in later versions of the 3.11 specification but are never issued by the NetWare
3.11 OS.

Figure 7-2 Old v3.11 IOCTL (I/O Control) Routine Assignments

typedef struct IOCTLRequestStructure
{

LONG DriverLink;
CardStruct *CardHandle;
WORD CompletionCode;
BYTE Function;
BYTE SubFunction;
LONG IOCTLParameter;
LONG *IOCTLBuffer;

} IOCTLRequestStruct;

Figure 7-3 The IOCTL Request Structure

Revision 2.4 09/25/95
47

Device Driver Developers' Guide

GetIOCTL (continued)

Completion/Device Status returned to the calling application

No Error 0000h
Non-Media Error 0003h
Device Not Active 0004h
Adapter Card Error 0005h
Device Parameter Error 0006h
System Parameter Error 0007h
Not Supported By Device 0008h
Device Fault 0103h
No Media Present 0703h
Media Write Protected 0803h
Magazine Not Present 0F09h
Changer Error 1009h
Changer Source Empty 1109h
Changer Destination Full 1209h
Changer Jammed 1303h
Magazine Error 1409h
Magazine Source Empty 1509h
Magazine Destination Full 1609h
Magazine Jammed 1703h
Driver Custom Status E0xxh - FExxh
Not Supported By Driver FFF9h

Figure 7-4 IOCTL Request Return Status

Revision 2.4 09/25/95
48

NetWare Driver Support Routines

GetReadAfterWriteVerifyStatus (Non-blocking) v3.1x
& v4.xx

Returns global ReadAfterWrite verify status

Syntax: LONG GetReadAfterWriteVerifyStatus(void);

Return Value: 0 - Read-After-Write Verify disabled
1 - Read-After-Write Verify enabled

Requirements: None

Parameters: None

Example:

Description: The value returned by this call is a server level flag which determines if Read-
After-Write Verification will take place. The value should be examined by drivers when the
device is registered with the Operating System. If a specific override has been issued (such as
an IOCTL call) for any drive, it takes precedence over this flag for that device.

See Also: Device Verify Mode IOCTL

Revision 2.4 09/25/95
49

call GetReadAfterWriteVerifyStatus
mov RAWVerifySave, eax ;save for driver

Device Driver Developers' Guide

GetRealModeWorkSpace (Non-Blocking) v3.1x
& v4.xx

Syntax: void GetRealModeWorkSpace(
LONG *WorkSpaceSemaphore,
LONG *ProtectedModeAddressOfWorkSpace,
WORD *RealModeSegmentOfWorkSpace,
WORD *RealModeOffsetOfWorkSpace,
LONG *WorkSpaceSizeInBytes);

Return Value: None

Requirements: None

Parameters: WorkSpaceSemaphore receives a handle to the operating
system semaphore structure

ProtectedModeAddressOfWorkSpace receives a 32-bit logical address of the
workspace block

RealModeSegmentOfWorkSpace receives the real mode segment of
workspace from the OS

RealModeOffsetOfWorkSpace receives the real mode offset in the
workspace segment from the OS

WorkSpaceSizeInBytes receives the size of the workspace in
bytes

Example: (See example below)

Description: GetRealModeWorkSpace is used in conjunction with DoRealModeInterrupt to
allow the driver access to memory in real mode.

NetWare v3.1x and v4.xx drivers run in protected mode and do not allow direct
access to BIOS based information. The call DoRealModeInterrupt allows the
driver to access the BIOS and get data from it (See Appendix F).

DoRealModeInterrupt turns on the system interrupts and executes in a critical
section; therefore, semaphore routines--CPSemaphore and CVSemaphore are
called in order to keep other processes out of the workspace.

The driver must provide the following storage locations for the pointers that will
be passed to it during this call:

WorkSpaceSemaphore dd 0
ProtectedModeAddressOfWorkSpace dd 0
RealModeSegmentOfWorkSpace dw 0
RealModeOffsetOfWorkSpace dw 0
WorkSpaceSizeInBytes dd 0

Revision 2.4 09/25/95
50

NetWare Driver Support Routines

See Also: DoRealModeInterrupt

Revision 2.4 09/25/95
51

Device Driver Developers' Guide

GetRealModeWorkSpace(continued)

Example:

Revision 2.4 09/25/95
52

;***
;* Get realmode workspace
;***

push OFFSET WorkSpaceSizeInBytes ;size of workspace
push OFFSET RealModeOffsetOfWorkSpace ;real mode offset into segment
push OFFSET RealModeSegmentOfWorkSpace ;real mode segment address
push OFFSET ProtectedModeAddressOfWorkSpace ;address in protected mode
push OFFSET WorkSpaceSemaphore ;semaphore

call GetRealModeWorkSpace ;call OS to fill in information
add esp, (5 * 4) ;clean up stack

;***
;* Lock the workspace
;***

push WorkSpaceSemaphore ;load semaphore
call CPSemaphore ;lock workspace for our use
add esp, (1 * 4) ;clean up stack

;***
;* Setup and execute real mode interrupt
;***

movzx eax, RealModeSegmentOfWorkSpace ;get WorkSpace segment
movzx ebx, RealModeOffsetOfWorkSpace ;get offset into segment

movcl, SlotToReadConfiguration ;get slot number
xor ch, ch ;read first block

movesi, OFFSET InputParms ;point to input area
mov[esi].IAXRegister, 0D801h ;Eisa read configuration
mov[esi].ICXRegister, cx ;slot and data block
mov[esi].ISIRegister, bx ;offset of DosWorkArea
mov[esi].IDSRegister, ax ;segment of DosWorkArea
mov[esi].IIntNumber, 15h ;interrupt number

push OFFSET OutputParameters ;pt at output regs
push OFFSET InputParameters ;pt at input regs
call DoRealModeInterrupt ;tell os to do it
lea esp, [esp + 2 * 4] ;clear up stack

cmpeax, 0 ;did the OS do the
jne IntNotValidErrorExit ;int correctly
cmpbyte ptr OutputParmeters.OAXRegister + 1,0 ;Bios Int 15 return
jne IntNotValidErrorExit ;successful ?

movesi, ProtectedModeAddressOfWorkSpace ;load pointer to data
movzx ecx, BYTE PTR [esi + INTERRUPTOFFSET] ;get int if any
and cl, ISOLATEINTMASK ;isolate interrupt level
jecxz NoAddInterrupt ;if none skip add

movSaveInterrupt, cl ;save interrupt for later
;***
;* Unlock interrupt
;***

NoAddInterrupt:
push WorkSpaceSemaphore ;pass semaphore
call CVSemaphore ;unlock workspace
add esp, (1 * 4) ;clean up stack

NetWare Driver Support Routines

GetRequest (Non-blocking) v3.1x &
v4.xx

Returns next or specified I/O request structure pointer

Syntax: IORequestStruct *GetRequest(
DiskStruct *DiskHandle,
IORequestStruct *IORequest);

Return Value: Pointer to an I/O request structure, or 0 if unsuccessful

Requirements: Interrupts disabled.

Parameters: DiskHandle Handle for the target device. This is the same value
returned by AddDiskDevice.

IORequest Pointer to an I/O request structure. GetRequest returns
this same value unless the value supplied is zero, in which case, GetRequest
returns a pointer to the next available I/O request (if any).

Example:

Description: When NetWare has an I/O request for a specific device, NetWare calls the
driver's request notification (IOPoll) routine, passing a DiskStructure Handle and a pointer to
an I/O Request structure. The DiskStructure Handle is a structure pointer to the device. The
I/O Request structure defines the read or write request. The driver's IOPoll or Interrupt service
routine must call GetRequest to obtain an I/O request from NetWare.

For more details on the request structure, function codes, and related issues,
please refer to Chapter 6.

See Also: PutRequest, GetIOCTL, PutIOCTL, Chapter 6

Revision 2.4 09/25/95
53

push 0 ;for next I/O request
push edi ;contains Disk structure ptr
call GetRequest ;see if one is available
lea esp, [esp + (2*4)];adjust stack pointer

Device Driver Developers' Guide

GetRequest (continued)

Name Code

Random Read 00h
Random Write 01h
Random Write Once 02h
Sequential Read 03h
Sequential Write 04h
Reset End Of Media Status 05h
Single File Mark(s) 06h

Write single file mark(s)
Space forward single file mark(s)
Space backwards single file mark(s)

ConsecutiveFileMarks 07h
Write Consecutive File Marks
Space Forward until consecutive file marks
Space Backwards until consecutive file marks

SingleSetMark(s) 08h
Write single set mark(s)
space forward single set mark(s)
space backwards single set mark(s)

ConsecutiveSet Marks 09h
Write consecutive file marks
space forward until consecutive set marks
space backwards until consecutive set marks

Locate/Space Relative Data Block(s) 0Ah
Space forward data blocks
Space backwards data blocks

Locate/Space Absolute Data Block(s) 0Bh
Return absolute position
Goto absolute position

SequentialPartitionOperations 0Ch
Format to partition media
Select partition
Return number of partitions
Return partition size
Return max number of possible partitions

Physical Media Operations 0Dh
Security erase partition
Rewind partition
Goto end of partition

Random Erase 0Eh
Reserved 0Fh-3Fh

Figure 7-5 I/O Function Codes

Revision 2.4 09/25/95
54

NetWare Driver Support Routines

GetRequest (continued)

typedef struct IORequestStructure
{

IORequestStruct *DriverLink;
DiskStruct *DiskHandle;
WORD CompletionCode;
BYTE Function;
BYTE Parameter1;
LONG Parameter2;
LONG Parameter3;

} IORequestStruct;

Figure 7-6 The I/O Request Structure

I/O Request Completion Status returned to the OS (low-order byte)

No Error xx00h
Corrected Media Error xx01h
Media Error xx02h
Non-Media Error (fatal) xx03h
Ignored by OS xx04h - xxFFh

Completion/Device Status returned to the calling application

No Error 0000h
Corrected Media Error 0001h
Media Error 0002h
Non-Media Error (fatal) 0003h
Device Not Active 0004h
Not Supported By Device 0008h
EOT (fatal) 0203h
EOT (non-fatal) 0209h
EOF (non-fatal) 0309h
End Of Partition (non-fatal) 0409h
Early Warning Area (no error) 0500h
Early Warning Area (corrected) 0501h
Early Warning Area (non-fatal) 0509h
Media Change (fatal) 0603h
Media Write Protected (non-fatal) 0809h
Set Marks Detected (non-fatal) 0909h
Blank Media (non-fatal) 0A09h
Unformatted Media (non-fatal) 0B09h
Device Off-Line (non-fatal) 0C09h
Media Previously Written (non-fatal)0D09h
Abort - Prior State (non-fatal) 0E09h
Driver Custom Status E000h - FE00h

Figure 7-7 I/O Request Return Status

Revision 2.4 09/25/95
55

Device Driver Developers' Guide

GetSectorsPerCacheBuffer (Non-blocking) v3.1x
& v4.xx

Returns number of sectors in server cache buffers

Syntax: LONG GetSectorsPerCacheBuffer(void);

Return Value: An integer (8, 16, or 32) indicating the number of sectors in a system
cache buffer.

Requirements: None

Parameters: None

Example:

Description: This routine returns to the caller the number of sectors in a server cache
buffer. The value returned will be either 8 (4K), 16 (8K), or 32 (16K). This value may allow
drivers which allocate buffers in SRAM to allocate the optimal buffer size, thus providing
better performance.

See Also: Chapter 3

Revision 2.4 09/25/95
56

call GetSectorsPerCacheBuffer ;get typical request size
mov CacheSizeSave, eax ;for driver optimization

NetWare Driver Support Routines

MapAbsoluteAddressToCodeOffset (Non-blocking) v3.1x
& v4.xx

Converts absolute memory address to logical NetWare address

Syntax: LONG MapAbsoluteAddressToCodeOffset(
LONG AbsoluteAddress);

Return Value: Logical address where code appears

Requirements: None

Parameters: AbsoluteAddress Real 32-bit absolute hardware memory address

Example:

Description: This routine converts absolute hardware memory addresses to logical
Netware addresses that are used by the drivers and the Operating System. This routine may
be used to convert an absolute address to the logical address where it will appear in NetWare
address space. This routine may only be used with memory addresses that have
previously been registered with the OS. (Shared RAM is registered through a call to the
RegisterHardwareOptions API and its logical address is returned to the driver in the
IOConfigStructure.)

See Also: MapCodeOffsetToAbsoluteAddress

Revision 2.4 09/25/95
57

mov eax, AbsoluteAddress ;get real SRAM address
push eax
call MapAbsoluteAddressToCodeOffset
lea esp, [esp + 4] ;adjust stack pointer
mov LogicalAddressSave, eax ;SRAM appears at this address

Device Driver Developers' Guide

MapAbsoluteAddressToDataOffset (Non-blocking) v3.1x
& v4.xx

Converts absolute memory address to logical NetWare address

Syntax: LONG MapAbsoluteAddressToDataOffset(
LONG AbsoluteAddress);

Return Value: Logical address where data appears

Requirements: None

Parameters: AbsoluteAddress Real 32-bit absolute hardware memory address

Example:

Description: This routine converts absolute hardware memory addresses to logical
Netware addresses, used by drivers and by the Operating System. This routine may be used
to convert an absolute address to the logical address where it will appear in NetWare address
space. This routine may only be used with memory addresses that have previously
been registered with the OS. (Shared RAM is registered through a call to the
RegisterHardwareOptions API and its logical address is returned to the driver in the
IOConfigStructure.)

See Also: MapDataOffsetToAbsoluteAddress

Revision 2.4 09/25/95
58

mov eax, AbsoluteAddress ;get real SRAM address
push eax
call MapAbsoluteAddressToDataOffset
lea esp, [esp + 4] ;adjust stack pointer
mov LogicalAddressSave, eax ;SRAM appears at this address

NetWare Driver Support Routines

MapCodeOffsetToAbsoluteAddress (Non-blocking) v3.1x
& v4.xx

Converts logical NetWare address to absolute memory address

Syntax: LONG MapCodeOffsetToAbsoluteAddress(
CodeOffset);

Return Value: 32-bit real hardware memory address

Requirements: None

Parameters: CodeOffset Logical NetWare 32-bit memory address

Example:

Description: This routine converts a logical NetWare address, used throughout NetWare, to
a real hardware memory address, required to initialize DMA channels and Bus Master devices.
It also validates specified hardware options. This routine may only be used with memory
addresses that have previously been registered with the OS.

See Also: MapAbsoluteAddressToCodeOffset

Revision 2.4 09/25/95
59

mov eax, CodeOffset ;netware data address
push eax ;pass address driver uses
call MapCodeOffsetToAbsoluteAddress
lea esp, [esp + 4] ;adjust stack pointer
mov AbsAddrsave, eax ;bus master card needs real address

Device Driver Developers' Guide

MapDataOffsetToAbsoluteAddress (Non-blocking) v3.1x
& v4.xx

Converts logical NetWare address to absolute memory address

Syntax: LONG MapDataOffsetToAbsoluteAddress(
DataOffset);

Return Value: 32-bit real hardware memory address

Requirements: None

Parameters: DataOffset Logical NetWare 32-bit memory address

Example:

Description: This routine converts a logical NetWare address, used throughout NetWare, to
a real hardware memory address, required to initialize DMA channels, Bus Master devices,
and to validate specified hardware options. This routine may only be used with memory
addresses that have previously been registered with the OS.

See Also: MapAbsoluteAddressToDataOffset

Revision 2.4 09/25/95
60

mov eax, DataOffset ;netware data address
push eax ;pass address driver uses
call MapDataOffsetToAbsoluteAddress
lea esp, [esp + 4] ;adjust stack pointer
mov AbsAddrsave, eax ;bus master card needs real address

NetWare Driver Support Routines

NetWareAlert (Non-blocking)
v4.xx

Notifies system of serious driver problem

Syntax: void NetWareAlert(
LONG NLMHandle,
NWAlertStruct *Alert,
LONG ParamCount,
args...);

Return Value: None

Requirements: None

Parameters: NLMHandle The handle NetWare passed on the stack to the driver
initialization routine.

Alert A handle to a NetWareAlert structure that holds the
display, format and routing information of the message to be sent. The
structure size and format is defined below.

ParamCount The number of additional parameters to be passed as
determined by the Control String field in NetWareAlert structure passed
through the Alert parameter.

args... Additional arguments to be passed. (See ParamCount.)
NetWareAlertStructure

NWAlertStruct struc
Reserved0 dd ?
AlertFlags dd ?
TargetStation dd ?
TargetNotificationBits dd ?
AlertID dd ?
AlertLocus dd ?
AlertClass dd ?
AlertSeverity dd ?
Reserved1 dd ?
Reserved2 dd ?
ControlString dd ?
Reserved3 dd ?

NWAlertStruct ends

typedef struct NetWareAlertStructure {
LONG Reserved0;
LONG AlertFlags;
LONG TargetStation;
LONG TargetNotificationBits;
LONG AlertID;
LONG AlertLocus;
LONG AlertClass;
LONG AlertSeverity;
LONG Reserved1;
LONG Reserved2;
BYTE *ControlString;
LONG Reserved3;

} NWAlertStruct;

Revision 2.4 09/25/95
61

Device Driver Developers' Guide

NetWareAlert (continued)

Each field in the NetWareAlert structure is defined below:

Reserved0 This parameter should be initialized to a NULL (0).

AlertFlags Masks the functionality of the structure. (This field is
usually set to QUEUE_THIS_ALERT_MASK.)

QUEUE_THIS_ALERT_MASK 01h
ALERTID_VALID_MASK 02h
ALERT_LOCUS_VALID_MASK 04h
ALERT_EVENT_NOTIFY_ONLY_MASK 08h
ALERT_NO_EVENT_NOTIFY_MASK 10H

TargetStation Supply a zero for the console.

TargetNotificationBits Identifies destinations of notification
NOTIFY_CONNECTION_BITS 01h
NOTIFY_EVERYONE_BIT 02h
NOTIFY_ERROR_LOG_BIT 04h
NOTIFY_CONSOLE_BIT 08h

AlertID Provides error code for system log, as follows:
OK 00h
ERR_HARD_FAILURE 0FFh

AlertLocus Defines locus of error (always disks)
LOCUS_DISKS 03h

AlertClass Indicates class of error, as follows:
CLASS_UNKNOWN 00h
CLASS_TEMP_SITUATION 02h
CLASS_HARDWARE_ERROR 05h
CLASS_BAD_FORMAT 09h
CLASS_MEDIA_FAILURE 11h
CLASS_CONFIGURATION_ERROR 15h
CLASS_DISK_INFORMATION 18h

Revision 2.4 09/25/95
62

NetWare Driver Support Routines

NetWareAlert (continued)

AlertSeverity Indicates error severity, as follows:
SEVERITY_INFORMATIONAL 00h
SEVERITY_WARNING 01h
SEVERITY_RECOVERABLE 02h
SEVERITY_CRITICAL 03h
SEVERITY_FATAL 04h
SEVERITY_OPERATION_ABORTED 05h

Reserved1 This parameter should be initialized to a NULL (0).

Reserved2 This parameter should be initialized to a NULL (0).

ControlString Pointer to null-terminated control string similar to that
used in the sprintf function, including embedded returns, line-feeds, tabs,
bells, and % specifiers (except floating-point specifiers).

Example:

Description: Provides system notification of driver hardware or software problems at times
other than during driver initialization procedure.

See Also: OutputToScreen

Revision 2.4 09/25/95
63

push 0 ;no arguments
push Alert ;handle to the NetWareAlert structure
push NLMHandle
call NetWareAlert ;tell system of problem
lea esp, [esp + (3*4)] ;adjust stack pointer

Device Driver Developers' Guide

OutputToScreen (Non-Blocking) v3.1x &
v4.xx

Outputs message to Driver initialize screen

Syntax: void OutputToScreen(
LONG ScreenHandle,
BYTE *ControlString,
args...);

Return Value: None

Requirements: May be called only during driver initialize procedure

Parameters: ScreenHandle Handle of console screen passed to driver on stack
upon entry to the driver initialize procedure, becomes invalid upon return from driver initialize
procedure.

ControlString Pointer to a null-terminated ASCII control string similar to
that used with sprintf, including embedded returns, line feeds, tabs, bells,
and % specifiers (except floating-point specifies).

args Arguments as indicated by the above control string.

Example:

Description: This routine displays a driver error message on the server console screen.
Drivers should not display non-vital messages, and must limit the number of lines output to
the screen for essential messages (the OS will display drives registered and their descriptive
text, etc.). Drivers which display unneeded output will cause important information to scroll
off the console screen. This routine is similar in function to the sprintf function.

See Also: Driver Initialization, NetWareAlert

Revision 2.4 09/25/95
64

push arg ;if just one argument
push esi ;contains ptr to string
push ScreenHandle ;init screen handle (init only)
call OutputToScreen ;may only call during init
lea esp, [esp + (3*4)];adjust stack pointer

NetWare Driver Support Routines

ParseDriverParameters (Blocking)
v3.1x & v4.xx

Parses LOAD command line, prompts, and validates parameters

Syntax: LONG ParseDriverParameters(
struct IOConfigurationStructure *IOConfig,
LONG Reserved0,
AdapterOptionStruct *Options,
LONG Reserved1,
LONG Reserved2,
LONG NeedBitMap,
BYTE *CommandLine,
LONG ScreenHandle);

Return Value: 0 Success
non-zero Failure - conflict or bad command line parameters

Requirements: Must be called from blocking process level only.

Parameters: IOConfig Pointer to Adapter's corresponding IOConfiguration
structure (must be initialized and have correct resource tag stored in it).

Reserved0 Reserved by NetWare

Options Pointer to Adapter Options Definition Structure.

Reserved1 Reserved by NetWare

Reserved2 Reserved by NetWare

NeedBitMap A bit map (double word value) telling
ParseDriverParameters which hardware options the driver requires, as
follows:

NeedsIOSlotBit equ 0001h
NeedsIOPort0Bit equ 0002h
NeedsIOLength0Bit equ 0004h
NeedsIOPort1Bit equ 0008h
NeedsIOLength1Bit equ 0010h
NeedsMemoryDecode0Bit equ 0020h
NeedsMemoryLength0Bit equ 0040h
NeedsMemoryDecode1Bit equ 0080h
NeedsMemoryLength1Bit equ 0100h
NeedsInterrupt0Bit equ 0200h
NeedsInterrupt1Bit equ 0400h
NeedsDMA0Bit equ 0800h
NeedsDMA1Bit equ 1000h

Revision 2.4 09/25/95
65

Device Driver Developers' Guide

ParseDriverParameters (continued)

CommandLine Pointer to command line passed to the driver's
Initialize routine on the stack at load time.

ScreenHandle Handle to the driver's screen display. NetWare also
passed this value to the driver's Initialize Driver routine on the stack at load
time.

Example:

Description: ParseDriverParameters fills in the IOConfigurationStructure associated with an
adapter board, utilizing tables provided by the driver, the command line parameters, and
operator input. This routine allows a driver's Initialization routine to accept I/O Port addresses
and ranges, memory decode addresses and lengths, interrupts, and DMA addresses from the
driver "load" command line. All values inputed at the commandline are treated and displayed
as hex values. For example, a load command could contain the following specifications:

load sample port = 300, port length = 32, int = 3 <Enter>

In this case, the driver "SAMPLE" is being loaded. The first adapter board will
occupy I/O ports 300h to 31Fh and interrupt 3.

Revision 2.4 09/25/95
66

mov eax, cardNum ;our adapter index
push [esp + Parm1] ;init screen handle
push [esp + Parm2] ;command line pointer
push NeedsIOPort0Bit + NeedsInterrupt0Bit ;need I/O port and interrupt
push 0 ;frame type description
push 0 ;LAN config limits
push OFFSET Options ;card options template
push 0 ;driver configuration
mov ebx, IOConfigList[eax * 4] ;get IOConfig structure from list
push ebx ;IOConfig structure ptr
call ParseDriverParameters ;fill out our IOConfig Structure
lea esp, [esp + (8*4)] ;adjust stack pointer

NetWare Driver Support Routines

ParseDriverParameters (continued)

ParseDriverParameters works in conjunction with another "C" NetWare routine
called RegisterHardwareOptions. The following list describes how these two
routines work in unison:

• As mentioned above, ParseDriverParameters looks for information about
I/O Port addresses and ranges, memory decode addresses and lengths,
interrupts, and/or DMA addresses depending on what the adapter board
needs.

• ParseDriverParameters looks for this information in two sources: (1) the
command line, and (2) the Options structure which is a hard-coded part of the
driver's data segment.

• ParseDriverParameters uses a NeedBitMap to determine which hardware
options the adapter board needs.

• If the NeedBitMap requires data and ParseDriverParameters cannot find
the data on the command line or in the AdapterOptionsStructure table
associated with the required item, ParseDriverParameters will prompt the
console operator for the data, showing as a default the first entry in the table
pointed at by the associated entry in the AdapterOptionsStructure.

• Using the NeedBitMap as a shopping list, ParseDriverParameters collects
the necessary information from the command line and from the Options
structure, fills out the IOConfiguration Structure, and returns successfully.

• RegisterHardwareOptions then uses the IOConfiguration structure to
reserve the specified file server hardware options.

Revision 2.4 09/25/95
67

Device Driver Developers' Guide

ParseDriverParameters (continued)

The command line keywords are:
SLOT =
PORT =
PORT LENGTH =
MEM =
MEM LENGTH =
INT =
DMA CHANNEL =

The following two keywords are valid if NeedsIOPort1Bit is set:
PORT1 =
PORT LENGTH =

The following two keywords are valid if NeedsMemoryDecode1Bit is set:
MEM1 =
MEM LENGTH =

The following keyword is valid if NeedsInterrupt1Bit is set:
INT1 =

The following keyword is valid if NeedsDma1Bit is set:
DMA CHANNEL1 =

The driver may implement additional custom keywords which it alone may
recognize. The driver must then parse the command line itself (It is
recommended that the driver not adjust the command line pointer, but
simply allow the ParseDriverParameters routine to ignore and skip over the
additional parameters).

Revision 2.4 09/25/95
68

NetWare Driver Support Routines

ParseDriverParameters (continued)

The Adapter Options Structure is defined as follows:

AdapterOptionStruct struc
 IOSlot dd ? ;MCA or EISA slot #
 IOPort0 dd ? ;I/O port base
 IOLength0 dd ? ;range (# ports)
 IOPort1 dd ? ;2nd I/O port base
 IOLength1 dd ? ;range (# ports)
 MemoryDecode0 dd ? ;memory (SRAM/EPROM)
 MemoryLength0 dd ? ;range (paragraphs)
 MemoryDecode1 dd ? ;2nd memory base
 MemoryLength1 dd ? ;range (paragraphs)
 Interrupt0 dd ? ;Interrupt #
 Interrupt1 dd ? ;2nd Int #
 DMA0 dd ? ;DMA channel
 DMA1 dd ? ;2nd DMA channel
AdapterOptionStruct ends

Each entry in the above options structure is normally a pointer to a table. If
the entry is zero (a zero pointer), no table exists for that entry. Each table
consists of a doubleword containing the number of following table entries.
Each table entry represents a valid value which may be selected from the
command line. The default entry if none is specified is the first entry in the
table, and subsequent entries in order of occurrence in the table.

Note: It is not valid to indicate that an entry is required by setting the
associated bit in the NeedBitMap while having a zero pointer or a table with
the number of entries indicated as zero.

A sample option table follows:

PortOptionTable:
dd 4 ;number of port table entries
dd 340h ;first (default) port address
dd 344h ;second possible port address
dd 320h ;third possible port address
dd 324h ;last possible port address

A driver typically maintains one AdapterOptionsStructure, although multiple
Adapter Options Structures may be used if the driver supports more than one
adapter type requiring different parameters.

See Also: AdapterOptionStructure, IOConfigurationStructure, CardStructure,
RegisterHardwareOptions, DeRegisterHardwareOptions

Revision 2.4 09/25/95
69

Device Driver Developers' Guide

PutIOCTL (Non-blocking) v3.1x &
v4.xx

Posts IOCTL (control) request completion

Syntax: LONG PutIOCTL(
CardStruct *CardHandle,
IOCTLRequestStruct *IOCTLRequest);

Return Value: 0 Success
non-zero Invalid Request

Requirements: Interrupts disabled. (see note below)

Parameters: CardHandle Passes a handle to the card structure for the associated
adapter board. AddDiskCard returned this handle to the driver.

IOCTLRequest Passes a pointer to an IOCTL request.

Example:

Description: PutIOCTL notifies NetWare of the completion of an IOCTL request. PutIOCTL
may be called from the driver ISR or from the driver IOCTL request notification routine
(IOCTLPoll). PutIOCTL must be called for every IOCTL request. The driver must have placed
the completion status in the IOCTL request prior to making this call to post completion.

NOTE: This routine may open an interrupt window, even though it must be
called with interrupts disabled and returns with interrupts disabled. For more
information, see Chapter 5.

See Also: GetIOCTL, GetRequest, PutRequest, Chapter 5

Revision 2.4 09/25/95
70

push eax ;IOCTL request ptr
push ebx ;CardStructure address
call PutIOCTL
lea esp, [esp + (2*4)] ; adjust stack pointer

NetWare Driver Support Routines

PutIOCTL (continued)

Function Sub-Function

0 0 Activate Device
1 Deactivate Device
2 Format
3 Device Verify Mode
4 Identify Device
5 Return Bad-Block Info
6 Return Device Status
7 Logical Device Mount
8 Logical Device Dismount
9 Lock Device Media
10 Unlock Device Media
11 Eject Media

1 0 ReturnDeviceInfo (see old v3.11 func.0, subfunc.17)
1 ReturnMediaInfo (see old v3.11 func.0, subfunc.18)
2 SetDeviceParameters (see old v3.11 func.0, subfunc.19)
3 ReturnTapeDeviceInfo

2 0 ReturnMagazineInfo
1 (not assigned)
2 ReturnMagazineMediaMapping
3 MagazineSelectCommand
4 MagazineDeselectCommand
5 MagazineLoad
6 MagazineUnload
7 MagazineEject

3 0 ReturnChangerInfo
1 ReturnChangerDeviceMapping
2 ReturnChangerMediaMapping
3 ChangerCommand

4-63 Reserved by Novell
64-255 IOCTLs for third party use. Assigned by Novell

IOCTL Functions deleted from the new specification

0 12 Return Changer Element count
13 Return Changer Element Info
14 Changer command
15 Select Media
16 Unselect Media

Figure 7-8 v3.1x/v4.xx IOCTL (I/O Control) Routine Assignments

Revision 2.4 09/25/95
71

Device Driver Developers' Guide

PutIOCTL (continued)

Function Sub-Function

0 0 Activate Device
1 Deactivate Device
2 Format
3 Device Verify Mode
4 Identify Device
5 Return Bad-Block Info
6 Return Device Status
7 Logical Device Mount
8 Logical Device Dismount
9 Lock Device Media
10 Unlock Device Media
11 Eject Media
12 Return Changer Element count *
13 Return Changer Element Info *
14 Changer command *
15 Select Media *
16 Unselect Media *
17 ReturnDeviceInfo (see v3.1x/v4.xx func.1, subfunc.0) *
18 ReturnMediaInfo (see v3.1x/v4.xx func.1, subfunc.1) *
19 SetDeviceParameters (see v3.1x/v4.xx func.1, subfunc.2) *

1-63 Reserved by Novell
64-255 IOCTLs for third party use. Assigned by Novell

* These IOCTLs are defined in later versions of the 3.11 specification but are never issued by the NetWare
3.11 OS.

Figure 7-9 Old v3.11 IOCTL (I/O Control) Routine Assignments

typedef struct IOCTLRequestStructure
{

LONG DriverLink;
CardStruct *CardHandle;
WORD CompletionCode;
BYTE Function;
BYTE SubFunction;
LONG IOCTLParameter;
LONG *IOCTLBuffer;

} IOCTLRequestStruct;

Figure 7-10 The IOCTL Request Structure

Revision 2.4 09/25/95
72

NetWare Driver Support Routines

PutIOCTL (continued)

Completion/Device Status returned to the calling application

No Error 0000h
Non-Media Error 0003h
Device Not Active 0004h
Adapter Card Error 0005h
Device Parameter Error 0006h
System Parameter Error 0007h
Not Supported By Device 0008h
Device Fault 0103h
No Media Present 0703h
Media Write Protected 0803h
Magazine Not Present 0F09h
Changer Error 1009h
Changer Source Empty 1109h
Changer Destination Full 1209h
Changer Jammed 1303h
Magazine Error 1409h
Magazine Source Empty 1509h
Magazine Destination Full 1609h
Magazine Jammed 1703h
Driver Custom Status E0xxh - FExxh
Not Supported By Driver FFF9h

Figure 7-11 IOCTL Request Return Status

Revision 2.4 09/25/95
73

Device Driver Developers' Guide

PutRequest (Non-blocking) v3.1x &
v4.xx

Posts I/O request completion

Syntax: LONG PutRequest(
DiskStruct *DiskHandle,
IORequestStruct *IORequest);

Return Value: 0 Successful

non-zero Invalid Request

Requirements: Interrupts disabled. (see note below)

Parameters: DiskHandle Passes a handle for the target device. This is the same
value returned by AddDiskDevice.

IORequest Passes a pointer to the I/O request structure to be
returned to NetWare.

Example:

Description: PutRequest notifies the Operating System that an I/O request has been
completed. The completion status code must be placed in the request structure prior to
making this call. Several driver routines call this routine, including a driver's Remove Driver,
I/O Poll, and Interrupt Service routines.

NOTE: This routine may open an interrupt window, even though it must be
called with interrupts disabled and returns with interrupts disabled. For more
information, see Chapter 6.

See Also: GetRequest, GetIOCTL, PutIOCTL, Chapter 6

Revision 2.4 09/25/95
74

mov [esi].SCompletionCode, 0 ;indicate good completion
push esi ;ptr to I/O Request structure
push edi ;contains Disk structure ptr
call PutRequest ;notify OS of completion
lea esp, [esp + (2*4)] ;adjust stack pointer

NetWare Driver Support Routines

PutRequest (continued)

Name Code

Random Read 00h
Random Write 01h
Random Write Once 02h
Sequential Read 03h
Sequential Write 04h
Reset End Of Media Status 05h
Single File Mark(s) 06h

Write single file mark(s)
Space forward single file mark(s)
Space backwards single file mark(s)

ConsecutiveFileMarks 07h
Write Consecutive File Marks
Space Forward until consecutive file marks
Space Backwards until consecutive file marks

SingleSetMark(s) 08h
Write single set mark(s)
space forward single set mark(s)
space backwards single set mark(s)

ConsecutiveSet Marks 09h
Write consecutive file marks
space forward until consecutive set marks
space backwards until consecutive set marks

Locate/Space Relative Data Block(s) 0Ah
Space forward data blocks
Space backwards data blocks

Locate/Space Absolute Data Block(s) 0Bh
Return absolute position
Goto absolute position

SequentialPartitionOperations 0Ch
Format to partition media
Select partition
Return number of partitions
Return partition size
Return max number of possible partitions

Physical Media Operations 0Dh
Security erase partition
Rewind partition
Goto end of partition

Random Erase 0Eh
Reserved 0Fh-3Fh

Figure 7-12 I/O Function Codes

Revision 2.4 09/25/95
75

Device Driver Developers' Guide

PutRequest (continued)

typedef struct IORequestStructure
{

IORequestStruct *DriverLink;
DiskStruct *DiskHandle;
WORD CompletionCode;
BYTE Function;
BYTE Parameter1;
LONG Parameter2;
LONG Parameter3;

} IORequestStruct;

Figure 7-13 The I/O Request Structure

I/O Request Completion Status returned to the OS (low-order byte)

No Error xx00h
Corrected Media Error xx01h
Media Error xx02h
Non-Media Error (fatal) xx03h
Ignored by OS xx04h - xxFFh

Completion/Device Status returned to the calling application

No Error 0000h
Corrected Media Error 0001h
Media Error 0002h
Non-Media Error (fatal) 0003h
Device Not Active 0004h
Not Supported By Device 0008h
EOT (fatal) 0203h
EOT (non-fatal) 0209h
EOF (non-fatal) 0309h
End Of Partition (non-fatal) 0409h
Early Warning Area (no error) 0500h
Early Warning Area (corrected) 0501h
Early Warning Area (non-fatal) 0509h
Media Change (fatal) 0603h
Media Write Protected (non-fatal) 0809h
Set Marks Detected (non-fatal) 0909h
Blank Media (non-fatal) 0A09h
Unformatted Media (non-fatal) 0B09h
Device Off-Line (non-fatal) 0C09h
Media Previously Written (non-fatal)0D09h
Abort - Prior State (non-fatal) 0E09h
Driver Custom Status E000h - FE00h

Figure 7-14 I/O Request Return Status

Revision 2.4 09/25/95
76

NetWare Driver Support Routines

QueueSystemAlert (Non-blocking)
v3.1x

Notifies system of serious driver problem

Syntax: LONG QueueSystemAlert(
LONG TargetStation,
LONG TargetNotificationBits,
LONG ErrorLocus,
LONG ErrorClass,
LONG ErrorCode,
LONG ErrorSeverity,
void *ControlString,
args...);

Return Value: None

Requirements: None

Parameters: TargetStation Supply a zero for the console

TargetNotificationBits Identifies destinations of notification
NOTIFY_CONNECTION_BITS 01h
NOTIFY_EVERYONE_BIT 02h
NOTIFY_ERROR_LOG_BIT 04h
NOTIFY_CONSOLE_BIT 08h

ErrorLocus Defines locus of error (always disks)
LOCUS_DISKS 03h

ErrorClass Indicates class of error, as follows:
CLASS_UNKNOWN 0
CLASS_TEMP_SITUATION 2
CLASS_HARDWARE_ERROR 5
CLASS_BAD_FORMAT 9
CLASS_MEDIA_FAILURE 11
CLASS_CONFIGURATION_ERROR 15
CLASS_DISK_INFORMATION 18

ErrorCode Provides error code for system log, as follows:
OK 00h
ERR_HARD_FAILURE 0FFh

Revision 2.4 09/25/95
77

Device Driver Developers' Guide

QueueSystemAlert (continued)

ErrorSeverity Indicates error severity, as follows:
SEVERITY_INFORMATIONAL 0
SEVERITY_WARNING 1
SEVERITY_RECOVERABLE 2
SEVERITY_CRITICAL 3
SEVERITY_FATAL 4
SEVERITY_OPERATION_ABORTED 5

ControlString Pointer to null-terminated control string similiar to that
used in the sprintf function, including embedded returns, line-feeds, tabs,
bells, and simple % specifiers (excluding modifying, precision and floating-
point specifiers).

args Arguments as indicated by the above control string.

Example:

Description: Provides system notification of driver hardware or software problems at times
other than during driver initialization procedure.

See Also: OutputToScreen

Revision 2.4 09/25/95
78

push arg ;if single argument
push eax ;ptr to control string
push SEVERITY_CRITICAL ;severity level
push ERR_HARD_FAILURE ;error code
push CLASS_HARDWARE_ERROR ;error class
push LOCUS_DISKS ;locus of error
push NOTIFY_CONSOLE_BIT + NOTIFY_ERROR_LOG_BIT
push 0 ;target station
call QueueSystemAlert ;tell system of problem
lea esp, [esp + (8*4)] ;adjust stack pointer

NetWare Driver Support Routines

ReadPhysicalMemory (Blocking)
v4.xx

This routine must be used to access data stored in the DOS address space. The
information is copied to a buffer allocated by the driver where it then is visible.

Syntax: LONG ReadPhysicalMemory (
BYTE *Source,
BYTE *Destination,
LONG NumUnits,
LONG UnitSize);

Return Value: 1 (true; non-zero) Parameters were valid; transfer completed
0 (false) Transfer not completed because of bad parameters

Requirements: Must be called from blocking process level only.

Parameters: Source A physical address of memory below 0x100000.

Destination Handle to a buffer allocated by the driver to hold the copied
data.

NumUnits Number of units to be read from memory.

UnitSize Size in bytes of each unit to be read.

Description: Assumes that data passed in will not hang the machine; the physical address
range must be below 0x100000; The word-sized requests must begin on word boundaries and
longword request must begin on longword boundaries.

Revision 2.4 09/25/95
79

Device Driver Developers' Guide

RegisterForEventNotification (Blocking)
v3.1x & v4.xx

Registers a procedure to be called prior to specific system events

Syntax: LONG RegisterForEventNotification(
LONG ResourceTag,
LONG EventType,
LONG Priority,
LONG (*WarnProcedure)(

void (*OutputRoutine)(void *ControlString, ...),
LONG Parameter),

void (*ReportProcedure)(
LONG Parameter));

Return Value: Returns a 32 bit EventID (0 if call failed) to be used with a subsequent
UnRegisterEventNotification call.

Requirements: Must be called from blocking process level only.

Parameters: EventResourceTag The resource tag returned by an AllocateResourceTag
call during driver initialization which must have been made using the Event resource
signature.

EventType Indicates the type of event for which the caller wishes
notification.

The following describes event for which notification may be
received, the type of notification that can be made (Warn,
Report or both), the environment of the notification call
(blocking, non-blocking) and the defined use of the
parameter that is passed with the call.

Type Definition Type
Number (in Decimal)

EVENT_VOL_SYS_MOUNT 0
The parameter is undefined.
Report Routine will be called
immediately after vol SYS
has been mounted. The
Report Routine may block
the thread.

EVENT_VOL_SYS_DISMOUNT 1
The parameter is undefined.
Both the Warn and Report
Routines will be called
before vol SYS is

Revision 2.4 09/25/95
80

NetWare Driver Support Routines

dismounted. The Report
Routine may block the
thread.

EVENT_ANY_VOL_MOUNT 2
The parameter is the volume
number. The Report Routine
will be called immediately
after any volume is
mounted. The Report
Routine may block the
thread.

Revision 2.4 09/25/95
81

Device Driver Developers' Guide

RegisterForEventNotification (continued)

EventType (contd) EVENT_ANY_VOL_DISMOUNT 3
The parameter is the volume
number. The Warn and the
Report Routines will be
called before any volume is
dismounted. The Report
Routine may block the
thread.

EVENT_DOWN_SERVER 4
The parameter is undefined.
The Warn and Report
routines will be called
before the server is shut
down. The Report Routine
may block the thread.

EVENT_CHANGE_TO_REAL_MODE 5
The parameter is undefined.
The Report routine will be
called before the server
changes to real mode. No
blocking calls may be made
by the Report Routine.

EVENT_RETURN_FROM_REAL_MODE 6
The parameter is undefined.
The Report routine will be
called after the server has
returned from real mode. No
blocking calls may be made
by the Report Routine.

EVENT_EXIT_TO_DOS 7
The parameter is undefined.
The Report routine will be
called before the server
exits to DOS. The Report
Routine may block the
thread.

EVENT_MODULE_UNLOAD 8
The parameter is the module
handle. The Warn and
Report routines will be called
before a module is
unloaded from the console

Revision 2.4 09/25/95
82

NetWare Driver Support Routines

command line. Only the
Report routine will be called
when a module unloads
itself. The Report Routine
may block the thread.

EVENT_ACTIVATE_SCREEN 14
The parameter is the Screen
ID. The Report Routine is
called after the screen
becomes the active screen.
The Report Routine may
block the thread.

Revision 2.4 09/25/95
83

Device Driver Developers' Guide

RegisterForEventNotification (continued)

EventType (contd) EVENT_UPDATE_SCREEN 15
The parameter is the Screen
ID. The Report routine is
called after a change is
made to the screen image.
The Report Routine may
block the thread.

EVENT_UPDATE_CURSOR 16
The parameter is the Screen
ID. The Report Routine is
called after a change to the
cursor position or state
occurs. No blocking calls
may be made by the Report
Routine.

EVENT_KEY_WAS_PRESSED 17
The parameter is undefined.
The Report Routine is called
after any key on the
keyboard has been pressed
(including shift/alt/control).
This routine is called at
interrupt time. No blocking
calls may be made by the
Report Routine.

EVENT_DEACTIVATE_SCREEN 18
The parameter is the Screen
ID. The Report Routine is
called after the screen
becomes inactive. No
blocking calls may be made
by the Report Routine.

EVENT_OPEN_SCREEN 20
The parameter is the Screen
ID for the newly created
screen. The Report Routine
will be called after the
screen is created. The Report
Routine may block the
thread.

EVENT_CLOSE_SCREEN 21
The parameter is the Screen

Revision 2.4 09/25/95
84

NetWare Driver Support Routines

ID for the screen that will be
closed. The Report Routine
will be called before the
screen is closed. The Report
Routine may block the
thread.

EVENT_MODULE_LOAD 27
The parameter is the module
handle. The Report Routine
will be called after the
module has been loaded.
The Report Routine may
block the thread.

EVENT_GENERIC 32

Revision 2.4 09/25/95
85

Device Driver Developers' Guide

RegisterForEventNotification (continued)

Priority The priority used to call this notification procedure. Priorities
are defined as follows:

Priority Definition Priority Number
(in Decimal)

EVENT_PRIORITY_OS 0
EVENT_PRIORITY_APPLICATION 20
EVENT_PRIORITY_DEVICE 40

WarnProcedure A pointer to a procedure that is called when the OS makes
an EventCheck call. If the warn routine does not want the event to occur, it
must output a message and then return a non-zero value. Most event
notification procedures are called at process level, but several are made at
interrupt level (the thread may not be blocked). The above table of event
types specifies which events must be checked to determine if the event
allows its thread to be blocked.

ReportProcedure A pointer to a procedure that is called when the OS makes
an EventReport call. Its environment is the same as the Warn procedure
indicated above.

Revision 2.4 09/25/95
86

NetWare Driver Support Routines

RegisterForEventNotification (continued)

Example:

Description: On some occasions a driver is required to perform some action prior to the OS
terminating, switching to real mode, exiting to DOS, etc. The driver should call
RegisterForEventNotification providing notification procedure pointers as indicated above.
Even though the calls to register and un-register the event notification are blocking, the
actual call to the event notification procedure provided by the driver is not always made from
blocking process level (the environment varies with the particular event being reported).

The Warn Routine will be provided with two parameters when called. The first is
the output routine which must be used to output messages (the output routine
must be called with a control string and as many parameters and the control
string indicates), and the second is the parameter described in each of the event
types above. When the Report Routine is called it is passed a single parameter.
This is the same parameter described in each of the event types above.

See Also: UnRegisterEventNotification, Driver Unload, Switch to Real Mode, Exit to DOS,
AllocateResourceTag

Revision 2.4 09/25/95
87

push OFFSET ReportProcedure ;report procedure
push OFFSET WarnProcedure ;warn procedure
push Priority ;typically 40
push EVENT_DOWN_SERVER ;indicate event type
push ResourceTag ;obtained during init
call RegisterForEventNotification
lea esp, [esp + (5*4)] ;adjust stack pointer

Device Driver Developers' Guide

RegisterHardwareOptions (Blocking) v3.1x
& v4.xx

Reserves hardware options for an adapter card.

Syntax: LONG RegisterHardwareOptions(
IOConfigStruct *IOConfig,
LONG Reserved0);

Return Value: 0 Success
non-zero Conflicting Option

Requirements: Must be called only from blocking process-level.

Parameters: IOConfig Handle to the adapter board's corresponding
IOConfiguration structure. (The structure must be initialized with appropriate values, including
the correct resource tag.)

Reserved0 Reserved by NetWare. A NULL (0) must be passed in
this parameter.

Example:

Description: RegisterHardwareOptions is called by a driver's initialization routine to
reserve hardware options for a particular adapter board. The driver passes
RegisterHardwareOptions a IOConfigurationStructure pointer for the adapter card (to reserve
the specified hardware options). If any of the hardware options are already in use, the routine
returns an error code.

See Also: DeRegisterHardwareOptions, ParseDriverParameters, Driver Initialization,
IOConfigurationStructure, AllocateResourceTag

Revision 2.4 09/25/95
88

; ebx points to the IOConfig structure filled out by ParseDriverParameters
mov eax, IORtag ;tag acquired for I/O registration
mov [ebx].CRTagPointer, eax ;put resource tag in IOConfig
push 0 ;no driver config structure
push ebx ;IOConfig structure
call RegisterHardwareOptions
lea esp, [esp + (2*4)] ;adjust stack pointer
or eax, eax ;error ?
jnz InitRegisterHardwareError ;yes - deal with it

NetWare Driver Support Routines

RemoveDiskDevice (Blocking) v3.1x &
v4.xx

Notifies applications using a device of pending device removal, prepares device for
removal and deactivates device

Syntax: void RemoveDiskDevice(
DiskStruct *DiskHandle,
LONG Status);

Return Value: None

Requirements: Must be called from blocking process level only.

Parameters: DiskHandle Passes a handle for the target device. This is the same
value returned by AddDiskDevice.

Status This parameter is included in the NetWare 3.1x and 4.xx
versions for capatibility reasons only. It should be initialized to a two (2).

Example:

Description: A driver calls RemoveDiskDevice to remove a mass storage device from the
file server's list of active devices. After returning from this routine, the driver then calls
DeleteDiskDevice to return memory allocated for the DiskStructure. NetWare flushes all
requests to the device before de-registering the device. This is done by making repeated
calls to the device's IOPoll routine. (Note: Only one IOPoll call is made per request.
Requests whose IOPoll was called previously will not be repeated.) The driver must remain
ready to service further I/O requests if they are issued. RemoveDiskDevice will not return
until all requests on the elevator queue have been serviced. (i.e. a GetRequest and a
PutRequest has been performed on them) Once this is completed the OS issues a Deactivate
IOCTL and returns.

See Also: DeleteDiskDevice

Revision 2.4 09/25/95
89

push 2 ;status
push edi ;contains Disk structure ptr
call RemoveDiskDevice
lea esp, [esp + (2*4)];adjust stack pointer

Device Driver Developers' Guide

ScheduleNoSleepAESProcessEvent (Non-Blocking) v3.1x
& v4.xx

Schedules an asynchronous event (non-blocking thread or process)

Syntax: void ScheduleNoSleepAESProcessEvent(
AESEventStruct *AESEvent);

Return Value: None

Requirements: Interrupts disabled.

Parameters: AESEvent Passes a pointer to an AES structure.

Example:

Description: A driver's Initialization routine may call ScheduleNoSleepAESProcessEvent to
set up a background AES (Asynchronous Event Scheduler) entry to a designated "gremlin"
that will run throughout the time that the driver is loaded in file server memory. The driver
must allocate the structure prior to the first call, must have placed the AES resource tag
acquired at initialization into the structure, and must provide the execution interval and
execution address.

A single call to this routine will cause a single entry to the defined routine, thus
requiring another call to this routine at the conclusion of the routine executed if
it is desired to have a subsequent exit to the routine. (See "Timeout" in
Chapter 2.)

See Also: CancelNoSleepAESProcessEvent, AllocateResourceTag

Revision 2.4 09/25/95
90

push eax ;contains ptr to AES structure
call ScheduleNoSleepAESProcessEvent
lea esp, [esp + 4] ;adjust stack pointer

NetWare Driver Support Routines

ScheduleSleepAESProcessEvent (Non-Blocking) v3.1x
& v4.xx

Schedules an asynchronous event (blocking thread or process)

Syntax: void ScheduleSleepAESProcessEvent(
AESEventStruct *AESEvent);

Return Value: None

Requirements: Interrupts disabled.

Parameters: AESEvent Passes a pointer to an AES structure.

Example:

Description: A driver may call ScheduleSleepAESProcessEvent to set up a background AES
(Asynchronous Event Scheduler) thread that will be executed at a desired interval and can be
blocked or make blocking calls while executing. The driver must allocate the structure prior to
the first call, must have placed the AES resource tag acquired during initialization into the
structure, and must provide the execution interval and execution address. A single call to this
routine will cause a single entry to the defined routine, thus requiring another call to this
routine at the conclusion of the routine executed if it is desired to have a subsequent exit to
the routine.

See Also: CancelSleepAESProcessEvent, AllocateResourceTag,
ScheduleNoSleepAESProcessEvent, CancelNoSleepAESProcessEvent

Revision 2.4 09/25/95
91

push eax ;contains ptr to AES structure
call ScheduleSleepAESProcessEvent
lea esp, [esp + 4] ;adjust stack pointer

Device Driver Developers' Guide

SetHardwareInterrupt (Non-blocking) v3.1x &
v4.xx

Allocates an interrupt for an adapter card.

Syntax: LONG SetHardwareInterrupt(
LONG IRQNumber,
void (*InterruptService)(void), or LONG (*InterruptService)(void),
LONG IntRTag,
LONG ChainFlag,
LONG ShareFlag,
LONG *EOIFlag)

Return Value: 0 Success
non-zero Conflicting options

Requirements: Interrupts disabled. May not be called from interrupt level.

Parameters: IRQNumber The hardware interrupt level.

InterruptServicePointer to the interrupt service routine (ISR) that will be
assigned to the specified interrupt. The service routine returns a value in a
shared interrupt configuration.

IntRTag The resource tag acquired by the driver initialization routine
for interrupts.

ChainFlag An indicator specifying whether the ISR is to be placed on
the front or the back of the queue (only valid if the ShareFlag is set to a one).
A value of 0 indicates placement at the front of the queue, while a value of 1
specifies placement at the rear of the queue.

ShareFlag An indicator specifying if interrupts may be shared by the
device (and driver). A value of zero specifies no sharing, and a value of 1
specifies interrupt sharing.

*EOIFlag A pointer to a double-word. The OS uses this pointer to
return a flag indicating that a second EOI is required for this interrupt (0=only
one EOI required, 1=second EOI required). The function of this parameter is
obsolete since all EOIs must now be handled indirectly through a call to
CDoEndOfInterrupt. A NULL value may be substituted for the pointer.

Revision 2.4 09/25/95
92

NetWare Driver Support Routines

SetHardwareInterrupt (continued)

Example:

Description: SetHardwareInterrupt allocates the specified interrupt and provides a driver
ISR entry point (The OS fields the actual interrupt, saves all registers, sets up segment
registers, calls the driver ISR as a near procedure, and issues the IRETD upon return). It also
enables the interrupt at the priority interrupt controllers (PICs) and sets the corresponding bit
in the RealModeInterruptMask.

See Also: ClearHardwareInterrupt, CAdjustRealModeInterruptMask,
CUnAdjustRealModeInterruptMask, RegisterHardwareOptions, AllocateResourceTag

Revision 2.4 09/25/95
93

mov eax, cardNum ;get adapter #
mov edx, OFFSET EOITable ;get table base
mov ecx, eax
shl ecx, 2 ;create index
add edx, ecx
push edx ;extra EOI flag location
push 0 ;share flag (0=no chain ints

; 1=chain ints)
push 0 ;end of chain flag (0=first,

; 1=last)
push IntRtag ;tag acquired for ints
mov edx, DriverISRTable[eax*4]
push edx ;provide ISR
mov ebp, IOConfigTable[eax*4] ;get IOConfig address
movzx eax, [ebp].Interrupt0 ;get int #
push eax ;pass
call SetHardwareInterrupt ;allocate interrupt
lea esp, [esp + (6*4)] ;adjust stack

Device Driver Developers' Guide

UnRegisterEventNotification (Blocking) v3.1x
& v4.xx

Removes notification procedure from list called prior to system event occurrence

Syntax: LONG UnRegisterEventNotification(
LONG EventID);

Return Value: 0 Successful
-1 Invalid parameters

Requirements: Must be called from blocking process level only.

Parameters: EventID The 32 bit value (used to identify this notification
procedure) returned by an earlier call to RegisterForEventNotification.

Example:

Description: UnRegisterEventNotification removes notification procedure(s) from the
list of procedures to be called by the OS prior to or following specific events in the OS. This is
mandatory if a driver is being unloaded and a previous event notification was requested.

See Also: RegisterForEventNotification, Driver Unload

Revision 2.4 09/25/95
94

push EventID ;ID from register call
call UnRegisterEventNotification ;remove exit from list
lea esp, [esp + 4] ;adjust stack

NetWare Driver Support Routines

Support Routine Call Compatibility Summary
Device Driver Phases

Routine Name Drivr
Init

Drivr
Check

Drivr
Unloa

ScanF
Devic

Delet
Devic

Sleep
Entry

NoSle
Entry

IOPol
Entry

IOCTL
Poll

Intrp
Entry

AddDiskDevice#
AddDiskSystem#
AlertDevice*
Alloc*
AllocateResourceTag#
AllocBufferBelow16Meg#*
AllocSemiPermMemory*
CAdjustRealModeInterruptMask*
CancelNoSleepAESProcessEvent*
CancelSleepAESProcessEvent*
CCheckHardwareInterrupt*
CDisableHardwareInterrupt*

ONLY

OK
ONLY!
OK
OK
OPT
REQ
REQ
OK

REQ
REQ
OK

ONLY

OK

OK
OK

OK
OK
OK
OK

OK
OK
OK
OK

OK
OK

OK
OK

OK
OK
OK
OK

OK
OK

OK

OK
OK
OK
OK

OK
OK

OK

OK
OK
OK
OK

OK
OK

OK

OK
OK
OK
OK

OK

OK
OK
OK
OK

CDoEndOfInterrupt*
CEnableHardwareInterrupt*
CheckDiskCard#
CheckDiskDevice#
ClearHardwareInterrupt*
CPSemaphore#
CRescheduleLast#
CUnAdjustRealModeInterruptMask*
CVSemaphore
CYieldIfNeeded#
CYieldWithDelay#
DelayMyself#
DeleteDiskDevice#
DeleteDiskSystem#

REQ
ONLY
OK
OPT
ONLY
OK
OK
OK

REQ

ONLY
ONLY

OK

REQ

OK
OPT

OK
OK
OK
REQ
REQ

OK

OK

OK
OK
OK

OK

OK

OK
OK
OK
REQ

OK

OK

OK
OK
OK
OK

OK OK OK
OK
OK

DeRegisterHardwareOptions#*
DoRealModeInterrupt#
EnterDebugger
Free*
FreeBufferBelow16Meg*
FreeSemiPermMemory*
GetCurrentTime
GetHardwareBusType
GetIOCTL*
GetReadAfterWriteVerifyStatus
GetRealModeWorkSpace
GetRequest*
GetSectorsPerCacheBuffer

REQ!
ONLY
OK
OK
OK
OK
OK
OPT

ONLY

OPT

REQ!

OK
REQ
REQ
REQ
OK

OK

OK

OK
OK
OK
OK
OK

REQ

OK
OK
OK
OK
0K

OK

OK

OK
OK
OK
OK
OK

OK
OK

OK

OK

OK
OK

OK

OK

OK
OK

OK

OK

OK
OK

OK

OK

OK
OK

OK

MapAbsoluteAddressToCodeOffset
MapAbsoluteAddressToDataOffset
MapCodeOffsetToAbsoluteAddress
MapDataOffsetToAbsoluteAddress
NetWareAlert
OutputToScreen#
ParseDriverParameters#
PutIOCTL*
PutRequest*
QueueSystemAlert
ReadPhysicalMemory#
RegisterForEventNotification#

OK
OK
OK
OK
OK
ONLY
ONLY

OK
OK
ONLY

OK
OK
OK
OK
OK

OK

OK
OK
OK
OK
OK

OK
OK
OK

OK
OK
OK
OK
OK

OK

OK
OK
OK
OK
OK

OK
OK
OK

OK
OK
OK
OK
OK

OK
OK
OK

OK
OK
OK
OK
OK

OK
OK
OK

OK
OK
OK
OK
OK

OK
OK
OK

OK
OK
OK
OK
OK

OK
OK
OK

OK
OK
OK
OK
OK

OK
OK
OK

RegisterHardwareOptions#*
RemoveDiskDevice#
ScheduleNoSleepAESProcessEvent
*
ScheduleSleepAESProcessEvent*
SetHardwareInterrupt*
UnRegisterEventNotification#

ONLY

OK
OK
ONLY
OK REQ

OK
OK

REQ
OK
OK

OK
OK
OK

OK
OK

OK
OK

OK
OK

OK
OK

LEGEND:REQ = Required here blank = Not Allowed ONLY = Allowed here only
OPT = Optional # = Blocks Thread * = Interrupts must be off here

Revision 2.4 09/25/95
95

Device Driver Developers' Guide

! = Mandatory OK = Allowed here

Revision 2.4 09/25/95
96

