
Appendix A: Creating Loadable Modules

Revision 2.4 09/25/95 A-1

Appendix A: Creating Loadable Modules

Device drivers must be converted from source modules into NetWare Loadable Modules before they can be loaded

and installed in the NetWare v3.1x or v4.0 Operating Systems. Appendix D provides a list of compilers and

assemblers which may be used to create object modules from driver source modules. The object modules must be

processed by a NetWare linker, either NLMLINKP (which makes use of extended memory) or NLMLINKR (which

uses only regular memory.) Both linkers require a developer-created definition file (.DEF) that provides

configuration information needed to produce the NLM, including the NetWare internal variables and routines the

driver will access once loaded.

The NLMLINK(P)(X)(R) command syntax is as follows:

nlmlinkp drivername<Enter>

Where: drivername is the name of the definition file for the desired driver (It is not necessary to enter the .DEF

extension in this command).

NLMLINK(P)(X)(R) will find all the required information and directives in the definition file, including the names

of all object modules which must be linked to form the driver (see figure A-1 for a sample definition file).

NLMLINKP(R) will produce an output file (with a .DSK extension) which is the NLM form of the disk driver,

ready to load into an active NetWare environment. Figure A-1 shows a sample definition file which will direct

NLMLINKP(R) to find sample.obj, link it, append a file named firmware.com to it, and produce the output file

sample.dsk.

Device Driver Developers' Guide

Revision 2.4 09/25/95A-2

.Def File

type 2
description "NetWare Sample Disk Driver"
output sample
input sample
start InitSampleDriver /* public routine in NLM */
exit RemoveSampleDriver /* public routine in NLM */
check CheckSampleDriver /* public routine in NLM */
reentrant /* allow re-entrant use of driver*/
version 1,0,a /* version number */
custom firmware.com /* co-processor firmware file */
map /* produces map */
copyright "Sample Copyright stuff"
debug /* allows debugger symbols - remove in production version */
import /* externals */

AlertDevice
AllocateResourceTag
Alloc
Free
GetHardwareBusType
GetSectorsPerCacheBuffer
ParseDriverParameters
RegisterHardwareOptions
DeRegisterHardwareOptions
SetHardwareInterrupt
ClearHardwareInterrupt
ScheduleNoSleepAESProcessEvent
CancelNoSleepAESProcessEvent
CRescheduleLast
DelayMyself
OutputToScreen
AddDiskSystem
DeleteDiskSystem
CheckDiskCard
AddDiskDevice
RemoveDiskDevice
DeleteDiskDevice
GetIOCTL
PutIOCTL
GetRequest
PutRequest

Figure A-1 Sample Definition file

Appendix A: Creating Loadable Modules

Revision 2.4 09/25/95 A-3

Definition File Keywords

The .DEF file keywords can occur in any order, and the required keywords are indicated below. The following

keywords are defined for use in the definition file to direct NLMLINKP(R) in creating NetWare v3.1x & v4.xx

Loadable Module device drivers:

TYPE (Required) Specifies the type of loadable module as indicated below, and implicitly

determines the extension to append on the output file.

1 = Lan Driver (.LAN)

2 = Disk Driver (.DSK)

3 = Name Space Module (.NAM)

4 = Utility (.NLM)

8 = Host Adapter Module (.HAM)

9 = Custom Device Module (.CDM)

DESCRIPTION (Required) Specifies a string that describes the loadable module to be created. The console

command "MODULES" will output this string to describe this module. The description

can be 1-127 bytes long, must be enclosed in double quotes and may not include a null,

double quote, carriage return, or new-line. The description should contain the indicated

fields in the following order format:

"company or product name, description"

OUTPUT (Required) Specifies the name of the output file (the extension will be added by the linker as

specified above).

INPUT (Required) Specifies the name of the input .OBJ file(s).

START (Required) Specifies the name of the loadable module's initialization procedure. When the

file server supervisor uses the "LOAD" console command to load the module, NetWare

calls this procedure.

EXIT (Required) Specifies the name of the loadable module's exit procedure. This procedure is

called when the file server supervisor enters the "UNLOAD" console command.

CHECK (Required) Specifies the name of the loadable module's check procedure. The console

command "UNLOAD" calls an NLM's check procedure (if it exists) before unloading the

module. The check procedure is required for disk drivers since it must indicate to the OS

if any disks are locked (module may not be safely unloaded).

COPYRIGHT (Required) Inserts the Novell default copyright or the copyright for a third-party developer.

Usage: COPYRIGHT Novell default.

COPYRIGHT "company" Third party copyright message.

Device Driver Developers' Guide

Revision 2.4 09/25/95A-4

VERSION (Required) Usage: VERSION XX,YY,ZZ

XX - Major Version number,

YY - Minor Version number,

ZZ - Revision number (The zero-based ordinal number of the

alphabetic letter to be displayed.)

REENTRANT (Optional) Specifies that the loadable module is reentrant (i.e., two or more processes may use

the code at the same time). This keyword is mutually exclusive (both cannot be specified) with

the keywordMULTIPLE.

MULTIPLE (Optional) Specifies that more than one code image of the loadable module may be loaded

into file server memory. This keyword is mutually exclusive (both cannot be specified)

with the keyword REENTRANT.

CUSTOM (Optional) Specifies that a custom data file is to be appended to the output file. This

keyword should be followed by the file name of the custom data file.

MAP (Optional) Directs the linker to create a map file.

IMPORT (Required) Specifies that a list following the keyword will contain variable and procedure

names that are external to the object files. These are case sensitive NetWare v3.1x - v4.xx

Operating System variables and procedures (or variables and procedures from other

loadable modules which must have been previously loaded) which will be linked to the

module after it has been loaded and before it begins initialization.

EXPORT (Optional) Specifies that a list following the keyword will contains case sensitive variables

and procedure names resident in the loadable module to be made available to other

loadable modules.

MODULE (Optional) Specifies loadable modules that must be loaded before the current loadable

module is loaded. The loader will attempt to find and load any modules not already in the

server memory. If it cannot, the current module will not be loaded.

DEBUG (Optional) Specifies that the linker will include debug information in the output file.

@ operator (Optional) "@" is an operator that can be used with the Input, Import, and Export directives.

The @ operator indicates that the list is to be read from a file, and can be nested. The file

specifier, including path, must immediately follow the @ operator.

Syntax: IMPORT @file.txt

Appendix B: The NetWare Debugger

Revision 2.4 09/25/95 B-1

Appendix B: The NetWare Debugger

Debugger Features

The NetWare Operating System includes an internal (built-in) assembly language-oriented debugger. The following

describes some of its feature including:

ñ Trap into the debugger from an assembler or C program

ñ Trap into the debugger from the server console keyboard either dynamically or following a server ABEND

or GPI

ñ Identify the cause and point of a program's execution where it trapped into the debugger

ñ Single step

ñ Proceed to next instruction

ñ Go until a specified address is reached

ñ Set and/or clear breakpoints (including read or write breakpoints with conditional statements.) a maximum

of 4 breakpoints can be set at one time

ñ Un-assemble code

ñ Display and/or modify registers

ñ Display and/or modify memory, including the stack

ñ Read from and write to ports

ñ Search memory for a byte pattern

ñ Traverse a linked list that has been built dynamically

ñ Display modules currently loaded

ñ Display current server processes

ñ Display process control blocks

ñ Display screens, including the file server's screen

ñ Display debugger help screens

ñ Exit the debugger and either return to normal file server operation or to DOS

Futher explanation of extended features in the debugger may be found in the on-line help information that may

be accessed within the debugger as described below.

Device Driver Developers' Guide

Revision 2.4 09/25/95B-2

Debugger Basics

Note: The debugger displays a pound-sign ("#") for its prompt, as shown in the examples in this section.

Entering The Debugger

Start the debugger in one of the following ways:

From the server console keyboard:

1) Depress <R-Alt>, <R-Shift>, <L-Shift>, and <Esc> simultaneously at the server console keyboard. (This

will not work if the server is hung in an infinite loop with interrupts disabled, or if the server console is

secured.)

2) v4.xx only - If a driver is loaded using a -D option NetWare will break into the debugger at the beginning

of the InitializeDriver code.

EXAMPLE: load -D DRIVERNAME <CR>

3) After the server abends or GPIs, enter either:

<Alt>, <R-Shift>, <L-Shift>, and <Esc>

or

"386debug" on the server console keyboard.

From a driver or NLM:

1) Include the assembly command "INT 3" in the part of the driver code where a break is desired. (Drivers

written in C can call the "EnterDebugger();" function.)

Manually:

2) Generate a Non-Maskable Interrupt with an NMI board. This will cause the server to Abend, (after which

step #2 above may be performed). This may be required if the software being debugged is in an infinite

loop with interrupts disabled.

When you start the debugger, it will display the location at which the trap occurred, the cause of the trap into the

debugger, and the contents of general registers and the flags.

Appendix B: The NetWare Debugger

Revision 2.4 09/25/95 B-3

Debugger Commands

The modules currently loaded and their code and data segment addresses can be displayed by entering

.m

Help Commands

To display a help screen, you may enter any of the following commands:

h displays help for general commands

hb displays help for breakpoints

he displays help for grouping operators

.h displays help for .COMMANDS

Device Driver Developers' Guide

Revision 2.4 09/25/95B-4

h
B Breakpoint commands (see HB help screen)
C address Change memory in interactive mode
C address=number(s) Change memory to the specified number(s)
C address="text" Change memory to the specified text ASCII values
D address {length} Dump memory for optional length
DL{+linkOffset} address {length}

Dump memory starting at address for optional length and
traverse a linked list (default link field offset is 0)
Use <ENTER> to dump the next link node

REG=value Change the specified register to the new value
REG is EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, EIP, or EFL

F Flag=value Change the FLAG bit to value (0 or 1)
where FLAG is CF, AF, ZF, SF, IF, TF, PF, DF or OF

G {break address(s)} Begin execution at current EIP and set optional temporary
breakpoints(s)

H, HB, HE, .H Display help screens
I {B;W:D} PORT Input byte, word, or dword from Port (default is byte)
M start {L length} pattern-byte(s)

Search memory for pattern (L length is optional and if not
specified, the rest of memory will be searched)

N symbolName address Define a new symbol name at address
N -symbolName Remove defined symbol name (n-- remove all symbols)
O {B;W;D} PORT=value Output byte, word, or dword value to PORT
<Press ESC to terminate or any other key to continue>

Console screen after entering "h" for general command help

REG is EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, EIP, or EFL
F Flag=value Change the FLAG bit to value (0 or 1)

where FLAG is CF, AF, ZF, SF, IF, TF, PF, DF or OF
G {break address(s)} Begin execution at current EIP and set optional temporary

breakpoints(s)
H, HB, HE, .H Display help screens
I {B;W:D} PORT Input byte, word, or dword from Port (default is byte)
M start {L length} pattern-byte(s)

Search memory for pattern (L length is optional and if not
specified, the rest of memory will be searched)

N symbolName address Define a new symbol name at address
N -symbolName Remove defined symbol name (n-- remove all symbols)
O {B;W;D} PORT=value Output byte, word, or dword value to PORT
P Proceed over the next instruction
Q Quit and exit back to DOS
R Display registers and flags
T or S Single step
U address {count} Unassemble count instructions starting at address
V View server screens
Z expression Evaluates the expression (See HE help screen)
? {address} If symbolic information has been loaded, the closest

symbols to address (default is EIP) are displayed

Use <ENTER> to continue or repeat the d, dl, m, p, s, t, and u commands
#

And after pressing a key other than ESC

h displays help for general commands (see example below)

Appendix B: The NetWare Debugger

Revision 2.4 09/25/95 B-5

hb
B display all current breakpoints
BC number clear the specified breakpoint
BCA clear all breakpoints
B = address {condition} set an execution breakpoint at address
BW = address {condition} set a write breakpoint at address
BR = address {condition} set a read/write breakpoint at address

If a breakpoint condition is specified, the condition will be evaluated
when the break occurs. If the condition is not true then execution will
be resumed immediately without entering the interactive debugger mode.

A breakpoint condition can be any expression. For a description of possible
expressions see the HE help screen.

There are 4 breakpoint registers, allowing a maximum of 4 breakpoints to be
set at the same time. These breakpoints can be permanent breakpoints set
using the B command or temporary breakpoints set using the G command.
In addition the P command will also set a temporary breakpoint if the
current instruction can not be single stepped.

#

Console screen after entering "hb" for breakpoint command help

hb display help for breakpoint commands (see example below)

Device Driver Developers' Guide

Revision 2.4 09/25/95B-6

he
Grouping operators

These operators (), [] and {} have precedence 0. The grouping operators
can be nested in any combination. Note that "size is a data size
specifier B, W, or D.

(expression) causes expression to be evaluated at a higher precedence.

[size expression] causes expression to be evaluated at a higher precedence
and then uses expression as a memory address. The
bracketed expression is replaced with the byte, word or
double word at that address.

{size expression} causes expression to be evaluated at a higher precedence
and then uses expression as a port address. The bracketed
expression is replaced with the byte, word or double word
at that address.

Unary operators
Symbol Description Precedence
! logical not 1
- 2's complement 1
Ü 1's complement 1

<Press ESC to terminate or any other key to continue>

Console screen after entering "he" expression help command

Binary operators
* multiply 2 > greater-than 5 != not-equal-to 6
/ divide 2 < less-than 5 & bitwise AND 7
% mod 2 >= greater-than Æ bitwise XOR 8
+ add 3 or equal-to 5 | bitwise OR 9
- subtract 3 <= less-than or && logical AND 10
>> bit shift right 4 equal-to 5 || logical OR 11
<< bit shift left 4 == equal-to 6

Ternary operator
expression1 ? expression2 , expression3

If expression1 is true then the result is the value of expression2
otherwise the result is the value of expression3.

All numbers are entered and shown in hex format. In addition to numbers,
register, flag, and symbol values can be used.

Registers: EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, and EIP
Flags: FLCF, FLAF, FLZF, FLSF, FLIF, FLTF, FLPF, FLDF, and FLOF

#

Console screen after pressing Enter

he displays help for grouping operators in expressions (see example below)

Appendix B: The NetWare Debugger

Revision 2.4 09/25/95 B-7

.h
Dot commands

.A Display the abend or break reason

.C Do a diagnostic memory dump to diskette

.H Display the dot help screen

.M Display loaded module names and addresses

.P Display all process names and addresses

.P <address> Display <address> as a process control block

.R Display the running process control block

.S Display all screen names and addresses

.S <address> Display <address> as a screen structure

.V Display server version
#

Console screen after entering ".h" for dot command help

.h displays help for dot commands (see example below)

Device Driver Developers' Guide

Revision 2.4 09/25/95B-8

Breakpoints

B Display all breakpoints that are currently set.

b

Breakpoint 0 write byte at FFF65623

Breakpoint 1 read or write byte at 000653BA

Breakpoint 2 execute at FFF06BA3

BC <number> Clear the breakpoint specified by <number>.

bc 2

Breakpoint cleared

BCA Clear all breakpoints.

bca

All breakpoints cleared

B = <address> {condition} Set an execution breakpoint at the address specified when the indicated condition

is true.

b = fff8765a

Set as breakpoint 0

BW = <address> {condition} Set a write breakpoint at the address specified when the indicated condition is

true.

bw = fff665ab

Set as breakpoint 1

BR = <address> {condition} Set a read / write breakpoint at the address specified when the indicated condition

is true. (see conditions below).

Appendix B: The NetWare Debugger

Revision 2.4 09/25/95 B-9

br = 0065acf3

Set as breakpoint 2

If a breakpoint condition is specified, the condition will be evaluated when the break occurs. If the condition is not

true, then execution will be resumed immediately without entering the interactive debugger. A breakpoint condition

can be any expression. There are four breakpoint registers, allowing a maximum of four breakpoints to be set at the

same time. These breakpoints can be permanent breakpoints using the B commands above, or temporary

breakpoints set using the G command (described below). In addition, the P command will also set a temporary

breakpoint if the current instruction cannot be single stepped.

Displaying Memory

D <address> {count} Displays the contents of memory, starting at <address>, for <count> number of

bytes.

d fff7765e

FFF7765E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

FFF7766E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

FFF7767e 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

FFF7768e 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

FFF7769e 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

FFF776Ae 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

FFF776Be 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

FFF776Ce 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

FFF776Ee 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

FFF776Fe 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

FFF7770e 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

FFF7771e 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

FFF7772e 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

FFF7773e 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

FFF7774e 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

FFF7775e 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

d fff7765e 3

FFF7765E 00 00 00

Register Manipulations

R Display the registers EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, and EIP registers. It also displays all

flags.

R

EAX=99999999 EBX=00005455 ECX=78787878 EDX=00060544

ESI=00000000 EDI=80868086 EBP=00000000 ESP=FFF67876

EIP=FFF56784 FLAGS=00010002

<REG> = <value> Change the specified register to the new value. The command is effective with the EAX,

EBX, EXC, EDX, ESI, EDI, ESP, EBP, and EIP registers.

Device Driver Developers' Guide

Revision 2.4 09/25/95B-10

eax=8099acb3

Register changed

Appendix B: The NetWare Debugger

Revision 2.4 09/25/95 B-11

Changing Memory

C <address> Interactively change the contents of memory location <address>.

c fff6432a

FFF6432A (00)=33 (34)=98 (5A)=.

Note: To end interactive mode type a period.

C <address> = <number or numbers> Change the memory value or values, beginning at <address>, to the

specified number or numbers.

c fff534c5 = 00,00,12,5a,78

Change successfully completed

C <address> = "text" Place the text string specified beginning at <address>.

c fff60db3 = "This is a string."

Change successfully completed

Device Driver Developers' Guide

Revision 2.4 09/25/95B-12

F <FLAG> = <value> Change the specified flag to the new value (0 or 1). The command is effective with

the CF, AF, ZF, SF, IF, TF, PF, DF, and OF flags.

f pf =0

Flag changed

I/O

I {B,W,D} <PORT> Input a byte, word, or double from port.

i 255

Port (255)=ff

O {B,W,D} <PORT> = <VALUE> Output a byte, word, or double value to port.

o 255 = 78

Output completed

Miscellaneous

G {break address(es)} Begin execution at current EIP and set temporary breakpoint(s) to address(es).

g fff56784

Break at FFF56784 because of go breakpoint

EAX=99999999 EBX=00005455 EXC=78787878 EDX=00060544

ESI=00000000 EDI=80868086 EBP=00000000 ESP=FFF67876

EIP=FFF56784 FLAGS=00010002FFF56784 BB30CE0500 MOV EBX,0005CE30

H, HB, HE, .H Display help screens.

Appendix B: The NetWare Debugger

Revision 2.4 09/25/95 B-13

M <START> {L len} <BYTE(S)> Search memory for pattern (the byte pattern) from start until length is

reached.

m fff77e50 48 61 72 64

FFF77Ef0 54 48 45 52 4E 45 54 5F-49 49 00 90 00 00 00 00 THERNET_II......

FFF77F00 00 00 00 00 00 00 90 6B-F7 FF 00 00 00 00 00 00kw........

FFF77F10 48 61 72 64 77 61 72 65-44 72 69 76 65 72 4D 4C HardwareDriverML

N <symbolname> <VALUE> Define a new symbol with a value.

n thissym 0f0f

P Proceed over next instruction.

Q Quit and return to DOS.

T or S Trace or single step through the program.

U <address> {COUNT} Unassemble count instructions from address.

u FFF87885 2

FFF87885 0000 ADD [EAX],ALFFF87887 0000 ADD [EAX],AL

V View the screens (will step through the screens sequentially).

Z expression Evaluate the expression.

z 7+8

Evaluates to: F

The D, M, P, S, T, and U commands can be continued or repeated by simply pressing a carriage return at the #

prompt.

Device Driver Developers' Guide

Revision 2.4 09/25/95B-14

Dot Commands

.A Display the abend or break reason

.C Do a diagnostic memory dump to diskette

.H Display the dot help screen

.M Display loaded module names and addresses

.P Display all process names and addresses

.P <address> Display <address> as a process control block

.R Display the running process control block

.S Display all screen names and addresses

.S <address> Display <address> as a screen structure

.V Display server version

Appendix B: The NetWare Debugger

Revision 2.4 09/25/95 B-15

Expressions

Grouping Operators These operators (), [] and {} have a precedence of 0. The grouping operators can be nested in

any combination. Note that "size" is a data size specifier of the type B, W, or D.

(expression) Causes expression to be evaluated at a higher precedence.

[size expression] Causes expression to be evaluated at a higher precedence and then uses expression as a

memory address. The bracketed expression is replaced with the byte, word, or double

word at that address.

{size expression} Causes expression to be evaluated at a higher precedence and then uses expression as a

port address. The bracketed expression is replaced with the byte, word, or double word

input from the port.

Device Driver Developers' Guide

Revision 2.4 09/25/95B-16

Unary Operators

Symbol Description Precedence

! logical not 1

- 2's compliment 1

~ 1's compliment 1

* multiply 2

/ divide 2

% mod 2

+ addition 3

- subtraction 3

>> bit shift right 4

<< bit shift left 4

> greater than 5

< less than 5

>= greater than or equal to 5

<= less than or equal to 5

== equal to 6

!= not equal to 6

& bitwise AND 7

^ bitwise XOR 8

| bitwise OR 9

&& logical AND 10

|| logical OR 11

Ternary Operator

expression1 ? expression2, expression3 If expression1 is true, then the result is the value of expression2;

otherwise, the result is the value of expression.

Appendix B: The NetWare Debugger

Revision 2.4 09/25/95 B-17

The beginning and length of data and code segments may be found by entering ".m" at the debug prompt.

Breakpoints can then be set in the driver code using the addresses in the map file relative to the addresses

dumped by the debugger.

Symbolic information may be included in a driver's .DSK file which can be used to access routines or variable

by name while in the NetWare v3.xx/v4.xx debugger (the debugger is case sensitive). To access symbolic

information, the following steps must be taken:

1) Declare public all desired symbols in the driver

2) Include the keyword "debug" in the driver definition file.

Each of these symbols can now be used in the same way the address they represent would be used. For

example, at the debug prompt it is possible to display memory beginning at the address of the label

AdapterBdStruct by entering:

#d AdapterBdStruct

Symbols may be dynamically defined by the debugger. If it is necessary to dynamically define more than 10

symbols the server must be loaded with the "-y" option.

Note: Debugging information must be removed before releasing the driver. Including the "debug"

keyword in the definition file will cause a message to be displayed on the console when the

driver is loaded, indicating that it contains debug information.

Device Driver Developers' Guide

Revision 2.4 09/25/95B-18

Debugger Command Summary

.A Display the abend or break reason

B display all current breakpoints

BC number clear the specified breakpoint

BCA clear all breakpoints

B = address {condition} set an execution breakpoint at address

BW = address {condition} set a write breakpoint at address

BR = address {condition} set a read/write breakpoint at address

C address Change memory in interactive mode

C address=number(s) Change memory to the specified number(s)

C address="text" Change memory to the specified text ASCII values

.C Do a diagnostic memory dump to diskette

D address {length} Dump memory for optional length

DL{+linkOffset} address {length}

Dump memory starting at address for optional length and traverse a linked list

(default link field offset is 0) Use <ENTER> to dump the next link node

REG=value Change the specified register to the new value

REG is EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, EIP, or EFL

F Flag=value Change the FLAG bit to value (0 or 1)

where FLAG is CF, AF, ZF, SF, IF, TF, PF, DF or OF

G {break address(s)} Begin execution at current EIP and set optional temporary

breakpoints(s)

H Display basic debugger command help screen

HB Display breakpoint help screen

HE Display expression help screen

.H Display the dot help screen

I {B;W:D} PORT Input byte, word, or dword from Port (default is byte)

M start {L length} pattern-byte(s)

Search memory for pattern (L length is optional and if not

specified, the rest of memory will be searched)

.M Display loaded module names and addresses

N symbolName address Define a new symbol name at address

N -symbolName Remove defined symbol name

N-- Remove all defined symbols

O {B;W;D} PORT=value Output byte, word, or dword value to PORT

P Proceed over the next instruction

.P Display all process names and addresses

.P <address> Display <address> as a process control block

Q Quit and exit back to DOS

R Display registers and flags

.R Display the running process control block

S Single step

.S Display all screen names and addresses

.S <address> Display <address> as a screen structure

T Single step

U address {count} Unassemble count instructions starting at address

V View server screens

.V Display server version

Z expression Evaluates the expression (See HE help screen)

? {address} If symbolic information has been loaded, the closest

symbols to address (default is EIP) are displayed

Use <ENTER> to continue or repeat the d, dl, m, p, s, t, and u commands

Appendix B: The NetWare Debugger

Revision 2.4 09/25/95 B-19

Debugger Limitations

The Internal Debugger currently has the following limitations:

1) Modifying memory on Adapters with Shared Ram (S-RAM) requiring word (16-bit) memory

operations (typical with ISA adapters designed for higher performance S-RAM access) will cause

garbage data to be written to every other byte. Displaying SRAM will function correctly (valid data

displayed), since the high-byte data supplied by the adapter will be ignored by the CPU.

2) Attempting to single-step an instruction which cannot be single-stepped (a breakpoint is normally set

by the debugger following the instruction) will fail when 4 breakpoints are already set.

3) The debugger will not allow disassembly of instructions within 20 bytes of the top of defined memory

(The GDT will be set to include all defined memory including adapter SRAM). Memory may be

displayed to the end of defined memory. Although it is possible to have non-existent memory within

the area of defined memory, the debugger will encounter difficulty (the CPU will hang) displaying non-

existent memory on machines where a memory time-out which generates a memory ready is not

implemented.

Device Driver Developers' Guide

Revision 2.4 09/25/95B-20

Appendix C: Subroutine Calling Conventions

Revision 2.4 09/25/95 C-1

Appendix C: Subroutine Calling Conventions

The NetWare v3.1x/v4.xx Operating System support routines provided for drivers, and the driver routines required

to be exported to the NetWare OS must follow C subroutine calling conventions. In addition, the driver must have

interrupts disabled where required prior to calling NetWare support routines (see Chapter 7). Interrupts will also be

disabled upon entry to the driver non-blocking process level entry points (excepting AESProcess event entry

points), and to driver Interrupt Service Routines (ISRs). The following sections detail the conventions to which

drivers must adhere.

Calling C Support Routines

NetWare requires that calls to and from the operating system use standard C conventions. All parameters are

passed on the stack. Drivers are not required to save registers EBP, EBX, ESI, and EDI when making system

support routine calls, as these registers are saved and restored by the routine called; however, the state of the other

registers are not guaranteed and could be altered by the called routine. All calls are NEAR, due to the flat memory

model used by the NetWare 3.1x/v4.xx OS. When exiting a driver routine, the interrupt flag must have the same

value as when the routine was called by NetWare. To call a NetWare routine, push all variables on the stack, call

the routine, and then adjust the stack pointer upon return. For example, a driver's Initialization routine must call the

NetWare support routine AddDiskSystem, which appears to the driver as follows:

CardStruct *AddDiskSystem(

LONG NLMHandle,

IOConfigStruct *IOStruct,

LONG (*IOCTLPollRoutine)(),

LONG (*ScanForDevices)(),

LONG Reserved0,

LONG NovellNumber,

LONG DriverResourceTag,

LONG CardStructureSize);

Figure C-1 C Syntax for AddDiskSystem

As you can see, AddDiskSystem requires eight arguments and returns one value. To call AddDiskSystem, the

driver's initialization routine must use code similar to the following:

Device Driver Developers' Guide

Revision 2.4 09/25/95C-2

push CardStructureSize ;size of CardStructure
push DriverResourceTag ;resource tag
push NovellNumber ;Novell assigned number
push 0 ;Reserved0
push OFFSET ScanForDevices ;scan/add routine
push OFFSET IOCTLPollRoutine ;IOCTL Poll routine
movzx eax, CurrentCardNumber
mov eax, IOConfigList[eax*4] ;get IOConfig structure
push eax
push [esp + Parm0] ;driver handle
call AddDiskSystem
lea esp, [esp + 8*4] ;adjust stack ptr

Figure C-2 Calling a C Routine

The 80386 PUSH instruction pushes DWORD(s) on the stack. Note that the values are pushed in reverse order.

Note also that after the initialization routine calls AddDiskSystem, the initialization routine adjusts the stack pointer

by 8 * 4. Eight push instructions times four bytes (each push is one dword). Note also that the LEA instruction

may not be the only way to adjust the ESP, but it's quick and easy.

Drivers Called by a C Routine

Driver routines called by NetWare are called using "C" subroutine calling conventions. Any parameters passed to

the driver routines are pushed on the stack in "C" compatible reverse order. The driver routines called must save

registers EBP, EBX, ESI, and EDI on the stack upon entry, and must restore them just prior to returning to the

caller. Interrupts may or may not be disabled, depending on the driver routine called. Driver routines that require

use of passed parameters must retrieve them from the stack. For example, a NetWare call to a driver's initialization

routine could look much like the syntax shown in figure C-3.

Some NetWare support routines require the driver to pass values which are provided by NetWare with the driver

initialization call. The required values were pushed on the stack as C-style parameters before calling the Driver

initialization procedure, and should be saved by the initialization procedure for later driver reference.

Appendix C: Subroutine Calling Conventions

Revision 2.4 09/25/95 C-3

LONG InitializeDriver(

LONG NLMHandle,

LONG ScreenHandle,

BYTE *LoadCommandLine,

LONG Reserved0,

LONG Reserved1,

LONG CustomDataFileHandle,

LONG (*ReadCustomDataRoutine)(

LONG CustomDataFileHandle, LONG CustomDataOffset,

BYTE *CustomDataDestination, LONG CustomDataSize),

LONG CustomDataOffset,

LONG CustomDataSize);

Figure C-3 C Syntax for an Initialization Routine

LONG ParseDriverParameters(

IOConfigStruct *IOConfig,

LONG Reserved0,

AdapterOptionStruct *Options,

LONG Reserved1,

LONG Reserved2,

LONG NeedBitMap,

BYTE *CommandLine,

LONG ScreenHandle);

Figure C-4 Syntax for the ParseDriverParameters call

ParseDriverParameters requires pointers to the command line, an I/O Configuration structure, a bit map, an

Adapter Options structure, and a ScreenHandle. To pass command line pointer and screen handle, the driver's

initialization routine must have retrieved them from the stack (where NetWare put them).

Given the syntax shown in Figure C-4, a typical initialization routine could call ParseDriverParameters as

shown in Figure C-5:

Device Driver Developers' Guide

Revision 2.4 09/25/95C-4

push [esp + Parm1] ;screen handle from stack
push [esp + Parm2] ;cmd line pointer
push NeedsIOPort0Bit + NeedsInterrupt0Bit ;config requirements
push 0 ;Reserved2
push 0 ;Reserved1
push OFFSET Options ;Options structure pointer
push 0 ;Reserved0
push OFFSET IOConfig ;I/O Config structure ptr
call ParseDriverParameters
lea esp, [esp + (8*4)] ;adjust stack ptr

Figure C-5 Calling ParseDriverParameters

In Figure C-5 and in all code examples throughout this book, Parm0, Parm1, ..., Parm11 are defined as shown

below:

ParmOffset equ 20

Parm0 equ ParmOffset + 0

Parm1 equ ParmOffset + 4

Parm2 equ ParmOffset + 8

Parm3 equ ParmOffset + 12

Parm4 equ ParmOffset + 16

Parm5 equ ParmOffset + 20

Parm6 equ ParmOffset + 24

Parm7 equ ParmOffset + 28

Parm8 equ ParmOffset + 32

Parm9 equ ParmOffset + 36

Parm10 equ ParmOffset + 40

Parm11 equ ParmOffset + 44

Figure C-6 Stack Parameter Definitions

In Figure C-6, ParmOffset is defined as 20 in order to represent the 20 bytes that are normally pushed on the stack

when a C-style call is made (4 by the call instruction, and 16 by the called routine, upon entry, when saving EBX,

EBP, ESI, and EDI). Defining the stack offsets this way is one method that can simplify the retrieval of parameters

off the stack. However, the driver can use any method preferred.

Appendix D: Development Tools

Revision 2.4 09/25/95 D-1

Appendix D: Development Tools

NetWare driver developers must use compilers or assemblers which produce native 32-bit code and object modules

compatible with the Phar Lap Easy OMF-386, which is the 8086-OMF extension defined by Phar Lap to support

the 32-bit addressing modes of the 80386. The NetWare v3.xx Loadable Module Linker (NLMLINKP) must be

used to link the modules and requires the above object module format. Compilers and Assemblers currently

available for use are:

Assemblers:

The 386*ASM v2.0 (or later) protected mode assembler by Phar Lap Software, Inc.

Compilers:

Novell/WATCOM C Network Compiler/386 v1.0 (or later), available from Novell, Inc.

High C compiler v1.4 (or later) by MetaWare, Incorporated.

Linkers:

NLMLINK, available with NetWare v3.1 - v3.11 from Novell, Inc.

NLMLINKX, available with NetWare v3.1 - v4.xx from Novell, Inc.

NLMLINKR, available with NetWare v3.11 - v4.xx from Novell, Inc.

Novell/WATCOMWLINK, available from Novell, Inc.

Debuggers:

The NetWare debugger (integrated with NetWare)

Novell/WATCOMWVIDEO, available from Novell, Inc.

(Other third-party debuggers are under development)

Device Driver Developers' Guide

Revision 2.4 09/25/95D-2

Appendix E: Version Differences

Revision 2.4 09/25/95 E-1

Appendix E: Version Differences

Prior Version Compatibility

Drivers designed to v3.1x specification are compatible with version 4.xx. There are no major architectural changes

to the driver environment in v4.xx. However, the new memory management implementation more strictly enforces

memory access specifications. All accesses to memory external to the driver code must either be made to memory

that has been registered with NetWare (using RegisterHardwareOptions), or made through the

ReadPhysicalMemory support routine. Also, some I/O Control (IOCTL) functions have been updated to reflect the

richer development resources provided for the assorted storage devices such as autochangers, magazines, and tapes.

Some API support routines have been replaced with new ones more conducive to the new OS; however, the old

API's are still emulated.

Changes To Structures

Chapter 2 shows the fields of structures used by the driver. Changes have been made as follows:

IORequestStructure The last three parameter names have been changed from NumberOfSectors,

SectorNumber , and BufferAddress to generic names (Parameter 1, Parameter

2, etc), to allow for various devices.

IOConfigStructure Entries have been added to the Flags field, and a CmdLineOptionStr has

replaced the Reserved2 field.

New Routines Available With Version 4.xx

Several new optional routines have been included in the OS for device, disk, and LAN drivers to help provide

hardware independence. The functions accomplished by these optional routines are currently accomplished directly

by v3.1x drivers. The new optional routines added are:

*CPSemaphore

*CVSemaphore

ReadPhysicalMemory

* routines that were available in v3.1x but were not fully documented in v1.6 of the Device Driver

Specification.

The above routines are described in Chapter 7.

Device Driver Developers' Guide

Revision 2.4 09/25/95E-2

Upgrading Version 3.1x Drivers to 4.xx

The following is a checklist for converting version 3.1x drivers to be compatible with version 4.xx:

1) Replace all occurrences of the FreeSemiPermMemory support routine with the new Free call. Parameters

remain the same.

2) Replace all occurrences of the AllocSemiPermMemory support routine with the new Alloc call. Parameters

remain the same.

3) Replace all occurrences of the CRescheduleLast support routine with the new CYieldIfNeeded or

CYieldWithDelay call. Parameters remain the same.

4) Replace all occurrences of the QueueSystemAlert support routine with the new NetWareAlert call. Parameters

have changed.

5) Use the new ReadPhysicalMemory support routine for all accesses of the BIOS or ROM addressing areas that

have not been registered with the NetWare OS using the RegisterHardwareOptions support routine. Old

methods of accessing these system resources should be replaced.

6) All End-of-Interrupt (EOI) calls should be replaced with CDoEndOfInterrupt.

7) The OS has been updated to call the new I/O Control (IOCTL) function/sub-function codes. This should not be

a problem as displaced old function/sub-function numbers (see Chapter 5, pp. 5-10) were only defined but

never implemented.

8) (Optional) Include a line parameter parser in the initialization routine that obtains the server administrator-

assigned HBA card number.

Appendix F: Hardware Configuration Information

Revision 2.4 09/25/95 F-1

WorkSpaceSize dd 0 ;memory block size in bytes
WorkSpaceRealModeOffset dw 0 ;block offset
WorkSpaceRealModeSegment dw 0 ;block segment
WorkSpaceProtectedModeAddress dd 0 ;block address
WorkSpaceSemaphore dd 0 ;block semaphore

Appendix F: Hardware Configuration Information

Obtaining ISA Configuration Information

The ISA BUS does not provide a standardized way to obtain hardware configuration information. Individual slots

cannot be queried to determine the adapter type which is installed, nor can adapters be enabled or disabled in a uniform

way. Drivers must utilize the parameters passed from the ParseDriverParameters call (parameters supplied in load

command line), then verify that the hardware is present and operational as specified. Some adapters may allow all other

parameters to be obtained by I/O commands once a primary I/O port is identified, but drivers will still have to interpret

the fields thus obtained.

Obtaining EISA Configuration Information

NetWare device drivers on DOS-based servers can obtain EISA information by the following procedures:

Getting the Real Mode Workspace

In order to read EISA configuration information the driver must get a block of memory addressable in both real and

protected mode. The EISA machine BIOS uses this block of memory to pass configuration information to the

driver.

In order to create this special block of memory, the driver must use the operating system routine

GetRealModeWorkSpace. Before doing this, however, the driver must allocate five storage locations:

ñ A double word to hold the size of the block of memory (in bytes)

ñ A word to hold the offset of the real mode memory address of the block

ñ A word to hold the segment of the real mode memory address of the block

ñ A double word to hold the protected mode logical address of the block

ñ A double word to hold a pointer to a semaphore structure. The driver uses the semaphore to "lock" the

memory for its exclusive use while reading the EISA configuration information.

These locations can be reserved in the driver's data area, as the following example shows:

Device Driver Developers' Guide

Revision 2.4 09/25/95F-2

push OFFSET WorkSpaceSize
push OFFSET WorkSpaceRealModeOffset
push OFFSET WorkSpaceRealModeSegment
push OFFSET WorkSpaceProtectedModeAddress
push OFFSET WorkSpaceSemaphore
call GetRealModeWorkSpace
add esp, (5*4)

push WorkSpaceSemaphore ;load semaphore
call CPSemaphore ;lock work space
add esp, (1*4) ;adjust stack

Once the memory has been allocated by the driver, the driver pushes the addresses of the storage locations on to the

stack before calling GetRealModeWorkSpace.

GetRealModeWorkSpace provides the driver with access to the special block of memory by filling in the storage

locations that the driver passed to the operating system on the stack. On return, the driver must clean up the stack.

An example of the above call is shown below:

Locking the Memory

During the EISA configuration read operation, the driver must have exclusive use of the special memory block. It

must "lock" the memory block by calling the CPSemaphore function, as shown in the following example:

Please note that the driver must restore the stack upon return, as always.

Making a Real Mode BIOS Call

In order for the EISA machine BIOS to pass the configuration data for the selected physical card back to the driver,

the driver must make a real mode call to the EISA BIOS. The driver must allocate memory for two structures

(InputParms and OutputParms) whose format is defined below:

InputParamStruct struc
IAXRegister dw ?
IBXRegister dw ?
ICXRegister dw ?
IDXRegister dw ?
IBPRegister dw ?
ISIRegister dw ?
IDIRegister dw ?
IDSRegister dw ?
IESRegister dw ?
IIntNumber dw ?

InputParamStruct ends

Appendix F: Hardware Configuration Information

Revision 2.4 09/25/95 F-3

push OFFSET OutputParms ;ptr to output registers
push OFFSET InputParms ;ptr to input registers
call DoRealModeInterrupt ;cause switch to real mode, then int
lea esp, [esp + (2*4)] ;restore stack

OutputParamStruct struc
OAXRegister dw ?
OBXRegister dw ?
OCXRegister dw ?
ODXRegister dw ?
OBPRegister dw ?
OSIRegister dw ?
ODIRegister dw ?
ODSRegister dw ?
OESRegister dw ?
OFlags dw ?

OutputParamStruct ends

InputParms InputStructure<>
OutputParms OutputStructure<>

Before making the DoRealModeInterrupt call, the driver must fill in the InputParms structure in the following way:

IAXRegister The read configuration parameter 0D801h (See the EISA BIOS call information supplied by

the EISA computer manufacturer).

ICXRegister The adapter slot and block of configuration data to read. CL is the slot and CH is the block.

IDSRegister The real mode segment address of where to put the block of data. This value was returned in

the "WorkSpaceRealModeSegment" variable by GetRealModeWorkSpace.

ISIRegister The real mode memory offset of where to put the block of data. This value was returned in the

"WorkSpaceRealModeOffset" variable by GetRealModeWorkSpace.

Iintnumber The interrupt number. In this example, it is interrupt 15h.

After filling out the InputParms structure, the driver pushes the offsets of InputParms and OutputParms and then

calls DoRealModeInterrupt, as shown below (please note that the driver must restore the stack upon return):

Device Driver Developers' Guide

Revision 2.4 09/25/95F-4

cmp eax, 0 ;was successful?
jne IntNotValidErrorExit ;jmp if OS rtn error
cmp BYTE PTR OutputParms.OAXRegister+1, 0
jne IntNotValidErrorExit ;jmp if BIOS error

mov si, WorkSpaceProtectedModeAddress ;load pointer to data
movzx ecx, BYTE PTR [esi+INTERRUPTOFFSET] ;get int, if any
and cl, ISOLATEINTMASK ;isolate interrupt level
jecxz NoAddInterrupt ;if none skip add

mov SaveInterrupt, cl ;save interrupt for later

Error Checking

To determine if DoRealModeInterrupt executed without errors, compare EAX to 0. If the value is 0, the routine

executed successfully.

The driver must also detect errors the BIOS routine may have had. It does this by checking the OAXRegister field

in the OutputParms structure. To determine if the BIOS routine executed without errors, compare the OAXRegister

field to 0. If the value is 0, the routine executed successfully. A sample of the error checking code required follows:

Note: The error handling routines that the driver jumps to must unlock the block of memory by calling

CVSemaphore.

At this point, the driver has access to the configuration of the adapter set by the user in the EISA configuration

utility. The driver accesses this information using the logical address (protected mode address) of the special

memory block, which was returned during the GetRealModeWorkSpace call. A sample of typical driver processing

follows:

Each configuration block contains different information (interrupts, memory, etc.). If the first block read does not

contain the appropriate information, keep reading blocks by incrementing CH in the InputParms structure and

calling DoRealModeInterrupt again. Read blocks until the information is obtained or until Int 15h returns an 81h in

AL (BYTE PTR OutputParms.OAXRegister+1).

Note: INTERRUPTOFFSET is defined in the EISA specification.

Appendix F: Hardware Configuration Information

Revision 2.4 09/25/95 F-5

push WorkSpaceSemaphore ;pass semaphore
call CVSemaphore ;unlock workspace
add esp, (1*4) ;clean up stack

Unlocking the Memory

Finally, the driver must unlock the special memory block that the EISA configuration data is located in. This is

accomplished by making a call to the CVSemaphore function, as indicated in the following example:

Device Driver Developers' Guide

Revision 2.4 09/25/95F-6

Appendix G: 16-bit Host Adapter Support

Revision 2.4 09/25/95 G-1

Appendix G: 16-bit Host Adapter Support

Machines supporting more than 16 megabytes of RAM may have problems with 16-bit host adapters originally

designed for the 24-bit address bus of IBM AT compatibles, or earlier Micro Channel Architecture Busses which could

only address 16 megabytes. If the driver in question does not support a 16-bit Host Adapter using shared RAM or

DMA (including Bus-Master DMA) which may be used in systems with more than 16 megabytes, the following

information is not relevant.

Potential Problems

EISA Machines utilizing the Intel EISA Bus Controller chip usually disable memory control signals to slots which have

a 16-bit ISA card installed if a memory access above 16 Megabytes occurs. However, it may be possible that some

machines may not disable control signals to slots with 16-bit Host Adapters for memory accesses above 16 megabytes,

either due to an interpretation of the EISA specification or because the motherboard is not properly configured for the

slot. This may cause host adapters with shared RAM to respond when they are not being addressed, causing bus

contention between memory and the host adapter (and eventual failure of bus drivers on both the motherboard and the

host adapter).

This is not a problem with Micro Channel Architecture (MCA) machines since 16-bit Host Adapters designed to

specifications look at the "MADE24" signal to determine if the access is above 16 megabytes (and thus beyond the Host

Adapters range of addressing). Also, some EISA motherboards may not hold the high-order unused address lines (24-

31) to logic zero during Bus-Master DMA transfers for 16-bit Host Adapters (and thus cannot be used with 16-bit Bus-

Master DMA host adapters in configurations with more than 16 meg). This problem is only solvable if it is caused by

improper configuration of the EISA system, and requires a proper reconfiguration to prevent the control signals from

being activated in slots with 16-bit adapters for accesses above 16 megabytes.

A 16-bit Host Adapter (ISA or MCA) may also use shared RAM which maps just below the 16 meg boundary. System

memory conflicts with adapter shared RAMmust be resolved (usually memory may be disabled or relocated, or the

shared RAM may be mapped below 1 meg (there is typically a hole with at least 16K to 64K somewhere between

000C0000h and 000F8000h).

NetWare drivers supporting 16-bit DMA (MCA only) or Bus-Master DMA Host Adapters on MCA or EISA machines

with more than 16 megabytes will encounter another problem when the driver gets an I/O request with the ending

address extending into the area above 16 megabytes (the Host Adapter cannot do transfers above 16 meg). This

problem is solvable. A new memory allocation pool and new allocation routines were added to versions 3.11 and

above to address this problem, allowing drivers to request buffers which are specifically below 16 megabytes, which the

driver can either copy to or from, and which must be used for all server I/O requests which end above 16 megabytes. A

new NLM, BELOW16, has been designed to provide support for these routines in version 3.10. Please note that the

number of buffers (cache block size) allocated specifically for this purpose is user-setable from a minimum of 8 to a

maximum of 200 (for 3.1x) or 300 (for 4.xx). The default for versions 3.1x and 4.xx and for the BELOW16 NLM is

16.

Device Driver Developers' Guide

Revision 2.4 09/25/95G-2

Procedure

After Loading the Server

Version 3.11 and subsequent versions:

Use the setable parameter "Reserved Buffers Below 16 Meg" to reserve the number of buffers required for all

drivers supporting 16-bit adapters. The minimum number of buffers that can be reserved is 8, and the

maximum is 200. (The maximum for v4.xx is 300.) The default for this parameter is 16 buffers. Indicate

enough buffers for all drivers which will be loaded later and which will require use of these buffers. Do not set

this parameter higher than required, as it will have a significant effect on server performance.

Version 3.10 (allocate default number of buffers):

Load the driver (the drivers definition file must specify that the BELOW16 NLM module must be loaded first,

using the MODULE directive). This will cause the BELOW16 NLM to default to 16 buffers allocated

specifically for drivers requiring buffers below 16 megabytes.

Version 3.10 (override default number of buffers):

Load the BELOW16 NLM (must be first NLM loaded) using the format "load below16.nlm buffers=nn",

where nn is a value between 8 (minimum) and 200 (maximum). The number indicated must be large enough

for all drivers requiring intermediate I/O buffers below 16 megabytes, since these buffers will be shared with all

drivers requiring them. Do not specify a number larger than required, as indicated below.

Now load any drivers requiring buffers below 16 megabytes.

Driver Initialization

Allocate at least a single buffer for each Host Adapter used potentially for I/O and the Scan for Devices

function, using the "AllocBufferBelow16Meg" allocator (see chapter 7). Retain the buffer address in a special

list so that it can be identified for use with requests which end above 16mb, also to return to the system for

clean-up. The buffers allocated by the driver from this memory pool are intended to be kept by the driver until

the driver is unloaded*, and not allocated dynamically upon demand (the allocation routine is blocking and may

not be called either from Interrupt Level or from the Driver IOPollRoutine level). Additional memory

allocated by the driver for control blocks and other driver purposes must be allocated using the Alloc memory

allocation routine.

Appendix G: 16-bit Host Adapter Support

Revision 2.4 09/25/95 G-3

Driver Scan For Devices

After finding a device using the buffer allocated during initialization (or allocating an additional buffer if the

original is busy with I/O) determine the number of outstanding requests that can be active simultaneously with

the Host Adapter for the driver, and allocate them using the "AllocBufferBelow16Meg" allocator. It may be

necessary for the driver to limit the number of requests that may be outstanding at one time. Many Host

Adapters will never require more than one buffer, because many Host Adapters do not support disconnect or in

some way are limited to one actual request pending at any time.

* Note: The OS memory allocators used by the drivers may not be called at interrupt or process non-

blocking level, but are all meant to be used to allocate memory which is to be kept by the driver

until the driver is unloaded from the NetWare v3.xx or v4.xx Operating Systems. Using the

memory allocators in an interactive environment will degrade performance both of the driver and

also the cache, since the blocks are taken from the cache and the cache blocks flushed prior to

being returned to the caller.

Driver Active I/O Operation

Initiating I/Os

After acquiring each request* by calling GetRequest:

1- Call MapDataOffsetToAbsoluteAddress to get the real absolute memory address of the request

2- Add the length of the transfer request (or requests if combining adjacent requests) in bytes to the starting

real absolute memory address.

3- If the result is below 16 megabytes, proceed to perform I/O normally directly to or from the actual request

buffer (this will allow greatest throughput).

4- If the result is above 16 megabytes, use one of the special buffers the driver allocated at initialization below

16 meg. If a write, move the data from the request buffer to the special pre-allocated buffer. Flag the

buffer as in use so that the driver will not attempt to use it simultaneously for another request.

* Note: Additional memory may be registered above 16 megabytes at any time, requiring drivers to check

dynamically all requests to determine if they end above 16 meg.

Device Driver Developers' Guide

Revision 2.4 09/25/95G-4

At interrupt or I/O completion:

1- If the I/O just completed was a read and a special driver pre-allocated buffer below 16 megabytes was used,

move the data from the special buffer to the original request buffer above 16 megabytes.

2- For all requests originally above 16 meg, now mark the special buffer available for future driver needs for

that adapter.

Driver Unload

a) Wait for all requests to be completed (as normal).

b) Return each buffer previously acquired with the "AllocBufferBelow16Meg" allocator by calling

"FreeBufferBelow16Meg" providing the buffer address originally obtained.

Appendix H: NetWare Ready Support

Revision 2.4 09/25/95 H-1

Appendix H: NetWare Ready Support

Notice of Discontinuance

Novell has discontinued the NetWare Ready program and will no longer certify products to that standard. It was

determined that the original objectives of the program were either being met though other means, or were not

consistent with Novell Lab's charter.

The primary objective of the NetWare Ready program was to verify hardware and hardware driver compatibility

with the NetWare operating system. Each product was categorized and then tested for compatibility against all

complementary products of the same category while running NetWare. A secondary objective tested the hardware

for reliability. For example, a SCSI disk drive would be tested for compatibility with several previously-certified

drivers and host bus adapters while running in a NetWare file server. The SCSI drive was also stress tested under

load comparable to a heavy network environment.

Novell determined that, given the proliferation of products and interface standards available, attempts to classify

products would be artificially restrictive. Also, the testing required would demand excessive manpower and

resources. A better alternative is provided in the "Yes, NetWare Tested and Approved" program. There, strong

emphasis is placed on testing the compatibility between NetWare and the NetWare driver software. It is the product

manufacture's responsibility to resolve hardware compatibility and reliability issues and designate the configuration

to be used.

Device Driver Developers' Guide

Revision 2.4 09/25/95H-2

Appendix I: PCI and PCMCIA Support

Revision 2.4 09/25/95 I-1

Appendix I: PCI and PCMCIA Support

This document describes how PCI and PCMCIA are supported on NetWare v4.10. The APIs described herein area

subset of those to be provided in a later version of NetWare. Although NetWare v4.10 does not fully support a

multi-bus architecture, the following APIs allow drivers to be loaded on a PCI or PCMCIA bus that coexist in the

same IO space as an ISA, EISA or MCA bus. Comprehensive multi-bus support is now provided through the

NWPA and NBI nlms. The interface architecture and APIs are described in the NetWare Peripheral Architecture

(NWPA) Functional Specification and Developerìs Guide, Version 2.1D September 1995 or later.

In versions of NetWare before v4.10, a single driver could be written to support similar adapters designed for

different bus architectures. The drive accomplished this by asking the NetWare Operating System (by calling

GetHardwareBusType) what bus type the machine supported, and then using this information (bit 0 = MCA, bit 1

= EISA) to make the appropriate calls to initialize the driver. In this way, the same driver that was loaded to

support an adapter on an EISA bus machine could be loaded to support an adapter on a MCA bus machine, if the

driver called GetHardwareBusType and initialized the adapter based upon which bit was set. This methodology

works fine for machines that support only one bus type. However, with the introduction of PCI and PCMCIA it has

become more common for a single machine to support multiple bus types. Thus, if GetHardwareBusType were to

be extended to define bits for PCI and PCMCIA, this would be insufficient because both PCI and EISA buses may

be supported by the machine in question. Worse yet, a single machine may support multiple PCI buses.

PIN NetWare has designed a solution for the larger problem of a single machine supporting multiple buses of the same

type, or even of this solution in order to solve the immediate problem of supporting PCI and PCMCIA buses as well as

help move drivers in the long term direction that NetWare is heading.

PCI or PCMCIA support is provided in the following manner:

Two new fields have been defined in the IOConfigurationStructure:

LONG CBusTag: Contains a tag that can be used to determine the bus type associated with a particular adapter.

ParseDriverParameters will now parse for the token 'BUS=(string)' and stuff a tag associated

with the specified bus (if supported) into CBusTag. The strings supported by NetWare v4.10

are: ISA, EISA, MCA, PCMCIA and PCI. If no 'BUS=(string)' token is specified, the

CBusTag field will not be modified. A NULL bus tag can be used to specify the primary or

default system bus.

WORD CIOConfig Version:

Contains a 1. This specifies that the CBusTag field is defined and used by the driver. This

number may change in the future to allow the definition of IOConfigurationStructure to be

changed again for future enhancements.

Device Driver Developers' Guide

Revision 2.4 09/25/95I-2

typedef struct IOConfigurationStructure {

LONG Reserved0;

WORD Flags;

WORD Slot;

WORD IOPort0;

WORD IOLength0;

WORD IOPort1;

WORD IOLength1;

LONG MemoryDecode0;

WORD MemoryLength0;

LONG MemoryDecode1;

WORD MemoryLength1;

BYTE Interrupt0;

BYTE Interrupt1;

BYTE DMAUsage0;

BYTE DMAUsage1;

LONG IORTag;

LONG Reserved1;

BYTE *CmdLineOptionStr;

BYTE Reserved3[18];

LONG LinearMemory0;

LONG LinearMemory1;

WORD Reserved4;

LONG CBusTag;

WORD CIOConfigVersion;

} IOConfigStruct;

Now that the driver has obtained a bus tag, it can use this tag to ask the NetWare Operating System for the bus type by

calling GetBusType as defined below:

/**/

LONG GetBusType(

LONG busTag,

LONG *busType);

LONG busTag: Bus tag for the bus in question. NULL specifies primary bus.

LONG *busType: A place to put a value that indicates the bus type. The defined values are:

0 = PC ISA bus

1 = PC MCA bus

2 = PC EISA bus

3 = PCMCIA bus

4 = PCI bus

TBD = other bus types yet to be defined

Returns: 0 = Successful

4 = Parameter error (invalid bus tag)

Appendix I: PCI and PCMCIA Support

Revision 2.4 09/25/95 I-3

Other bus calls supported by the NetWare v4.10 that may be useful are the following:

/**/

LONG GetBusName(

LONG busTag,

BYTE **busName)

LONG busTag: Bus tag for the bus in question. NULL specifies primary bus.

BYTE **busName: A place to put a pointer to a NULL-terminated string (the name of the specified bus)

Returns: 0 = Successful

4 = Parameter error (invalid bus tag)

/**/

LONG GetBusTag(

BYTE *busName,

LONG *busTag)

BYTE *busName: Pointer to a NULL-terminated string (the name of the bus).

NULL means return tag for the primary bus.

LONG *busTag: A place to but the bus tag.

Returns: 0 = Successful

6 = Item not present

/**/

LONG ScanBusInfo(

LONG *scanSequence,

LONG *busTag,

LONG *busType,

BYTE **busName)

LONG *scanSequence: Initialized to -1 for the first search and then passed back for subsequent calls.

LONG *busTag: A place to put the bus tag.

LONG *busType: A place to put the bus type.

BYTE **busName: A place to put a pointer to a NULL-terminated string (the name of the specified bus).

Returns: 0 = Successful

4 = parameter error (invalid sequence)

7 = No more items

Device Driver Developers' Guide

Revision 2.4 09/25/95I-4

/**/

LONG DoRealModeInterrupt32(

InputParametersStructure32 *InputStructure32,

OutputParametersStructure32 *OutputStructure32)

InputParametersStructure32 *InputStructure32: A pointer to a structure holding the pertinent input register

values.

OutputParametersStructure32 *OutputStructure32: A pointer a structure where the register values are returned.

Returns: 0 & zero flag set = interrupt vector was called

1 & zero flag cleared = interrupt vector not called (DOS not available)

/**/

typedef InputParamStruct32{ typedef OutputParamStruct32{

LONG IEAXReg; LONG OEAXReg

LONG IEBXReg; LONG OEBXReg

LONG IECXReg; LONG OECXReg

LONG IEDXReg; LONG OEDXReg

LONG IEBPReg; LONG OEBPReg

LONG IESIReg; LONG OESIReg

LONG IEDIReg; LONG OEDIReg

WORD IDSReg; WORD ODSReg

WORD IESReg; WORD OESReg

WORD IFSReg; WORD OFSReg

WORD IGSReg; WORD OGSReg

BYTE IIntNumber; LONG OFlags32

BYTE IDummy32[3]; } OutputParametersStructure32;

} InputParametersStructure32;

Appendix J: NetWare CD-ROM Support

Revision 2.4 09/25/95 J-1

Appendix J: NetWare CD-ROM Support

NetWare versions 3.12 and 4.xx support CD-ROM device drivers by way of an NLM. The NLM uses the standard

ISO9660 and High Sierra file formats to implement read-only volumes on v3.12/v4.xx file servers. The following list

describes the details that are necessary for developers to consider when developing NetWare device drivers for CD-

ROM devices:

1) Scan for devices

The device driver must register the device with the OS even if the removable compact disk media is not present in

the device. During the driver's scan for devices routine (see chap. 4), the driver can call AddDiskDevice with

dummy parameters in place of TotalSize and DriveParameters. When the driver is locating devices that are

attached to the adapter card, NetWare only cares that there is a device that exists. At this point, NetWare does not

care about details such as the capacity of the removable media.

The actual dimensions of the storage media will be registered with the OS when the OS calls the

ReturnDeviceStatus, ReturnDeviceInfo, and ReturnMediaInfo I/O control (IOCTL) routines (See item 2 below).

During the scan, the driver must also register the device as ReadOnlyDevice (01h) and RemovableDevice (02h)

when the access flags are passed as part of the driveSizes parameter to the AddDiskDevice routine (see chap. 7).

The flags ensure that the OS will call the correct IOCTL routines.

2) IOCTL function calls

The OS uses the ReturnDeviceStatus, ReturnDeviceInfo, and ReturnMediaInfo IOCTLs to register the correct

capacity of the media (in 512-byte sectors) when it is present in the device. To maintain compatibility with other

operating system partitions, the physical dimensions (hd, sect, cyl) of the driver are also registered. The product of

these dimensions must equal or exceed the capacity of the media. The driver must also indicate in these IOCTLs

that it will suport the NetWare 512-byte sector size and perform any needed sector translation as described in item 3

below. (Also, see the IOCTL descriptions in chapter 5.) If no media is present, the driver should return an error

condition to the OS.

NetWare will call LogicalDeviceMount and LogicalDeviceDismount at some point during device operation.

NetWare uses these IOCTLs to verify that media is present and/or inserted. These functions could also be used to

spin up or spin down the device (see chap. 5).

NetWare will also call LockDeviceMedia and UnlockDeviceMedia to lock or unlock the media in the device.

Disabling the eject button on the device ensures that the media will not be ejected while in use.

3) OS data reads

NetWare v3.12/v4.xx assumes that all devices that are attached to the file server will return data in 512-byte

sectors. Most CD-ROM devices have a file format of 2048-byte sectors. The NetWare driver must translate the

CD-ROM device sector size into the 512-byte sectors. All devices that are to be used as NetWare volumes that have

a different sector size than the required 512-byte sectors must perform 2048-to-512-byte sector translation.

For example, if NetWare requested to read an 8-sector block of data starting at sector 64, the translation for 2048-

byte sectors would start at physical sector 16 and read 2 sectors.

Device Driver Developers' Guide

Revision 2.4 09/25/95J-2

Appendix K: Sequential Access Device Drivers (Tapes)

Revision 2.4 09/25/95 K-1

Appendix K: Sequential Access Device Drivers (Tapes)

There are several new IOCTL functions and sub-functions designed to help customize device drivers for tape devices

and other similar devices. In addition to these functions, there are several items that developers should be aware of when

developing drivers for sequential access media.

1) The device driver interface was originally designed for developing disk drivers only. Consequently, the names of

some system calls use the word "disk." For example, an essential call for registering devices with the OS is

AddDiskDevice. Sequential Media drivers use this call to register their devices also.

2) Some commands require the driver to issue two or more commands in order to complete a request. A driver can

either use an asynchronous event schedule (AES) thread to issue a series of blocking calls, or the driver must devise

a mechanism that issues succeeding calls from within the interrupt handler in order to use a series of non-blocking

calls.

3) Drivers can ignore implementation of I/O Control (IOCTL) requests and regular I/O requests that pertain to disks

such as RandomRead, RandomWrite, FormatDevice (unless required by the sequential access device) and

ReturnBadBlockInfo.

4) When a tape error is detected by the driver, it must dequeue the the corresponding device's request list by issuing

GetRequests and PutRequests until the list is exhausted (GetRequest returns a zero.) The requests must be returned

(using PutRequest) with a "Abort - Prior State" CompletionCode.

Device Driver Developers' Guide

Revision 2.4 09/25/95K-2

Installation Information File

Revision 2.4 09/25/95 L-1

Appendix L: Installation Information File

Introduction

To facilitate the ability to programmatically install device drivers, installation programs must know the

parameters associated with each driver, the interactions that are required from the user, and how to set up the

respective configuration file(s). For information describing the syntax of the driver text file used to provide

installation utilities with the required information, refer to the NetWare Peripheral Architecture (NWPA)

Functional Specification and Developerìs Guide, Version 2.1D September 1995 or later, Appendix C.

Device Driver Developers' Guide

Revision 2.4 09/25/95L-2

Appendix M: OS/2 Drivers

Revision 2.4 09/25/95 M-1

Appendix M: OS/2 Drivers

From a developer perspective, there is no difference in writing OS/2 driver and native NetWare drivers. The following

are items for all driver developers to remember that especially apply to OS/2-based drivers:

ñ In general all system hardware must be registered with the NetWare OS and accessed using API calls when

available. Do not access them directly.

ñ Use CDoEndOfInterrupt for tasks involving EOI's.

ñ Use CEnableHardwareInterrupt and CDisableHardwareInterrupt to mask and unmask individual

interrupts.

ñ When accessing the DOS address space for BIOS information, use ReadPhysicalMemory or register the

area to be accessed using RegisterHardwareOptions.

ñ UseMapDataOffsetToAbsoluteAddress andMapAbsoluteAddressToDataOffset to translate between

linear (logical) and physical addresses of memory that has been registered with the NetWare OS.

The API set used to develop device drivers has been generalized to adapt to the OS/2 environment. Logically the driver

interface is the same for native NetWare running under OS/2 as for native NetWare.

