
Mass Storage Control Interface

Revision 2.4 09/25/95 4-1

Chapter 4: Mass Storage Control Interface

The Mass Storage Control Interface routines provide a means for the Operating System to ask the driver to examine

the devices attached to a specific adapter, and to register any devices not previously registered with the OS. The routines

are entered at blocking process level and may call any blocking or non-blocking routines. It is suggested that these

routines call CYieldIfNeeded (v4.xx), CRescheduleLast (v3.1x), or DelayMyself if it is necessary to spend any

significant time waiting for completion of required functions (such as a scan of the SCSI bus for new devices). These

routine entry points are supplied by the driver in the AddDiskSystem call, and thus may be different for different adapter

cards.

ScanForDevices

Disk and other device drivers must provide a procedure which the Operating System can call to cause the driver to scan

for new un-registered mass storage devices, and to register them with the OS. The operating system passes the

CardStructure pointer on the stack as the only parameter when it makes the call to the drivers ScanForDevices

procedure for each adapter card. The syntax for the OS call to the driver ScanForDevices entry point is as follows:

void ScanForDevices(

CardStruct *CardHandle);

where: CardHandle Card structure pointer (handle) returned by AddDiskSystem call

Once the device has been registered with the OS, the driver must be prepared to handle normal I/O requests and activity.

The driver's ScanForDevices procedure is called from the OS at blocking process level. This allows the procedure to

make blocking calls such as AddDiskDevice. The driver should scan to determine if there are any devices attached to

the adapter card which have not been registered with the OS. It may be necessary to allocate special buffers below 16

megabytes for some 16-bit Host Adapters at this point (see Appendix G).

The driver should make an AddDiskDevice call for each new non-registered device which it encounters on the adapter

card. Devices that are already registered with the OS should not be queried or examined by this routine. When all

attached devices have been accounted for or examined, the driver should return control to the caller. It is important

that all devices on the bus be registered with the OS. If devices are detected that are busy or have not fully

initialized, the driver should block the ScanForDevices routine to give them sufficient time to do so. This can be done

by calling the CRescheduleLast,CYieldIfNeeded orCYieldWithDelayAPI. If the device remains busy after a sufficient

amount of time, the driver may timeout and return to the caller.

Immediately after calling the AddDiskDevice routine to add a new device found during the scan, the driver must perform

any driver housekeeping to link up the newly created DiskStructure, etc.. I/O requests for the device will begin

immediately upon return to the ScanForDevices caller.

Drivers may elect to call ScanForDevices at the end of the InitializeDriver routine and ignore all other calls to the

routine. Devices may not be dynamically added if the driver is designed this way.



Device Driver Developers' Guide

Revision 2.4 09/25/954-2

The ScanForDevices routine must determine the actual configuration of devices attached to an adapter card. It may be

necessary to read the CMOS configuration RAM for internal drives. Drivers handling SCSI adapters may need to

interrogate each target address to determine the number and types of devices attached (warning: some drives will lose

all factory configuration information if a format command is aborted, including being sent a test unit ready or other

command). Special configurations including devices shared on a SCSI bus may dictate that not all devices may be

registered, or even scanned. Devices supporting removable media should be registered with the OS even though no

media may be present in the device. The OS can subsequently make the device inactive due to failed requests, and it can

be later made active by an Activate IOCTL call, followed by a Return Device Status IOCTL call which identifies the

specific geometry, etc. of the media now present.

Devices which are registered with the OS (by calling AddDiskDevice) as a hard disk will immediately be issued an

Activate IOCTL call by the OS. If the Activate call returns successful status back to the OS, the OS will indicate that

the device is active and will begin to issue I/O requests to it.

Devices registered with the OS as removable will immediately be issued aMount IOCTL, followed by a Return Device

Status IOCTL, followed by an Activate IOCTL, and finally, followed by a Lock IOCTL.

The above IOCTL sequence will occur for a removable device when an NLM makes an Activate IOCTL call to the

device.



Mass Storage Control Interface

Revision 2.4 09/25/95 4-3

DeleteDevice

void DeleteDevice(

DiskStruct *DiskHandle);

where: DiskHandle is the DiskStructure pointer (handle) returned by a AddDiskDevice call

NetWare 4.xx & 3.1x (excluding 3.11)

This routine is optional in v4.xx and v3.1x (excluding 3.11) and will normally not be called. Most failed devices

are deactivated but remain in memory. However, if the driver detects that the device needs to be removed due to

reconfiguration, hardware removal, etc., the DeleteDevice procedure can be called but only at a blocking process

level. (This allows the procedure to make blocking calls such as RemoveDiskDevice and DeleteDiskDevice.)

DeleteDevice must perform the following steps:

1) Force the OS to deactivate the device by putting back with an appropriate error code all requests the drivers

has obtained (by issuing aGetRequest). This is done by issuing a PutRequest with a "Non Media Error" code

in the CompletionCode field of the initial request and a "Device Not Active" code in the CompletionCode field

of all subsequent requests. Once the device is deactivated, the corresponding elevator queue is emptied and

all requests returned with a "Device Not Active" error code.

2) Call RemoveDiskDevice. The driver must remain active to receive I/O requests and IOCTL requests until the

OS returns from this call. If the device has not been deactivated at this point, the OS will attempt to flush

requests to the driver by calling it's IOPoll routine. These requests should be obtained and put back (using

GetRequest and PutRequest) with a "Non Media Error" and "Device Not Active" completion codes. The OS

returns from RemoveDiskDevice when the elevator is empty.

3) Uncouple the DeviceStructure and related information from the CardStructure.

4) Call DeleteDiskDevice.

5) Return.



Device Driver Developers' Guide

Revision 2.4 09/25/954-4

NetWare 3.11

In v3.11DeleteDevice is registered with the OS though the AddDiskSystem call. When the device driver determines

that the device should be removed, it informs the OS using an AlertDevice call and the "Delete Device" MessageBit

parameter. The OS will then deactivate the device, clear all pending requests owned by the OS and call the

DeleteDevice routine.

DeleteDevice must perform the following steps:

1) Put back with an appropriate error code all requests the driver has obtained (by issuing a GetRequest). This

is done by issuing a PutRequest with a "Device Not Active" code in the CompletionCode field of the requests.

2) Call RemoveDiskDevice. The driver must remain active to receive IOCTL and I/O requests until the OS

returns from this call.

3) Uncouple the DeviceStructure and related information from the CardStructure.

4) Call DeleteDiskDevice.

5) Return.


