
NetWare Driver Support Routines

Revision 2.4 09/25/95 7-1

Chapter 7: NetWare Driver Support Routines

This chapter describes the following NetWare v3.1x and v4.xx support routines that are available to file server device

drivers. The routines marked as 'NetWare v3.1x Only' are emmulated in NetWare v4.xx but will be eliminated in

succeeding versions. The routines marked as 'NetWare v4.xx Only' are not available in NetWare versions 3.1x.

ñ AddDiskDevice ñ GetCurrentTime

ñ AddDiskSystem ñ GetHardwareBusType

ñ AlertDevice ñ GetIOCTL

ñ Alloc ñ GetReadAfterWriteVerifyStatus

ñ AllocateResourceTag ñ GetRealModeWorkSpace

ñ AllocBufferBelow16Meg ñ GetRequest

* ñ AllocSemiPermMemory ñ GetSectorsPerCacheBuffer

ñ CAdjustRealModeInterruptMask ñ MapAbsoluteAddressToCodeOffset

ñ CancelNoSleepAESProcessEvent ñ MapAbsoluteAddressToDataOffset

ñ CancelSleepAESProcessEvent ñ MapCodeOffsetToAbsoluteAddress

ñ CCheckHardwareInterrupt ñ MapDataOffsetToAbsoluteAddress

ñ CDisableHardwareInterrupt ** ñ NetWareAlert

ñ CDoEndOfInterrupt ñ OutputToScreen

ñ CEnableHardwareInterrupt ñ ParseDriverParameters

ñ CheckDiskCard ñ PutIOCTL

* ñ CheckDiskDevice ñ PutRequest

ñ ClearHardwareInterrupt * ñ QueueSystemAlert

ñ CPSemaphore ** ñ ReadPhysicalMemory

* ñ CRescheduleLast ñ RegisterForEventNotification

ñ CUnAdjustRealModeInterruptMask ñ RegisterHardwareOptions

ñ CVSemaphore ñ RemoveDiskDevice

** ñ CYieldIfNeeded ñ ScheduleNoSleepAESProcessEvent

** ñ CYieldWithDelay ñ ScheduleSleepAESProcessEvent

ñ DelayMyself ñ SetHardwareInterrupt

ñ DeleteDiskDevice ñ UnRegisterEventNotification

ñ DeleteDiskSystem

ñ DeRegisterHardwareOptions

ñ DoRealModeInterrupt

ñ EnterDebugger

ñ Free

ñ FreeBufferBelow16Meg

* ñ FreeSemiPermMemory

* NetWare v3.1x Only

** NetWare v4.xx Only

Device Driver Developers' Guide

Revision 2.4 09/25/957-2

Definitions:

The following API descriptions contain important terms that must be understood to design a driver to work properly

with NetWare. Please note the following descriptive terms:

Blocking - Indicates the routine may cause the current thread of execution (NetWare process)

to be suspended or "blocked" until the requested function is completed (or calls other

blocking system routines). At no time can a driver Interrupt Service Routine (ISR)

make a call to a blocking routine.

Non-blocking - Indicates the routine will return immediately, without causing the current thread or

process to be suspended.

Interrupts Disabled - Indicates that interrupts must be disabled before calling the routine. This means that

no processor interrupts excepting Non-maskable interrupts can occur. This state is

often required to maintain system and driver integrity.

Process Level - Indicates the level of execution of NetWare v3.1x/v4.xx processes or scheduled

tasks. NLMs normally execute at process level. Also, the loader and command

processor execute at process level.

Interrupt Level - Indicates execution caused by a processor interrupt, in which case the current OS

process is unknown. The ISR executes as the current process, and must never make

blocking calls, etc.

Please note the following guidelines:

0 All routines shown as "blocking" may only be called from blocking process level.

0 All routines shown as "non-blocking" may be called from both blocking and non-blocking levels (see chapter

1).

0 Other required calling environments are indicated in the Requirements: entry for each routine.

0 The v3.1x, v3.1x & v4.xx or v4.xx designation indicates the Netware version in which the API is supported.

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-3

AddDiskDevice (Blocking) v3.1x & v4.xx

Allocates DiskStructure and registers device with OS

Syntax: DiskStruct *AddDiskDevice(

BYTE *DeviceName,

void (*IOPollRoutine)(

DiskStruct *DiskHandle, IORequestStruct *IORequest),

LONG TotalSize,

LONG DriveSizes,

LONG DriveParameters,

LONG DriveID,

CardStruct *CardHandle,

LONG DiskStructureSize);

Return Value: Returns a handle to a DiskStructure, or 0 if unsuccessful

Requirements: Must be called from blocking process level only.

Parameters: DeviceName Pointer to a 32-byte ASCII string; byte 0 = length, bytes 1-31 = name of

device which describes the physical device. (Exclude the length byte and the

NULL character from the string length count.)

IOPollRoutine Pointer to the driver's IOPoll routine for the device. The device driver must

be able to receive a call to the IOPoll routine at any time upon exit from the

AddDiskDevice routine.

TotalSize The useable sector capacity of the physical device or media in the device.

(The sector size is as reported in the SectorSize field.) For writeable media

this value should be rounded down to a cylinder boundary (using the device

geometry as reported below), since all partitions must begin and end on

cylinder boundaries. For read-only media (CDROM) this value should be

reported with no modifications. For sequencial access devices, if the

capacity is unknown, this field should be set to a -2.

DriveSizes Information about the drive size. It includes the following bytes:

db AccessFlags (lsb)

db DriveType

db BlockSize

db SectorSize (msb)

Device Driver Developers' Guide

Revision 2.4 09/25/957-4

AddDiskDevice (continued)

AccessFlags indicates special device or access characteristics to be used

with the device:

RemovableDevice 01h

ReadOnlyDevice 02h

WriteSequential 04h

ChangerDevice 10h *

MagazineDevice 20h *

* v3.12 & v4.xx only

RemovableDevice indicates that device media may be removed and

replaced with other media. Device characteristics may be changed by

insertion of new media, such as BlockSize, SectorCount, HeadCount, and

CylinderCount, as well as other AccessFlags. The RemovableDevice access

flag may not be changed after a device has been registered with the OS.

ReadOnlyDevice indicates to the OS that write operations should not be

issued to the device. A valid Netware volume may be written, dismounted,

registered as write-protected, then mounted again.

Write Sequential indicates to the OS that I/O requests to the device should

be sent in sequential order.

The ChangerDevice access flag indicates that a Read/Write device

associated with an autochanger is being added to the system. If this flag is

set, the NetWare 4.xx or 3.12 OS will subsequently issue the appropriate

IOCTLs in order to obtain the autochanger configuration.

The MagazineDevice access flag indicates that a Read/Write device

associated with a magazine is being added to the system. If this flag is set,

the NetWare 4.xx or 3.12 OS will subsequently issue the appropriate

IOCTLs in order to obtain the magazine configuration.

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-5

AddDiskDevice (continued)

The DriveType is defined as follows:

0 Hard Disk

1 CD-ROM Device *

2 WORM Device *

3 Tape Device *

4 Magneto-Optical (MO) Device

* NetWare volumes are not currently supported on these device types.

The types are provided to allow application software means to identify

these devices and exploit their function.

BlockSize is the driver maximum I/O request size:

0 - 1 sector 4 - 16 sectors

1 - 2 sectors 5 - 32 sectors

2 - 4 sectors 6 - 64 sectors

3 - 8 sectors 7 - 128 sectors

SectorSize: The value inserted for SectorSize is actually a shift factor. The

shift factor is used as the exponent in the following formula:

512 * 2 = Actual Sector Size
(sectorSize)

where SectorSize >= 0. There must be a value declared for SectorSize.

Currently, this must be a value of 0 which calculates to a sector size of 512.

The NetWare File System only supports a sector size of 512 bytes. All

requests generated by the NetWare File System will be in sectors of that

size. Drivers that support devices with native sector sizes other than 512 are

required to translate these requests into the proper format.

Device Driver Developers' Guide

Revision 2.4 09/25/957-6

AddDiskDevice (continued)

DriveParameters Includes the following drive parameter fields (ignored for devices indicated

as removable):

db SectorCount (lsb)

db HeadCount

dw CylinderCount (msw)

SectorCount is the number of sectors per track on the device. HeadCount

is the number of heads on the device.

CylinderCount is the number of cylinders on the device.

For writeable media the SectorCount and HeadCount parameters are used

by the partition editor to determine the partition boundaries and are required

to match the geometry of other partitions on the drive. For read-only media,

if the device capacity does not fall on a cylinder boundary, the count should

incremented to include the partial cylinder. (See TotalSize.)

DriveID Drive identification. It includes the following fields:

db ControllerNumber (lsb)

db DriveNumber

db CardNumber

db DriverID (msb)

ControllerNumber is the device target address (SCSI id.) or equivalent.

DriveNumber is the device Logical Unit Number (LUN) or equivalent. If

the ControllerNumber and DriveNumber reference the same object (i.e.

SCSI devices with integrated drive electronics) this number is zero.

CardNumber is the host adapter card number. This number is optionally

assigned by the system administrator and is passed to the driver at load time

though a command line parameter (CARD=xx).

DriverID is the Novell-assigned driver number (obtained through Novell

Labs IMSP.)

CardHandle The card handle AddDiskSystem returned for the adapter on which the device

resides.

DiskStructureSize Size of the required device structure AddDiskDevice will allocate and zero

fill. AddDiskDevice returns a pointer to this structure. This structure must

be allocated even if the size is specified as 0 bytes, as the pointer is required

for many calls.

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-7

push SIZE DiskStruct ;allocate a disk structure
push CardHandle ;card handle
push DriveId ;
push DriveParameters ;
push DriveSizes ;
push TotalSize ;
push OFFSET IOPollRoutine ;IOPoll entry point
push OFFSET DeviceName ;description text for device
call AddDiskDevice ;register with the OS
lea esp, [esp + (8*4)] ;adjust stack ptr

AddDiskDevice (continued)

Example:

Description: AddDiskDevice creates a system device structure to provide NetWare information for the device specified.

AddDiskDevice is called by the driver to register each un-registered device found during the driver's

ScanForDevices procedure (devices which support removable media must be registered by the driver even

if no media is currently present, as the device thus defined will not be active when it fails a subsequent

mount request. The device may be activated later when media is present).

AddDiskDevice allocates and returns a pointer to a DiskStructure for driver use (driver determined size).

The pointer serves both as a device handle for calls to AlertDevice, RemoveDiskDevice,

DeleteDiskDevice, GetRequest, and PutRequest routines, and as a pointer to reference the DiskStructure.

See Also: AlertDevice, DeleteDiskDevice, RemoveDiskDevice, ScanForDevices, ReturnDeviceStatus IOCTL, I/O

Function Codes

Device Driver Developers' Guide

Revision 2.4 09/25/957-8

AddDiskSystem (Blocking) v3.1x & v4.xx

Allocates Card Structure and registers adapter with OS

Syntax: CardStruct *AddDiskSystem(

LONG NLMHandle,

IOConfigStruct *IOConfig,

void (*IOCTLPollRoutine)(

CardStruct *CardHandle, IOCTLRequestStruct *IOCTLRequest),

void (*ScanForDevices)(CardStruct *CardHandle),

void (DeleteDevice)(DiskStruct *DiskHandle),

LONG NovellNumber,

LONG DriverResourceTag,

LONG CardStructureSize);

Return Value: Returns a pointer to a Card structure, or 0 if unsuccessful

Requirements: Must be called from blocking process level only.

Parameters: NLMHandle The handle NetWare passed on the stack to the driver initialization routine.

IOConfig The corresponding adapter board's IOConfiguration structure pointer.

IOCTLPollRoutine The driver's IOCTL Poll routine entry point. The device driver must be able

to receive a call to the IOCTLPoll routine at any time upon exit from the

AddDiskDevice routine.

ScanForDevices The driver's ScanForDevices routine entry point. The device driver must be able

to receive a call to the ScanForDevices routine at any time upon exit from the

AddDiskDevice routine.

DeleteDevice v3.11 only - The entry point to the driver's DeleteDevice routine. For all

other versions (v3.12 and v4.xx), this parameter should be initialized to a

NULL (0).

NovellNumber The number assigned for this driver by Novell.

DriverResourceTag Resource tag allocated by driver with the "Driver Signature".

CardStructureSize Driver-defined Card structure size, to be allocated by AddDiskSystem (zero

not used by driver).

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-9

push SIZE CardStruct ;structure size to allocate
push DriverResourceTag ;identify owner of this resource
push NovellNumber ;Novell assigned driver number
push 0 ;Reserved0
push OFFSET ScanForDevices ;driver scan/add routine
push OFFSET IOCTLPollRoutine ;driver's IOCTL entry point
push OFFSET IOConfig ;handle to IOConfiguration structure
push NLMHandle ;passed at driver initialization.
call AddDiskSystem ;register card with OS
lea esp, [esp + (8*4)] ;adjust stack pointer

AddDiskSystem (continued)

Example:

Description: A device driver's Initialization routine calls this routine to register an adapter board with NetWare.

AddDiskSystem creates a structure inside the NetWare Operating System to retain information about the

specified adapter board. AddDiskSystem also allocates memory for a driver-defined local Card structure

and passes a pointer back to the driver.

The pointer value serves two purposes. First, the driver uses the pointer as a card handle when calling

CheckDiskCard, GetIOCTL, and PutIOCTL, AddDiskDevice, and DeleteDiskSystem. Second, the pointer

is used to reference the card structure, which AddDiskSystem created, where the driver may store data for

the corresponding adapter card.

See Also: DriverInitialization, DriverCheck, DriverUnload, DeleteDiskSystem, CheckDiskCard, DeleteDevice,

ScanForDevices, ReturnDeviceStatus IOCTL

Device Driver Developers' Guide

Revision 2.4 09/25/957-10

AlertDevice (Non-blocking) v3.1x & v4.xx

Notifies Operating System of a device condition change

Syntax: void AlertDevice(

DiskStruct *DiskHandle,

LONG MessageBit);

Return Value: None

Requirements: Interrupts disabled.

Parameters: DiskHandle Handle returned by AddDiskDevice for device.

MessageBit A single bit value indicating the device condition or cause of the AlertDevice call,

defined as follows:

hex binary

01 0000 0001 Device Failed - a device has failed and is no longer active.

The OS will deactivate the device, clear all pending I/O

requests it owns and issue a deactivate IOCTL call.

08 0000 1000 Media Ejected - media not present in the device (for

removables). The OS will deactivate the device, clear all

pending I/O requests it owns and issue a deactivate IOCTL

call.

20 0010 0000 Media Inserted - informs the OS that media has been

inserted in the device. The OS will send a message to all

applications that have locked the device.

* 40 0100 0000 Delete Device - requests the device be deleted. The OS

will deactivate the device, clear all pending I/O requests it

owns and calls the card's DeleteDevice routine.

* v3.1x only

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-11

push 00000001b ;indicate device failure
push DiskHandle ;device handle from AddDiskDevice call
call AlertDevice ;tell system about device status change
lea esp, [esp + (2*4)] ;adjust stack pointer

AlertDevice (continued)

Example:

Description: This call notifies the OS of a status change or problem with a device. In the cases when the OS responds

by deactivating the device, the driver is required to post completion for any outstanding requests for the

device. All requests acquired with a GetRequest call must be returned to the OS with a Device Not Active

completion code.

See Also: DeleteDiskDevice, RemoveDiskDevice

Device Driver Developers' Guide

Revision 2.4 09/25/957-12

push MemRTag ;identify type of resource
push NumberOfBytes ;indicate amount of memory required
call Alloc ;returns pointer to memory in eax
lea esp, [esp + (2*4)] ;adjust stack pointer
mov ebp, eax ;need for use and to return

Alloc (Non-blocking) v3.1x & v4.xx

Allocates block of returnable memory for driver use

Syntax: void *Alloc(

LONG NumberOfBytes,

LONG MemRTag);

Return Value: Pointer to the allocated memory in EAX, or 0 if unsuccessful.

Requirements: Interrupts disabled.

Parameters: NumberOfBytes Passes in the amount of memory in bytes to be allocated.

MemRTag Resource tag acquired by driver for memory allocation using an

"AllocSignature" resource signature.

Example:

Description: Alloc is used to allocate memory for any driver requirements such as IOConfiguration structures or special

buffers. Alloc is passed the amount of memory to allocate and returns a pointer to the allocated memory

in the EAX register. This routine is available to drivers for Initialize Driver, Mass Storage Control

Interface, IOPoll, and IOCTLPoll routines. It may also be called from within an interrupt environment

(ISR); however, the availability of memory will be diminished. The memory allocated is not initialized by

the allocation routine, and must be initialized by the driver. The repeated allocation and deallocation of

relatively small blocks of memory will tend to cause memory fragmentation. For increased system

efficiency, a large block of memory can be initially allocated and maintained as a pool of smaller blocks.

Memory is always allocated on a paragraph (16 byte) boundary.

See Also: Free, AllocateResourceTag

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-13

AllocateResourceTag (Blocking) v3.1x & v4.xx

Allocates OS resource tags for specific resource types

Syntax: LONG AllocateResourceTag(

LONG NLMHandle,

void *ResourceDescString,

LONG ResourceSignature);

Return Value: Resource tag identifying specified entry type (0 if error).

Requirements: Must be called from blocking process level only.

Parameters: DriverHandle The module handle passed to the driver (NLM) when its initialization

routine was called.

ResourceDescString Pointer to a null-terminated text string describing the resource, with a maximum

total length of 16 bytes, including null terminator.

Example: db 'NDCB Driver',0

ResourceSignature A value used to identify a specific resource type. The signatures the driver

must pass (indicates to the OS the kind of resource tag to allocate,

consequently do not change the following equates or the OS will fail the

drivers request to allocate a resource tag) to identify each resource tag type

requested are defined as follows:

AESProcessSignature equ 50534541h

AllocSignature equ 54524C41h

CacheBelow16MegMemorySignature equ 36314243h

EventSignature equ 544E5645h

DiskDriverSignature equ 4B534444h

InterruptSignature equ 50544E49h

IORegistrationSignature equ 53524F49h

* SemiPermMemorySignature equ 454D5053h

TimerSignature equ 524D4954h

* v3.1x only

Device Driver Developers' Guide

Revision 2.4 09/25/957-14

cmp LoadedOnceGoodFlag, 0 ;already allocated tags ?
jne GotTags ;yes - skip
push DriverSignature ;identifies Driver resource type
push OFFSET rTagString ;resource tag descriptive string
push NLMHandle ;driver module id
call AllocateResourceTag ;returns a tag id in EAX
lea esp, [esp + (3*4)] ;adjust stack pointer
mov DrvrRTag, eax ;save our driver resource tag
push IOSignature ;identifies I/O device resource type
push OFFSET IORTagString ;resource tag descriptive string
push NLMHandle ;driver module id
call AllocateResourceTag ;returns a tag id in EAX
lea esp, [esp + (3*4)] ;adjust stack pointer
mov IORtag, eax ;save for RegisterHardwareOptions use
push IntSignature ;identifies Interrupt resource type
push OFFSET IntRTagString ;resource tag descriptive string
push NLMHandle ;driver module id
call AllocateResourceTag ;returns a tag id in EAX
lea esp, [esp + (3*4)] ;adjust stack pointer
mov IntRTag, eax ;save for SetHardwareInterrupt use
push MemSignature ;identifies Memory resource type
push OFFSET MemRTagString ;resource tag descriptive string
push NLMHandle ;driver module id
call AllocateResourceTag ;returns a tag id in EAX
lea esp, [esp + (3*4)] ;adjust stack pointer
mov MemRTag, eax ;save for Alloc use
push MemoryBelow16MegSignature ;identifies special memory resource tag
push OFFSET MemBelow16RTag ;resource tag descriptive string
push NLMHandle ;driver module id
call AllocateResourceTag ;returns a tag id in EAX
lea esp, [esp + (3*4)] ;adjust stack pointer
mov MemBL16RTag, eax ;save resource tag for allocate and free calls
push AESSignature ;identifies AES timer resource type
push OFFSET AESRTagString ;resource tag descriptive string
push NLMHandle ;driver module id
call AllocateResourceTag ;returns a tag id in EAX
lea esp, [esp + (3*4)] ;adjust stack pointer
mov AESRTag, eax ;save for later references
push TmrSignature ;identifies timer resource type
push OFFSET TmrRTagString ;resource tag descriptive string
push moduleHandle ;driver module id
call AllocateResourceTag ;returns a tag id in EAX
lea esp, [esp + (3*4)] ;adjust stack pointer
mov TmrTag, eax ;save for later reference
mov LoadedOnceGoodFlag,1 ;indicate done once

GotTags:

AllocateResourceTag (continued)

Example:

Description: Acquires a tracking identifier required by certain OS calls to track system resources (and recover them

from NLM or Driver failure). The driver must acquire a tag for each different type of resource to be

allocated.

See Also: Driver Initialization, Driver Unload

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-15

push MemBelow16RTag ;identifies type of resource
push OFFSET ActualSize ;amount of memory acquired returned here
push RequestedSize ;number of bytes required supplied here
call AllocBufferBelow16Meg ;returns pointer to memory in eax
lea esp, [esp + (3*4)] ;adjust stack pointer
mov ebp, eax ;need for use and to return

AllocBufferBelow16Meg (Blocking) v3.1x & v4.xx

Allocates block of returnable memory below the 16 megabyte boundary for driver use.

Syntax: void *AllocBufferBelow16Meg(

LONG RequestedSize

LONG *ActualSize,

LONG MemBelow16RTag);

Return Value: Pointer to the allocated memory in EAX, or 0 if unsuccessful.

Requirements: Interrupts disabled.

Parameters:

RequestedSize Number or contiguous bytes requested

ActualSize Receives the actual number of bytes allocated in the location pointed to by

this parameter

MemBelow16RTag Resource tag acquired by driver for memory allocation (with a

"CacheBelow16MegMemorySignature")

Example:

Description: Use AllocBufferBelow16Meg only to allocate memory for drivers supporting 16-bit host adapters in

machines with more than 16 megabytes of memory to allow the driver to do I/O operations to or from

intermediate buffers below 16 megabytes, moving the data to or from the actual request buffer when above

the 16 megabyte boundary. The memory returned will be one or more contiguous cache buffers. The

pointer to the buffer allocated is returned in EAX (zero if none allocated). Driversmust call Alloc for all

other memory allocation requirements. Memory is not initialized to zero. See Appendix G for

implementation details. The repeated allocation and deallocation of relatively small blocks of memory will

tend to cause memory fragmentation. For increased system efficiency, a large block of memory can be

initially allocated and maintained as a pool of smaller blocks. Memory is always allocated on a

paragraph (16 byte) boundary.

See Also: FreeBufferBelow16Meg, AllocateResourceTag

Device Driver Developers' Guide

Revision 2.4 09/25/957-16

push MemRTag ;identify type of resource
push NumberOfBytes ;indicate amount of memory required
call AllocSemiPermMemory ;returns pointer to memory in eax
lea esp, [esp + (2*4)] ;adjust stack pointer
mov ebp, eax ;need for use and to return

AllocSemiPermMemory (Non-blocking) v3.1x

Allocates block of returnable memory for driver use

Syntax: void *AllocSemiPermMemory(

LONG NumberOfBytes,

LONG MemRTag);

Return Value: Pointer to the allocated memory in EAX, or 0 if unsuccessful.

Requirements: Interrupts disabled. May not be called from interrupt level.

Parameters: NumberOfBytes Passes in the amount of memory in bytes to be allocated.

MemRTag Resource tag acquired by driver for memory allocation using an

"SemiPermMemorySignature" resource signature.

Example:

Description: AllocSemiPermMemory is used to allocate memory for any driver requirements such as IOConfiguration

structures or special buffers. AllocSemiPermMemory is passed the amount of memory to allocate and

returns a pointer to the allocated memory in the EAX register. This routine is available to drivers for

Initialize Driver, Mass Storage Control Interface, IOPoll, and IOCTLPoll routines, but may not be called

from interrupt-level. The memory allocated is not initialized by the allocation routine, and must be

initialized by the driver. This API will not be supported in future products and is only emulated in

NetWare 4.xx. It should be replaced with the "Alloc" API. The repeated allocation and deallocation of

relatively small blocks of memory will tend to cause memory fragmentation. For increased system

efficiency, a large block of memory can be initially allocated and maintained as a pool of smaller blocks.

Memory is always allocated on a paragraph (16 byte) boundary.

See Also: Alloc, Free, FreeSemiPermMemory, AllocateResourceTag

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-17

push IRQNumber ;tell OS which interrupt bit to unmask
call CAdjustRealModeInterruptMask ;w/DOS for Real mode switch
lea esp, [esp + 4] ;adjust stack

CAdjustRealModeInterruptMask (Non-blocking) v3.1x & v4.xx

Adjusts Real Mode interrupt mask for calls to DOS driver

Syntax: void CAdjustRealModeInterruptMask(

LONG IRQNumber);

Return Value: None

Requirements: Interrupts disabled.

Parameters: IRQNumber Interrupt (IRQ) Number utilized by the associated card.

Example:

Description: This call clears the corresponding bit in the RealModeInterruptMask. (The bit was set by a

SetHardwareInterrupt call.) This mask is written to the priority interrupt controllers (PICs) when a

NetWare call is made to return the processor to real mode (in order to make DOS calls.) This has the effect

of unmasking the interrupt for use in real mode. Drivers that support adapter/devices also supported by

DOS in conjunction with DOS drivers should make this call immediately after the SetHardwareInterrupt

call. (Note: The loader uses DOS drivers to load NLMs and drivers from DOS partitions).

See Also: SetHardwareInterrupt, ClearHardwareInterrupt, CUnAdjustRealModeInterruptMask

Device Driver Developers' Guide

Revision 2.4 09/25/957-18

push OFFSET AESEvent ;address of AES structure
call CancelNoSleepAESProcessEvent ;no further event callbacks
lea esp, [esp + 4] ;adjust stack pointer

CancelNoSleepAESProcessEvent (Non-blocking) v3.1x & v4.xx

Cancels No-Sleep AES timer event

Syntax: void CancelNoSleepAESProcessEvent(

AESEventStruct *AESEvent);

Return Value: None

Requirements: Interrupts disabled.

Parameters: AESEvent Passes a pointer to an AES structure.

Example:

Description: CancelNoSleepAESProcessEvent cancels the AES event indicated by the AES structure pointer it is

passed. A Remove Driver procedure must make this call for every AES No-Sleep timer the driver has used.

See Also: Driver Initialization, Driver Unload, AESEventStructure, ScheduleNoSleepAESProcessEvent

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-19

push OFFSET AESEvent ;address of AES structure
call CancelSleepAESProcessEvent ;no further event callbacks
lea esp, [esp + 4] ;adjust stack pointer

CancelSleepAESProcessEvent (Non-blocking) v3.1x & v4.xx

Cancels Sleep AES timer event

Syntax: void CancelSleepAESProcessEvent(

AESEventStruct *AESEvent);

Return Value: None

Requirements: Interrupts disabled.

Parameters: AESEvent Passes a pointer to an AES structure.

Example:

Description: CancelSleepAESProcessEvent cancels the AES event indicated by the AES structure pointer it is passed.

A Remove Driver procedure must make this call for every AES Sleep timer the driver has used.

See Also: Driver Initialization, Driver Unload, AESEventStructure, ScheduleSleepAESProcessEvent

Device Driver Developers' Guide

Revision 2.4 09/25/957-20

push IRQNumber ;interrupt number (0-15)
call CCheckHardwareInterrupt ;determine if active request
lea esp, [esp + 4] ;adjust stack pointer

CCheckHardwareInterrupt (Non-blocking) v3.1x & v4.xx

Returns indication of interrupt requested for specified interrupt

Syntax: LONG CCheckHardwareInterrupt(

LONG IRQNumber);

Return Value: zero No interrupt request active for IRQ Number

non-zero Interrupt requested for IRQ Number

Requirements: Interrupts disabled.

Parameters: IRQNumber Interrupt to be checked for pending request.

Example:

Description: CCheckHardwareInterrupt determines if an interrupt request is currently being made to the priority

interrupt controller (PIC) assigned to the indicated interrupt number. The PIC should normally have this

IRQ masked off while this call is made. (The interrupt will not be recorded by the PIC). A return value

of zero indicates that the PIC has no interrupt request being made to it.

See Also: CDisableHardwareInterrupt, CEnableHardwareInterrupt, CDoEndOfInterrupt

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-21

push IRQNumber ;desired interrupt (0-15)
call CDisableHardwareInterrupts ;no interrupts allowed (or recorded) from level
lea esp, [esp + 4] ;adjust stack pointer

CDisableHardwareInterrupt (Non-blocking) v3.1x & v4.xx

Masks off indicated IRQ in associated interrupt controller

Syntax: void CDisableHardwareInterrupt(

LONG IRQNumber);

Return Value: None

Requirements: Interrupts disabled.

Parameters: IRQNumber Specifies interrupt to be masked off.

Example:

Description: CDisableHardwareInterrupt causes the corresponding interrupt in the Programmable Interrupt Controller

(PIC) to be masked off so that no further interrupts are allowed or recorded by the PIC.

See Also: CEnableHardwareInterrupts, CCheckHardwareInterrupt, CDoEndOfInterrupt

Device Driver Developers' Guide

Revision 2.4 09/25/957-22

push IRQNumber ;desired interrupt (0 - 15)
call CDoEndOfInterrupt ;issue required EOIs
lea esp, [esp + 4] ;adjust stack pointer

CDoEndOfInterrupt (Non-blocking) v3.1x & v4.xx

Issues required EOIs for the specified interrupt

Syntax: void CDoEndOfInterrupt(

LONG IRQNumber);

Return Value: None

Requirements: Interrupts disabled.

Parameters: IRQNumber Indicates interrupt for which EOIs are to be issued.

Example:

Description: Issues End of Interrupt (EOI) command to the associated interrupt controller for the IRQ indicated. If the

IRQ is assigned to a secondary PIC, an EOI will be issued to the secondary PIC, followed by a short delay

for the bus, then to the primary PIC. If the IRQ is assigned to a primary PIC, an EOI will be issued to the

primary PIC only.

See Also: CCheckHardwareInterrupt, CDisableHardwareInterrupt, CEnableHardwareInterrupt

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-23

push IRQNumber ;hardware interrupt to be enabled
call CEnableHardwareInterrupt ;unmask (enable) interrupt level
lea esp, [esp + 4] ;adjust stack pointer

CEnableHardwareInterrupt (Non-blocking) v3.1x & v4.xx

Enables specified IRQ in associated interrupt controller

Syntax: void CEnableHardwareInterrupt(

LONG IRQNumber);

Return Value: None

Requirements: Interrupts disabled.

Parameters: IRQNumber Indicates desired hardware interrupt

Example:

Description: CEnableHardwareInterrupt un-masks (enables) the indicated interrupt in the associated programmable

Interrupt Controller (PIC). This allows further interrupts to be recorded or to occur.

See Also: CDisableHardwareInterrupt, CCheckHardwareInterrupt, CDoEndOfInterrupt

Device Driver Developers' Guide

Revision 2.4 09/25/957-24

push ScreenHandle ;allow console messages
push CardHandle ;identify CardStructure
call CheckDiskCard ;see if any card devices locked
lea esp, [esp + (2*4)] ;adjust stack pointer
or ccode, eax ;combine results for driver check

CheckDiskCard (Blocking) v3.1x & v4.xx

Returns composite lock status of all devices on adapter card.

Syntax: LONG CheckDiskCard(

CardStruct *CardHandle,

LONG ScreenHandle);

Return Value: Composite (logically OR'ed) status of all card devices, as follows:

0 no devices are locked

1 at least one device is locked but has a mirror associated with a separate driver

2 at least one device is locked and doesn't have a mirror associated with a separate driver

3 same as 2 (logical 'or' of 1 and 2)

Requirements: Must be called from blocking process level only.

Parameters: CardHandle The handle (pointer to the card structure) of the desired adapter board returned

by the AddDiskSystem API.

ScreenHandle The screen handle passed to the driver's Check Driver routine.

Example:

Description: CheckDiskCard returns in the EAX register the combined status of the registered devices attached to

adapter corresponding to the card handle (passed as a parameter to CheckDiskCard.) It also uses the

screen handle to display the status of the devices that are locked. It is the responsibility of the driver's

Check Driver routine to determine the status of all registered devices on each adapter card and return the

combined (OR'ed) status.

Several NetWare commands call the driver's Check Driver routine as a precautionary measure to determine

if any of the driver's registered devices are locked. For example, the console command UNLOAD calls a

driver's Check Driver before unloading the driver.

See Also: CheckDriver, UnloadDriver

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-25

push ScreenHandle ;allow console messages
push DiskHandle ;identify DiskStructure
call CheckDiskDevice ;see if device locked
lea esp, [esp + (2*4)] ;adjust stack pointer
or ccode, eax ;combine results for driver check

CheckDiskDevice (Blocking) v3.1x

Returns the lock status of the storage device.

Syntax: LONG CheckDiskCard(

CardStruct *DiskHandle,

LONG ScreenHandle);

Return Value: Returns one of the following codes indicating the device status:

0 device is not locked

1 device is locked but has a mirror associated with a separate driver

2 device is locked and doesn't have a mirror associated with a separate driver

Requirements: Must be called from blocking process level only.

Parameters: DiskHandle Handle returned by AddDiskDevice for this device.

ScreenHandle The screen handle passed to the Check Driver routine.

Example:

Description: CheckDiskDevice returns in the EAX register the status of the registered device corresponding to the

device handle (passed as a parameter to CheckDiskDevice.) It also uses the screen handle to display the

status of the devices that are locked. It is the responsibility of the driver's Check Driver routine to

determine the status of all registered devices on each adapter card and return the combined (OR'ed) status.

This API will not be supported in future products and is only emulated in NetWare 4.xx. It should be

replaced with the "CheckDiskCard" API.

Several NetWare commands call the driver's Check Driver routine as a precautionary measure to determine

if any of the driver's registered devices are locked. For example, the console command UNLOAD calls a

driver's Check Driver before unloading the driver.

See Also: CheckDriver, UnloadDriver

Device Driver Developers' Guide

Revision 2.4 09/25/957-26

push InterruptService ;ISR address for this card
push IRQNumber ;interrupt number
call ClearHardwareInterrupt
lea esp, [esp + (2*4)] ;adjust stack pointer

ClearHardwareInterrupt (Non-blocking) v3.1x & v4.xx

Deallocates adapter card interrupt

Syntax: void ClearHardwareInterrupt(

LONG IRQNumber,

void (*InterruptService)()); or LONG (*InterruptService)());

Return Value: None

Requirements: Interrupts disabled. May not be called from interrupt level.

Parameters: IRQNumber Passes the IRQ number of the hardware interrupt.

InterruptService Pointer to the interrupt service routine (ISR) that was assigned to the specified

interrupt. The service routine returns a value in a shared interrupt configuration.

Example:

Description: ClearHardwareInterrupt releases a processor hardware interrupt previously allocated by

SetHardwareInterrupt for an adapter board. It also masks off the interrupt at the priority interrupt

controllers (PICs) and clears the corresponding bit in the RealModeInterruptMask. In the case of shared

interrupts, the masking process is performed only if the specified ISR is the only one remaining in the

chain. (The other ISRs have been cleared previously.) This call must be made by a driver's Remove Driver

routine for each card for which a SetHardwareInterrupt call was made previously.

See Also: SetHardwareInterrupts, CAdjustHardwareInterruptMask, CUnAjustHardwareInterruptMask, Driver ISR

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-27

push WorkSpaceSemaphore ;load semaphore
call CPSemaphore ;lock workspace for our use
add esp, (1 * 4) ;restore stack

CPSemaphore (Blocking) v3.1x & v4.xx

Set a Semaphore

Syntax: void CPSemaphore(LONGWorkSpaceSemaphore);

Return Value: None

Requirements: Must be called from blocking process level only.

Parameters: WorkSpaceSemaphore handle to the semaphore

Example:

Description: CPSemaphore is used to lock the real mode workspace when making a BIOS call. This routine is called

with interrupts disabled, and interrupts remain disabled.

For more information on how to use the BIOS call, refer to Appendix F.

Do not use this call to handle critical sections local to the driver.

See Also: CVSemaphore, GetRealModeWorkSpace, Appendix F

Device Driver Developers' Guide

Revision 2.4 09/25/957-28

call CRescheduleLast
; will regain control undefined time later

CRescheduleLast (Blocking) v3.1x

Places the current process last in active queue (delays)

Syntax: void CRescheduleLast(void);

Return Value: None

Requirements: Must be called from blocking process level only.

Parameters: None

Example:

Description: This routine places the current task last on the list of active tasks to be executed. This allows other tasks

to be scheduled first, keeping OS processes functioning.

See Also: CYieldIfNeeded, CYieldWithDelay, DelayMyself, AllocateResourceTag

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-29

push InterruptNumber ;tell OS sharing interrupt
call CUnAdjustRealModeInterruptMask ;w/DOS for Real mode switch
lea esp, [esp + 4] ;adjust stack

CUnAdjustRealModeInterruptMask (Non-blocking) v3.1x & v4.xx

Readjusts Real Mode Interrupt mask

Syntax: void CUnAdjustRealModeInterruptMask(

LONG IRQNumber);

Return Value: None

Requirements: Interrupts disabled,

Parameters: IRQNumber Interrupt Number utilized by the associated card.

Example:

Description: This call sets the corresponding bit in the RealModeInterruptMask. This mask is written to the priority

interrupt controllers (PICs) when a NetWare call is made to return the processor to real mode (in order to

make DOS calls.) This has the effect of masking the interrupt in real mode.

See Also: SetHardwareInterrupt, ClearHardwareInterrupt, CAdjustRealModeInterruptMask

Device Driver Developers' Guide

Revision 2.4 09/25/957-30

push WorkSpaceSemaphore ;pass semaphore
call CVSemaphore ;unlock workspace
add esp, (1 * 4) ;restore stack

CVSemaphore (Non-Blocking) v3.1x & v4.xx

Clear a Semaphore

Syntax: void CVSemaphore(LONGWorkSpaceSemaphore);

Return Value: None

Requirements: None

Parameters: WorkSpaceSemaphore handle to the semaphore

Example:

Description: CVSemaphore clears a semaphore that was set with CPSemaphore. This routine returns with interrupts

enabled.

Normally, CVSemaphore is used when the driver has finished making an EISA BIOS call so that other

processes can be allowed to use the workspace (Refer to Appendix G).

See Also: CPSemaphore, Appendix F

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-31

call CYieldIfNeeded ; will regain control undefined time later if other processes
require run time. Otherwise continue processing.

CYieldIfNeeded (Blocking) v4.xx

Places the current process last in the run queue if other work is pending

Syntax: void CYieldIfNeeded(void);

Return Value: None

Requirements: Must be called from blocking process level only.

Parameters: None

Example:

Description: This routine places the current task last on the list of active tasks to be executed only if other non-low

priority tasks require run time. This increases system efficiency by not disrupting the current process until

actually necessary; however, low priority threads are disabled until the process runs to completion or

releases control using the CYieldWithDelay API.

See Also: CYieldWithDelay, CRescheduleLast, DelayMyself, AllocateResourceTag

Device Driver Developers' Guide

Revision 2.4 09/25/957-32

call CYieldWithDelay ; will regain control undefined time later

CYieldWithDelay (Blocking)

v4.xx

Places the current process last in the run queue (delays)

Syntax: void CYieldWithDelay(void);

Return Value: None

Requirements: Must be called from blocking process level only.

Parameters: None

Example:

Description: This routine places the current task last on the list of active tasks to be executed. This allows other tasks

to be scheduled, keeping OS processes fuctioning.

See Also: CYieldIfNeeded, CRescheduleLast, DelayMyself, AllocateResourceTag

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-33

push TimerResourceTag ;identify this driver
push ClockTicks ;time to sleep
call DelayMyself ;delay # ticks indicated
lea esp, [esp + (2*4)] ;adjust stack pointer

DelayMyself (Blocking) v3.1x & v4.xx

Delays current process for clock ticks specified

Syntax: void DelayMyself(

LONG ClockTicks,

LONG TimerResourceTag);

Return Value: None

Requirements: Must be called from blocking process-level only.

Parameters: ClockTicks Value indicating number of 1/18th second clock ticks to put this process to sleep

(minimum time before return).

TimerResourceTag Timer resource tag given to timer category when driver allocated resource

tags during initialization.

Example:

Description: Puts current running process (caller) to sleep for the designated time. Return is made following expiration

of the specified number of ticks. This routine is called to prevent a process from dominating process

resources and preventing other vital processes from running. It also provides a specific minimum delay

before the process is re-awakened, which may be helpful for tasks where some function will not complete

for at least a specified period.

See Also: CRescheduleLast, AllocateResourceTag

Device Driver Developers' Guide

Revision 2.4 09/25/957-34

push eax ;push device handle on stack
call DeleteDiskDevice ;remove the structure
lea esp, [esp + 4] ;adjust stack pointer

DeleteDiskDevice (Blocking) v3.1x & v4.xx

Removes a device structure (DiskStructure) from OS

Syntax: void DeleteDiskDevice(

DiskStruct *DiskHandle);

Return Value: None

Requirements: Must be called from blocking process level only.

Parameters: DiskHandle Passes a handle for the target device. This is the same value returned by

AddDiskDevice.

Example:

Description: DeleteDiskDevice completes the removal of a device. This routine must be called after RemoveDiskDevice.

DeleteDiskDevice returns to NetWare the memory allocated for a device handle structure (DiskStructure)

by passing the handle of the device to be deleted.

See Also: RemoveDiskDevice

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-35

push 2
push eax ;push CardHandle on stack
call DeleteDiskSystem
lea esp, [esp + (2*4)] ;adjust stack pointer

DeleteDiskSystem (Blocking) v3.1x & v4.xx

Removes a Card Structure from the OS

Syntax: void DeleteDiskSystem(

CardStruct *CardHandle,

LONG Status);

Return Value: None

Requirements: Must be called from blocking process level only.

Parameters: CardHandle Passes a handle for the card structure for the associated adapter board.

AddDiskSystem returned this handle for the driver.

Status This parameter is included in the NetWare 3.1x and 4.xx versions for

capatibility reasons only. It should be initialized to a two (2).

Example:

Description: DeleteDiskSystem deletes a mass storage adapter board from NetWare. A driver calls this routine.

DeleteDiskSystem destroys the Card Structure that AddDiskSystem created to correspond to the specified

adapter board. Once DeleteDiskSystem returns, NetWare no longer knows about the specified adapter

board. After DeleteDiskSystem returns, do not reference the memory once allocated for the

AddDiskSystem call.

See Also: AddDiskSystem

Device Driver Developers' Guide

Revision 2.4 09/25/957-36

push eax ;pass IOConfig structure ptr
call DeRegisterHardwareOptions
lea esp, [esp + 4] ;adjust stack pointer

DeRegisterHardwareOptions (Blocking) v3.1x & v4.xx

Releases hardware options reserved previously

Syntax: void DeRegisterHardwareOptions(

IOConfigStruct *IOConfig);

Return Value: None

Requirements: Interrupts disabled. Must be called from blocking process level only.

Parameters: IOConfig Passes a pointer to the adapter board's corresponding IOConfiguration

structure.

Example:

Description: DeRegisterHardwareOptions removes previously reserved hardware options for a particular adapter board.

A driver's Remove Driver routine calls this routine. DeRegisterHardwareOptions removes the hardware

options specified in a adapter board's I/O Configuration structure.

See Also: RegisterHardwareOptions, ParseDriverParameters

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-37

push OFFSET OutputParameters
push OFFSET InputParameters
call DoRealModeInterrupt

add esp, 2 * 4
cmp eax, 0
jne IntNotValidErrorExit

DoRealModeInterrupt (Blocking) v3.1x & v4.xx

Perform a Dos Interrupt call

Syntax: LONG DoRealModeInterrupt(

InputParamStruct *InputParameters,

OutputParamStruct *OutputParameters);

Return Value: EAX contains:

0 Successful; sets the zero flag if the interrupt vector is called

1 Fail; clears the zero flag if the interrupt vector is no longer available because DOS has been

removed

Requirements: The input parameter structure must already be initialized. Must be called from blocking process level

only.

Parameters: InputParameters pointer to a filled in InputParameterStructure that is defined below

OutputParameters pointer to a filled in OutputParameterStructure that is defined below

Example:

Device Driver Developers' Guide

Revision 2.4 09/25/957-38

DoRealModeInterrupt (continued)

Description: DoRealModeInterrupt is used to perform real mode interrupts, such as BIOS and DOS interrupts. This

routine can only be called at process time, and it may enable interrupts and put the calling process to sleep.

EISA boards will need to use DoRealModeInterrupt to perform the INT 15h BIOS call that returns

the board configuration (Refer to Appendix F). The parameter structures are defined below:

InputParameters

InputParamStruct struc typedef struct InputParameterStructure {

IAXRegister dw ? WORD IAXRegister;

IBXRegister dw ? WORD IBXRegister;

ICXRegister dw ? WORD ICXRegister;

IDXRegister dw ? WORD IDXRegister;

IBPRegister dw ? WORD IBPRegister;

ISIRegister dw ? WORD ISIRegister;

IDIRegister dw ? WORD IDIRegister;

IDSRegister dw ? WORD IDSRegister;

IESRegister dw ? WORD IESRegister;

IIntNumber dw ? WORD IIntNumber;

InputParamStruct ends } InputParamStruct;

OutputParameters

OutputParamStruct struc typedef struct OutputParameterStructure {

OAXRegister dw ? WORD OAXRegister;

OBXRegister dw ? WORD OBXRegister;

OCXRegister dw ? WORD OCXRegister;

ODXRegister dw ? WORD ODXRegister;

OBPRegister dw ? WORD OBPRegister;

OSIRegister dw ? WORD OSIRegister;

ODIRegister dw ? WORD ODIRegister;

ODSRegister dw ? WORD ODSRegister;

OESRegister dw ? WORD OESRegister;

OFlags dw ? WORD OFlags;

OutputParamStruct ends } OutputParamStruct;

See Also: GetRealModeWorkSpace, Appendix F

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-39

call EnterDebugger ;C call

-OR-

int 3 ;assembly code equivalent

EnterDebugger (Non-blocking) v3.1x & v4.xx

Enter the Debugger

Syntax: void EnterDebugger(void);

Return Value: None

Requirements: None

Parameters: None

Example:

Description: EnterDebugger stops execution of the NetWare OS and enters the internal assembly language-oriented

debugger.

See Also: Appendix B

Device Driver Developers' Guide

Revision 2.4 09/25/957-40

push eax ;ptr to memory allocated
call Free ;return to system
lea esp, [esp + 4] ;adjust stack pointer

Free (Non-blocking) v3.1x & v4.xx

Returns previously allocated memory to OS

Syntax: void Free(void *MemoryAddress);

Return Value: None

Requirements: Interrupts disabled.

Parameters: MemoryAddress Passes a pointer to memory to be returned to NetWare (must have been

acquired previously by a call to Alloc).

Example:

Description: Free returns memory allocated by the driver for any purpose (typically for Read-After-Write Verify buffers

or to read in custom data from the custom data file). Drivers are expected to make this call as needed.

Returning memory to NetWare is an essential part of cleaning up before exiting.

See Also: Alloc

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-41

push eax ;ptr to memory previously allocated
call FreeBufferBelow16Meg ;return to system
lea esp, [esp + 4] ;adjust stack pointer

FreeBufferBelow16Meg (Non-blocking) v3.1x & v4.xx

Returns previously allocated special buffer to OS

Syntax: void FreeBufferBelow16Meg(

void *MemoryAddress);

Return Value: None

Requirements: Interrupts disabled.

Parameters: MemoryAddress Passes a pointer to memory to be returned to NetWare (which must have

been acquired previously by a call to AllocBufferBelow16Meg).

Example:

Description: FreeBufferBelow16Meg returns memory allocated by the driver for Bus Master or DMA I/O which was

required to be below 16 Megabytes (This memory must have been acquired by a call to

AllocBufferBelow16Meg). Returning memory to NetWare is an essential part of cleaning up before

exiting. See Appendix G for additional details.

See Also: AllocBufferBelow16Meg, Appendix G

Device Driver Developers' Guide

Revision 2.4 09/25/957-42

push eax ;ptr to memory allocated
call FreeSemiPermMemory ;return to system
lea esp, [esp + 4] ;adjust stack pointer

FreeSemiPermMemory (Non-blocking) v3.1x

Returns previously allocated memory to OS

Syntax: void FreeSemiPermMemory(void *MemoryAddress);

Return Value: None

Requirements: Interrupts disabled. May not be called from interrupt level.

Parameters: MemoryAddress Passes a pointer to memory to be returned to NetWare (must have been

acquired previously by a call to AllocSemiPermMemory).

Example:

Description: FreeSemiPermMemory returns memory allocated by the driver for any purpose (typically for Read-After-

Write Verify buffers or to read in custom data from the custom data file). Drivers are expected to make this

call as needed. Returning memory to NetWare is an essential part of cleaning up before exiting.

See Also: AllocSemiPermMemory

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-43

call GetCurrentTime ;get time in ticks
mov CurrentTimeSave, eax ;save for driver

GetCurrentTime (Non-blocking) v3.1x & v4.xx

Returns current time in clock ticks since loading server

Syntax: LONG GetCurrentTime(void);

Return Value: LONG number of clock ticks (1/18th second) since the server was last loaded and began execution.

Requirements: None

Parameters: None

Example:

Description: This call is useful to determine the current relative time in order to determine the elapsed time for some

driver-related activities, etc. The current time value less the value returned at the start of an operation is

the elapsed time in 1/18th second clock ticks. It requires more than 7 years for this timer to roll over,

allowing it to be used for elapsed time comparisons.

See Also: Driver Initialization, Operation time-out

Device Driver Developers' Guide

Revision 2.4 09/25/957-44

call GetHardwareBusType
mov IOBusType, eax ;save bus type

GetHardwareBusType (Non-blocking) v3.1x & v4.xx

Returns I/O bus type and bios support indicators, etc.

Syntax: LONG GetHardwareBusType(void);

Return Value: 0 - I/O bus is ISA (Industry Standard Architecture)

1 - I/O bus is MCA (Micro-Channel Architecture)

2 - I/O bus is EISA (Extended Industry Standard Architecture)

Requirements: None

Parameters: None

Example:

Description: This routine returns an value indicating the processor bus type, for use by the driver. Typical application

would allow a driver to support two different board types, which, once initialized, appear identical to the

driver.

See Also: Driver Initialization

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-45

push eax ;get specific IOCTL Request
push edx ;contains card handle
call GetIOCTL
lea esp, [esp + (2*4)] ;adjust stack pointer
or eax, eax ;got one ?
jnz DoIOCTLRequest ;got IOCTL request
..
; no request was pending!!
..

DoIOCTLRequest:

mov esi, eax ;save request pointer

GetIOCTL (Non-blocking) v3.1x & v4.xx

Returns specified or next IOCTL request handle

Syntax: IOCTLRequestStruct *GetIOCTL (

CardStruct *CardHandle,

IOCTLRequestStruct *IOCTLRequest);

Return Value: Pointer to an IOCTL request structure, or zero if unsuccessful.

Requirements: Interrupts disabled.

Parameters: CardHandle Passes a handle for the card structure for the associated adapter. AddDiskCard

returned this handle to the driver.

IOCTLRequest Passes a pointer to an IOCTL request structure. GetIOCTL returns this

same value unless the value is zero, in which case, GetIOCTL returns a

pointer to the next available IOCTL request.

Example:

Description: A driver's IOCTL notification routine or DriverISR routine calls GetIOCTL to obtain an IOCTL request

from NetWare. GetIOCTL identifies the IOCTL request by passing a card handle and a pointer to the

request structure. NetWare keeps the IOCTL requests on an IOCTL queue (one per card) in the order

received, until the driver requests them.

In the event that the driver is busy when it receives an IOCTL request, the request will remain on the queue

until the driver retrieves it with GetIOCTL. The driver may obtain the next IOCTL request issued for a

card by passing a request handle of zero, or may request a specific IOCTL request by passing the desired

request handle in the call.

Drivers must notify the Operating System of completion of the IOCTL request by making a call to

PutIOCTL. See Chapter 5 for complete details on IOCTL function codes, IOCTL return status, and IOCTL

processing.

See Also: PutIOCTL, GetRequest, PutRequest, Chapter 5

Device Driver Developers' Guide

Revision 2.4 09/25/957-46

GetIOCTL (continued)

Function Sub-Function

0 0 Activate Device

1 Deactivate Device

2 Format

3 Device Verify Mode

4 Identify Device

5 Return Bad-Block Info

6 Return Device Status

7 Logical Device Mount

8 Logical Device Dismount

9 Lock Device Media

10 Unlock Device Media

11 Eject Media

1 0 ReturnDeviceInfo (see old v3.11 func.0, subfunc.17)

1 ReturnMediaInfo (see old v3.11 func.0, subfunc.18)

2 SetDeviceParameters (see old v3.11 func.0, subfunc.19)

3 ReturnTapeDeviceInfo

2 0 ReturnMagazineInfo

1 (not assigned)

2 ReturnMagazineMediaMapping

3 MagazineSelectCommand

4 MagazineDeselectCommand

5 MagazineLoad

6 MagazineUnload

7 MagazineEject

3 0 ReturnChangerInfo

1 ReturnChangerDeviceMapping

2 ReturnChangerMediaMapping

3 ChangerCommand

4-63 Reserved by Novell

64-255 IOCTLs for third party use. Assigned by Novell

IOCTL Functions deleted from the new specification

0 12 Return Changer Element count

13 Return Changer Element Info

14 Changer command

15 Select Media

16 Unselect Media

Figure 7-1 v3.1x/v4.xx IOCTL (I/O Control) Routine Assignments

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-47

GetIOCTL (continued)

Function Sub-Function

0 0 Activate Device

1 Deactivate Device

2 Format

3 Device Verify Mode

4 Identify Device

5 Return Bad-Block Info

6 Return Device Status

7 Logical Device Mount

8 Logical Device Dismount

9 Lock Device Media

10 Unlock Device Media

11 Eject Media

12 Return Changer Element count *

13 Return Changer Element Info *

14 Changer command *

15 Select Media *

16 Unselect Media *

17 ReturnDeviceInfo (see 3.1x/v4.xx func.1, subfunc.0) *

18 ReturnMediaInfo (see 3.1x/v4.xx func.1, subfunc.1) *

19 SetDeviceParameters (see 3.1x/v4.xx func.1, subfunc.2) *

1-63 Reserved by Novell

64-255 IOCTLs for third party use. Assigned by Novell

* These IOCTLs are defined in later versions of the 3.11 specification but are never issued by the NetWare 3.11 OS.

Figure 7-2 Old v3.11 IOCTL (I/O Control) Routine Assignments

typedef struct IOCTLRequestStructure
{

LONG DriverLink;
CardStruct *CardHandle;
WORD CompletionCode;
BYTE Function;
BYTE SubFunction;
LONG IOCTLParameter;
LONG *IOCTLBuffer;

} IOCTLRequestStruct;

Figure 7-3 The IOCTL Request Structure

Device Driver Developers' Guide

Revision 2.4 09/25/957-48

GetIOCTL (continued)

Completion/Device Status returned to the calling application

No Error 0000h
Non-Media Error 0003h
Device Not Active 0004h
Adapter Card Error 0005h
Device Parameter Error 0006h
System Parameter Error 0007h
Not Supported By Device 0008h
Device Fault 0103h
No Media Present 0703h
Media Write Protected 0803h
Magazine Not Present 0F09h
Changer Error 1009h
Changer Source Empty 1109h
Changer Destination Full 1209h
Changer Jammed 1303h
Magazine Error 1409h
Magazine Source Empty 1509h
Magazine Destination Full 1609h
Magazine Jammed 1703h
Driver Custom Status E0xxh - FExxh
Not Supported By Driver FFF9h

Figure 7-4 IOCTL Request Return Status

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-49

call GetReadAfterWriteVerifyStatus
mov RAWVerifySave, eax ;save for driver

GetReadAfterWriteVerifyStatus (Non-blocking) v3.1x & v4.xx

Returns global ReadAfterWrite verify status

Syntax: LONG GetReadAfterWriteVerifyStatus(void);

Return Value: 0 - Read-After-Write Verify disabled

1 - Read-After-Write Verify enabled

Requirements: None

Parameters: None

Example:

Description: The value returned by this call is a server level flag which determines if Read-After-Write Verification

will take place. The value should be examined by drivers when the device is registered with the

Operating System. If a specific override has been issued (such as an IOCTL call) for any drive, it takes

precedence over this flag for that device.

See Also: Device Verify Mode IOCTL

Device Driver Developers' Guide

Revision 2.4 09/25/957-50

GetRealModeWorkSpace (Non-Blocking) v3.1x & v4.xx

Syntax: void GetRealModeWorkSpace(

LONG *WorkSpaceSemaphore,

LONG *ProtectedModeAddressOfWorkSpace,

WORD *RealModeSegmentOfWorkSpace,

WORD *RealModeOffsetOfWorkSpace,

LONG *WorkSpaceSizeInBytes);

Return Value: None

Requirements: None

Parameters: WorkSpaceSemaphore receives a handle to the operating system semaphore

structure

ProtectedModeAddressOfWorkSpace receives a 32-bit logical address of the workspace block

RealModeSegmentOfWorkSpace receives the real mode segment of workspace from the

OS

RealModeOffsetOfWorkSpace receives the real mode offset in the workspace segment

from the OS

WorkSpaceSizeInBytes receives the size of the workspace in bytes

Example: (See example below)

Description: GetRealModeWorkSpace is used in conjunction with DoRealModeInterrupt to allow the driver access

to memory in real mode.

NetWare v3.1x and v4.xx drivers run in protected mode and do not allow direct access to BIOS based

information. The call DoRealModeInterrupt allows the driver to access the BIOS and get data from it

(See Appendix F).

DoRealModeInterrupt turns on the system interrupts and executes in a critical section; therefore,

semaphore routines--CPSemaphore and CVSemaphore are called in order to keep other processes out

of the workspace.

The driver must provide the following storage locations for the pointers that will be passed to it during

this call:

WorkSpaceSemaphore dd 0

ProtectedModeAddressOfWorkSpace dd 0

RealModeSegmentOfWorkSpace dw 0

RealModeOffsetOfWorkSpace dw 0

WorkSpaceSizeInBytes dd 0

See Also: DoRealModeInterrupt

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-51

;***
;* Get realmode workspace
;***

push OFFSET WorkSpaceSizeInBytes ;size of workspace
push OFFSET RealModeOffsetOfWorkSpace ;real mode offset into segment
push OFFSET RealModeSegmentOfWorkSpace ;real mode segment address
push OFFSET ProtectedModeAddressOfWorkSpace ;address in protected mode
push OFFSET WorkSpaceSemaphore ;semaphore

call GetRealModeWorkSpace ;call OS to fill in information
add esp, (5 * 4) ;clean up stack

;***
;* Lock the workspace
;***

push WorkSpaceSemaphore ;load semaphore
call CPSemaphore ;lock workspace for our use
add esp, (1 * 4) ;clean up stack

;***
;* Setup and execute real mode interrupt
;***

movzx eax, RealModeSegmentOfWorkSpace ;get WorkSpace segment
movzx ebx, RealModeOffsetOfWorkSpace ;get offset into segment

mov cl, SlotToReadConfiguration ;get slot number
xor ch, ch ;read first block

mov esi, OFFSET InputParms ;point to input area
mov [esi].IAXRegister, 0D801h ;Eisa read configuration
mov [esi].ICXRegister, cx ;slot and data block
mov [esi].ISIRegister, bx ;offset of DosWorkArea
mov [esi].IDSRegister, ax ;segment of DosWorkArea
mov [esi].IIntNumber, 15h ;interrupt number

push OFFSET OutputParameters ;pt at output regs
push OFFSET InputParameters ;pt at input regs
call DoRealModeInterrupt ;tell os to do it
lea esp, [esp + 2 * 4] ;clear up stack

cmp eax, 0 ;did the OS do the
jne IntNotValidErrorExit ;int correctly
cmp byte ptr OutputParmeters.OAXRegister + 1,0 ;Bios Int 15 return
jne IntNotValidErrorExit ;successful ?

mov esi, ProtectedModeAddressOfWorkSpace ;load pointer to data
movzx ecx, BYTE PTR [esi + INTERRUPTOFFSET] ;get int if any
and cl, ISOLATEINTMASK ;isolate interrupt level
jecxz NoAddInterrupt ;if none skip add

mov SaveInterrupt, cl ;save interrupt for later
;***
;* Unlock interrupt
;***

NoAddInterrupt:
push WorkSpaceSemaphore ;pass semaphore
call CVSemaphore ;unlock workspace
add esp, (1 * 4) ;clean up stack

GetRealModeWorkSpace (continued)

Example:

Device Driver Developers' Guide

Revision 2.4 09/25/957-52

push 0 ;for next I/O request
push edi ;contains Disk structure ptr
call GetRequest ;see if one is available
lea esp, [esp + (2*4)] ;adjust stack pointer

GetRequest (Non-blocking) v3.1x & v4.xx

Returns next or specified I/O request structure pointer

Syntax: IORequestStruct *GetRequest(

DiskStruct *DiskHandle,

IORequestStruct *IORequest);

Return Value: Pointer to an I/O request structure, or 0 if unsuccessful

Requirements: Interrupts disabled.

Parameters: DiskHandle Handle for the target device. This is the same value returned by AddDiskDevice.

IORequest Pointer to an I/O request structure. GetRequest returns this same value unless

the value supplied is zero, in which case, GetRequest returns a pointer to the

next available I/O request (if any).

Example:

Description: When NetWare has an I/O request for a specific device, NetWare calls the driver's request notification

(IOPoll) routine, passing a DiskStructure Handle and a pointer to an I/O Request structure. The

DiskStructure Handle is a structure pointer to the device. The I/O Request structure defines the read or

write request. The driver's IOPoll or Interrupt service routine must call GetRequest to obtain an I/O

request from NetWare.

For more details on the request structure, function codes, and related issues, please refer to Chapter 6.

See Also: PutRequest, GetIOCTL, PutIOCTL, Chapter 6

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-53

GetRequest (continued)

Name Code

Random Read 00h

Random Write 01h

Random Write Once 02h

Sequential Read 03h

Sequential Write 04h

Reset End Of Media Status 05h

Single File Mark(s) 06h

Write single file mark(s)

Space forward single file mark(s)

Space backwards single file mark(s)

ConsecutiveFileMarks 07h

Write Consecutive File Marks

Space Forward until consecutive file marks

Space Backwards until consecutive file marks

SingleSetMark(s) 08h

Write single set mark(s)

space forward single set mark(s)

space backwards single set mark(s)

ConsecutiveSet Marks 09h

Write consecutive file marks

space forward until consecutive set marks

space backwards until consecutive set marks

Locate/Space Relative Data Block(s) 0Ah

Space forward data blocks

Space backwards data blocks

Locate/Space Absolute Data Block(s) 0Bh

Return absolute position

Goto absolute position

SequentialPartitionOperations 0Ch

Format to partition media

Select partition

Return number of partitions

Return partition size

Return max number of possible partitions

Physical Media Operations 0Dh

Security erase partition

Rewind partition

Goto end of partition

Random Erase 0Eh

Reserved 0Fh-3Fh

Figure 7-5 I/O Function Codes

Device Driver Developers' Guide

Revision 2.4 09/25/957-54

GetRequest (continued)

typedef struct IORequestStructure

{

IORequestStruct *DriverLink;

DiskStruct *DiskHandle;

WORD CompletionCode;

BYTE Function;

BYTE Parameter1;

LONG Parameter2;

LONG Parameter3;

} IORequestStruct;

Figure 7-6 The I/O Request Structure

I/O Request Completion Status returned to the OS (low-order byte)

No Error xx00h
Corrected Media Error xx01h
Media Error xx02h
Non-Media Error (fatal) xx03h
Ignored by OS xx04h - xxFFh

Completion/Device Status returned to the calling application

No Error 0000h
Corrected Media Error 0001h
Media Error 0002h
Non-Media Error (fatal) 0003h
Device Not Active 0004h
Not Supported By Device 0008h
EOT (fatal) 0203h
EOT (non-fatal) 0209h
EOF (non-fatal) 0309h
End Of Partition (non-fatal) 0409h
Early Warning Area (no error) 0500h
Early Warning Area (corrected) 0501h
Early Warning Area (non-fatal) 0509h
Media Change (fatal) 0603h
Media Write Protected (non-fatal) 0809h
Set Marks Detected (non-fatal) 0909h
Blank Media (non-fatal) 0A09h
Unformatted Media (non-fatal) 0B09h
Device Off-Line (non-fatal) 0C09h
Media Previously Written (non-fatal) 0D09h
Abort - Prior State (non-fatal) 0E09h
Driver Custom Status E000h - FE00h

Figure 7-7 I/O Request Return Status

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-55

call GetSectorsPerCacheBuffer ;get typical request size
mov CacheSizeSave, eax ;for driver optimization

GetSectorsPerCacheBuffer (Non-blocking) v3.1x & v4.xx

Returns number of sectors in server cache buffers

Syntax: LONG GetSectorsPerCacheBuffer(void);

Return Value: An integer (8, 16, or 32) indicating the number of sectors in a system cache buffer.

Requirements: None

Parameters: None

Example:

Description: This routine returns to the caller the number of sectors in a server cache buffer. The value returned will

be either 8 (4K), 16 (8K), or 32 (16K). This value may allow drivers which allocate buffers in SRAM

to allocate the optimal buffer size, thus providing better performance.

See Also: Chapter 3

Device Driver Developers' Guide

Revision 2.4 09/25/957-56

mov eax, AbsoluteAddress ;get real SRAM address
push eax
call MapAbsoluteAddressToCodeOffset
lea esp, [esp + 4] ;adjust stack pointer
mov LogicalAddressSave, eax ;SRAM appears at this address

MapAbsoluteAddressToCodeOffset (Non-blocking) v3.1x & v4.xx

Converts absolute memory address to logical NetWare address

Syntax: LONG MapAbsoluteAddressToCodeOffset(

LONG AbsoluteAddress);

Return Value: Logical address where code appears

Requirements: None

Parameters: AbsoluteAddress Real 32-bit absolute hardware memory address

Example:

Description: This routine converts absolute hardware memory addresses to logical Netware addresses that are used

by the drivers and the Operating System. This routine may be used to convert an absolute address to

the logical address where it will appear in NetWare address space. This routine may only be used

with memory addresses that have previously been registered with the OS. (Shared RAM is

registered through a call to the RegisterHardwareOptions API and its logical address is returned to the

driver in the IOConfigStructure.)

See Also: MapCodeOffsetToAbsoluteAddress

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-57

mov eax, AbsoluteAddress ;get real SRAM address
push eax
call MapAbsoluteAddressToDataOffset
lea esp, [esp + 4] ;adjust stack pointer
mov LogicalAddressSave, eax ;SRAM appears at this address

MapAbsoluteAddressToDataOffset (Non-blocking) v3.1x & v4.xx

Converts absolute memory address to logical NetWare address

Syntax: LONG MapAbsoluteAddressToDataOffset(

LONG AbsoluteAddress);

Return Value: Logical address where data appears

Requirements: None

Parameters: AbsoluteAddress Real 32-bit absolute hardware memory address

Example:

Description: This routine converts absolute hardware memory addresses to logical Netware addresses, used by

drivers and by the Operating System. This routine may be used to convert an absolute address to the

logical address where it will appear in NetWare address space. This routine may only be used with

memory addresses that have previously been registered with the OS. (Shared RAM is registered

through a call to the RegisterHardwareOptions API and its logical address is returned to the driver in

the IOConfigStructure.)

See Also: MapDataOffsetToAbsoluteAddress

Device Driver Developers' Guide

Revision 2.4 09/25/957-58

mov eax, CodeOffset ;netware data address
push eax ;pass address driver uses
call MapCodeOffsetToAbsoluteAddress
lea esp, [esp + 4] ;adjust stack pointer
mov AbsAddrsave, eax ;bus master card needs real address

MapCodeOffsetToAbsoluteAddress (Non-blocking) v3.1x & v4.xx

Converts logical NetWare address to absolute memory address

Syntax: LONG MapCodeOffsetToAbsoluteAddress(

CodeOffset);

Return Value: 32-bit real hardware memory address

Requirements: None

Parameters: CodeOffset Logical NetWare 32-bit memory address

Example:

Description: This routine converts a logical NetWare address, used throughout NetWare, to a real hardware memory

address, required to initialize DMA channels and Bus Master devices. It also validates specified

hardware options. This routine may only be used with memory addresses that have previously

been registered with the OS.

See Also: MapAbsoluteAddressToCodeOffset

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-59

mov eax, DataOffset ;netware data address
push eax ;pass address driver uses
call MapDataOffsetToAbsoluteAddress
lea esp, [esp + 4] ;adjust stack pointer
mov AbsAddrsave, eax ;bus master card needs real address

MapDataOffsetToAbsoluteAddress (Non-blocking) v3.1x & v4.xx

Converts logical NetWare address to absolute memory address

Syntax: LONG MapDataOffsetToAbsoluteAddress(

DataOffset);

Return Value: 32-bit real hardware memory address

Requirements: None

Parameters: DataOffset Logical NetWare 32-bit memory address

Example:

Description: This routine converts a logical NetWare address, used throughout NetWare, to a real hardware memory

address, required to initialize DMA channels, Bus Master devices, and to validate specified hardware

options. This routine may only be used with memory addresses that have previously been

registered with the OS.

See Also: MapAbsoluteAddressToDataOffset

Device Driver Developers' Guide

Revision 2.4 09/25/957-60

NetWareAlert (Non-blocking) v4.xx

Notifies system of serious driver problem

Syntax: void NetWareAlert(

LONG NLMHandle,

NWAlertStruct *Alert,

LONG ParamCount,

args...);

Return Value: None

Requirements: None

Parameters: NLMHandle The handle NetWare passed on the stack to the driver initialization

routine.

Alert A handle to a NetWareAlert structure that holds the display, format and

routing information of the message to be sent. The structure size and

format is defined below.

ParamCount The number of additional parameters to be passed as determined by the

Control String field in NetWareAlert structure passed through the Alert

parameter.

args... Additional arguments to be passed. (See ParamCount.)

NetWareAlertStructure

NWAlertStruct struc typedef struct NetWareAlertStructure {

Reserved0 dd ? LONG Reserved0;

AlertFlags dd ? LONG AlertFlags;

TargetStation dd ? LONG TargetStation;

TargetNotificationBits dd ? LONG TargetNotificationBits;

AlertID dd ? LONG AlertID;

AlertLocus dd ? LONG AlertLocus;

AlertClass dd ? LONG AlertClass;

AlertSeverity dd ? LONG AlertSeverity;

Reserved1 dd ? LONG Reserved1;

Reserved2 dd ? LONG Reserved2;

ControlString dd ? BYTE *ControlString;

Reserved3 dd ? LONG Reserved3;

NWAlertStruct ends } NWAlertStruct;

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-61

NetWareAlert (continued)

Each field in the NetWareAlert structure is defined below:

Reserved0 This parameter should be initialized to a NULL (0).

AlertFlags Masks the functionality of the structure. (This field is usually set to

QUEUE_THIS_ALERT_MASK.)

QUEUE_THIS_ALERT_MASK 01h

ALERTID_VALID_MASK 02h

ALERT_LOCUS_VALID_MASK 04h

ALERT_EVENT_NOTIFY_ONLY_MASK 08h

ALERT_NO_EVENT_NOTIFY_MASK 10H

TargetStation Supply a zero for the console.

TargetNotificationBits Identifies destinations of notification

NOTIFY_CONNECTION_BITS 01h

NOTIFY_EVERYONE_BIT 02h

NOTIFY_ERROR_LOG_BIT 04h

NOTIFY_CONSOLE_BIT 08h

AlertID Provides error code for system log, as follows:

OK 00h

ERR_HARD_FAILURE 0FFh

AlertLocus Defines locus of error (always disks)

LOCUS_DISKS 03h

AlertClass Indicates class of error, as follows:

CLASS_UNKNOWN 00h

CLASS_TEMP_SITUATION 02h

CLASS_HARDWARE_ERROR 05h

CLASS_BAD_FORMAT 09h

CLASS_MEDIA_FAILURE 11h

CLASS_CONFIGURATION_ERROR 15h

CLASS_DISK_INFORMATION 18h

Device Driver Developers' Guide

Revision 2.4 09/25/957-62

push 0 ;no arguments
push Alert ;handle to the NetWareAlert structure
push NLMHandle
call NetWareAlert ;tell system of problem
lea esp, [esp + (3*4)] ;adjust stack pointer

NetWareAlert (continued)

AlertSeverity Indicates error severity, as follows:

SEVERITY_INFORMATIONAL 00h

SEVERITY_WARNING 01h

SEVERITY_RECOVERABLE 02h

SEVERITY_CRITICAL 03h

SEVERITY_FATAL 04h

SEVERITY_OPERATION_ABORTED 05h

Reserved1 This parameter should be initialized to a NULL (0).

Reserved2 This parameter should be initialized to a NULL (0).

ControlString Pointer to null-terminated control string similar to that used in the sprintf

function, including embedded returns, line-feeds, tabs, bells, and %

specifiers (except floating-point specifiers).

Example:

Description: Provides system notification of driver hardware or software problems at times other than during driver

initialization procedure.

See Also: OutputToScreen

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-63

push arg ;if just one argument
push esi ;contains ptr to string
push ScreenHandle ;init screen handle (init only)
call OutputToScreen ;may only call during init
lea esp, [esp + (3*4)] ;adjust stack pointer

OutputToScreen (Non-Blocking) v3.1x & v4.xx

Outputs message to Driver initialize screen

Syntax: void OutputToScreen(

LONG ScreenHandle,

BYTE *ControlString,

args...);

Return Value: None

Requirements: May be called only during driver initialize procedure

Parameters: ScreenHandle Handle of console screen passed to driver on stack upon entry to the driver

initialize procedure, becomes invalid upon return from driver initialize

procedure.

ControlString Pointer to a null-terminated ASCII control string similar to that used with

sprintf, including embedded returns, line feeds, tabs, bells, and % specifiers

(except floating-point specifies).

args Arguments as indicated by the above control string.

Example:

Description: This routine displays a driver error message on the server console screen. Drivers should not display

non-vital messages, and must limit the number of lines output to the screen for essential messages (the

OS will display drives registered and their descriptive text, etc.). Drivers which display unneeded

output will cause important information to scroll off the console screen. This routine is similar in

function to the sprintf function.

See Also: Driver Initialization, NetWareAlert

Device Driver Developers' Guide

Revision 2.4 09/25/957-64

ParseDriverParameters (Blocking) v3.1x & v4.xx

Parses LOAD command line, prompts, and validates parameters

Syntax: LONG ParseDriverParameters(

struct IOConfigurationStructure *IOConfig,

LONG Reserved0,

AdapterOptionStruct *Options,

LONG Reserved1,

LONG Reserved2,

LONG NeedBitMap,

BYTE *CommandLine,

LONG ScreenHandle);

Return Value: 0 Success

non-zero Failure - conflict or bad command line parameters

Requirements: Must be called from blocking process level only.

Parameters: IOConfig Pointer to Adapter's corresponding IOConfiguration structure (must be

initialized and have correct resource tag stored in it).

Reserved0 Reserved by NetWare

Options Pointer to Adapter Options Definition Structure.

Reserved1 Reserved by NetWare

Reserved2 Reserved by NetWare

NeedBitMap A bit map (double word value) telling ParseDriverParameters which

hardware options the driver requires, as follows:

NeedsIOSlotBit equ 0001h

NeedsIOPort0Bit equ 0002h

NeedsIOLength0Bit equ 0004h

NeedsIOPort1Bit equ 0008h

NeedsIOLength1Bit equ 0010h

NeedsMemoryDecode0Bit equ 0020h

NeedsMemoryLength0Bit equ 0040h

NeedsMemoryDecode1Bit equ 0080h

NeedsMemoryLength1Bit equ 0100h

NeedsInterrupt0Bit equ 0200h

NeedsInterrupt1Bit equ 0400h

NeedsDMA0Bit equ 0800h

NeedsDMA1Bit equ 1000h

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-65

mov eax, cardNum ;our adapter index
push [esp + Parm1] ;init screen handle
push [esp + Parm2] ;command line pointer
push NeedsIOPort0Bit + NeedsInterrupt0Bit ;need I/O port and interrupt
push 0 ;frame type description
push 0 ;LAN config limits
push OFFSET Options ;card options template
push 0 ;driver configuration
mov ebx, IOConfigList[eax * 4] ;get IOConfig structure from list
push ebx ;IOConfig structure ptr
call ParseDriverParameters ;fill out our IOConfig Structure
lea esp, [esp + (8*4)] ;adjust stack pointer

ParseDriverParameters (continued)

CommandLine Pointer to command line passed to the driver's Initialize routine on the

stack at load time.

ScreenHandle Handle to the driver's screen display. NetWare also passed this value to

the driver's Initialize Driver routine on the stack at load time.

Example:

Description: ParseDriverParameters fills in the IOConfigurationStructure associated with an adapter board, utilizing

tables provided by the driver, the command line parameters, and operator input. This routine allows a

driver's Initialization routine to accept I/O Port addresses and ranges, memory decode addresses and

lengths, interrupts, and DMA addresses from the driver "load" command line. All values inputed at the

commandline are treated and displayed as hex values. For example, a load command could contain the

following specifications:

load sample port = 300, port length = 32, int = 3 <Enter>

In this case, the driver "SAMPLE" is being loaded. The first adapter board will occupy I/O ports 300h

to 31Fh and interrupt 3.

Device Driver Developers' Guide

Revision 2.4 09/25/957-66

ParseDriverParameters (continued)

ParseDriverParameters works in conjunction with another "C" NetWare routine called

RegisterHardwareOptions. The following list describes how these two routines work in unison:

ñ As mentioned above, ParseDriverParameters looks for information about I/O Port addresses

and ranges, memory decode addresses and lengths, interrupts, and/or DMA addresses

depending on what the adapter board needs.

ñ ParseDriverParameters looks for this information in two sources: (1) the command line, and

(2) the Options structure which is a hard-coded part of the driver's data segment.

ñ ParseDriverParameters uses a NeedBitMap to determine which hardware options the adapter

board needs.

ñ If the NeedBitMap requires data and ParseDriverParameters cannot find the data on the

command line or in the AdapterOptionsStructure table associated with the required item,

ParseDriverParameters will prompt the console operator for the data, showing as a default the

first entry in the table pointed at by the associated entry in the AdapterOptionsStructure.

ñ Using the NeedBitMap as a shopping list, ParseDriverParameters collects the necessary

information from the command line and from the Options structure, fills out the

IOConfiguration Structure, and returns successfully.

ñ RegisterHardwareOptions then uses the IOConfiguration structure to reserve the specified file

server hardware options.

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-67

ParseDriverParameters (continued)

The command line keywords are:

SLOT =

PORT =

PORT LENGTH =

MEM =

MEM LENGTH =

INT =

DMA CHANNEL =

The following two keywords are valid if NeedsIOPort1Bit is set:

PORT1 =

PORT LENGTH =

The following two keywords are valid if NeedsMemoryDecode1Bit is set:

MEM1 =

MEM LENGTH =

The following keyword is valid if NeedsInterrupt1Bit is set:

INT1 =

The following keyword is valid if NeedsDma1Bit is set:

DMA CHANNEL1 =

The driver may implement additional custom keywords which it alone may recognize. The driver

must then parse the command line itself (It is recommended that the driver not adjust the command

line pointer, but simply allow the ParseDriverParameters routine to ignore and skip over the

additional parameters).

Device Driver Developers' Guide

Revision 2.4 09/25/957-68

ParseDriverParameters (continued)

The Adapter Options Structure is defined as follows:

AdapterOptionStruct struc

IOSlot dd ? ;MCA or EISA slot #

IOPort0 dd ? ;I/O port base

IOLength0 dd ? ;range (# ports)

IOPort1 dd ? ;2nd I/O port base

IOLength1 dd ? ;range (# ports)

MemoryDecode0 dd ? ;memory (SRAM/EPROM)

MemoryLength0 dd ? ;range (paragraphs)

MemoryDecode1 dd ? ;2nd memory base

MemoryLength1 dd ? ;range (paragraphs)

Interrupt0 dd ? ;Interrupt #

Interrupt1 dd ? ;2nd Int #

DMA0 dd ? ;DMA channel

DMA1 dd ? ;2nd DMA channel

AdapterOptionStruct ends

Each entry in the above options structure is normally a pointer to a table. If the entry is zero (a zero

pointer), no table exists for that entry. Each table consists of a doubleword containing the number

of following table entries. Each table entry represents a valid value which may be selected from the

command line. The default entry if none is specified is the first entry in the table, and subsequent

entries in order of occurrence in the table.

Note: It is not valid to indicate that an entry is required by setting the associated bit in the

NeedBitMap while having a zero pointer or a table with the number of entries indicated as zero.

A sample option table follows:

PortOptionTable:

dd 4 ;number of port table entries

dd 340h ;first (default) port address

dd 344h ;second possible port address

dd 320h ;third possible port address

dd 324h ;last possible port address

A driver typically maintains one AdapterOptionsStructure, although multiple Adapter Options

Structures may be used if the driver supports more than one adapter type requiring different

parameters.

See Also: AdapterOptionStructure, IOConfigurationStructure, CardStructure, RegisterHardwareOptions,

DeRegisterHardwareOptions

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-69

push eax ;IOCTL request ptr
push ebx ;CardStructure address
call PutIOCTL
lea esp, [esp + (2*4)] ; adjust stack pointer

PutIOCTL (Non-blocking) v3.1x & v4.xx

Posts IOCTL (control) request completion

Syntax: LONG PutIOCTL(

CardStruct *CardHandle,

IOCTLRequestStruct *IOCTLRequest);

Return Value: 0 Success

non-zero Invalid Request

Requirements: Interrupts disabled. (see note below)

Parameters: CardHandle Passes a handle to the card structure for the associated adapter board.

AddDiskCard returned this handle to the driver.

IOCTLRequest Passes a pointer to an IOCTL request.

Example:

Description: PutIOCTL notifies NetWare of the completion of an IOCTL request. PutIOCTL may be called from

the driver ISR or from the driver IOCTL request notification routine (IOCTLPoll). PutIOCTL must be

called for every IOCTL request. The driver must have placed the completion status in the IOCTL

request prior to making this call to post completion.

NOTE: This routine may open an interrupt window, even though it must be called with interrupts

disabled and returns with interrupts disabled. For more information, see Chapter 5.

See Also: GetIOCTL, GetRequest, PutRequest, Chapter 5

Device Driver Developers' Guide

Revision 2.4 09/25/957-70

PutIOCTL (continued)

Function Sub-Function

0 0 Activate Device

1 Deactivate Device

2 Format

3 Device Verify Mode

4 Identify Device

5 Return Bad-Block Info

6 Return Device Status

7 Logical Device Mount

8 Logical Device Dismount

9 Lock Device Media

10 Unlock Device Media

11 Eject Media

1 0 ReturnDeviceInfo (see old v3.11 func.0, subfunc.17)

1 ReturnMediaInfo (see old v3.11 func.0, subfunc.18)

2 SetDeviceParameters (see old v3.11 func.0, subfunc.19)

3 ReturnTapeDeviceInfo

2 0 ReturnMagazineInfo

1 (not assigned)

2 ReturnMagazineMediaMapping

3 MagazineSelectCommand

4 MagazineDeselectCommand

5 MagazineLoad

6 MagazineUnload

7 MagazineEject

3 0 ReturnChangerInfo

1 ReturnChangerDeviceMapping

2 ReturnChangerMediaMapping

3 ChangerCommand

4-63 Reserved by Novell

64-255 IOCTLs for third party use. Assigned by Novell

IOCTL Functions deleted from the new specification

0 12 Return Changer Element count

13 Return Changer Element Info

14 Changer command

15 Select Media

16 Unselect Media

Figure 7-8 v3.1x/v4.xx IOCTL (I/O Control) Routine Assignments

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-71

PutIOCTL (continued)

Function Sub-Function

0 0 Activate Device

1 Deactivate Device

2 Format

3 Device Verify Mode

4 Identify Device

5 Return Bad-Block Info

6 Return Device Status

7 Logical Device Mount

8 Logical Device Dismount

9 Lock Device Media

10 Unlock Device Media

11 Eject Media

12 Return Changer Element count *

13 Return Changer Element Info *

14 Changer command *

15 Select Media *

16 Unselect Media *

17 ReturnDeviceInfo (see v3.1x/v4.xx func.1, subfunc.0) *

18 ReturnMediaInfo (see v3.1x/v4.xx func.1, subfunc.1) *

19 SetDeviceParameters (see v3.1x/v4.xx func.1, subfunc.2) *

1-63 Reserved by Novell

64-255 IOCTLs for third party use. Assigned by Novell

* These IOCTLs are defined in later versions of the 3.11 specification but are never issued by the NetWare 3.11 OS.

Figure 7-9 Old v3.11 IOCTL (I/O Control) Routine Assignments

typedef struct IOCTLRequestStructure
{

LONG DriverLink;
CardStruct *CardHandle;
WORD CompletionCode;
BYTE Function;
BYTE SubFunction;
LONG IOCTLParameter;
LONG *IOCTLBuffer;

} IOCTLRequestStruct;

Figure 7-10 The IOCTL Request Structure

Device Driver Developers' Guide

Revision 2.4 09/25/957-72

PutIOCTL (continued)

Completion/Device Status returned to the calling application

No Error 0000h
Non-Media Error 0003h
Device Not Active 0004h
Adapter Card Error 0005h
Device Parameter Error 0006h
System Parameter Error 0007h
Not Supported By Device 0008h
Device Fault 0103h
No Media Present 0703h
Media Write Protected 0803h
Magazine Not Present 0F09h
Changer Error 1009h
Changer Source Empty 1109h
Changer Destination Full 1209h
Changer Jammed 1303h
Magazine Error 1409h
Magazine Source Empty 1509h
Magazine Destination Full 1609h
Magazine Jammed 1703h
Driver Custom Status E0xxh - FExxh
Not Supported By Driver FFF9h

Figure 7-11 IOCTL Request Return Status

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-73

mov [esi].SCompletionCode, 0 ;indicate good completion
push esi ;ptr to I/O Request structure
push edi ;contains Disk structure ptr
call PutRequest ;notify OS of completion
lea esp, [esp + (2*4)] ;adjust stack pointer

PutRequest (Non-blocking) v3.1x & v4.xx

Posts I/O request completion

Syntax: LONG PutRequest(

DiskStruct *DiskHandle,

IORequestStruct *IORequest);

Return Value: 0 Successful

non-zero Invalid Request

Requirements: Interrupts disabled. (see note below)

Parameters: DiskHandle Passes a handle for the target device. This is the same value returned by

AddDiskDevice.

IORequest Passes a pointer to the I/O request structure to be returned to NetWare.

Example:

Description: PutRequest notifies the Operating System that an I/O request has been completed. The completion

status code must be placed in the request structure prior to making this call. Several driver routines call

this routine, including a driver's Remove Driver, I/O Poll, and Interrupt Service routines.

NOTE: This routine may open an interrupt window, even though it must be called with interrupts

disabled and returns with interrupts disabled. For more information, see Chapter 6.

See Also: GetRequest, GetIOCTL, PutIOCTL, Chapter 6

Device Driver Developers' Guide

Revision 2.4 09/25/957-74

PutRequest (continued)

Name Code

Random Read 00h

Random Write 01h

Random Write Once 02h

Sequential Read 03h

Sequential Write 04h

Reset End Of Media Status 05h

Single File Mark(s) 06h

Write single file mark(s)

Space forward single file mark(s)

Space backwards single file mark(s)

ConsecutiveFileMarks 07h

Write Consecutive File Marks

Space Forward until consecutive file marks

Space Backwards until consecutive file marks

SingleSetMark(s) 08h

Write single set mark(s)

space forward single set mark(s)

space backwards single set mark(s)

ConsecutiveSet Marks 09h

Write consecutive file marks

space forward until consecutive set marks

space backwards until consecutive set marks

Locate/Space Relative Data Block(s) 0Ah

Space forward data blocks

Space backwards data blocks

Locate/Space Absolute Data Block(s) 0Bh

Return absolute position

Goto absolute position

SequentialPartitionOperations 0Ch

Format to partition media

Select partition

Return number of partitions

Return partition size

Return max number of possible partitions

Physical Media Operations 0Dh

Security erase partition

Rewind partition

Goto end of partition

Random Erase 0Eh

Reserved 0Fh-3Fh

Figure 7-12 I/O Function Codes

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-75

PutRequest (continued)

typedef struct IORequestStructure

{

IORequestStruct *DriverLink;

DiskStruct *DiskHandle;

WORD CompletionCode;

BYTE Function;

BYTE Parameter1;

LONG Parameter2;

LONG Parameter3;

} IORequestStruct;

Figure 7-13 The I/O Request Structure

I/O Request Completion Status returned to the OS (low-order byte)

No Error xx00h
Corrected Media Error xx01h
Media Error xx02h
Non-Media Error (fatal) xx03h
Ignored by OS xx04h - xxFFh

Completion/Device Status returned to the calling application

No Error 0000h
Corrected Media Error 0001h
Media Error 0002h
Non-Media Error (fatal) 0003h
Device Not Active 0004h
Not Supported By Device 0008h
EOT (fatal) 0203h
EOT (non-fatal) 0209h
EOF (non-fatal) 0309h
End Of Partition (non-fatal) 0409h
Early Warning Area (no error) 0500h
Early Warning Area (corrected) 0501h
Early Warning Area (non-fatal) 0509h
Media Change (fatal) 0603h
Media Write Protected (non-fatal) 0809h
Set Marks Detected (non-fatal) 0909h
Blank Media (non-fatal) 0A09h
Unformatted Media (non-fatal) 0B09h
Device Off-Line (non-fatal) 0C09h
Media Previously Written (non-fatal) 0D09h
Abort - Prior State (non-fatal) 0E09h
Driver Custom Status E000h - FE00h

Figure 7-14 I/O Request Return Status

Device Driver Developers' Guide

Revision 2.4 09/25/957-76

QueueSystemAlert (Non-blocking) v3.1x

Notifies system of serious driver problem

Syntax: LONG QueueSystemAlert(

LONG TargetStation,

LONG TargetNotificationBits,

LONG ErrorLocus,

LONG ErrorClass,

LONG ErrorCode,

LONG ErrorSeverity,

void *ControlString,

args...);

Return Value: None

Requirements: None

Parameters: TargetStation Supply a zero for the console

TargetNotificationBits Identifies destinations of notification

NOTIFY_CONNECTION_BITS 01h

NOTIFY_EVERYONE_BIT 02h

NOTIFY_ERROR_LOG_BIT 04h

NOTIFY_CONSOLE_BIT 08h

ErrorLocus Defines locus of error (always disks)

LOCUS_DISKS 03h

ErrorClass Indicates class of error, as follows:

CLASS_UNKNOWN 0

CLASS_TEMP_SITUATION 2

CLASS_HARDWARE_ERROR 5

CLASS_BAD_FORMAT 9

CLASS_MEDIA_FAILURE 11

CLASS_CONFIGURATION_ERROR 15

CLASS_DISK_INFORMATION 18

ErrorCode Provides error code for system log, as follows:

OK 00h

ERR_HARD_FAILURE 0FFh

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-77

push arg ;if single argument
push eax ;ptr to control string
push SEVERITY_CRITICAL ;severity level
push ERR_HARD_FAILURE ;error code
push CLASS_HARDWARE_ERROR ;error class
push LOCUS_DISKS ;locus of error
push NOTIFY_CONSOLE_BIT + NOTIFY_ERROR_LOG_BIT
push 0 ;target station
call QueueSystemAlert ;tell system of problem
lea esp, [esp + (8*4)] ;adjust stack pointer

QueueSystemAlert (continued)

ErrorSeverity Indicates error severity, as follows:

SEVERITY_INFORMATIONAL 0

SEVERITY_WARNING 1

SEVERITY_RECOVERABLE 2

SEVERITY_CRITICAL 3

SEVERITY_FATAL 4

SEVERITY_OPERATION_ABORTED 5

ControlString Pointer to null-terminated control string similiar to that used in the sprintf

function, including embedded returns, line-feeds, tabs, bells, and simple

% specifiers (excluding modifying, precision and floating-point

specifiers).

args Arguments as indicated by the above control string.

Example:

Description: Provides system notification of driver hardware or software problems at times other than during driver

initialization procedure.

See Also: OutputToScreen

Device Driver Developers' Guide

Revision 2.4 09/25/957-78

ReadPhysicalMemory (Blocking) v4.xx

This routine must be used to access data stored in the DOS address space. The information is copied to a buffer

allocated by the driver where it then is visible.

Syntax: LONG ReadPhysicalMemory (

BYTE *Source,

BYTE *Destination,

LONG NumUnits,

LONG UnitSize);

Return Value: 1 (true; non-zero) Parameters were valid; transfer completed

0 (false) Transfer not completed because of bad parameters

Requirements: Must be called from blocking process level only.

Parameters: Source A physical address of memory below 0x100000.

Destination Handle to a buffer allocated by the driver to hold the copied data.

NumUnits Number of units to be read from memory.

UnitSize Size in bytes of each unit to be read.

Description: Assumes that data passed in will not hang the machine; the physical address range must be below

0x100000; The word-sized requests must begin on word boundaries and longword request must begin

on longword boundaries.

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-79

RegisterForEventNotification (Blocking) v3.1x & v4.xx

Registers a procedure to be called prior to specific system events

Syntax: LONG RegisterForEventNotification(

LONG ResourceTag,

LONG EventType,

LONG Priority,

LONG (*WarnProcedure)(

void (*OutputRoutine)(void *ControlString, ...),

LONG Parameter),

void (*ReportProcedure)(

LONG Parameter));

Return Value: Returns a 32 bit EventID (0 if call failed) to be used with a subsequent

UnRegisterEventNotification call.

Requirements: Must be called from blocking process level only.

Parameters: EventResourceTag The resource tag returned by an AllocateResourceTag call during driver

initialization which must have been made using the Event resource signature.

EventType Indicates the type of event for which the caller wishes notification.

The following describes event for which notification may be received, the type

of notification that can be made (Warn, Report or both), the environment of

the notification call (blocking, non-blocking) and the defined use of the

parameter that is passed with the call.

Type Definition Type

Number (in

Decimal)

EVENT_VOL_SYS_MOUNT 0

The parameter is undefined. Report Routine will be

called immediately after vol SYS has been mounted.

The Report Routine may block the thread.

EVENT_VOL_SYS_DISMOUNT 1

The parameter is undefined. Both the Warn and Report

Routines will be called before vol SYS is dismounted.

The Report Routine may block the thread.

EVENT_ANY_VOL_MOUNT 2

The parameter is the volume number. The Report

Routine will be called immediately after any volume is

mounted. The Report Routine may block the thread.

Device Driver Developers' Guide

Revision 2.4 09/25/957-80

RegisterForEventNotification (continued)

EventType (contd) EVENT_ANY_VOL_DISMOUNT 3

The parameter is the volume number. The Warn and the

Report Routines will be called before any volume is

dismounted. The Report Routine may block the thread.

EVENT_DOWN_SERVER 4

The parameter is undefined. The Warn and Report

routines will be called before the server is shut down.

The Report Routine may block the thread.

EVENT_CHANGE_TO_REAL_MODE 5

The parameter is undefined. The Report routine will be

called before the server changes to real mode. No

blocking calls may be made by the Report Routine.

EVENT_RETURN_FROM_REAL_MODE 6

The parameter is undefined. The Report routine will be

called after the server has returned from real mode. No

blocking calls may be made by the Report Routine.

EVENT_EXIT_TO_DOS 7

The parameter is undefined. The Report routine will be

called before the server exits to DOS. The Report

Routine may block the thread.

EVENT_MODULE_UNLOAD 8

The parameter is the module handle. The Warn and

Report routines will be called before a module is

unloaded from the console command line. Only the

Report routine will be called when a module unloads

itself. The Report Routine may block the thread.

EVENT_ACTIVATE_SCREEN 14

The parameter is the Screen ID. The Report Routine is

called after the screen becomes the active screen. The

Report Routine may block the thread.

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-81

RegisterForEventNotification (continued)

EventType (contd) EVENT_UPDATE_SCREEN 15

The parameter is the Screen ID. The Report routine is

called after a change is made to the screen image. The

Report Routine may block the thread.

EVENT_UPDATE_CURSOR 16

The parameter is the Screen ID. The Report Routine is

called after a change to the cursor position or state

occurs. No blocking calls may be made by the Report

Routine.

EVENT_KEY_WAS_PRESSED 17

The parameter is undefined. The Report Routine is

called after any key on the keyboard has been pressed

(including shift/alt/control). This routine is called at

interrupt time. No blocking calls may be made by the

Report Routine.

EVENT_DEACTIVATE_SCREEN 18

The parameter is the Screen ID. The Report Routine is

called after the screen becomes inactive. No blocking

calls may be made by the Report Routine.

EVENT_OPEN_SCREEN 20

The parameter is the Screen ID for the newly created

screen. The Report Routine will be called after the

screen is created. The Report Routine may block the

thread.

EVENT_CLOSE_SCREEN 21

The parameter is the Screen ID for the screen that will be

closed. The Report Routine will be called before the

screen is closed. The Report Routine may block the

thread.

EVENT_MODULE_LOAD 27

The parameter is the module handle. The Report Routine

will be called after the module has been loaded. The

Report Routine may block the thread.

EVENT_GENERIC 32

Device Driver Developers' Guide

Revision 2.4 09/25/957-82

RegisterForEventNotification (continued)

Priority The priority used to call this notification procedure. Priorities are defined as

follows:

Priority Definition Priority Number

(in Decimal)

EVENT_PRIORITY_OS 0

EVENT_PRIORITY_APPLICATION 20

EVENT_PRIORITY_DEVICE 40

WarnProcedure A pointer to a procedure that is called when the OS makes an EventCheck

call. If the warn routine does not want the event to occur, it must output a

message and then return a non-zero value. Most event notification procedures

are called at process level, but several are made at interrupt level (the thread

may not be blocked). The above table of event types specifies which events

must be checked to determine if the event allows its thread to be blocked.

ReportProcedure A pointer to a procedure that is called when the OS makes an EventReport

call. Its environment is the same as the Warn procedure indicated above.

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-83

push OFFSET ReportProcedure ;report procedure
push OFFSET WarnProcedure ;warn procedure
push Priority ;typically 40
push EVENT_DOWN_SERVER ;indicate event type
push ResourceTag ;obtained during init
call RegisterForEventNotification
lea esp, [esp + (5*4)] ;adjust stack pointer

RegisterForEventNotification (continued)

Example:

Description: On some occasions a driver is required to perform some action prior to the OS terminating, switching

to real mode, exiting to DOS, etc. The driver should call RegisterForEventNotification providing

notification procedure pointers as indicated above. Even though the calls to register and un-register the

event notification are blocking, the actual call to the event notification procedure provided by the driver

is not always made from blocking process level (the environment varies with the particular event being

reported).

The Warn Routine will be provided with two parameters when called. The first is the output routine

which must be used to output messages (the output routine must be called with a control string and as

many parameters and the control string indicates), and the second is the parameter described in each of

the event types above. When the Report Routine is called it is passed a single parameter. This is the

same parameter described in each of the event types above.

See Also: UnRegisterEventNotification, Driver Unload, Switch to Real Mode, Exit to DOS,

AllocateResourceTag

Device Driver Developers' Guide

Revision 2.4 09/25/957-84

; ebx points to the IOConfig structure filled out by ParseDriverParameters
mov eax, IORtag ;tag acquired for I/O registration
mov [ebx].CRTagPointer, eax ;put resource tag in IOConfig
push 0 ;no driver config structure
push ebx ;IOConfig structure
call RegisterHardwareOptions
lea esp, [esp + (2*4)] ;adjust stack pointer
or eax, eax ;error ?
jnz InitRegisterHardwareError ;yes - deal with it

RegisterHardwareOptions (Blocking) v3.1x & v4.xx

Reserves hardware options for an adapter card.

Syntax: LONG RegisterHardwareOptions(

IOConfigStruct *IOConfig,

LONG Reserved0);

Return Value: 0 Success

non-zero Conflicting Option

Requirements: Must be called only from blocking process-level.

Parameters: IOConfig Handle to the adapter board's corresponding IOConfiguration structure.

(The structure must be initialized with appropriate values, including the

correct resource tag.)

Reserved0 Reserved by NetWare. A NULL (0) must be passed in this parameter.

Example:

Description: RegisterHardwareOptions is called by a driver's initialization routine to reserve hardware options for a

particular adapter board. The driver passes RegisterHardwareOptions a IOConfigurationStructure

pointer for the adapter card (to reserve the specified hardware options). If any of the hardware options

are already in use, the routine returns an error code.

See Also: DeRegisterHardwareOptions, ParseDriverParameters, Driver Initialization, IOConfigurationStructure,

AllocateResourceTag

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-85

push 2 ;status
push edi ;contains Disk structure ptr
call RemoveDiskDevice
lea esp, [esp + (2*4)] ;adjust stack pointer

RemoveDiskDevice (Blocking) v3.1x & v4.xx

Notifies applications using a device of pending device removal, prepares device for removal and deactivates

device

Syntax: void RemoveDiskDevice(

DiskStruct *DiskHandle,

LONG Status);

Return Value: None

Requirements: Must be called from blocking process level only.

Parameters: DiskHandle Passes a handle for the target device. This is the same value returned by

AddDiskDevice.

Status This parameter is included in the NetWare 3.1x and 4.xx versions for

capatibility reasons only. It should be initialized to a two (2).

Example:

Description: A driver calls RemoveDiskDevice to remove a mass storage device from the file server's list of active

devices. After returning from this routine, the driver then calls DeleteDiskDevice to return memory

allocated for the DiskStructure. NetWare flushes all requests to the device before de-registering the

device. This is done by making repeated calls to the device's IOPoll routine. (Note: Only one IOPoll

call is made per request. Requests whose IOPoll was called previously will not be repeated.) The

driver must remain ready to service further I/O requests if they are issued. RemoveDiskDevice will

not return until all requests on the elevator queue have been serviced. (i.e. a GetRequest and a

PutRequest has been performed on them) Once this is completed the OS issues a Deactivate IOCTL

and returns.

See Also: DeleteDiskDevice

Device Driver Developers' Guide

Revision 2.4 09/25/957-86

push eax ;contains ptr to AES structure
call ScheduleNoSleepAESProcessEvent
lea esp, [esp + 4] ;adjust stack pointer

ScheduleNoSleepAESProcessEvent (Non-Blocking) v3.1x & v4.xx

Schedules an asynchronous event (non-blocking thread or process)

Syntax: void ScheduleNoSleepAESProcessEvent(

AESEventStruct *AESEvent);

Return Value: None

Requirements: Interrupts disabled.

Parameters: AESEvent Passes a pointer to an AES structure.

Example:

Description: A driver's Initialization routine may call ScheduleNoSleepAESProcessEvent to set up a background

AES (Asynchronous Event Scheduler) entry to a designated "gremlin" that will run throughout the time

that the driver is loaded in file server memory. The driver must allocate the structure prior to the first

call, must have placed the AES resource tag acquired at initialization into the structure, and must

provide the execution interval and execution address.

A single call to this routine will cause a single entry to the defined routine, thus requiring another call

to this routine at the conclusion of the routine executed if it is desired to have a subsequent exit to the

routine. (See "Timeout" in Chapter 2.)

See Also: CancelNoSleepAESProcessEvent, AllocateResourceTag

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-87

push eax ;contains ptr to AES structure
call ScheduleSleepAESProcessEvent
lea esp, [esp + 4] ;adjust stack pointer

ScheduleSleepAESProcessEvent (Non-Blocking) v3.1x & v4.xx

Schedules an asynchronous event (blocking thread or process)

Syntax: void ScheduleSleepAESProcessEvent(

AESEventStruct *AESEvent);

Return Value: None

Requirements: Interrupts disabled.

Parameters: AESEvent Passes a pointer to an AES structure.

Example:

Description: A driver may call ScheduleSleepAESProcessEvent to set up a background AES (Asynchronous Event

Scheduler) thread that will be executed at a desired interval and can be blocked or make blocking calls

while executing. The driver must allocate the structure prior to the first call, must have placed the AES

resource tag acquired during initialization into the structure, and must provide the execution interval

and execution address. A single call to this routine will cause a single entry to the defined routine, thus

requiring another call to this routine at the conclusion of the routine executed if it is desired to have a

subsequent exit to the routine.

See Also: CancelSleepAESProcessEvent, AllocateResourceTag, ScheduleNoSleepAESProcessEvent,

CancelNoSleepAESProcessEvent

Device Driver Developers' Guide

Revision 2.4 09/25/957-88

SetHardwareInterrupt (Non-blocking) v3.1x & v4.xx

Allocates an interrupt for an adapter card.

Syntax: LONG SetHardwareInterrupt(

LONG IRQNumber,

void (*InterruptService)(void), or LONG (*InterruptService)(void),

LONG IntRTag,

LONG ChainFlag,

LONG ShareFlag,

LONG *EOIFlag)

Return Value: 0 Success

non-zero Conflicting options

Requirements: Interrupts disabled. May not be called from interrupt level.

Parameters: IRQNumber The hardware interrupt level.

InterruptService Pointer to the interrupt service routine (ISR) that will be assigned to the specified

interrupt. The service routine returns a value in a shared interrupt configuration.

IntRTag The resource tag acquired by the driver initialization routine for interrupts.

ChainFlag An indicator specifying whether the ISR is to be placed on the front or the

back of the queue (only valid if the ShareFlag is set to a one). A value of 0

indicates placement at the front of the queue, while a value of 1 specifies

placement at the rear of the queue.

ShareFlag An indicator specifying if interrupts may be shared by the device (and driver).

A value of zero specifies no sharing, and a value of 1 specifies interrupt

sharing.

*EOIFlag A pointer to a double-word. The OS uses this pointer to return a flag

indicating that a second EOI is required for this interrupt (0=only one EOI

required, 1=second EOI required). The function of this parameter is obsolete

since all EOIs must now be handled indirectly through a call to

CDoEndOfInterrupt. A NULL value may be substituted for the pointer.

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-89

mov eax, cardNum ;get adapter #
mov edx, OFFSET EOITable ;get table base
mov ecx, eax
shl ecx, 2 ;create index
add edx, ecx
push edx ;extra EOI flag location
push 0 ;share flag (0=no chain ints

; 1=chain ints)
push 0 ;end of chain flag (0=first,

; 1=last)
push IntRtag ;tag acquired for ints
mov edx, DriverISRTable[eax*4]
push edx ;provide ISR
mov ebp, IOConfigTable[eax*4] ;get IOConfig address
movzx eax, [ebp].Interrupt0 ;get int #
push eax ;pass
call SetHardwareInterrupt ;allocate interrupt
lea esp, [esp + (6*4)] ;adjust stack

SetHardwareInterrupt (continued)

Example:

Description: SetHardwareInterrupt allocates the specified interrupt and provides a driver ISR entry point (The OS

fields the actual interrupt, saves all registers, sets up segment registers, calls the driver ISR as a near

procedure, and issues the IRETD upon return). It also enables the interrupt at the priority interrupt

controllers (PICs) and sets the corresponding bit in the RealModeInterruptMask.

See Also: ClearHardwareInterrupt, CAdjustRealModeInterruptMask, CUnAdjustRealModeInterruptMask,

RegisterHardwareOptions, AllocateResourceTag

Device Driver Developers' Guide

Revision 2.4 09/25/957-90

push EventID ;ID from register call
call UnRegisterEventNotification ;remove exit from list
lea esp, [esp + 4] ;adjust stack

UnRegisterEventNotification (Blocking) v3.1x & v4.xx

Removes notification procedure from list called prior to system event occurrence

Syntax: LONG UnRegisterEventNotification(

LONG EventID);

Return Value: 0 Successful

-1 Invalid parameters

Requirements: Must be called from blocking process level only.

Parameters: EventID The 32 bit value (used to identify this notification procedure) returned by

an earlier call to RegisterForEventNotification.

Example:

Description: UnRegisterEventNotification removes notification procedure(s) from the list of procedures to be

called by the OS prior to or following specific events in the OS. This is mandatory if a driver is

being unloaded and a previous event notification was requested.

See Also: RegisterForEventNotification, Driver Unload

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-91

Support Routine Call Compatibility Summary

Device Driver Phases

Routine Name Drivr Drivr Drivr ScanF Delet Sleep NoSle IOPol IOCTL Intrp
Init Check Unloa Devic Devic Entry Entry Entry Poll Entry

AddDiskDevice# ONLY
AddDiskSystem# ONLY
AlertDevice* OK OK OK OK OK
Alloc* OK OK OK OK OK OK
AllocateResourceTag# ONLY!
AllocBufferBelow16Meg#* OK OK OK
AllocSemiPermMemory* OK OK OK OK OK OK
CAdjustRealModeInterruptMask* OPT
CancelNoSleepAESProcessEvent* REQ REQ OK OK OK OK OK OK OK
CancelSleepAESProcessEvent* REQ REQ OK OK OK OK OK OK OK
CCheckHardwareInterrupt* OK OK OK OK OK OK OK OK OK
CDisableHardwareInterrupt* OK OK OK OK OK OK OK

CDoEndOfInterrupt* OK
CEnableHardwareInterrupt* OK OK OK OK OK OK OK OK
CheckDiskCard# ONLY
CheckDiskDevice# ONLY
ClearHardwareInterrupt* REQ REQ
CPSemaphore# ONLY
CRescheduleLast# OK OK OK OK OK
CUnAdjustRealModeInterruptMask* OPT OPT
CVSemaphore ONLY
CYieldIfNeeded# OK OK OK OK OK
CYieldWithDelay# OK OK OK OK OK
DelayMyself# OK OK OK OK OK
DeleteDiskDevice# REQ REQ OK
DeleteDiskSystem# REQ REQ

DeRegisterHardwareOptions#* REQ! REQ!
DoRealModeInterrupt# ONLY
EnterDebugger OK OK OK OK OK
Free* OK REQ OK OK OK
FreeBufferBelow16Meg* OK REQ OK OK OK
FreeSemiPermMemory* OK REQ OK OK OK
GetCurrentTime OK OK OK 0K OK OK OK OK OK
GetHardwareBusType OPT
GetIOCTL* OK OK OK OK OK OK OK
GetReadAfterWriteVerifyStatus REQ OK OK OK OK OK
GetRealModeWorkSpace ONLY
GetRequest* OK OK OK OK OK OK OK
GetSectorsPerCacheBuffer OPT

MapAbsoluteAddressToCodeOffset OK OK OK OK OK OK OK OK OK OK
MapAbsoluteAddressToDataOffset OK OK OK OK OK OK OK OK OK OK
MapCodeOffsetToAbsoluteAddress OK OK OK OK OK OK OK OK OK OK
MapDataOffsetToAbsoluteAddress OK OK OK OK OK OK OK OK OK OK
NetWareAlert OK OK OK OK OK OK OK OK OK OK
OutputToScreen# ONLY
ParseDriverParameters# ONLY
PutIOCTL* OK OK OK OK OK OK OK
PutRequest* OK OK OK OK OK OK OK
QueueSystemAlert OK OK OK OK OK OK OK OK OK OK
ReadPhysicalMemory# OK
RegisterForEventNotification# ONLY

RegisterHardwareOptions#* ONLY
RemoveDiskDevice# REQ OK
ScheduleNoSleepAESProcessEvent* OK OK OK OK OK OK OK OK
ScheduleSleepAESProcessEvent* OK OK OK OK OK OK OK OK
SetHardwareInterrupt* ONLY
UnRegisterEventNotification# OK REQ

LEGEND: REQ = Required here blank = Not Allowed ONLY = Allowed here only
OPT = Optional # = Blocks Thread * = Interrupts must be off here
! = Mandatory OK = Allowed here

