
NetWare Driver Support Routines

Revision 2.4 09/25/95 7-1

Chapter 7: NetWare Driver Support Routines

This chapter describes the following NetWare v3.1x and v4.xx support routines that are available to file server device

drivers. The routines marked as 'NetWare v3.1x Only' are emmulated in NetWare v4.xx but will be eliminated in

succeeding versions. The routines marked as 'NetWare v4.xx Only' are not available in NetWare versions 3.1x.

• AddDiskDevice • GetCurrentTime

• AddDiskSystem • GetHardwareBusType

• AlertDevice • GetIOCTL

• Alloc • GetReadAfterWriteVerifyStatus

• AllocateResourceTag • GetRealModeWorkSpace

• AllocBufferBelow16Meg • GetRequest

* • AllocSemiPermMemory • GetSectorsPerCacheBuffer

• CAdjustRealModeInterruptMask • MapAbsoluteAddressToCodeOffset

• CancelNoSleepAESProcessEvent • MapAbsoluteAddressToDataOffset

• CancelSleepAESProcessEvent • MapCodeOffsetToAbsoluteAddress

• CCheckHardwareInterrupt • MapDataOffsetToAbsoluteAddress

• CDisableHardwareInterrupt ** • NetWareAlert

• CDoEndOfInterrupt • OutputToScreen

• CEnableHardwareInterrupt • ParseDriverParameters

• CheckDiskCard • PutIOCTL

* • CheckDiskDevice • PutRequest

• ClearHardwareInterrupt * • QueueSystemAlert

• CPSemaphore ** • ReadPhysicalMemory

* • CRescheduleLast • RegisterForEventNotification

• CUnAdjustRealModeInterruptMask • RegisterHardwareOptions

• CVSemaphore • RemoveDiskDevice

** • CYieldIfNeeded • ScheduleNoSleepAESProcessEvent

** • CYieldWithDelay • ScheduleSleepAESProcessEvent

• DelayMyself • SetHardwareInterrupt

• DeleteDiskDevice • UnRegisterEventNotification

• DeleteDiskSystem

• DeRegisterHardwareOptions

• DoRealModeInterrupt

• EnterDebugger

• Free

• FreeBufferBelow16Meg

* • FreeSemiPermMemory

* NetWare v3.1x Only

** NetWare v4.xx Only

Device Driver Developers' Guide

Revision 2.4 09/25/957-2

Definitions:

The following API descriptions contain important terms that must be understood to design a driver to work properly

with NetWare. Please note the following descriptive terms:

Blocking - Indicates the routine may cause the current thread of execution (NetWare process)

to be suspended or "blocked" until the requested function is completed (or calls other

blocking system routines). At no time can a driver Interrupt Service Routine (ISR)

make a call to a blocking routine.

Non-blocking - Indicates the routine will return immediately, without causing the current thread or

process to be suspended.

Interrupts Disabled - Indicates that interrupts must be disabled before calling the routine. This means that

no processor interrupts excepting Non-maskable interrupts can occur. This state is

often required to maintain system and driver integrity.

Process Level - Indicates the level of execution of NetWare v3.1x/v4.xx processes or scheduled tasks.

NLMs normally execute at process level. Also, the loader and command processor

execute at process level.

Interrupt Level - Indicates execution caused by a processor interrupt, in which case the current OS

process is unknown. The ISR executes as the current process, and must never make

blocking calls, etc.

Please note the following guidelines:

0 All routines shown as "blocking" may only be called from blocking process level.

0 All routines shown as "non-blocking" may be called from both blocking and non-blocking levels (see chapter

1).

0 Other required calling environments are indicated in the Requirements: entry for each routine.

0 The v3.1x, v3.1x & v4.xx or v4.xx designation indicates the Netware version in which the API is supported.

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-3

AddDiskDevice (Blocking) v3.1x & v4.xx

Allocates DiskStructure and registers device with OS

Syntax: DiskStruct *AddDiskDevice(

BYTE *DeviceName,

void (*IOPollRoutine)(

DiskStruct *DiskHandle, IORequestStruct *IORequest),

LONG TotalSize,

LONG DriveSizes,

LONG DriveParameters,

LONG DriveID,

CardStruct *CardHandle,

LONG DiskStructureSize);

Return Value: Returns a handle to a DiskStructure, or 0 if unsuccessful

Requirements: Must be called from blocking process level only.

Parameters: DeviceName Pointer to a 32-byte ASCII string; byte 0 = length, bytes 1-31 = name of

device which describes the physical device. (Exclude the length byte and the

NULL character from the string length count.)

IOPollRoutine Pointer to the driver's IOPoll routine for the device. The device driver must

be able to receive a call to the IOPoll routine at any time upon exit from the

AddDiskDevice routine.

TotalSize The useable sector capacity of the physical device or media in the device.

(The sector size is as reported in the SectorSize field.) For writeable media

this value should be rounded down to a cylinder boundary (using the device

geometry as reported below), since all partitions must begin and end on

cylinder boundaries. For read-only media (CDROM) this value should be

reported with no modifications. For sequencial access devices, if the

capacity is unknown, this field should be set to a -2.

DriveSizes Information about the drive size. It includes the following bytes:

 db AccessFlags (lsb)

 db DriveType

 db BlockSize

 db SectorSize (msb)

Device Driver Developers' Guide

Revision 2.4 09/25/957-4

AddDiskDevice (continued)

AccessFlags indicates special device or access characteristics to be used with

the device:

 RemovableDevice 01h

 ReadOnlyDevice 02h

 WriteSequential 04h

 ChangerDevice 10h *

 MagazineDevice 20h *

* v3.12 & v4.xx only

RemovableDevice indicates that device media may be removed and

replaced with other media. Device characteristics may be changed by

insertion of new media, such as BlockSize, SectorCount, HeadCount, and

CylinderCount, as well as other AccessFlags. The RemovableDevice access

flag may not be changed after a device has been registered with the OS.

ReadOnlyDevice indicates to the OS that write operations should not be

issued to the device. A valid Netware volume may be written, dismounted,

registered as write-protected, then mounted again.

Write Sequential indicates to the OS that I/O requests to the device should

be sent in sequential order.

The ChangerDevice access flag indicates that a Read/Write device

associated with an autochanger is being added to the system. If this flag is

set, the NetWare 4.xx or 3.12 OS will subsequently issue the appropriate

IOCTLs in order to obtain the autochanger configuration.

The MagazineDevice access flag indicates that a Read/Write device

associated with a magazine is being added to the system. If this flag is set,

the NetWare 4.xx or 3.12 OS will subsequently issue the appropriate

IOCTLs in order to obtain the magazine configuration.

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-5

AddDiskDevice (continued)

The DriveType is defined as follows:

0 Hard Disk

1 CD-ROM Device *

2 WORM Device *

3 Tape Device *

4 Magneto-Optical (MO) Device

* NetWare volumes are not currently supported on these device types.

The types are provided to allow application software means to identify

these devices and exploit their function.

BlockSize is the driver maximum I/O request size:

 0 - 1 sector 4 - 16 sectors

 1 - 2 sectors 5 - 32 sectors

 2 - 4 sectors 6 - 64 sectors

 3 - 8 sectors 7 - 128 sectors

SectorSize: The value inserted for SectorSize is actually a shift factor. The

shift factor is used as the exponent in the following formula:

512 * 2 = Actual Sector Size (sectorSize)

where SectorSize >= 0. There must be a value declared for SectorSize.

Currently, this must be a value of 0 which calculates to a sector size of 512.

The NetWare File System only supports a sector size of 512 bytes. All

requests generated by the NetWare File System will be in sectors of that

size. Drivers that support devices with native sector sizes other than 512 are

required to translate these requests into the proper format.

Device Driver Developers' Guide

Revision 2.4 09/25/957-6

AddDiskDevice (continued)

DriveParameters Includes the following drive parameter fields (ignored for devices indicated

as removable):

 db SectorCount (lsb)

 db HeadCount

 dw CylinderCount (msw)

SectorCount is the number of sectors per track on the device. HeadCount

is the number of heads on the device.

CylinderCount is the number of cylinders on the device.

For writeable media the SectorCount and HeadCount parameters are used

by the partition editor to determine the partition boundaries and are required

to match the geometry of other partitions on the drive. For read-only media,

if the device capacity does not fall on a cylinder boundary, the count should

incremented to include the partial cylinder. (See TotalSize.)

DriveID Drive identification. It includes the following fields:

 db ControllerNumber (lsb)

 db DriveNumber

 db CardNumber

 db DriverID (msb)

ControllerNumber is the device target address (SCSI id.) or equivalent.

DriveNumber is the device Logical Unit Number (LUN) or equivalent. If

the ControllerNumber and DriveNumber reference the same object (i.e.

SCSI devices with integrated drive electronics) this number is zero.

CardNumber is the host adapter card number. This number is optionally

assigned by the system administrator and is passed to the driver at load time

though a command line parameter (CARD=xx).

DriverID is the Novell-assigned driver number (obtained through Novell

Labs IMSP.)

CardHandle The card handle AddDiskSystem returned for the adapter on which the

device resides.

DiskStructureSize Size of the required device structure AddDiskDevice will allocate and zero

fill. AddDiskDevice returns a pointer to this structure. This structure must

be allocated even if the size is specified as 0 bytes, as the pointer is required

for many calls.

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-7

push SIZE DiskStruct ;allocate a disk structure

push CardHandle ;card handle

push DriveId ;

push DriveParameters ;

push DriveSizes ;

push TotalSize ;

push OFFSET IOPollRoutine ;IOPoll entry point

push OFFSET DeviceName ;description text for device

call AddDiskDevice ;register with the OS

lea esp, [esp + (8*4)] ;adjust stack ptr

AddDiskDevice (continued)

Example:

Description: AddDiskDevice creates a system device structure to provide NetWare information for the device specified.

AddDiskDevice is called by the driver to register each un-registered device found during the driver's

ScanForDevices procedure (devices which support removable media must be registered by the driver even

if no media is currently present, as the device thus defined will not be active when it fails a subsequent

mount request. The device may be activated later when media is present).

AddDiskDevice allocates and returns a pointer to a DiskStructure for driver use (driver determined size).

The pointer serves both as a device handle for calls to AlertDevice, RemoveDiskDevice,

DeleteDiskDevice, GetRequest, and PutRequest routines, and as a pointer to reference the DiskStructure.

See Also: AlertDevice, DeleteDiskDevice, RemoveDiskDevice, ScanForDevices, ReturnDeviceStatus IOCTL, I/O

Function Codes

Device Driver Developers' Guide

Revision 2.4 09/25/957-8

AddDiskSystem (Blocking) v3.1x & v4.xx

Allocates Card Structure and registers adapter with OS

Syntax: CardStruct *AddDiskSystem(

LONG NLMHandle,

IOConfigStruct *IOConfig,

void (*IOCTLPollRoutine)(

CardStruct *CardHandle, IOCTLRequestStruct *IOCTLRequest),

void (*ScanForDevices)(CardStruct *CardHandle),

void (DeleteDevice)(DiskStruct *DiskHandle),

LONG NovellNumber,

LONG DriverResourceTag,

LONG CardStructureSize);

Return Value: Returns a pointer to a Card structure, or 0 if unsuccessful

Requirements: Must be called from blocking process level only.

Parameters: NLMHandle The handle NetWare passed on the stack to the driver initialization routine.

IOConfig The corresponding adapter board's IOConfiguration structure pointer.

IOCTLPollRoutine The driver's IOCTL Poll routine entry point. The device driver must be able

to receive a call to the IOCTLPoll routine at any time upon exit from the

AddDiskDevice routine.

ScanForDevices The driver's ScanForDevices routine entry point. The device driver must be

able to receive a call to the ScanForDevices routine at any time upon exit

from the AddDiskDevice routine.

DeleteDevice v3.11 only - The entry point to the driver's DeleteDevice routine. For all

other versions (v3.12 and v4.xx), this parameter should be initialized to a

NULL (0).

NovellNumber The number assigned for this driver by Novell.

DriverResourceTag Resource tag allocated by driver with the "Driver Signature".

CardStructureSize Driver-defined Card structure size, to be allocated by AddDiskSystem (zero

not used by driver).

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-9

push SIZE CardStruct ;structure size to allocate

push DriverResourceTag ;identify owner of this resource

push NovellNumber ;Novell assigned driver number

push 0 ;Reserved0

push OFFSET ScanForDevices ;driver scan/add routine

push OFFSET IOCTLPollRoutine ;driver's IOCTL entry point

push OFFSET IOConfig ;handle to IOConfiguration structure

push NLMHandle ;passed at driver initialization.

call AddDiskSystem ;register card with OS

lea esp, [esp + (8*4)] ;adjust stack pointer

AddDiskSystem (continued)

Example:

Description: A device driver's Initialization routine calls this routine to register an adapter board with NetWare.

AddDiskSystem creates a structure inside the NetWare Operating System to retain information about the

specified adapter board. AddDiskSystem also allocates memory for a driver-defined local Card structure

and passes a pointer back to the driver.

The pointer value serves two purposes. First, the driver uses the pointer as a card handle when calling

CheckDiskCard, GetIOCTL, and PutIOCTL, AddDiskDevice, and DeleteDiskSystem. Second, the pointer

is used to reference the card structure, which AddDiskSystem created, where the driver may store data for

the corresponding adapter card.

See Also: DriverInitialization, DriverCheck, DriverUnload, DeleteDiskSystem, CheckDiskCard, DeleteDevice,

ScanForDevices, ReturnDeviceStatus IOCTL

Device Driver Developers' Guide

Revision 2.4 09/25/957-10

AlertDevice (Non-blocking) v3.1x & v4.xx

Notifies Operating System of a device condition change

Syntax: void AlertDevice(

DiskStruct *DiskHandle,

LONG MessageBit);

Return Value: None

Requirements: Interrupts disabled.

Parameters: DiskHandle Handle returned by AddDiskDevice for device.

MessageBit A single bit value indicating the device condition or cause of the AlertDevice call,

defined as follows:

hex binary

01 0000 0001 Device Failed - a device has failed and is no longer active.

The OS will deactivate the device, clear all pending I/O

requests it owns and issue a deactivate IOCTL call.

08 0000 1000 Media Ejected - media not present in the device (for

removables). The OS will deactivate the device, clear all

pending I/O requests it owns and issue a deactivate IOCTL

call.

20 0010 0000 Media Inserted - informs the OS that media has been

inserted in the device. The OS will send a message to all

applications that have locked the device.

* 40 0100 0000 Delete Device - requests the device be deleted. The OS

will deactivate the device, clear all pending I/O requests it

owns and calls the card's DeleteDevice routine.

* v3.1x only

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-11

push 00000001b ;indicate device failure

push DiskHandle ;device handle from AddDiskDevice call

call AlertDevice ;tell system about device status change

lea esp, [esp + (2*4)] ;adjust stack pointer

AlertDevice (continued)

Example:

Description: This call notifies the OS of a status change or problem with a device. In the cases when the OS responds

by deactivating the device, the driver is required to post completion for any outstanding requests for the

device. All requests acquired with a GetRequest call must be returned to the OS with a Device Not Active

completion code.

See Also: DeleteDiskDevice, RemoveDiskDevice

Device Driver Developers' Guide

Revision 2.4 09/25/957-12

push MemRTag ;identify type of resource

push NumberOfBytes ;indicate amount of memory required

call Alloc ;returns pointer to memory in eax

lea esp, [esp + (2*4)] ;adjust stack pointer

mov ebp, eax ;need for use and to return

Alloc (Non-blocking) v3.1x & v4.xx

Allocates block of returnable memory for driver use

Syntax: void *Alloc(

LONG NumberOfBytes,

LONG MemRTag);

Return Value: Pointer to the allocated memory in EAX, or 0 if unsuccessful.

Requirements: Interrupts disabled.

Parameters: NumberOfBytes Passes in the amount of memory in bytes to be allocated.

MemRTag Resource tag acquired by driver for memory allocation using an

"AllocSignature" resource signature.

Example:

Description: Alloc is used to allocate memory for any driver requirements such as IOConfiguration structures or special

buffers. Alloc is passed the amount of memory to allocate and returns a pointer to the allocated memory

in the EAX register. This routine is available to drivers for Initialize Driver, Mass Storage Control Interface,

IOPoll, and IOCTLPoll routines. It may also be called from within an interrupt environment (ISR);

however, the availability of memory will be diminished. The memory allocated is not initialized by the

allocation routine, and must be initialized by the driver. The repeated allocation and deallocation of

relatively small blocks of memory will tend to cause memory fragmentation. For increased system

efficiency, a large block of memory can be initially allocated and maintained as a pool of smaller blocks.

Memory is always allocated on a paragraph (16 byte) boundary.

See Also: Free, AllocateResourceTag

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-13

AllocateResourceTag (Blocking) v3.1x & v4.xx

Allocates OS resource tags for specific resource types

Syntax: LONG AllocateResourceTag(

LONG NLMHandle,

void *ResourceDescString,

LONG ResourceSignature);

Return Value: Resource tag identifying specified entry type (0 if error).

Requirements: Must be called from blocking process level only.

Parameters: DriverHandle The module handle passed to the driver (NLM) when its initialization routine

was called.

ResourceDescString Pointer to a null-terminated text string describing the resource, with a maximum

total length of 16 bytes, including null terminator.

Example: db 'NDCB Driver',0

ResourceSignature A value used to identify a specific resource type. The signatures the driver

must pass (indicates to the OS the kind of resource tag to allocate,

consequently do not change the following equates or the OS will fail the

drivers request to allocate a resource tag) to identify each resource tag type

requested are defined as follows:

AESProcessSignature equ 50534541h

AllocSignature equ 54524C41h

CacheBelow16MegMemorySignature equ 36314243h

EventSignature equ 544E5645h

DiskDriverSignature equ 4B534444h

InterruptSignature equ 50544E49h

IORegistrationSignature equ 53524F49h

* SemiPermMemorySignature equ 454D5053h

TimerSignature equ 524D4954h

* v3.1x only

Device Driver Developers' Guide

Revision 2.4 09/25/957-14

cmp LoadedOnceGoodFlag, 0 ;already allocated tags ?

jne GotTags ;yes - skip

push DriverSignature ;identifies Driver resource type

push OFFSET rTagString ;resource tag descriptive string

push NLMHandle ;driver module id

call AllocateResourceTag ;returns a tag id in EAX

lea esp, [esp + (3*4)] ;adjust stack pointer

mov DrvrRTag, eax ;save our driver resource tag

push IOSignature ;identifies I/O device resource type

push OFFSET IORTagString ;resource tag descriptive string

push NLMHandle ;driver module id

call AllocateResourceTag ;returns a tag id in EAX

lea esp, [esp + (3*4)] ;adjust stack pointer

mov IORtag, eax ;save for RegisterHardwareOptions use

push IntSignature ;identifies Interrupt resource type

push OFFSET IntRTagString ;resource tag descriptive string

push NLMHandle ;driver module id

call AllocateResourceTag ;returns a tag id in EAX

lea esp, [esp + (3*4)] ;adjust stack pointer

mov IntRTag, eax ;save for SetHardwareInterrupt use

push MemSignature ;identifies Memory resource type

push OFFSET MemRTagString ;resource tag descriptive string

push NLMHandle ;driver module id

call AllocateResourceTag ;returns a tag id in EAX

lea esp, [esp + (3*4)] ;adjust stack pointer

mov MemRTag, eax ;save for Alloc use

push MemoryBelow16MegSignature ;identifies special memory resource tag

push OFFSET MemBelow16RTag ;resource tag descriptive string

push NLMHandle ;driver module id

call AllocateResourceTag ;returns a tag id in EAX

lea esp, [esp + (3*4)] ;adjust stack pointer

mov MemBL16RTag, eax ;save resource tag for allocate and free

calls

push AESSignature ;identifies AES timer resource type

push OFFSET AESRTagString ;resource tag descriptive string

push NLMHandle ;driver module id

call AllocateResourceTag ;returns a tag id in EAX

lea esp, [esp + (3*4)] ;adjust stack pointer

mov AESRTag, eax ;save for later references

push TmrSignature ;identifies timer resource type

push OFFSET TmrRTagString ;resource tag descriptive string

push moduleHandle ;driver module id

call AllocateResourceTag ;returns a tag id in EAX

lea esp, [esp + (3*4)] ;adjust stack pointer

mov TmrTag, eax ;save for later reference

mov LoadedOnceGoodFlag,1 ;indicate done once

GotTags:

AllocateResourceTag (continued)

Example:

Description: Acquires a tracking identifier required by certain OS calls to track system resources (and recover them from

NLM or Driver failure). The driver must acquire a tag for each different type of resource to be

allocated.

See Also: Driver Initialization, Driver Unload

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-15

push MemBelow16RTag ;identifies type of resource

push OFFSET ActualSize ;amount of memory acquired returned here

push RequestedSize ;number of bytes required supplied here

call AllocBufferBelow16Meg ;returns pointer to memory in eax

lea esp, [esp + (3*4)] ;adjust stack pointer

mov ebp, eax ;need for use and to return

AllocBufferBelow16Meg (Blocking) v3.1x & v4.xx

Allocates block of returnable memory below the 16 megabyte boundary for driver use.

Syntax: void *AllocBufferBelow16Meg(

LONG RequestedSize

LONG *ActualSize,

LONG MemBelow16RTag);

Return Value: Pointer to the allocated memory in EAX, or 0 if unsuccessful.

Requirements: Interrupts disabled.

Parameters:

RequestedSize Number or contiguous bytes requested

ActualSize Receives the actual number of bytes allocated in the location pointed to by

this parameter

MemBelow16RTag Resource tag acquired by driver for memory allocation (with a

"CacheBelow16MegMemorySignature")

Example:

Description: Use AllocBufferBelow16Meg only to allocate memory for drivers supporting 16-bit host adapters in

machines with more than 16 megabytes of memory to allow the driver to do I/O operations to or from

intermediate buffers below 16 megabytes, moving the data to or from the actual request buffer when above

the 16 megabyte boundary. The memory returned will be one or more contiguous cache buffers. The

pointer to the buffer allocated is returned in EAX (zero if none allocated). Drivers must call Alloc for all

other memory allocation requirements. Memory is not initialized to zero. See Appendix G for

implementation details. The repeated allocation and deallocation of relatively small blocks of memory will

tend to cause memory fragmentation. For increased system efficiency, a large block of memory can be

initially allocated and maintained as a pool of smaller blocks. Memory is always allocated on a

paragraph (16 byte) boundary.

See Also: FreeBufferBelow16Meg, AllocateResourceTag

Device Driver Developers' Guide

Revision 2.4 09/25/957-16

push MemRTag ;identify type of resource

push NumberOfBytes ;indicate amount of memory required

call AllocSemiPermMemory ;returns pointer to memory in eax

lea esp, [esp + (2*4)] ;adjust stack pointer

mov ebp, eax ;need for use and to return

AllocSemiPermMemory (Non-blocking) v3.1x

Allocates block of returnable memory for driver use

Syntax: void *AllocSemiPermMemory(

LONG NumberOfBytes,

LONG MemRTag);

Return Value: Pointer to the allocated memory in EAX, or 0 if unsuccessful.

Requirements: Interrupts disabled. May not be called from interrupt level.

Parameters: NumberOfBytes Passes in the amount of memory in bytes to be allocated.

MemRTag Resource tag acquired by driver for memory allocation using an

"SemiPermMemorySignature" resource signature.

Example:

Description: AllocSemiPermMemory is used to allocate memory for any driver requirements such as IOConfiguration

structures or special buffers. AllocSemiPermMemory is passed the amount of memory to allocate and

returns a pointer to the allocated memory in the EAX register. This routine is available to drivers for

Initialize Driver, Mass Storage Control Interface, IOPoll, and IOCTLPoll routines, but may not be called

from interrupt-level. The memory allocated is not initialized by the allocation routine, and must be

initialized by the driver. This API will not be supported in future products and is only emulated in

NetWare 4.xx. It should be replaced with the "Alloc" API. The repeated allocation and deallocation of

relatively small blocks of memory will tend to cause memory fragmentation. For increased system

efficiency, a large block of memory can be initially allocated and maintained as a pool of smaller blocks.

Memory is always allocated on a paragraph (16 byte) boundary.

See Also: Alloc, Free, FreeSemiPermMemory, AllocateResourceTag

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-17

push IRQNumber ;tell OS which interrupt bit to unmask

call CAdjustRealModeInterruptMask ;w/DOS for Real mode switch

lea esp, [esp + 4] ;adjust stack

CAdjustRealModeInterruptMask (Non-blocking) v3.1x & v4.xx

Adjusts Real Mode interrupt mask for calls to DOS driver

Syntax: void CAdjustRealModeInterruptMask(

LONG IRQNumber);

Return Value: None

Requirements: Interrupts disabled.

Parameters: IRQNumber Interrupt (IRQ) Number utilized by the associated card.

Example:

Description: This call clears the corresponding bit in the RealModeInterruptMask. (The bit was set by a

SetHardwareInterrupt call.) This mask is written to the priority interrupt controllers (PICs) when a

NetWare call is made to return the processor to real mode (in order to make DOS calls.) This has the

effect of unmasking the interrupt for use in real mode. Drivers that support adapter/devices also supported

by DOS in conjunction with DOS drivers should make this call immediately after the SetHardwareInterrupt

call. (Note: The loader uses DOS drivers to load NLMs and drivers from DOS partitions).

See Also: SetHardwareInterrupt, ClearHardwareInterrupt, CUnAdjustRealModeInterruptMask

Device Driver Developers' Guide

Revision 2.4 09/25/957-18

push OFFSET AESEvent ;address of AES structure

call CancelNoSleepAESProcessEvent ;no further event callbacks

lea esp, [esp + 4] ;adjust stack pointer

CancelNoSleepAESProcessEvent (Non-blocking) v3.1x & v4.xx

Cancels No-Sleep AES timer event

Syntax: void CancelNoSleepAESProcessEvent(

AESEventStruct *AESEvent);

Return Value: None

Requirements: Interrupts disabled.

Parameters: AESEvent Passes a pointer to an AES structure.

Example:

Description: CancelNoSleepAESProcessEvent cancels the AES event indicated by the AES structure pointer it is

passed. A Remove Driver procedure must make this call for every AES No-Sleep timer the driver has used.

See Also: Driver Initialization, Driver Unload, AESEventStructure, ScheduleNoSleepAESProcessEvent

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-19

push OFFSET AESEvent ;address of AES structure

call CancelSleepAESProcessEvent ;no further event callbacks

lea esp, [esp + 4] ;adjust stack pointer

CancelSleepAESProcessEvent (Non-blocking) v3.1x & v4.xx

Cancels Sleep AES timer event

Syntax: void CancelSleepAESProcessEvent(

AESEventStruct *AESEvent);

Return Value: None

Requirements: Interrupts disabled.

Parameters: AESEvent Passes a pointer to an AES structure.

Example:

Description: CancelSleepAESProcessEvent cancels the AES event indicated by the AES structure pointer it is passed.

A Remove Driver procedure must make this call for every AES Sleep timer the driver has used.

See Also: Driver Initialization, Driver Unload, AESEventStructure, ScheduleSleepAESProcessEvent

Device Driver Developers' Guide

Revision 2.4 09/25/957-20

push IRQNumber ;interrupt number (0-15)

call CCheckHardwareInterrupt ;determine if active request

lea esp, [esp + 4] ;adjust stack pointer

CCheckHardwareInterrupt (Non-blocking) v3.1x & v4.xx

Returns indication of interrupt requested for specified interrupt

Syntax: LONG CCheckHardwareInterrupt(

LONG IRQNumber);

Return Value: zero No interrupt request active for IRQ Number

non-zero Interrupt requested for IRQ Number

Requirements: Interrupts disabled.

Parameters: IRQNumber Interrupt to be checked for pending request.

Example:

Description: CCheckHardwareInterrupt determines if an interrupt request is currently being made to the priority

interrupt controller (PIC) assigned to the indicated interrupt number. The PIC should normally have this

IRQ masked off while this call is made. (The interrupt will not be recorded by the PIC). A return value

of zero indicates that the PIC has no interrupt request being made to it.

See Also: CDisableHardwareInterrupt, CEnableHardwareInterrupt, CDoEndOfInterrupt

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-21

push IRQNumber ;desired interrupt (0-15)

call CDisableHardwareInterrupts ;no interrupts allowed (or recorded)

from level

lea esp, [esp + 4] ;adjust stack pointer

CDisableHardwareInterrupt (Non-blocking) v3.1x & v4.xx

Masks off indicated IRQ in associated interrupt controller

Syntax: void CDisableHardwareInterrupt(

LONG IRQNumber);

Return Value: None

Requirements: Interrupts disabled.

Parameters: IRQNumber Specifies interrupt to be masked off.

Example:

Description: CDisableHardwareInterrupt causes the corresponding interrupt in the Programmable Interrupt Controller

(PIC) to be masked off so that no further interrupts are allowed or recorded by the PIC.

See Also: CEnableHardwareInterrupts, CCheckHardwareInterrupt, CDoEndOfInterrupt

Device Driver Developers' Guide

Revision 2.4 09/25/957-22

push IRQNumber ;desired interrupt (0 - 15)

call CDoEndOfInterrupt ;issue required EOIs

lea esp, [esp + 4] ;adjust stack pointer

CDoEndOfInterrupt (Non-blocking) v3.1x & v4.xx

Issues required EOIs for the specified interrupt

Syntax: void CDoEndOfInterrupt(

LONG IRQNumber);

Return Value: None

Requirements: Interrupts disabled.

Parameters: IRQNumber Indicates interrupt for which EOIs are to be issued.

Example:

Description: Issues End of Interrupt (EOI) command to the associated interrupt controller for the IRQ indicated. If the

IRQ is assigned to a secondary PIC, an EOI will be issued to the secondary PIC, followed by a short delay

for the bus, then to the primary PIC. If the IRQ is assigned to a primary PIC, an EOI will be issued to the

primary PIC only.

See Also: CCheckHardwareInterrupt, CDisableHardwareInterrupt, CEnableHardwareInterrupt

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-23

push IRQNumber ;hardware interrupt to be enabled

call CEnableHardwareInterrupt ;unmask (enable) interrupt level

lea esp, [esp + 4] ;adjust stack pointer

CEnableHardwareInterrupt (Non-blocking) v3.1x & v4.xx

Enables specified IRQ in associated interrupt controller

Syntax: void CEnableHardwareInterrupt(

LONG IRQNumber);

Return Value: None

Requirements: Interrupts disabled.

Parameters: IRQNumber Indicates desired hardware interrupt

Example:

Description: CEnableHardwareInterrupt un-masks (enables) the indicated interrupt in the associated programmable

Interrupt Controller (PIC). This allows further interrupts to be recorded or to occur.

See Also: CDisableHardwareInterrupt, CCheckHardwareInterrupt, CDoEndOfInterrupt

Device Driver Developers' Guide

Revision 2.4 09/25/957-24

push ScreenHandle ;allow console messages

push CardHandle ;identify CardStructure

call CheckDiskCard ;see if any card devices locked

lea esp, [esp + (2*4)] ;adjust stack pointer

or ccode, eax ;combine results for driver check

CheckDiskCard (Blocking) v3.1x & v4.xx

Returns composite lock status of all devices on adapter card.

Syntax: LONG CheckDiskCard(

CardStruct *CardHandle,

LONG ScreenHandle);

Return Value: Composite (logically OR'ed) status of all card devices, as follows:

0 no devices are locked

1 at least one device is locked but has a mirror associated with a separate driver

2 at least one device is locked and doesn't have a mirror associated with a separate driver

3 same as 2 (logical 'or' of 1 and 2)

Requirements: Must be called from blocking process level only.

Parameters: CardHandle The handle (pointer to the card structure) of the desired adapter board

returned by the AddDiskSystem API.

ScreenHandle The screen handle passed to the driver's Check Driver routine.

Example:

Description: CheckDiskCard returns in the EAX register the combined status of the registered devices attached to

adapter corresponding to the card handle (passed as a parameter to CheckDiskCard.) It also uses the

screen handle to display the status of the devices that are locked. It is the responsibility of the driver's

Check Driver routine to determine the status of all registered devices on each adapter card and return the

combined (OR'ed) status.

Several NetWare commands call the driver's Check Driver routine as a precautionary measure to determine

if any of the driver's registered devices are locked. For example, the console command UNLOAD calls a

driver's Check Driver before unloading the driver.

See Also: CheckDriver, UnloadDriver

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-25

push ScreenHandle ;allow console messages

push DiskHandle ;identify DiskStructure

call CheckDiskDevice ;see if device locked

lea esp, [esp + (2*4)] ;adjust stack pointer

or ccode, eax ;combine results for driver check

CheckDiskDevice (Blocking) v3.1x

Returns the lock status of the storage device.

Syntax: LONG CheckDiskCard(

CardStruct *DiskHandle,

LONG ScreenHandle);

Return Value: Returns one of the following codes indicating the device status:

0 device is not locked

1 device is locked but has a mirror associated with a separate driver

2 device is locked and doesn't have a mirror associated with a separate driver

Requirements: Must be called from blocking process level only.

Parameters: DiskHandle Handle returned by AddDiskDevice for this device.

ScreenHandle The screen handle passed to the Check Driver routine.

Example:

Description: CheckDiskDevice returns in the EAX register the status of the registered device corresponding to the device

handle (passed as a parameter to CheckDiskDevice.) It also uses the screen handle to display the status of

the devices that are locked. It is the responsibility of the driver's Check Driver routine to determine the

status of all registered devices on each adapter card and return the combined (OR'ed) status. This API will

not be supported in future products and is only emulated in NetWare 4.xx. It should be replaced with the

"CheckDiskCard" API.

Several NetWare commands call the driver's Check Driver routine as a precautionary measure to determine

if any of the driver's registered devices are locked. For example, the console command UNLOAD calls a

driver's Check Driver before unloading the driver.

See Also: CheckDriver, UnloadDriver

Device Driver Developers' Guide

Revision 2.4 09/25/957-26

push InterruptService ;ISR address for this card

push IRQNumber ;interrupt number

call ClearHardwareInterrupt

lea esp, [esp + (2*4)] ;adjust stack pointer

ClearHardwareInterrupt (Non-blocking) v3.1x & v4.xx

Deallocates adapter card interrupt

Syntax: void ClearHardwareInterrupt(

LONG IRQNumber,

void (*InterruptService)()); or LONG (*InterruptService)());

Return Value: None

Requirements: Interrupts disabled. May not be called from interrupt level.

Parameters: IRQNumber Passes the IRQ number of the hardware interrupt.

InterruptService Pointer to the interrupt service routine (ISR) that was assigned to the specified

interrupt. The service routine returns a value in a shared interrupt configuration.

Example:

Description: ClearHardwareInterrupt releases a processor hardware interrupt previously allocated by

SetHardwareInterrupt for an adapter board. It also masks off the interrupt at the priority interrupt

controllers (PICs) and clears the corresponding bit in the RealModeInterruptMask. In the case of shared

interrupts, the masking process is performed only if the specified ISR is the only one remaining in the

chain. (The other ISRs have been cleared previously.) This call must be made by a driver's Remove

Driver routine for each card for which a SetHardwareInterrupt call was made previously.

See Also: SetHardwareInterrupts, CAdjustHardwareInterruptMask, CUnAjustHardwareInterruptMask, Driver ISR

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-27

push WorkSpaceSemaphore ;load semaphore

call CPSemaphore ;lock workspace for our use

add esp, (1 * 4) ;restore stack

CPSemaphore (Blocking) v3.1x & v4.xx

Set a Semaphore

Syntax: void CPSemaphore(LONG WorkSpaceSemaphore);

Return Value: None

Requirements: Must be called from blocking process level only.

Parameters: WorkSpaceSemaphore handle to the semaphore

Example:

Description: CPSemaphore is used to lock the real mode workspace when making a BIOS call. This routine is called

with interrupts disabled, and interrupts remain disabled.

For more information on how to use the BIOS call, refer to Appendix F.

Do not use this call to handle critical sections local to the driver.

See Also: CVSemaphore, GetRealModeWorkSpace, Appendix F

Device Driver Developers' Guide

Revision 2.4 09/25/957-28

call CRescheduleLast

; will regain control undefined time later

CRescheduleLast (Blocking) v3.1x

Places the current process last in active queue (delays)

Syntax: void CRescheduleLast(void);

Return Value: None

Requirements: Must be called from blocking process level only.

Parameters: None

Example:

Description: This routine places the current task last on the list of active tasks to be executed. This allows other tasks

to be scheduled first, keeping OS processes functioning.

See Also: CYieldIfNeeded, CYieldWithDelay, DelayMyself, AllocateResourceTag

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-29

push InterruptNumber ;tell OS sharing interrupt

call CUnAdjustRealModeInterruptMask ;w/DOS for Real mode switch

lea esp, [esp + 4] ;adjust stack

CUnAdjustRealModeInterruptMask (Non-blocking) v3.1x & v4.xx

Readjusts Real Mode Interrupt mask

Syntax: void CUnAdjustRealModeInterruptMask(

LONG IRQNumber);

Return Value: None

Requirements: Interrupts disabled,

Parameters: IRQNumber Interrupt Number utilized by the associated card.

Example:

Description: This call sets the corresponding bit in the RealModeInterruptMask. This mask is written to the priority

interrupt controllers (PICs) when a NetWare call is made to return the processor to real mode (in order to

make DOS calls.) This has the effect of masking the interrupt in real mode.

See Also: SetHardwareInterrupt, ClearHardwareInterrupt, CAdjustRealModeInterruptMask

Device Driver Developers' Guide

Revision 2.4 09/25/957-30

push WorkSpaceSemaphore ;pass semaphore

call CVSemaphore ;unlock workspace

add esp, (1 * 4) ;restore stack

CVSemaphore (Non-Blocking) v3.1x & v4.xx

Clear a Semaphore

Syntax: void CVSemaphore(LONG WorkSpaceSemaphore);

Return Value: None

Requirements: None

Parameters: WorkSpaceSemaphore handle to the semaphore

Example:

Description: CVSemaphore clears a semaphore that was set with CPSemaphore. This routine returns with interrupts

enabled.

Normally, CVSemaphore is used when the driver has finished making an EISA BIOS call so that other

processes can be allowed to use the workspace (Refer to Appendix G).

See Also: CPSemaphore, Appendix F

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-31

call CYieldIfNeeded ; will regain control undefined time later if

other processes require run time. Otherwise

continue processing.

CYieldIfNeeded (Blocking) v4.xx

Places the current process last in the run queue if other work is pending

Syntax: void CYieldIfNeeded(void);

Return Value: None

Requirements: Must be called from blocking process level only.

Parameters: None

Example:

Description: This routine places the current task last on the list of active tasks to be executed only if other non-low

priority tasks require run time. This increases system efficiency by not disrupting the current process until

actually necessary; however, low priority threads are disabled until the process runs to completion or

releases control using the CYieldWithDelay API.

See Also: CYieldWithDelay, CRescheduleLast, DelayMyself, AllocateResourceTag

Device Driver Developers' Guide

Revision 2.4 09/25/957-32

call CYieldWithDelay ; will regain control undefined time later

CYieldWithDelay (Blocking)

v4.xx

Places the current process last in the run queue (delays)

Syntax: void CYieldWithDelay(void);

Return Value: None

Requirements: Must be called from blocking process level only.

Parameters: None

Example:

Description: This routine places the current task last on the list of active tasks to be executed. This allows other tasks

to be scheduled, keeping OS processes fuctioning.

See Also: CYieldIfNeeded, CRescheduleLast, DelayMyself, AllocateResourceTag

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-33

push TimerResourceTag ;identify this driver

push ClockTicks ;time to sleep

call DelayMyself ;delay # ticks indicated

lea esp, [esp + (2*4)] ;adjust stack pointer

DelayMyself (Blocking) v3.1x & v4.xx

Delays current process for clock ticks specified

Syntax: void DelayMyself(

LONG ClockTicks,

LONG TimerResourceTag);

Return Value: None

Requirements: Must be called from blocking process-level only.

Parameters: ClockTicks Value indicating number of 1/18th second clock ticks to put this process to sleep

(minimum time before return).

TimerResourceTag Timer resource tag given to timer category when driver allocated resource

tags during initialization.

Example:

Description: Puts current running process (caller) to sleep for the designated time. Return is made following expiration

of the specified number of ticks. This routine is called to prevent a process from dominating process

resources and preventing other vital processes from running. It also provides a specific minimum delay

before the process is re-awakened, which may be helpful for tasks where some function will not complete

for at least a specified period.

See Also: CRescheduleLast, AllocateResourceTag

Device Driver Developers' Guide

Revision 2.4 09/25/957-34

push eax ;push device handle on stack

call DeleteDiskDevice ;remove the structure

lea esp, [esp + 4] ;adjust stack pointer

DeleteDiskDevice (Blocking) v3.1x & v4.xx

Removes a device structure (DiskStructure) from OS

Syntax: void DeleteDiskDevice(

DiskStruct *DiskHandle);

Return Value: None

Requirements: Must be called from blocking process level only.

Parameters: DiskHandle Passes a handle for the target device. This is the same value returned by

AddDiskDevice.

Example:

Description: DeleteDiskDevice completes the removal of a device. This routine must be called after RemoveDiskDevice.

DeleteDiskDevice returns to NetWare the memory allocated for a device handle structure (DiskStructure)

by passing the handle of the device to be deleted.

See Also: RemoveDiskDevice

NetWare Driver Support Routines

Revision 2.4 09/25/95 7-35

push 2

push eax ;push CardHandle on stack

call DeleteDiskSystem

lea esp, [esp + (2*4)] ;adjust stack pointer

DeleteDiskSystem (Blocking) v3.1x & v4.xx

Removes a Card Structure from the OS

Syntax: void DeleteDiskSystem(

CardStruct *CardHandle,

LONG Status);

Return Value: None

Requirements: Must be called from blocking process level only.

Parameters: CardHandle Passes a handle for the card structure for the associated adapter board.

AddDiskSystem returned this handle for the driver.

Status This parameter is included in the NetWare 3.1x and 4.xx versions for

capatibility reasons only. It should be initialized to a two (2).

Example:

Description: DeleteDiskSystem deletes a mass storage adapter board from NetWare. A driver calls this routine.

DeleteDiskSystem destroys the Card Structure that AddDiskSystem created to correspond to the specified

adapter board. Once DeleteDiskSystem returns, NetWare no longer knows about the specified adapter

board. After DeleteDiskSystem returns, do not reference the memory once allocated for the

AddDiskSystem call.

See Also: AddDiskSystem

Device Driver Developers' Guide

Revision 2.4 09/25/957-36

push eax ;pass IOConfig structure ptr

call DeRegisterHardwareOptions

lea esp, [esp + 4] ;adjust stack pointer

DeRegisterHardwareOptions (Blocking) v3.1x & v4.xx

Releases hardware options reserved previously

Syntax: void DeRegisterHardwareOptions(

IOConfigStruct *IOConfig);

Return Value: None

Requirements: Interrupts disabled. Must be called from blocking process level only.

Parameters: IOConfig Passes a pointer to the adapter board's corresponding IOConfiguration

structure.

Example:

Description: DeRegisterHardwareOptions removes previously reserved hardware options for a particular adapter board.

A driver's Remove Driver routine calls this routine. DeRegisterHardwareOptions removes the hardware

options specified in a adapter board's I/O Configuration structure.

See Also: RegisterHardwareOptions, ParseDriverParameters

